JP2016101160A - Artificial soil media adjustment method, and foliage plant cultivation method - Google Patents

Artificial soil media adjustment method, and foliage plant cultivation method Download PDF

Info

Publication number
JP2016101160A
JP2016101160A JP2015222557A JP2015222557A JP2016101160A JP 2016101160 A JP2016101160 A JP 2016101160A JP 2015222557 A JP2015222557 A JP 2015222557A JP 2015222557 A JP2015222557 A JP 2015222557A JP 2016101160 A JP2016101160 A JP 2016101160A
Authority
JP
Japan
Prior art keywords
artificial soil
fiber
water
value
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015222557A
Other languages
Japanese (ja)
Inventor
石坂 信吉
Shinkichi Ishizaka
信吉 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Publication of JP2016101160A publication Critical patent/JP2016101160A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an artificial soil media adjustment method that facilitates management of watering on a foliage plant.SOLUTION: An artificial soil media adjustment method adjusts the water content environment of artificial soil media for use in cultivation of a foliage plant to one suitable for cultivation of the foliage plant. As the artificial soil media, artificial soil particles are used which comprise a fiber lumpy body formed by putting together fibers. The method conducts an adjustment step of adjusting the volume moisture content of the artificial soil media to fall within 10-40% at pF value 2.3, 1-15% at pF value 2.7.SELECTED DRAWING: Figure 3

Description

本発明は、観葉植物の栽培に使用する人工土壌培地を、当該観葉植物の栽培に適した水分環境に調整する人工土壌培地の調整方法、及び当該調整方法により調整した人工土壌培地を用いて観葉植物を栽培する観葉植物栽培方法に関する。   The present invention relates to a method for adjusting an artificial soil medium for adjusting an artificial soil medium used for cultivation of a foliage plant to a water environment suitable for cultivation of the foliage plant, and an artificial soil medium adjusted by the adjustment method. The present invention relates to a foliage plant cultivation method for cultivating plants.

オフィス、店舗、一般住宅等の室内において、鉢植えの観葉植物を置く場合、見た目の美しさに加えて清潔であることが求められる。観葉植物の培地として天然土壌を使用すると、土壌に害虫が寄り付いたり、土壌から臭気が発生する等により、清潔感が損なわれることがある。そこで、害虫や臭気等の問題が発生し難いクリーンな土壌として、人工土壌を観葉植物の培地として利用することが検討されている。   When potted houseplants are placed in a room such as an office, a store, or a general house, it is required to be clean in addition to the beauty of appearance. When natural soil is used as a medium for foliage plants, the sense of cleanliness may be impaired due to pests approaching the soil or the generation of odor from the soil. Therefore, it has been studied to use artificial soil as a medium for houseplants as clean soil that is less susceptible to problems such as pests and odors.

人工土壌を用いて観葉植物を栽培するにあたっては、土壌としての基本性能に優れるだけでなく、天然土壌では実現が困難な独自の機能が求められる。例えば、観葉植物を乾燥し易い室内で栽培する場合、人工土壌には、天然土壌と同等の植物育成力を備えながら、水分環境の管理のし易さが求められる。特に、観葉植物を生育しながら、観葉植物が過剰に吸水することを抑制することは、観葉植物への水遣りの頻度を低減し、灌水の管理を容易にするために重要となる。人工土壌の水分環境の管理を容易なものとするためには、人工土壌を観葉植物に適した水分環境に維持できること、つまり、人工土壌培地に対する水分の吸着状態、及び人工土壌培地の体積含水率を適切に維持することが必要となる。   When cultivating foliage plants using artificial soil, not only are they excellent in basic performance as soil, but they also require unique functions that are difficult to realize in natural soil. For example, when a houseplant is cultivated indoors where it is easy to dry, the artificial soil is required to be easily managed in a water environment while having plant growth ability equivalent to that of natural soil. In particular, suppressing the excessive absorption of water by the houseplant while growing the houseplant is important for reducing the frequency of watering the houseplant and facilitating irrigation management. In order to facilitate the management of the moisture environment of the artificial soil, the artificial soil can be maintained in a moisture environment suitable for houseplants, that is, the moisture adsorption state on the artificial soil medium and the volumetric water content of the artificial soil medium. Must be maintained properly.

この点に関し、特許文献1には、植物栽培基体として連続気泡性ポリウレタンフォームチップを使用し、当該連続気泡性ポリウレタンフォームチップの粒径を0.2〜25.0mmに調整することで、植物栽培基体の保水量が0.4〜0.7g/cmに調整された植物の栽培方法が記載されている。 In this regard, Patent Literature 1 uses an open-celled polyurethane foam chip as a plant cultivation base and adjusts the particle size of the open-celled polyurethane foam chip to 0.2 to 25.0 mm, thereby plant cultivation. A plant cultivation method in which the water retention amount of the substrate is adjusted to 0.4 to 0.7 g / cm 3 is described.

特開2004−229637号公報JP 2004-229637 A

ところが、特許文献1で使用される連続気泡性ポリウレタンフォームチップは水分の保持能力が低いため、上記保水量を維持するためには少なくとも2〜3日に一回の頻度で散水を行う必要がある。しかも、植物栽培基体の保水量を0.4〜0.7g/cmに正確に調整するには熟練した経験が必要であり、灌水の管理が容易であるとは言い難い。 However, since the open-celled polyurethane foam chip used in Patent Document 1 has a low water retention capability, it is necessary to spray water at least once every 2 to 3 days in order to maintain the water retention amount. . Moreover, skillful experience is required to accurately adjust the water retention amount of the plant cultivation base to 0.4 to 0.7 g / cm 3 , and it is difficult to say that irrigation management is easy.

本発明は、上記問題点に鑑みてなされたものであり、観葉植物の灌水の管理を容易にする人工土壌培地の調整方法、及び観葉植物栽培方法を提供することを目的とする。   This invention is made | formed in view of the said problem, and it aims at providing the adjustment method of the artificial soil culture medium which makes easy management of the irrigation of a foliage plant, and the foliage plant cultivation method.

上記課題を解決するための本発明に係る人工土壌培地の調整方法の特徴構成は、
観葉植物の栽培に使用する人工土壌培地を、当該観葉植物の栽培に適した水分環境に調整する人工土壌培地の調整方法であって、
前記人工土壌培地として、繊維を集合してなる繊維塊状体を備える人工土壌粒子を使用し、
前記人工土壌培地の体積含水率を、pF値2.3において10〜40%の範囲、pF値2.7において1〜15%の範囲となるように調整する調整工程を実行することにある。
The characteristic configuration of the method for adjusting an artificial soil culture medium according to the present invention for solving the above problems is as follows.
An artificial soil culture medium adjustment method for adjusting an artificial soil culture medium used for cultivation of foliage plants to a moisture environment suitable for cultivation of the foliage plants,
As the artificial soil medium, using artificial soil particles provided with a fiber mass formed by collecting fibers,
It is to perform an adjustment step of adjusting the volumetric water content of the artificial soil medium so as to be in a range of 10 to 40% at a pF value of 2.3 and in a range of 1 to 15% at a pF value of 2.7.

本構成の人工土壌培地の調整方法によれば、観葉植物の栽培に使用する人工土壌培地として、繊維を集合してなる繊維塊状体を備える人工土壌粒子を使用していることから、観葉植物の成長に伴って、観葉植物の根が人工土壌粒子を形成する繊維と効果的に絡み合い、人工土壌粒子内に保持された水分を効率的に吸収することができる。このため、人工土壌培地の水分環境を、易効水の中でも比較的高い値であるpF値2.3において体積含水率を10〜40%の範囲、pF値2.7において体積含水率を1〜15%の範囲となるように調整しても、観葉植物が萎れることなく、人工土壌培地からの観葉植物への水分供給を適度に抑制することができる。その結果、観葉植物の生育を維持しながら、水遣りの頻度を低減することができ、観葉植物の灌水の管理を容易に行うことができる。   According to the method for adjusting an artificial soil culture medium of this configuration, artificial soil particles having fiber aggregates formed by collecting fibers are used as an artificial soil culture medium used for cultivation of a houseplant. As the plants grow, the roots of the houseplants are effectively entangled with the fibers forming the artificial soil particles, and the water retained in the artificial soil particles can be efficiently absorbed. For this reason, the moisture environment of the artificial soil culture medium is such that the volumetric water content is in the range of 10 to 40% at a pF value of 2.3, which is a relatively high value among easy-to-use water, and the volumetric water content is 1 at a pF value of 2.7. Even if it adjusts so that it may become in the range of -15%, the water supply to the foliage plant from the artificial soil culture medium can be moderately suppressed without the foliage plant being deflated. As a result, the frequency of watering can be reduced while maintaining the growth of the foliage plants, and the irrigation of the foliage plants can be easily managed.

本発明に係る人工土壌培地の調整方法において、
前記調整工程は、前記人工土壌粒子の粒度分布を1〜15mmの範囲に調整する粒度分布調整工程を含むことが好ましい。
In the method for preparing an artificial soil medium according to the present invention,
The adjusting step preferably includes a particle size distribution adjusting step of adjusting the particle size distribution of the artificial soil particles to a range of 1 to 15 mm.

人工土壌培地における水分の吸着状態は、人工土壌粒子間に形成される間隙に関係し、この間隙を適切なサイズに調整することで、特定のpF値における体積含水率を調整することが可能になる。本構成の人工土壌培地の調整方法によれば、人工土壌粒子の粒度分布を1〜15mmの範囲に調整することで、複数の人工土壌粒子の間に形成される間隙は、pF値が2.3〜2.7の範囲の水分を保持する適度なサイズに形成される。その結果、人工土壌培地の体積含水率を、pF値2.3において10〜40%の範囲、pF値2.7において1〜15%の範囲に容易に調整することができる。   The moisture adsorption state in the artificial soil medium is related to the gap formed between the artificial soil particles, and the volume moisture content at a specific pF value can be adjusted by adjusting the gap to an appropriate size. Become. According to the adjustment method of the artificial soil medium of this configuration, the pF value of the gap formed between the plurality of artificial soil particles is 2 by adjusting the particle size distribution of the artificial soil particles to a range of 1 to 15 mm. It is formed in an appropriate size that retains moisture in the range of 3 to 2.7. As a result, the volumetric water content of the artificial soil medium can be easily adjusted to a range of 10 to 40% at a pF value of 2.3 and a range of 1 to 15% at a pF value of 2.7.

本発明に係る人工土壌培地の調整方法において、
前記粒度分布調整工程において、前記人工土壌粒子の粒度分布の中央値が2〜10mmの範囲に存在するように調整することが好ましい。
In the method for preparing an artificial soil medium according to the present invention,
In the particle size distribution adjusting step, it is preferable to adjust so that the median value of the particle size distribution of the artificial soil particles is in the range of 2 to 10 mm.

本構成の人工土壌培地の調整方法によれば、人工土壌粒子の粒度分布の中央値が2〜10mmの範囲に存在するように調整することで、複数の人工土壌粒子の間に形成される間隙は、pF値が2.3〜2.7の範囲の水分を保持する最適なサイズに形成される。その結果、人工土壌培地の体積含水率を、pF値2.3において10〜40%の範囲、pF値2.7において1〜15%の範囲に確実に調整することができる。   According to the adjustment method of the artificial soil culture medium of this configuration, the gap formed between the plurality of artificial soil particles is adjusted so that the median value of the particle size distribution of the artificial soil particles is in the range of 2 to 10 mm. Is formed in an optimal size that retains moisture with a pF value in the range of 2.3 to 2.7. As a result, the volumetric water content of the artificial soil medium can be reliably adjusted to a range of 10 to 40% at a pF value of 2.3 and a range of 1 to 15% at a pF value of 2.7.

本発明に係る人工土壌培地の調整方法において、
前記粒度分布調整工程において、前記人工土壌粒子の粒度分布に複数のピークが存在するように調整することが好ましい。
In the method for preparing an artificial soil medium according to the present invention,
In the particle size distribution adjusting step, it is preferable to adjust the particle size distribution of the artificial soil particles so that a plurality of peaks exist.

本構成の人工土壌培地の調整方法によれば、人工土壌粒子の粒度分布に複数のピークが存在するように調整することで、人工土壌粒子間に形成される間隙は、連続性を有する段階的なサイズを有するものとなる。この場合、人工土壌培地の間隙内に吸着状態が異なる水分を保持させることが可能となる。その結果、人工土壌培地に観葉植物の種類に応じた適切な吸着状態の水分を適切な体積含水率で保持させることができ、異なる吸着状態の水分を要求する複数の植物を同時に栽培することが可能になる。   According to the method for adjusting an artificial soil medium of this configuration, the gap formed between the artificial soil particles is stepwise by adjusting the particle size distribution of the artificial soil particles so that there are multiple peaks. It will have a size. In this case, it is possible to retain moisture having different adsorption states in the gap between the artificial soil culture media. As a result, the artificial soil culture medium can hold moisture in an appropriate adsorption state according to the type of houseplant at an appropriate volumetric moisture content, and it is possible to simultaneously grow a plurality of plants that require moisture in different adsorption states It becomes possible.

上記課題を解決するための本発明に係る観葉植物栽培方法の特徴構成は、
上記何れか一つの人工土壌培地の調整方法により調整した人工土壌培地を用いて観葉植物に灌水を行う灌水工程を含むことにある。
The characteristic configuration of the foliage plant cultivation method according to the present invention for solving the above problems is as follows:
It is in including the irrigation process of irrigating a foliage plant using the artificial soil culture medium adjusted with the adjustment method of any one said artificial soil culture medium.

本構成の観葉植物栽培方法によれば、本発明の人工土壌培地の調整方法を実施した上で観葉植物に灌水を行って栽培するため、上述したように、観葉植物の生育を維持しながら、水遣りの頻度を低減することができる。   According to the foliage plant cultivation method of this configuration, in order to cultivate the foliage plants by irrigating them after carrying out the preparation method of the artificial soil medium of the present invention, as described above, while maintaining the growth of the foliage plants, The frequency of watering can be reduced.

本発明に係る観葉植物栽培方法において、
前記灌水工程において、前記観葉植物への灌水の間隔を、天然土壌を使用して前記観葉植物を栽培する場合における灌水の間隔の1.5倍以上とすることが好ましい。
In the houseplant cultivation method according to the present invention,
In the irrigation step, the interval of irrigation to the foliage plant is preferably 1.5 times or more than the interval of irrigation when the foliage plant is cultivated using natural soil.

本構成の観葉植物栽培方法によれば、灌水工程において、観葉植物への灌水の間隔を、天然土壌を使用して観葉植物を栽培する場合における灌水の間隔の1.5倍以上とするため、観葉植物への水遣りの頻度を確実に低減することができ、観葉植物の灌水の管理を容易にすることができる。   According to the foliage plant cultivation method of this configuration, in the irrigation step, in order to make the interval of irrigation to the foliage plants 1.5 times or more of the interval of irrigation when cultivating the foliage plants using natural soil, The frequency of watering the foliage plants can be reliably reduced, and the irrigation management of the foliage plants can be facilitated.

図1は、本発明に係る人工土壌培地の調整方法において対象となる人工土壌粒子の模式図である。FIG. 1 is a schematic diagram of artificial soil particles to be used in the method for preparing an artificial soil medium according to the present invention. 図2は、図1の人工土壌粒子により構成される人工土壌培地の模式図である。FIG. 2 is a schematic diagram of an artificial soil medium composed of the artificial soil particles of FIG. 図3は、本発明に係る観葉植物栽培方法の説明図である。FIG. 3 is an explanatory diagram of a method for cultivating a foliage plant according to the present invention. 図4は、実施例7の人工土壌粒子を用いた培地における体積含水率と経過日数(灌水間隔)との関係を示したグラフである。FIG. 4 is a graph showing the relationship between the volumetric water content and the number of elapsed days (irrigation interval) in the medium using the artificial soil particles of Example 7.

以下、本発明に係る人工土壌培地の調整方法、及び観葉植物の栽培方法に関する実施形態を図1〜図4に基づいて説明する。ただし、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図しない。なお、本発明の理解を容易にするため、初めに、人工土壌培地の水分吸着力について説明する。   Hereinafter, the embodiment regarding the adjustment method of the artificial soil culture medium which concerns on this invention, and the cultivation method of a foliage plant is described based on FIGS. However, the present invention is not intended to be limited to the configurations described in the embodiments and drawings described below. In addition, in order to make an understanding of this invention easy, the water | moisture-content adsorption | suction power of an artificial soil culture medium is demonstrated first.

<人工土壌培地の水分吸着力>
土壌(人工土壌及び天然土壌の両方を含む)は、様々な大きさの土壌粒子により構成され、複数の土壌粒子の間に形成される間隙に毛管現象等により水分が保持されている。土壌の水分を保持する力(水分吸着力)は、pF値として表される。pF値とは、水柱の高さで表した土壌水分の吸引圧の常用対数値のことであり、土壌中の水分が土壌の毛管力によって引き付けられている強さの程度を表す値である。pF値が2.0のとき、水柱100cmの圧力に相当する。pF値は土壌と水分との吸着の強さを表すものでもあり、土壌と水分との吸着力が弱いとpF値は低くなり、植物の根が水分を吸収し易い状態となる。一方、土壌と水分の吸着力が強いとpF値は高くなり、植物の根が水分を吸収するためには大きな力を要する。土壌中の間隙に空気が存在せず、全て水で充たされているときの状態がpF値0であり、100℃の熱乾状態の土壌であって、土壌と結合した水しか存在しない状態がpF値7となる。植物が根から吸収できる土壌中の水分は、降雨又は灌水後、通常24時間経過時に土壌中に残っている水分(pF値1.7)から、植物が萎れ始める初期萎れ点(pF値3.8)までの水分である。この中で植物が容易に利用することができる水分、いわゆる易効水のpF値の範囲は1.7〜2.7である。pF値は、pFメータ(テンシオメーター)を用いて測定することができる。本発明者らは、特に、観葉植物に適した人工土壌培地の条件について、鋭意研究を行ったところ、人工土壌培地として繊維塊状体を有する人工土壌粒子を使用した場合、易効水の中でも比較的高い値であるpF値2.3において体積含水率を10〜40%の範囲、pF値2.7において体積含水率を1〜15%の範囲となるように調整すると、観葉植物が萎れることなく人工土壌培地からの観葉植物への水分供給を適度に抑制できることを見出した。以下、本発明の人工土壌培地の調整方法で用いる人工土壌粒子について説明する。
<Water adsorption capacity of artificial soil medium>
Soil (including both artificial soil and natural soil) is composed of soil particles of various sizes, and moisture is retained in the gaps formed between the plurality of soil particles by capillary action or the like. The force for retaining soil moisture (moisture adsorption force) is expressed as a pF value. The pF value is a common logarithm value of the suction pressure of the soil moisture expressed by the height of the water column, and is a value representing the degree of strength at which the moisture in the soil is attracted by the capillary force of the soil. When the pF value is 2.0, it corresponds to a pressure of 100 cm of water column. The pF value also represents the strength of adsorption between the soil and moisture. If the adsorption force between the soil and moisture is weak, the pF value becomes low, and the plant roots easily absorb moisture. On the other hand, if the adsorption power of soil and moisture is strong, the pF value becomes high, and a large force is required for the roots of plants to absorb moisture. When there is no air in the gaps in the soil and all of them are filled with water, the pF value is 0, and the soil is 100 ° C. in the heat-dried state, and there is only water combined with the soil. Becomes a pF value of 7. The water in the soil that the plant can absorb from the root is the initial wilt point (pF value of 3. The water content is up to 8). Among these, the range of the pF value of water that can be easily used by plants, so-called easy water, is 1.7 to 2.7. The pF value can be measured using a pF meter (tensiometer). The inventors of the present invention, in particular, have conducted intensive research on the conditions of an artificial soil medium suitable for foliage plants. When the volumetric water content is adjusted to be in the range of 10 to 40% at a pF value of 2.3, which is a relatively high value, and the volumetric water content is adjusted to be in the range of from 1 to 15% at a pF value of 2.7, the foliage plant will wither. It was found that the water supply from the artificial soil medium to the houseplants can be moderately suppressed. Hereinafter, the artificial soil particles used in the method for preparing an artificial soil medium of the present invention will be described.

<人工土壌粒子>
図1は、本発明に係る人工土壌培地の調整方法において対象となる人工土壌粒子50,51の模式図である。図1(a)の人工土壌粒子50は、繊維1を集合してなる繊維塊状体10を備えている。図1(b)の人工土壌粒子51は、繊維1を集合してなる繊維塊状体10と、当該繊維塊状体10を被覆する通水性膜20とを備えている。図1に示すように、繊維塊状体10は、繊維1が絡み合った粒状物に形成され、繊維1の間には空隙2が存在している。人工土壌粒子50,51は、繊維塊状体10の空隙2に水分を吸収し、保持することができる。人工土壌粒子50,51は、この空隙2によって保水性と通気性との良好なバランスを実現している。
<Artificial soil particles>
FIG. 1 is a schematic diagram of artificial soil particles 50 and 51 which are targets in the method for adjusting an artificial soil culture medium according to the present invention. An artificial soil particle 50 in FIG. 1A includes a fiber block 10 formed by collecting fibers 1. The artificial soil particle 51 in FIG. 1B includes a fiber lump 10 formed by gathering the fibers 1 and a water permeable membrane 20 that covers the fiber lump 10. As shown in FIG. 1, the fiber lump 10 is formed into a granular material in which fibers 1 are intertwined, and voids 2 exist between the fibers 1. The artificial soil particles 50 and 51 can absorb and retain moisture in the voids 2 of the fiber lump 10. The artificial soil particles 50 and 51 achieve a good balance between water retention and air permeability by the voids 2.

空隙2の状態(例えば、空隙2の大きさ、数、形状等)は、人工土壌粒子50,51が保持できる水分量、すなわち保水性に関係する。空隙2の状態は、繊維塊状体10を造粒する際の繊維1の使用量(密度)、繊維1の種類、太さ、長さ等を変更することにより調整可能である。なお、繊維1のサイズは、太さが5〜100μm程度が好ましく、長さが0.5〜10mm程度が好ましい。また、繊維1として予め切断された短繊維を使用することも可能であり、この場合、短繊維の長さは0.2〜0.5mm程度が好ましい。   The state of the void 2 (for example, the size, number, shape, etc. of the void 2) relates to the amount of water that the artificial soil particles 50, 51 can hold, that is, the water retention. The state of the void 2 can be adjusted by changing the amount (density) of the fiber 1 used when granulating the fiber lump 10, the type, thickness, length, and the like of the fiber 1. The size of the fiber 1 is preferably about 5 to 100 μm in thickness and about 0.5 to 10 mm in length. Moreover, it is also possible to use the short fiber cut | disconnected previously as the fiber 1, and the length of a short fiber is preferable about 0.2-0.5 mm in this case.

繊維の種類は、繊維塊状体10内での水分の保持力に関係する。従って、繊維の種類を変更することにより、人工土壌粒子50,51の水分の保持力を制御することができる。例えば、繊維として水に対する吸着力が大きい親水性繊維を使用すると、水分を繊維塊状体10内の空隙2に強く保持することができるため、人工土壌粒子50,51に吸収された水分を植物が容易に利用可能な水、いわゆる易効水の中でも高いpF値の水分環境に調整することができる。好ましい親水性繊維としては、例えば、天然繊維では、綿、羊毛、レーヨン、セルロース等が挙げられ、合成繊維では、ビニロン、ポリエステル、ナイロン、ウレタン等が挙げられる。これらの繊維のうち、セルロース及びビニロンがより好ましい。繊維塊状体10に使用する繊維1として、水分に対する吸着力の異なる繊維を混繊したものを使用することも可能である。   The type of fiber is related to the moisture retention in the fiber lump 10. Therefore, the moisture retention of the artificial soil particles 50 and 51 can be controlled by changing the fiber type. For example, when a hydrophilic fiber having a large water adsorbing power is used as the fiber, moisture can be strongly held in the void 2 in the fiber lump 10, so that the plant absorbs the moisture absorbed by the artificial soil particles 50 and 51. It can be adjusted to a water environment having a high pF value even in easily available water, so-called easy-to-use water. Preferable hydrophilic fibers include, for example, natural fibers such as cotton, wool, rayon, and cellulose, and synthetic fibers include vinylon, polyester, nylon, and urethane. Of these fibers, cellulose and vinylon are more preferred. As the fiber 1 used for the fiber lump 10, it is possible to use a fiber in which fibers having different adsorptive power to moisture are mixed.

人工土壌粒子50,51の繊維塊状体10には、吸湿性を備える多孔質材を含ませることが好ましい。これにより、人工土壌粒子50,51の水分の保持力をより容易に調整することができる。多孔質材は、例えば、珪藻土、パーライト、バーミキュライト、ゼオライト、ベントナイト、クレー、多孔質ガラスビーズ等を挙げることができる。また、上掲の多孔質材は、二種以上を混合した状態で使用することも可能である。   It is preferable to include a porous material having hygroscopicity in the fiber lump 10 of the artificial soil particles 50 and 51. Thereby, the moisture retention of the artificial soil particles 50 and 51 can be adjusted more easily. Examples of the porous material include diatomaceous earth, perlite, vermiculite, zeolite, bentonite, clay, and porous glass beads. Moreover, the above-mentioned porous material can be used in a state where two or more kinds are mixed.

人工土壌粒子51において、繊維塊状体10を被覆する通水性膜20は、水分子が通過可能な微細孔を有する膜である。あるいは、水分が一方側から浸透して他方側に移動可能な浸透性膜とすることもできる。人工土壌粒子51は、通水性膜20を備えることにより、繊維塊状体10内の通気性及び通水性をより容易に調整することができる。外部環境が湿潤状態となった場合、人工土壌粒子51は、通水性膜20を介して外部環境に存在する水分を繊維塊状体10内に吸収し、保持することができる。一方、外部環境が乾燥状態となった場合、人工土壌粒子51は、通水性膜20を介して繊維塊状体10の空隙2に保持された水分を外部環境に放出する。このように、人工土壌粒子51は、土壌として求められる保水性を維持しながら、通水性膜20によって外部環境との通気性及び通水性を、人工土壌粒子50よりも容易に調整することができる。その結果、植物の根腐れ等を防止することができる。なお、「外部環境」とは、人工土壌粒子50,51の外側の環境を意図する。通水性膜20を備えた人工土壌粒子51は、外部環境からの水分の取り込み、及び外部環境への水分の放出をより容易に調整することができるため、人工土壌等の水分の移動を伴う用途において、優れた適応性を示すことができる。   In the artificial soil particle 51, the water permeable membrane 20 covering the fiber lump 10 is a membrane having fine pores through which water molecules can pass. Or it can also be set as the permeable membrane which water | moisture content permeates from one side and can move to the other side. By providing the water-permeable membrane 20, the artificial soil particles 51 can more easily adjust the air permeability and water permeability in the fiber lump 10. When the external environment becomes wet, the artificial soil particles 51 can absorb and retain moisture existing in the external environment through the water permeable membrane 20 in the fiber lump 10. On the other hand, when the external environment is in a dry state, the artificial soil particles 51 release moisture held in the voids 2 of the fiber block 10 through the water-permeable membrane 20 to the external environment. As described above, the artificial soil particles 51 can adjust the air permeability and water permeability with the external environment more easily than the artificial soil particles 50 by the water permeable membrane 20 while maintaining the water retention required for the soil. . As a result, plant root rot and the like can be prevented. The “external environment” intends an environment outside the artificial soil particles 50 and 51. The artificial soil particles 51 provided with the water permeable membrane 20 can more easily adjust the intake of moisture from the external environment and the release of moisture to the external environment. Can exhibit excellent adaptability.

通水性膜20は、繊維塊状体10と外部環境との遮蔽性を確保する機能も有する。従って、通水性膜20の膜厚や材質を変更することにより、人工土壌粒子51の保水性及び吸水性を調整することが可能となる。また、繊維塊状体10の外表部を通水性膜20で被覆することにより、繊維塊状体10が形崩れし難くなり、人工土壌粒子51の保水性と強度とを両立させることができる。   The water permeable membrane 20 also has a function of ensuring the shielding property between the fiber lump 10 and the external environment. Therefore, by changing the film thickness and material of the water permeable membrane 20, the water retention and water absorption of the artificial soil particles 51 can be adjusted. Moreover, by covering the outer surface portion of the fiber lump 10 with the water membrane 20, the fiber lump 10 is not easily deformed, and both the water retention and strength of the artificial soil particles 51 can be achieved.

通水性膜20は、繊維塊状体10を構成する繊維の絡み合い部分(繊維同士が接触する部分)を補強するように、繊維塊状体10の外表部から若干内側に浸透した状態にまで厚みを持たせて形成してもよい。これにより、人工土壌粒子51の強度及び耐久性をさらに向上させることができる。通水性膜20の膜厚は、1〜200μmに設定され、好ましくは10〜100μmに設定され、より好ましくは20〜60μmに設定される。   The water permeable membrane 20 has a thickness from the outer surface of the fiber lump 10 to the inside slightly so as to reinforce the entangled portions of the fibers constituting the fiber lump 10 (portions where the fibers contact each other). May be formed. Thereby, the intensity | strength and durability of the artificial soil particle 51 can further be improved. The film thickness of the water-permeable membrane 20 is set to 1 to 200 μm, preferably 10 to 100 μm, and more preferably 20 to 60 μm.

通水性膜20の材質は、水に不溶性で酸化され難いものが好ましく、例えば、樹脂材料が挙げられる。そのような樹脂材料として、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン等の塩化ビニル系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリスチレン等のスチロール系樹脂が挙げられる。これらのうち、ポリエチレンが好ましい。また、樹脂材料に代えて、ポリエチレングリコール等の合成高分子系のゲル化剤、又はアルギン酸ナトリウム等の天然ゲル化剤を使用することも可能である。   The material of the water-permeable membrane 20 is preferably insoluble in water and hardly oxidized, and examples thereof include a resin material. Examples of such a resin material include polyolefin resins such as polyethylene and polypropylene, vinyl chloride resins such as polyvinyl chloride and polyvinylidene chloride, polyester resins such as polyethylene terephthalate, and styrene resins such as polystyrene. Of these, polyethylene is preferred. In place of the resin material, a synthetic polymer gelling agent such as polyethylene glycol or a natural gelling agent such as sodium alginate can be used.

<人工土壌粒子の製造方法>
人工土壌粒子50の製造方法としては、例えば、セルロース又はビニロン等の繊維1をカーディング装置等で引揃え、3〜10mm程度の長さに切断し、切断した繊維1に樹脂や糊等のバインダーを混合して、転動造粒、流動層造粒、攪拌造粒、圧縮造粒、押出造粒等の方法によって粒状に造粒し、バインダーを含む繊維塊状体10を形成する。繊維塊状体10の繊維どうしを、加熱処理等によりバインダーで固定化して、人工土壌粒子50が完成する。得られた人工土壌粒子50は、必要に応じて、乾燥及び分級が行われ、粒径が調整される。繊維に混合するバインダーは、有機バインダー又は無機バインダーの何れも使用可能である。有機バインダーは、例えば、ポリオレフィン系バインダー、ポリビニルアルコール系バインダー、ポリウレタン系バインダー、ポリ酢酸ビニル系バインダー等の合成樹脂系バインダー、デンプン、カラギーナン、キサンタンガム、ジェランガム、アルギン酸などの多糖類、膠などの動物性たんぱく質等の天然物系バインダーが挙げられる。無機バインダーは、例えば、水ガラス等のケイ酸系バインダー、リン酸アルミニウム等のリン酸塩系バインダー、ホウ酸アルミニウム等のホウ酸塩系バインダー、セメント等の水硬性バインダーが挙げられる。有機バインダー及び無機バインダーは、二種以上を組み合わせて使用することも可能である。なお、繊維1として絡み易いもの(例えば、屈曲した繊維)を使用する場合、造粒工程を行うだけで繊維1が互いに容易に絡み合うため、この場合は特にバインダーを使用しなくても繊維塊状体10の形成が可能となる。
<Method for producing artificial soil particles>
As a method for producing the artificial soil particles 50, for example, fibers 1 such as cellulose or vinylon are aligned with a carding device or the like, cut to a length of about 3 to 10 mm, and a binder such as resin or glue is applied to the cut fibers 1. Are mixed and granulated into granules by a method such as rolling granulation, fluidized bed granulation, stirring granulation, compression granulation, extrusion granulation, etc. to form a fiber lump 10 containing a binder. The fibers of the fiber lump 10 are fixed with a binder by heat treatment or the like, and the artificial soil particle 50 is completed. The obtained artificial soil particles 50 are dried and classified as necessary, and the particle size is adjusted. As the binder mixed with the fiber, either an organic binder or an inorganic binder can be used. Organic binders include, for example, synthetic resin binders such as polyolefin binders, polyvinyl alcohol binders, polyurethane binders, polyvinyl acetate binders, polysaccharides such as starch, carrageenan, xanthan gum, gellan gum, alginic acid, and animal properties such as glue. Examples include natural product-based binders such as proteins. Examples of the inorganic binder include silicate binders such as water glass, phosphate binders such as aluminum phosphate, borate binders such as aluminum borate, and hydraulic binders such as cement. An organic binder and an inorganic binder can be used in combination of two or more. If fibers 1 that are easily entangled (for example, bent fibers) are used, the fibers 1 are easily entangled with each other only by performing the granulation step. 10 can be formed.

人工土壌粒子51を製造する場合は、造粒した繊維塊状体10を容器に移し、繊維塊状体10の体積(占有容積)の半分程度の水を加え、繊維塊状体10の空隙2に水を浸み込ませる。さらに、水を浸み込ませた繊維塊状体10に、通水性膜20の形成材料を繊維塊状体10の体積の1/3〜1/2添加する。ここでは、通水性膜20の形成材料の一例として、ポリエチレンを挙げる。ポリエチレンは、ポリエチレンエマルジョンの形態で添加される。ポリエチレンエマルジョンには、顔料、香料、殺菌剤、抗菌剤、消臭剤、殺虫剤等の添加物を混合しておくことも可能である。そして、繊維塊状体10の外表部にポリエチレンエマルジョンが均一に付着するように転動させながら、繊維塊状体10の外表部からポリエチレンエマルジョンを含浸させる。このとき、繊維塊状体10の中心部には水が浸み込んでいるため、ポリエチレンエマルジョンは繊維塊状体10の外表部付近で留まる。その後、ポリエチレンエマルジョンが付着した繊維塊状体10を60〜80℃で乾燥させ、次いで100℃でポリエチレンを溶融させ、繊維塊状体10の外表部付近の繊維1にポリエチレンを融着させて通水性膜20を形成する。これにより、繊維塊状体10は外表部がポリエチレンの通水性膜20で被覆され、強度及び耐久性を有する人工土壌粒子51が完成する。このとき、通水性膜20では、ポリエチレンが溶融する際にポリエチレンエマルジョンに含まれていた溶媒が蒸発し、多孔質構造が形成される。通水性膜20に形成された多孔質構造は、繊維塊状体10と外部環境とを連通する連通孔として機能する。得られた人工土壌粒子51は、必要に応じて、乾燥及び分級が行われ、粒径が調整される。なお、人工土壌粒子51は、繊維塊状体10の外表部を通水性膜20で被覆していることから、繊維塊状体10を造粒する際に、バインダーを混合しなくても十分な強度及び耐久性を維持することが可能である。   When the artificial soil particles 51 are manufactured, the granulated fiber lump 10 is transferred to a container, and about half of the volume (occupied volume) of the fiber lump 10 is added to the water, and water is poured into the gap 2 of the fiber lump 10. Let it soak. Furthermore, 1/3 to 1/2 of the volume of the fiber lump 10 is added to the fiber lump 10 soaked with water. Here, polyethylene is given as an example of a material for forming the water-permeable membrane 20. Polyethylene is added in the form of a polyethylene emulsion. The polyethylene emulsion may be mixed with additives such as pigments, fragrances, bactericides, antibacterial agents, deodorants, and insecticides. Then, the polyethylene emulsion is impregnated from the outer surface of the fiber lump 10 while rolling so that the polyethylene emulsion uniformly adheres to the outer surface of the fiber lump 10. At this time, since the water has soaked into the center of the fiber lump 10, the polyethylene emulsion stays near the outer surface of the fiber lump 10. Thereafter, the fiber lump 10 to which the polyethylene emulsion is adhered is dried at 60 to 80 ° C., then the polyethylene is melted at 100 ° C., and the polyethylene is fused to the fibers 1 near the outer surface of the fiber lump 10 to form a water permeable membrane. 20 is formed. Thereby, the outer surface of the fiber lump 10 is covered with the water-permeable membrane 20 of polyethylene, and the artificial soil particles 51 having strength and durability are completed. At this time, in the water-permeable membrane 20, the solvent contained in the polyethylene emulsion is evaporated when the polyethylene is melted, and a porous structure is formed. The porous structure formed in the water-permeable membrane 20 functions as a communication hole that communicates the fiber lump 10 and the external environment. The obtained artificial soil particles 51 are dried and classified as necessary to adjust the particle size. In addition, since the artificial soil particle 51 has coat | covered the outer surface part of the fiber lump 10 with the water membrane 20, when granulating the fiber lump 10, sufficient intensity | strength and without mixing a binder, It is possible to maintain durability.

繊維塊状体10を造粒するにあたり、繊維1として短繊維を使用する場合は、短繊維を撹拌混合造粒装置で撹拌しながらポリエチレンエマルジョンを少量ずつ投入して造粒する。これにより、繊維塊状体10を形成する短繊維同士が一部で固定化され、強固な繊維塊状体10を形成することができる。なお、短繊維に先に水を加えて造粒し、その後ポリエチレンエマルジョンを添加して繊維塊状体10を仕上げることも可能である。   When granulating the fiber lump 10, when a short fiber is used as the fiber 1, the polyethylene emulsion is added little by little while stirring the short fiber with a stirring and mixing granulator. As a result, the short fibers forming the fiber lump 10 are partially fixed and a strong fiber lump 10 can be formed. It is also possible to add water to the short fibers and granulate them first, and then add a polyethylene emulsion to finish the fiber lump 10.

<人工土壌培地の調整方法>
図2は、本発明に使用する人工土壌培地100であり、図1(a)の人工土壌粒子50により構成される人工土壌培地100の模式図である。以下、人工土壌粒子50を例に挙げて説明するが、図1(b)の人工土壌粒子51においても同様の効果を奏する。人工土壌粒子50は、外部環境に存在する水分を繊維塊状体10内に吸収したり、吸収した水分を放出したりすることで、観葉植物への水分供給をコントロールすることができる。繊維塊状体10は、親水性の繊維1を使用しているため、観葉植物の根が引き寄せられ易い。このため、観葉植物の成長に伴って、観葉植物の根が人工土壌粒子50を形成する繊維と効果的に絡み合うようになる。これにより、人工土壌粒子50の表面が観葉植物の根で覆われ、観葉植物は人工土壌粒子50内に保持されている水分を効率的に吸収することができる。人工土壌粒子50を使用した人工土壌培地100では、易効水の中でも高いpF値の水分環境において、体積含水率を高くなるように調整しても、観葉植物の生育を維持しながら水遣りの頻度を低減することができる。その結果、観葉植物への灌水の間隔を延ばすことが可能となり、観葉植物の灌水の管理が容易になる。ちなみに、天然土壌や従来の人工土壌では、本発明と同様に水分環境の調整を行っても、観葉植物は土壌中に保持されている水分を効率的に吸収し利用することができないため、灌水の間隔を短くしなければ、観葉植物が萎れて枯れることになる。
<Method for adjusting artificial soil medium>
FIG. 2 is an artificial soil culture medium 100 used in the present invention, and is a schematic diagram of the artificial soil culture medium 100 constituted by the artificial soil particles 50 of FIG. Hereinafter, the artificial soil particle 50 will be described as an example, but the artificial soil particle 51 of FIG. The artificial soil particle 50 can control the water supply to the foliage plant by absorbing the moisture present in the external environment into the fiber lump 10 or releasing the absorbed moisture. Since the fiber lump 10 uses the hydrophilic fiber 1, the roots of the houseplant are easily attracted. For this reason, with the growth of the foliage plant, the roots of the foliage plant are effectively intertwined with the fibers forming the artificial soil particles 50. Thereby, the surface of the artificial soil particle 50 is covered with the roots of the houseplant, and the houseplant can efficiently absorb the moisture retained in the artificial soil particle 50. In the artificial soil medium 100 using the artificial soil particles 50, the frequency of watering while maintaining the growth of the houseplants even in the moisture environment with high pF value even in easy-to-use water, even if the volumetric water content is adjusted to be high. Can be reduced. As a result, it becomes possible to extend the interval of irrigation to the foliage plant, and management of irrigation of the foliage plant becomes easy. By the way, in natural soil and conventional artificial soil, even if the water environment is adjusted in the same manner as in the present invention, the foliage plants cannot efficiently absorb and use the water retained in the soil. If the interval is not shortened, the foliage plants will wither and die.

人工土壌培地100は、易効水の中でも比較的高い値であるpF値2.3において体積含水率を10〜40%の範囲、pF値2.7において体積含水率を1〜15%の範囲となるように調整する(調整工程)。pF値2.3及びpF値2.7における好ましい体積含水率は、pF値2.3において15〜35%の範囲、pF値2.7において2〜12%の範囲である。これにより、観葉植物の生育を維持しながら、人工土壌培地100からの観葉植物への水分供給を適度に抑制することが可能になる。人工土壌培地100の体積含水率が、pF値2.3において10〜40%の範囲、pF値2.7において1〜15%の範囲から外れると、観葉植物にとって水分が過剰に吸収され易い環境、又は観葉植物にとって利用できる水分が非常に少ない環境となり、観葉植物への過剰な水分供給を効果的に抑制することができなくなったり、観葉植物の灌水の間隔を延ばすことができなくなる。なお、観葉植物が鉢植えタイプであり、鉢の下に受け皿等が備え付けられている場合は、灌水を実施すると受け皿等に鉢からの流出水が溜まることになる。流出水が溜まった状態では、土壌の体積含水率は略低下しない。そこで、本発明では、「灌水の間隔」を、鉢からの流出水が受け皿等に溜まらない状態における、灌水から灌水までの経過日数と規定する。これは、灌水により土壌を最大体積含水率に調整した時点から観葉植物が萎れ始める時点までの期間に相当する。   The artificial soil culture medium 100 has a volumetric moisture content in the range of 10 to 40% at a pF value of 2.3, which is a relatively high value among easy-to-use water, and a volumetric moisture content in the range of from 1 to 15% at a pF value of 2.7. (Adjustment process). The preferred volumetric water content at a pF value of 2.3 and a pF value of 2.7 is in the range of 15 to 35% at a pF value of 2.3 and in the range of 2 to 12% at a pF value of 2.7. Thereby, it becomes possible to moderately suppress the water supply from the artificial soil culture medium 100 to the houseplant while maintaining the growth of the houseplant. When the volumetric water content of the artificial soil culture medium 100 is out of the range of 10 to 40% at a pF value of 2.3 and from the range of 1 to 15% at a pF value of 2.7, an environment in which moisture is easily absorbed excessively by foliage plants Or, an environment in which the water available to the houseplant is very low, it becomes impossible to effectively suppress the excessive water supply to the houseplant, and it becomes impossible to extend the interval of irrigation of the houseplant. In addition, when the foliage plant is a potted plant type and a saucer or the like is provided under the pot, the effluent water from the pot will accumulate in the saucer or the like when irrigation is performed. In a state where runoff has accumulated, the volumetric water content of the soil is not substantially reduced. Therefore, in the present invention, the “irrigation interval” is defined as the number of days elapsed from irrigation to irrigation in a state where the outflow water from the pot does not accumulate in the tray or the like. This corresponds to the period from the time when the soil is adjusted to the maximum volumetric water content by irrigation until the time when the foliage plants begin to wither.

人工土壌培地100は、隣接する複数の人工土壌粒子50の間に形成される間隙52によって、植物にとって必要な水分を確保しながら余分な水分を排水し、人工土壌培地100としての保水性と通気性とを両立させている。従って、間隙52の状態は、保水性及び通気性に影響する。間隙52のサイズが大きくなり過ぎると、間隙52に水分を保持する力が弱まり、人工土壌培地100の保水性が低下する。その結果、十分な水分を植物に供給できなくなる虞がある。一方、間隙52のサイズが小さくなり過ぎると、水分を間隙52に保持する力が強まり、人工土壌培地100の通気性が低下する。その結果、植物の根に酸素を十分供給することができず、根腐れが生じる虞がある。   The artificial soil culture medium 100 drains excess moisture while ensuring the moisture necessary for the plant by the gap 52 formed between the adjacent artificial soil particles 50, and the water retention and ventilation as the artificial soil culture medium 100. It balances sex. Therefore, the state of the gap 52 affects water retention and air permeability. When the size of the gap 52 becomes too large, the force for holding moisture in the gap 52 is weakened, and the water retention capacity of the artificial soil culture medium 100 is lowered. As a result, there is a possibility that sufficient water cannot be supplied to the plant. On the other hand, when the size of the gap 52 becomes too small, the force for holding moisture in the gap 52 is increased, and the air permeability of the artificial soil culture medium 100 is lowered. As a result, oxygen cannot be sufficiently supplied to the roots of the plant, and root rot may occur.

間隙52を適切なサイズにするためには、人工土壌粒子50の粒度分布の範囲を適切な範囲に調整することが有効である。これにより、人工土壌培地100を、pF値2.3において体積含水率を10〜40%の範囲、pF値2.7において体積含水率を1〜15%の範囲となるよう容易に調整することが可能となる。人工土壌粒子50の粒度分布は、好ましくは1〜15mmの範囲に調整され、より好ましくは1〜10mmの範囲に調整される(粒度分布調整工程)。人工土壌粒子50が粒径1mm未満のものを含むと、間隙52が小さくなって人工土壌粒子50と水分との吸着性が強まり、排水性が低下して、観葉植物に湿害が発生する虞がある。その結果、栽培する観葉植物は根から酸素を吸収し難くなり、根腐れを起こすことになる。一方、人工土壌粒子50の粒径が15mmを超えるものを含むと、間隙52が大きくなって人工土壌粒子50と水分との吸着性が弱まり、重力により水分が過剰に排出される。その結果、人工土壌培地100を、pF値2.3において体積含水率を10〜40%の範囲、pF値2.7において体積含水率を1〜15%の範囲となるように調整することが困難となり、観葉植物への灌水の間隔を十分に確保できなくなる。   In order to set the gap 52 to an appropriate size, it is effective to adjust the size distribution range of the artificial soil particles 50 to an appropriate range. Thereby, the artificial soil culture medium 100 is easily adjusted so that the volume moisture content is in the range of 10 to 40% at the pF value 2.3 and the volume moisture content is in the range of 1 to 15% at the pF value 2.7. Is possible. The particle size distribution of the artificial soil particles 50 is preferably adjusted to a range of 1 to 15 mm, more preferably adjusted to a range of 1 to 10 mm (particle size distribution adjusting step). If the artificial soil particles 50 include particles having a particle size of less than 1 mm, the gap 52 becomes small, the adsorptivity between the artificial soil particles 50 and moisture increases, the drainage performance decreases, and moisture damage may occur in the foliage plants. There is. As a result, the houseplants to be cultivated have difficulty absorbing oxygen from the roots and cause root rot. On the other hand, if the artificial soil particle 50 includes a particle having a particle size exceeding 15 mm, the gap 52 becomes large, the adsorptivity between the artificial soil particle 50 and the moisture is weakened, and excessive moisture is discharged by gravity. As a result, the artificial soil medium 100 can be adjusted so that the volumetric water content is in the range of 10 to 40% at a pF value of 2.3 and the volumetric water content is in the range of 1 to 15% at a pF value of 2.7. It becomes difficult and it becomes impossible to secure a sufficient interval between watering the foliage plants.

人工土壌培地100の保水性及び通気性は、人工土壌粒子50の粒度分布の中央値にも関係している。人工土壌粒子50の粒度分布の中央値を適切な範囲に設定することで、人工土壌培地100の水分環境の調整が容易となる。例えば、人工土壌粒子50の粒度分布の中央値を大きい方向にシフトさせると、人工土壌粒子50の間に形成される間隙52のサイズも全体的に大きくなる。従って、人工土壌粒子50の粒度分布の中央値を変更することで、人工土壌培地100の保水性及び通気性を調整することができる。   The water retention and air permeability of the artificial soil medium 100 are also related to the median value of the particle size distribution of the artificial soil particles 50. By setting the median value of the particle size distribution of the artificial soil particles 50 to an appropriate range, the water environment of the artificial soil culture medium 100 can be easily adjusted. For example, when the median value of the particle size distribution of the artificial soil particles 50 is shifted in the larger direction, the size of the gap 52 formed between the artificial soil particles 50 also increases as a whole. Therefore, the water retention and air permeability of the artificial soil medium 100 can be adjusted by changing the median value of the particle size distribution of the artificial soil particles 50.

人工土壌培地100の保水性及び通気性を適切に調整するためには、人工土壌粒子50の粒度分布の中央値を2〜10mmの範囲となるように調整することが好ましい。人工土壌粒子50の粒度分布における中央値が2mmより小さいと、間隙52のサイズが小さくなり過ぎて、間隙52の水分を保持する力が強まり、排水性が低下して、植物に湿害が発生する虞がある。その結果、栽培する植物は根から酸素を吸収し難くなり、根腐れを起こすことになる。一方、人工土壌粒子50の粒度分布における中央値が10mmより大きくなると、間隙52のサイズが大きくなり過ぎて、間隙52の水分を保持する力が弱まり、重力により水分が過剰に排出される。その結果、人工土壌培地100を、pF値2.3において体積含水率を10〜40%の範囲、pF値2.7において体積含水率を1〜15%の範囲となるように調整することが困難となり、観葉植物への灌水の間隔を十分に確保できなくなる。   In order to appropriately adjust the water retention and air permeability of the artificial soil culture medium 100, it is preferable to adjust the median value of the particle size distribution of the artificial soil particles 50 to be in the range of 2 to 10 mm. When the median value in the particle size distribution of the artificial soil particles 50 is less than 2 mm, the size of the gap 52 becomes too small, the power to retain the moisture in the gap 52 is increased, the drainage performance is lowered, and moisture damage occurs in the plant. There is a risk of doing. As a result, cultivated plants have difficulty absorbing oxygen from the roots and cause root rot. On the other hand, when the median value in the particle size distribution of the artificial soil particles 50 is larger than 10 mm, the size of the gap 52 becomes too large, the force for holding the moisture in the gap 52 is weakened, and moisture is excessively discharged by gravity. As a result, the artificial soil medium 100 can be adjusted so that the volumetric water content is in the range of 10 to 40% at a pF value of 2.3 and the volumetric water content is in the range of 1 to 15% at a pF value of 2.7. It becomes difficult and it becomes impossible to secure a sufficient interval between watering the foliage plants.

人工土壌粒子50の粒度分布において、複数のピークが存在するように調整することが好ましい。人工土壌粒子50の粒度分布が複数のピークを有すると、人工土壌粒子50の間に形成される間隙52は、連続性を有する複数の段階的なサイズに形成される。これにより、人工土壌培地100は、人工土壌培地100の間隙52内に吸着状態の異なる易効水、すなわち異なるpF値の範囲の水分を保持させることが可能となる。その結果、人工土壌培地100に観葉植物の種類に応じた最適な吸着状態の水分を段階的に保持させることができ、異なる吸着状態の水分を要求する複数の観葉植物を同時に栽培することが可能になる。   The particle size distribution of the artificial soil particles 50 is preferably adjusted so that a plurality of peaks exist. When the particle size distribution of the artificial soil particles 50 has a plurality of peaks, the gaps 52 formed between the artificial soil particles 50 are formed in a plurality of step sizes having continuity. Thereby, the artificial soil culture medium 100 can hold the easy-to-use water having different adsorption states in the gap 52 of the artificial soil culture medium 100, that is, moisture having a different pF value range. As a result, the artificial soil culture medium 100 can retain the moisture in the optimum adsorption state according to the type of houseplant in stages, and can simultaneously grow a plurality of houseplants that require moisture in different adsorption states. become.

<観葉植物栽培方法>
図3は、本発明に係る観葉植物栽培方法の説明図である。図3(a)は天然土壌培地を用いて栽培する観葉植物の灌水スケジュールの一例であり、図3(b)は人工土壌培地100を用いて栽培する観葉植物の灌水スケジュールの一例である。天然土壌培地を用いて観葉植物を鉢植え等で栽培する場合、図3(a)に示すように、天然土壌培地を灌水により最大体積含水率に調整してから、観葉植物の萎れ開始点となる体積含水率まで低下するのに要する経過日数(灌水の間隔)は、通常約1週間程度である。一方、人工土壌培地100を用いた本発明の観葉植物の栽培方法では、図3(b)に示すように、灌水の間隔を約1.5週間以上に延ばすことができる。このように、人工土壌培地100の水分環境を、pF値2.3において体積含水率を10〜40%の範囲、pF値2.7において体積含水率を1〜15%の範囲となるように調整すると、観葉植物への灌水の間隔を、天然土壌を使用して観葉植物を栽培する場合における灌水の間隔の1.5倍以上に延ばすことができる(灌水工程)。本発明の人工土壌培地100の調整方法を用いた場合、観葉植物への灌水の間隔を延ばすことができる理由を以下に説明する。
<Foliage plant cultivation method>
FIG. 3 is an explanatory diagram of a method for cultivating a foliage plant according to the present invention. FIG. 3A is an example of an irrigation schedule for a foliage plant cultivated using a natural soil medium, and FIG. 3B is an example of an irrigation schedule for an foliage plant cultivated using an artificial soil medium 100. When cultivating a foliage plant by potting using a natural soil medium, as shown in FIG. 3 (a), the natural soil medium is adjusted to the maximum volumetric water content by irrigation, and then becomes a wilting start point of the foliage plant. The number of elapsed days (irrigation interval) required to decrease to the volumetric water content is usually about one week. On the other hand, in the cultivation method of the foliage plant of the present invention using the artificial soil culture medium 100, as shown in FIG. 3 (b), the interval of irrigation can be extended to about 1.5 weeks or more. Thus, the moisture environment of the artificial soil culture medium 100 is such that the volume moisture content is in the range of 10 to 40% at the pF value 2.3 and the volume moisture content is in the range of 1 to 15% at the pF value 2.7. When adjusted, the interval of irrigation to the foliage plant can be extended to 1.5 times or more of the interval of irrigation when the foliage plant is cultivated using natural soil (irrigation step). The reason why the interval of irrigation to the foliage plant can be extended when the method for adjusting the artificial soil medium 100 of the present invention is used will be described below.

人工土壌培地100には、繊維1を集合してなる繊維塊状体10を備える人工土壌粒子50を使用しており、複数の人工土壌粒子50の間に形成される間隙52だけでなく、人工土壌粒子50の繊維塊状体10内の空隙2にも水分が保持される。人工土壌培地100の間隙52内に保持されている水分は、人工土壌粒子50内に保持されている水分と比べると比較的弱い吸着力で保持されているため、観葉植物は間隙52に保持された水分を先ず吸収する。ここで、人工土壌培地100の間隙52のサイズは、易効水の中でも比較的高い値であるpF値2.3において体積含水率を10〜40%の範囲、pF値2.7において体積含水率を1〜15%の範囲となるように調整されており、観葉植物への水分供給が適度に抑制され、間隙52内の水分量は緩やかに低下することになる。その結果、間隙52内の水分は、長期に亘って維持される。間隙52内の水分量が低下すると、繊維塊状体10内の空隙2に保持されている水分が人工土壌粒子50から間隙52に徐々に放出される。人工土壌培地の調整方法の項でも述べたように、観葉植物は、人工土壌粒子50の表面を根で覆っているため、人工土壌粒子50から放出された水分を効率よく吸収することができる。従って、人工土壌培地100への灌水の間隔を長く設定しても、観葉植物の生育を維持することが可能になる。   The artificial soil medium 100 uses artificial soil particles 50 including fiber aggregates 10 formed by collecting fibers 1, and not only the gaps 52 formed between the plurality of artificial soil particles 50, but also artificial soil. Water is also retained in the voids 2 in the fiber mass 10 of the particles 50. Since the moisture held in the gap 52 of the artificial soil culture medium 100 is held with a relatively weak adsorption force compared to the moisture held in the artificial soil particles 50, the houseplant is held in the gap 52. First absorb the water. Here, the size of the gap 52 of the artificial soil culture medium 100 is such that the volumetric water content is in the range of 10 to 40% at a pF value of 2.3, which is a relatively high value in easy-to-use water, and the volumetric water content at a pF value of 2.7. The rate is adjusted to be in the range of 1 to 15%, the water supply to the foliage plant is moderately suppressed, and the amount of water in the gap 52 gradually decreases. As a result, the moisture in the gap 52 is maintained for a long time. When the amount of moisture in the gap 52 decreases, the moisture retained in the gap 2 in the fiber lump 10 is gradually released from the artificial soil particles 50 into the gap 52. As described in the section of the method for adjusting the artificial soil medium, the foliage plant covers the surface of the artificial soil particle 50 with roots, and therefore can efficiently absorb the moisture released from the artificial soil particle 50. Therefore, even if the interval of irrigation to the artificial soil medium 100 is set to be long, the growth of the foliage plant can be maintained.

以上のとおり、本発明に係る観葉植物栽培方法について説明したが、本発明に適用可能な観葉植物としては、例えば、ポトス、パキラ、フィカス、ドラセナ、コルディリネ、ディジゴセカ、チャメドリア、ステノカーパス、カンノンチク、シルクジャスミン、オーガスタ、シナモン、ゲッケイジュ、ベンジャミン、ブラキシトン、ステルクリア、ピレア、ブラッサイア、シェフレラ、シペラス、アフェランドラ、カラテア、クテナンテ、アルトカルプス、ペペロミア、ピペル、アグラオネマ、アロカシア、エクメア、アナナス、ヘルナンディア、アガペ、チャセンシダ、アンスリウム、スパティフィラム、ディフェンバキア、オリヅルラン、クロトン、センネンボク、サンセベリア、アルテシマ、アレカヤシ、テーブルヤシ、カジュマル、シッサス、コーヒーの木、ソングオブインディア、ソングオブジャマイカ、ユッカ、マッサン、モンステラ等を挙げることができる。   As described above, the foliage plant cultivation method according to the present invention has been described. Examples of the foliage plants applicable to the present invention include pothos, pachira, ficus, dracaena, cordyline, digigoseca, chamedria, stenocarpus, kannonchik, silk jasmine , Augusta, Cinnamon, Bay, Benjamin, Braxiton, Stell Clear, Piraea, Brassia, Chef Lella, Cipelas, Aferrandra, Calatea, Ctenante, Altocalp, Pepperemia, Piper, Agraonema, Alocasia, Exmea, Ananas, Hernandia, Agape, Chasen Spatiphyllum, Diffenbachia, Orchid lan orchid, Croton, Sennenboku, Sansevieria, Artesima, Areca palm, Table palm, Khajumal, Shi Suspension, mention may be made of coffee trees, Song of India, Song of Jamaica, Yucca, Matthan, the Monstera and the like.

以下、本発明の人工土壌培地の実施例について説明する。   Hereinafter, examples of the artificial soil culture medium of the present invention will be described.

〔人工土壌粒子の作製〕
(実施例1)
人工土壌粒子の材料となる繊維として、天然繊維であるセルロース繊維(レッテンマイヤー社製「アーボセル(登録商標)BWW40」、平均繊維長0.2mm)を使用した。セルロース繊維600gを、撹拌混合造粒装置(有限会社G−Labo製)を用いて撹拌し、転動させながら、ポリエチレンエマルジョン(住友精化株式会社製「セポルジョン(登録商標)G315」、希釈濃度:30重量%)1000gを加えて造粒し、内部にポリエチレンエマルジョンを含浸させた粒子状の繊維塊状体を形成した。次いで、同じポリエチレンエマルジョンの原液100gを加えて外表部にエマルジョンが均一に付着するように転がしながら含浸させた。エマルジョンが含浸した繊維塊状体を60℃、12時間で乾燥した後、100℃、6時間でエマルジョン中のポリエチレンを溶融させて繊維に融着させることにより、繊維塊状体を形成する繊維どうしを固定化し、さらに繊維塊状体外表部が多孔質ポリエチレンの通水性膜で被覆された人工土壌粒子を作製した。人工土壌粒子の粒度分布は、分級により1〜8mmの範囲に調整した。
[Production of artificial soil particles]
Example 1
Cellulose fibers (“Arbocel (registered trademark) BWW40” manufactured by Rettenmeier, average fiber length: 0.2 mm), which are natural fibers, were used as the fibers used as the material for the artificial soil particles. While stirring and rolling 600 g of cellulose fiber using a stirring and mixing granulator (manufactured by G-Labo Co., Ltd.), a polyethylene emulsion (“Sepoljon (registered trademark) G315” manufactured by Sumitomo Seika Co., Ltd.), dilution concentration: (30% by weight) 1000 g was added and granulated to form a granular fiber mass impregnated with a polyethylene emulsion. Next, 100 g of the same polyethylene emulsion stock solution was added and impregnated while rolling so that the emulsion adhered uniformly to the outer surface. The fiber mass impregnated with the emulsion is dried at 60 ° C. for 12 hours, and the polyethylene in the emulsion is melted and fused to the fiber at 100 ° C. for 6 hours to fix the fibers forming the fiber mass. Further, artificial soil particles were produced in which the outer surface of the fiber mass was covered with a porous polyethylene water-permeable membrane. The particle size distribution of the artificial soil particles was adjusted to a range of 1 to 8 mm by classification.

(実施例2)
人工土壌粒子の材料となる繊維として、天然繊維であるセルロース繊維(「アーボセル(登録商標)BWW40」)及び合成繊維であるビニロン繊維(株式会社クラレ社製「VF−1203−2」、平均繊維長0.5mm)を使用した。セルロース繊維600g及びビニロン繊維300gを、撹拌混合造粒装置(有限会社G−Labo製)を用いて撹拌し、転動させながら、ポリエチレンエマルジョン(「セポルジョン(登録商標)G315」、希釈濃度:50重量%)1500gを加えて造粒し、内部にポリエチレンエマルジョンを含浸させた粒子状の繊維塊状体を形成した。次いで、同じポリエチレンエマルジョンの原液200gを加えて外表部にエマルジョンが均一に付着するように転がしながら含浸させた。エマルジョンが含浸した繊維塊状体を60℃、12時間で乾燥した後、100℃、6時間でエマルジョン中のポリエチレンを溶融させて繊維に融着させることにより、繊維塊状体を形成する繊維どうしを固定化し、さらに繊維塊状体外表部が多孔質ポリエチレンの通水性膜で被覆された人工土壌粒子を作製した。人工土壌粒子の粒度分布は、分級により1〜8mmの範囲に調整した。
(Example 2)
Cellulose fibers that are natural fibers (“Arbocel (registered trademark) BWW40”) and vinylon fibers that are synthetic fibers (“VF-1203-2” manufactured by Kuraray Co., Ltd.), average fiber length as fibers that serve as materials for artificial soil particles 0.5 mm) was used. While stirring and rolling 600 g of cellulose fibers and 300 g of vinylon fibers using a stirring and mixing granulator (manufactured by G-Labo Co., Ltd.), a polyethylene emulsion ("Sepoljon (registered trademark) G315", dilution concentration: 50 weight) %) 1500 g was added and granulated to form a particulate fiber mass impregnated with a polyethylene emulsion. Next, 200 g of the same polyethylene emulsion stock solution was added and impregnated while rolling so that the emulsion adhered uniformly to the outer surface. The fiber mass impregnated with the emulsion is dried at 60 ° C. for 12 hours, and the polyethylene in the emulsion is melted and fused to the fiber at 100 ° C. for 6 hours to fix the fibers forming the fiber mass. Further, artificial soil particles were produced in which the outer surface of the fiber mass was covered with a porous polyethylene water-permeable membrane. The particle size distribution of the artificial soil particles was adjusted to a range of 1 to 8 mm by classification.

(実施例3)
人工土壌粒子の材料となる繊維として、天然繊維であるセルロース繊維(「アーボセル(登録商標)BWW40」)を使用した。セルロース繊維400g及び珪藻土(昭和化学工業株式会社製「ラヂオライト(登録商標)300」、平均粒子径15μm)1000gを、撹拌混合造粒装置(有限会社G−Labo製)を用いて十分撹拌した後、転動させながら、ポリエチレンエマルジョン(「セポルジョン(登録商標)G315」、希釈濃度:30重量%)2200gを加えて造粒し、内部にポリエチレンエマルジョンを含浸させ、珪藻土が均一に分散した粒子状の繊維塊状体を形成した。次いで、同じポリエチレンエマルジョンの原液100gを加えて外表部にエマルジョンが均一に付着するように転がしながら含浸させた。エマルジョンが含浸した繊維塊状体を60℃、12時間で乾燥した後、100℃、6時間でエマルジョン中のポリエチレンを溶融させて繊維に融着させることにより、繊維塊状体を形成する繊維どうしを固定化し、さらに繊維塊状体外表部が多孔質ポリエチレンの通水性膜で被覆された人工土壌粒子を作製した。人工土壌粒子の粒度分布は、分級により1〜6mmの範囲に調整した。
(Example 3)
Cellulose fiber (“Arbocel (registered trademark) BWW40”), which is a natural fiber, was used as the fiber used as the material for the artificial soil particles. After sufficiently stirring 400 g of cellulose fibers and 1000 g of diatomaceous earth (“Radiolite (registered trademark) 300” manufactured by Showa Chemical Industry Co., Ltd., average particle size: 15 μm) using a stirring and mixing granulator (manufactured by G-Labo Co., Ltd.) While rolling, 2200 g of polyethylene emulsion (“Sepoljon (registered trademark) G315”, dilution concentration: 30% by weight) is granulated, impregnated with polyethylene emulsion inside, and diatomaceous earth is uniformly dispersed A fiber mass was formed. Next, 100 g of the same polyethylene emulsion stock solution was added and impregnated while rolling so that the emulsion adhered uniformly to the outer surface. The fiber mass impregnated with the emulsion is dried at 60 ° C. for 12 hours, and the polyethylene in the emulsion is melted and fused to the fiber at 100 ° C. for 6 hours to fix the fibers forming the fiber mass. Further, artificial soil particles were produced in which the outer surface of the fiber mass was covered with a porous polyethylene water-permeable membrane. The particle size distribution of the artificial soil particles was adjusted to a range of 1 to 6 mm by classification.

(実施例4)
人工土壌粒子の材料となる繊維として、天然繊維であるセルロース繊維(「アーボセル(登録商標)BWW40」)を使用した。セルロース繊維600g及び珪藻土(「ラヂオライト(登録商標)300」、平均粒子径15μm)750gを、撹拌混合造粒装置(有限会社G−Labo製)を用いて十分撹拌した後、転動させながら、ポリエチレンエマルジョン(「セポルジョン(登録商標)G315」、希釈濃度:30重量%)2500gを加えて造粒し、内部にポリエチレンエマルジョンを含浸させ、珪藻土が均一に分散した粒子状の繊維塊状体を形成した。エマルジョンが含浸した繊維塊状体を60℃、12時間で乾燥した後、100℃、6時間でエマルジョン中のポリエチレンを溶融させて繊維に融着させることにより、繊維塊状体を形成する繊維どうしを固定化した人工土壌粒子を作製した。実施例4の人工土壌粒子は、通水性膜を備えていないものである。人工土壌粒子の粒度分布は、分級により1〜8mmの範囲に調整した。
Example 4
Cellulose fiber (“Arbocel (registered trademark) BWW40”), which is a natural fiber, was used as the fiber used as the material for the artificial soil particles. While thoroughly stirring 600 g of cellulose fiber and 750 g of diatomaceous earth (“Radiolite (registered trademark) 300”, average particle diameter 15 μm) using a stirring and mixing granulator (manufactured by G-Labo Co., Ltd.), while rolling, 2500 g of polyethylene emulsion (“Separjon (registered trademark) G315”, dilution concentration: 30% by weight) was added and granulated, and the interior was impregnated with polyethylene emulsion to form a granular fiber mass in which diatomaceous earth was uniformly dispersed. . The fiber mass impregnated with the emulsion is dried at 60 ° C. for 12 hours, and the polyethylene in the emulsion is melted and fused to the fiber at 100 ° C. for 6 hours to fix the fibers forming the fiber mass. Artificial soil particles were prepared. The artificial soil particles of Example 4 are not provided with a water permeable membrane. The particle size distribution of the artificial soil particles was adjusted to a range of 1 to 8 mm by classification.

(実施例5)
人工土壌粒子の材料となる繊維として、天然繊維であるセルロース繊維(「アーボセル(登録商標)BWW40」)を使用した。セルロース繊維500g及び珪藻土(「ラヂオライト(登録商標)DXW−50」、平均粒子径25μm)500gを、撹拌混合造粒装置(有限会社G−Labo製)を用いて十分撹拌した後、転動させながら、ポリエチレンエマルジョン(「セポルジョン(登録商標)G315」、希釈濃度:30重量%)1500gを加えて造粒し、内部にポリエチレンエマルジョンを含浸させ、珪藻土が均一に分散した粒子状の繊維塊状体を形成した。次いで、同じポリエチレンエマルジョンの原液100gを加えて外表部にエマルジョンが均一に付着するように転がしながら含浸させた。エマルジョンが含浸した繊維塊状体を60℃、12時間で乾燥した後、100℃、6時間でエマルジョン中のポリエチレンを溶融させて繊維に融着させることにより、繊維塊状体を形成する繊維どうしを固定化し、さらに繊維塊状体外表部が多孔質ポリエチレンの通水性膜で被覆された人工土壌粒子を作製した。人工土壌粒子の粒度分布は、分級により4〜10mmの範囲に調整した。
(Example 5)
Cellulose fiber (“Arbocel (registered trademark) BWW40”), which is a natural fiber, was used as the fiber used as the material for the artificial soil particles. Cellulose fibers 500 g and diatomaceous earth (“Radiolite (registered trademark) DXW-50”, average particle size 25 μm) 500 g were sufficiently stirred using a stirring and mixing granulator (manufactured by G-Labo Co., Ltd.) and then rolled. While adding 1500 g of polyethylene emulsion ("Sepoljon (registered trademark) G315", dilution concentration: 30% by weight) and granulating it, impregnating the inside with polyethylene emulsion to form a particulate fiber mass in which diatomaceous earth is uniformly dispersed Formed. Next, 100 g of the same polyethylene emulsion stock solution was added and impregnated while rolling so that the emulsion adhered uniformly to the outer surface. The fiber mass impregnated with the emulsion is dried at 60 ° C. for 12 hours, and the polyethylene in the emulsion is melted and fused to the fiber at 100 ° C. for 6 hours to fix the fibers forming the fiber mass. Further, artificial soil particles were produced in which the outer surface of the fiber mass was covered with a porous polyethylene water-permeable membrane. The particle size distribution of the artificial soil particles was adjusted to a range of 4 to 10 mm by classification.

(実施例6)
人工土壌粒子の材料となる繊維として、天然繊維であるセルロース繊維(「アーボセル(登録商標)BWW40」)及び合成繊維であるビニロン繊維(「VF−1203−2」)を使用した。セルロース繊維400g、ビニロン繊維600g、及び珪藻土(「ラヂオライト(登録商標)DXW−50」、平均粒子径25μm)1000gを、撹拌混合造粒装置(有限会社G−Labo製)を用いて十分撹拌した後、転動させながら、ポリエチレンエマルジョン(「セポルジョン(登録商標)G315」、希釈濃度:10重量%)2800gを加えて造粒し、内部にポリエチレンエマルジョンを含浸させ、珪藻土が均一に分散した粒子状の繊維塊状体を形成した。次いで、同じポリエチレンエマルジョンの原液200gを加えて外表部にエマルジョンが均一に付着するように転がしながら含浸させた。エマルジョンが含浸した繊維塊状体を60℃、12時間で乾燥した後、100℃、6時間でエマルジョン中のポリエチレンを溶融させて繊維に融着させることにより、繊維塊状体を形成する繊維どうしを固定化し、さらに繊維塊状体外表部が多孔質ポリエチレンの通水性膜で被覆された人工土壌粒子を作製した。人工土壌粒子の粒度分布は、分級により4〜8mmの範囲に調整した。
(Example 6)
Cellulose fibers (“Arbocel (registered trademark) BWW40”), which are natural fibers, and vinylon fibers (“VF-1203-2”), which are synthetic fibers, were used as the fibers used as the material for the artificial soil particles. Cellulose fibers 400 g, vinylon fibers 600 g, and diatomaceous earth (“Radiolite (registered trademark) DXW-50”, average particle size 25 μm) 1000 g were sufficiently stirred using a stirring and mixing granulator (manufactured by G-Labo). Then, while rolling, 2800 g of polyethylene emulsion ("Sepoljon (registered trademark) G315", diluted concentration: 10% by weight)) is added and granulated, and impregnated with polyethylene emulsion to form a particle in which diatomaceous earth is uniformly dispersed. A fiber mass was formed. Next, 200 g of the same polyethylene emulsion stock solution was added and impregnated while rolling so that the emulsion adhered uniformly to the outer surface. The fiber mass impregnated with the emulsion is dried at 60 ° C. for 12 hours, and the polyethylene in the emulsion is melted and fused to the fiber at 100 ° C. for 6 hours to fix the fibers forming the fiber mass. Further, artificial soil particles were produced in which the outer surface of the fiber mass was covered with a porous polyethylene water-permeable membrane. The particle size distribution of the artificial soil particles was adjusted to a range of 4 to 8 mm by classification.

(実施例7)
人工土壌粒子の材料となる繊維として、天然繊維であるセルロース繊維(日本製紙株式会社製「KCフロックW−100GK」)を使用した。セルロース繊維300g及び珪藻土(「ラヂオライト(登録商標)300」、平均粒子径15μm)300gを、撹拌混合造粒装置(有限会社G−Labo製)を用いて十分撹拌した後、転動させながら、ポリエチレンエマルジョン(「セポルジョン(登録商標)G315」、希釈濃度:30重量%)920gを加えて造粒し、内部にポリエチレンエマルジョンを含浸させ、珪藻土が均一に分散した粒子状の繊維塊状体を形成した。エマルジョンが含浸した繊維塊状体を80℃、12時間で乾燥した後、120℃、3時間でエマルジョン中のポリエチレンを溶融させて繊維に融着させることにより、繊維塊状体を形成する繊維どうしを固定化した人工土壌粒子を作製した。実施例7の人工土壌粒子は、通水性膜を備えていないものである。人工土壌粒子の粒度分布は、分級により1〜6mmの範囲に調整した。
(Example 7)
Cellulose fibers, which are natural fibers (“KC Flock W-100GK” manufactured by Nippon Paper Industries Co., Ltd.), were used as the fibers used as the material for the artificial soil particles. While sufficiently stirring 300 g of cellulose fibers and 300 g of diatomaceous earth (“Radiolite (registered trademark) 300”, average particle diameter 15 μm) using a stirring and mixing granulator (manufactured by G-Labo Co., Ltd.), while rolling, 920 g of polyethylene emulsion (“Separjon (registered trademark) G315”, dilution concentration: 30% by weight) was added and granulated, and the interior was impregnated with polyethylene emulsion to form a particulate fiber mass in which diatomaceous earth was uniformly dispersed. . After the fiber mass impregnated with the emulsion is dried at 80 ° C. for 12 hours, the fibers forming the fiber mass are fixed by melting the polyethylene in the emulsion at 120 ° C. for 3 hours and fusing it to the fiber. Artificial soil particles were prepared. The artificial soil particles of Example 7 do not have a water permeable membrane. The particle size distribution of the artificial soil particles was adjusted to a range of 1 to 6 mm by classification.

(比較例1)
市販の天然砂(コーナン商事株式会社製)を60℃、12時間で乾燥させたものをそのまま天然土壌粒子として使用した。天然砂の粒度分布は、分級により75μm以下に調整した。
(Comparative Example 1)
Commercially available natural sand (manufactured by Konan Shoji Co., Ltd.) dried at 60 ° C. for 12 hours was directly used as natural soil particles. The particle size distribution of natural sand was adjusted to 75 μm or less by classification.

(比較例2)
市販の天然礫(コーナン商事株式会社製)を60℃、12時間で乾燥させたものをそのまま天然土壌粒子として使用した。天然礫の粒度分布は、分級により2〜4mmの範囲に調整した。
(Comparative Example 2)
A commercially available natural gravel (manufactured by Konan Shoji Co., Ltd.) dried at 60 ° C. for 12 hours was directly used as natural soil particles. The particle size distribution of natural gravel was adjusted to a range of 2 to 4 mm by classification.

(比較例3)
珪藻土(「ラヂオライト(登録商標)300」、平均粒子径15μm)750gを、撹拌混合造粒装置(有限会社G−Labo製)を用いて撹拌し、転動させながら、ポリエチレンエマルジョン(「セポルジョン(登録商標)G315」、希釈濃度:50重量%)1000gを加えて造粒し、内部にポリエチレンエマルジョンを含浸させた珪藻土の造粒物を形成した。次いで、同じポリエチレンエマルジョンの原液200gを加えて外表部にエマルジョンが均一に付着するように転がしながら含浸させた。エマルジョンが含浸した造粒物を60℃、12時間で乾燥した後、100℃、6時間でエマルジョン中のポリエチレンを溶融させて珪藻土どうしを融着させた人工土壌粒子を作製した。人工土壌粒子の粒度分布は、分級により2〜6mmの範囲に調整した。
(Comparative Example 3)
750 g of diatomaceous earth (“Radiolite (registered trademark) 300”, average particle size 15 μm) was stirred using a stirring and mixing granulator (manufactured by G-Labo Co., Ltd.) and rolled, (Registered Trademark) G315 ”, dilution concentration: 50% by weight) was added and granulated to form a granulated product of diatomaceous earth impregnated with a polyethylene emulsion. Next, 200 g of the same polyethylene emulsion stock solution was added and impregnated while rolling so that the emulsion adhered uniformly to the outer surface. After the granulated material impregnated with the emulsion was dried at 60 ° C. for 12 hours, artificial soil particles were prepared by melting polyethylene in the emulsion at 100 ° C. for 6 hours to fuse diatomaceous earth. The particle size distribution of the artificial soil particles was adjusted to a range of 2 to 6 mm by classification.

(比較例4)
合成繊維であるビニロン繊維(「VF−1203−2」)600gを、撹拌混合造粒装置(有限会社G−Labo製)を用いて撹拌し、転動させながら、ポリエチレンエマルジョン(「セポルジョン(登録商標)G315」、希釈濃度:10重量%)1000gを加えて造粒し、内部にポリエチレンエマルジョンを含浸させた粒子状の繊維塊状体を形成した。次いで、同じポリエチレンエマルジョンで希釈濃度を変更したもの(希釈濃度:30重量%)100gを加えて外表部にエマルジョンが均一に付着するように転がしながら含浸させた。エマルジョンが含浸した繊維塊状体を60℃、12時間で乾燥した後、100℃、6時間でエマルジョン中のポリエチレンを溶融させて繊維に融着させることにより、繊維塊状体を形成する繊維どうしを固定化し、さらに繊維塊状体外表部が多孔質ポリエチレンの通水性膜で被覆された人工土壌粒子を作製した。人工土壌粒子の粒度分布は、分級により2〜6mmの範囲に調整した。
(Comparative Example 4)
While stirring and rolling 600 g of vinylon fiber (“VF-1203-2”), which is a synthetic fiber, using a stirring and mixing granulator (manufactured by G-Labo Co., Ltd.), a polyethylene emulsion (“Sepoljon (registered trademark)” ) G315 ”, dilution concentration: 10% by weight) 1000 g was added and granulated to form a granular fiber mass impregnated with polyethylene emulsion inside. Next, 100 g of the same polyethylene emulsion with a different dilution concentration (dilution concentration: 30% by weight) was added and impregnated while rolling so that the emulsion adhered uniformly to the outer surface. The fiber mass impregnated with the emulsion is dried at 60 ° C. for 12 hours, and the polyethylene in the emulsion is melted and fused to the fiber at 100 ° C. for 6 hours to fix the fibers forming the fiber mass. Further, artificial soil particles were produced in which the outer surface of the fiber mass was covered with a porous polyethylene water-permeable membrane. The particle size distribution of the artificial soil particles was adjusted to a range of 2 to 6 mm by classification.

〔人工土壌培地の水分保持特性の評価〕
上記のとおり作製した実施例1〜7の人工土壌粒子、比較例1及び2の天然土壌粒子、並びに比較例3及び4の人工土壌粒子を用いて夫々土壌培地を構成し、観葉植物であるポトスを栽培した。底面に排水口を設けたカップに各土壌培地300ccを充填し、根を綺麗に洗浄した3号鉢ポトスを当該カップに植えつけた。次いで、土壌培地全体に均一に水が行きわたるように、如雨露を用いて、ゆっくりとカップの上面から100ccの水を灌水した。当該灌水を20回繰り返し、土壌培地に十分な水を保持させた。その後、室温30℃、相対湿度50%の環境試験室でポトスの萎れ開始点までの経過日数を観察した。萎れ開始点までの経過日数は、上記試験を繰返し4回実施した結果の平均日数とした。表1に人工土壌培地の水分保持特性の評価結果を示す。
[Evaluation of water retention characteristics of artificial soil medium]
Potos, which is a foliage plant, comprises a soil culture medium using the artificial soil particles of Examples 1 to 7, the natural soil particles of Comparative Examples 1 and 2, and the artificial soil particles of Comparative Examples 3 and 4 prepared as described above. Cultivated. A cup with a drain outlet on the bottom was filled with 300 cc of each soil medium, and No. 3 pot pothos with cleanly washed roots was planted in the cup. Next, 100 cc of water was slowly irrigated from the upper surface of the cup using rain dew so that the water was evenly distributed throughout the soil medium. The irrigation was repeated 20 times, and sufficient water was retained in the soil medium. Thereafter, the number of days elapsed until the wrinkle start point of the pothos was observed in an environmental test room at room temperature of 30 ° C. and relative humidity of 50%. The number of days until the wilting start point was the average number of days as a result of repeating the above test four times. Table 1 shows the evaluation results of the water retention characteristics of the artificial soil culture medium.

Figure 2016101160
Figure 2016101160

実施例1〜7の繊維塊状体を備える人工土壌粒子は、易効水の中でも比較的高い値であるpF値2.3において体積含水率が15〜35%となり、pF値2.7において体積含水率が2〜12%となったが、このような範囲においてポトスの成長に悪影響を及ぼすことはなかった。また、実施例1〜7の人工土壌粒子を使用した場合の萎れ開始点は6〜10日となり、比較例2の天然土壌粒子及び比較例3の人工土壌粒子を使用した場合の萎れ開始点(4日)に対して、1.5〜2.5倍に延長できることが確認された。特に、多孔質材である珪藻土を添加した実施例3〜7の人工土壌粒子は、pF値2.3及びpF値2.7の体積含水率が高い値となるように調整し易いものであった。その結果、灌水間隔(萎れ開始点)を容易に延長することが可能であった。これに対し、市販の天然砂を使用した比較例1の天然土壌培地は、pF値2.3及びpF値2.7の体積含水率を高く設定しても、灌水を行うと通気性不足になり、すぐに根腐れが生じる結果となった。市販の天然礫を使用した比較例2の天然土壌培地についても、pF値2.3及びpF値2.7の体積含水率をある程度高くできたとしても、灌水の間隔を延長することはできなかった。また、繊維塊状体ではなく、珪藻土の造粒体である比較例3の人工土壌粒子は、pF値2.3及びpF値2.7の体積含水率を適切な範囲に調整することが困難であり、萎れ開始点を十分に延長することができなかった。繊維塊状体である比較例4の人工土壌粒子は、pF値2.3及びpF値2.7の体積含水率が低いため、灌水を行うとすぐに根腐れが生じた。これらの結果から、本発明に使用する人工土壌粒子を使用し、pF2.3及びpF値2.7の体積含水率の範囲を本発明の範囲に調整して初めて、灌水間隔を容易に延長することができることが示された。   The artificial soil particles including the fiber aggregates of Examples 1 to 7 have a volume moisture content of 15 to 35% at a pF value of 2.3, which is a relatively high value even in easy-to-use water, and have a volume at a pF value of 2.7. Although the water content was 2 to 12%, it did not adversely affect the growth of pothos in such a range. Moreover, the wilting start point when using the artificial soil particles of Examples 1 to 7 is 6 to 10 days, and the wilting start point when using the natural soil particles of Comparative Example 2 and the artificial soil particles of Comparative Example 3 ( 4 days), it was confirmed that it could be extended 1.5 to 2.5 times. In particular, the artificial soil particles of Examples 3 to 7 to which diatomaceous earth, which is a porous material, was added were easily adjusted so that the volumetric water content of the pF value 2.3 and the pF value 2.7 was high. It was. As a result, it was possible to easily extend the irrigation interval (wilt start point). On the other hand, the natural soil medium of Comparative Example 1 using commercially available natural sand is insufficiently breathable when irrigated even if the volumetric water content of pF value 2.3 and pF value 2.7 is set high. And root rot occurred immediately. Even for the natural soil medium of Comparative Example 2 using commercially available natural gravel, even if the volumetric water content of the pF value 2.3 and the pF value 2.7 can be increased to some extent, the interval of irrigation cannot be extended. It was. Moreover, it is difficult to adjust the volumetric water content of the pF value 2.3 and the pF value 2.7 to an appropriate range in the artificial soil particles of Comparative Example 3 which is not a fiber block but a granulated diatomaceous earth. Yes, the wilting start point could not be extended sufficiently. The artificial soil particles of Comparative Example 4, which is a fiber mass, had a low volumetric water content with a pF value of 2.3 and a pF value of 2.7, so that root rot occurred immediately after irrigation. From these results, the artificial soil particles used in the present invention were used, and the irrigation interval was easily extended only after adjusting the volume moisture content range of pF2.3 and pF value 2.7 to the range of the present invention. It was shown that it can.

次に、人工土壌培地の水分保持特性のさらなる評価として、人工土壌培地における体積含水率の減少量を求めた。本実施例では、代表的に実施例7の人工土壌粒子を用いて培地を構成し、観葉植物であるポトスを栽培した。図4は、実施例7の人工土壌粒子を用いた培地における体積含水率と経過日数(灌水間隔)との関係を示したグラフである。先ず、底面に排水口を設けたカップに人工土壌培地300ccを充填し、水を貯めた水槽に人工土壌培地全体を完全に浸漬した状態で24時間放置して、人工土壌培地を毛管飽和状態にした。その後、水槽からカップを取出し、重量水が排水されるまで3時間放置した。市販の3号鉢ポトスからポトスを取り出して、根を綺麗に洗浄した後、人工土壌培地にポトスを植え付けた。その後、室温30℃、相対湿度50%の環境試験室でポトスを生育した。灌水はポトスが萎れた時点で実施し、1回の灌水量を200ccとした。灌水は4回行い、灌水直後の人工土壌培地の体積含水率と、次の灌水を行う直前の人工土壌培地の体積含水率との差分をとり、人工土壌培地の体積含水率の減少量を算出した(灌水2回目以降の値を使用)。次いで、体積含水率の減少量を経過日数で割って1日当りの体積含水率の減少量を算出し、灌水4回目までの得られた値を平均して、人工土壌培地の水分保持特性を評価した。体積含水率の減少量の計算結果を以下に示す。
灌水2回目から3回目にかけての1日当たりの体積含水率の減少量:
(42%−12%)/12日 = 2.5%/日
灌水3回目から4回目にかけての1日当たりの体積含水率の減少量:
(41%− 7%)/13日 = 2.6%/日
1日当たりの体積含水率の減少量の平均値 = 2.55%
Next, as a further evaluation of the moisture retention characteristics of the artificial soil medium, the amount of decrease in the volumetric water content in the artificial soil medium was determined. In this example, typically, the artificial soil particles of Example 7 were used to construct a culture medium, and pothos, a houseplant, was cultivated. FIG. 4 is a graph showing the relationship between the volumetric water content and the number of elapsed days (irrigation interval) in the medium using the artificial soil particles of Example 7. First, 300 cc of artificial soil culture medium is filled in a cup having a drain outlet on the bottom surface, and the whole artificial soil culture medium is completely immersed in a water tank for 24 hours to bring the artificial soil culture medium into capillary saturation. did. Thereafter, the cup was taken out from the water tank and left for 3 hours until heavy water was drained. Potos was taken out from a commercially available No. 3 pot pothos, and the roots were washed cleanly, and then planted in an artificial soil medium. Thereafter, Potos was grown in an environmental test room at a room temperature of 30 ° C. and a relative humidity of 50%. Irrigation was performed when the pothos was deflated, and the amount of water per irrigation was 200 cc. Perform irrigation four times, and calculate the amount of decrease in the volumetric water content of the artificial soil medium by taking the difference between the volumetric water content of the artificial soil medium immediately after irrigation and the volumetric water content of the artificial soil medium immediately before the next irrigation. (Use the values after the second irrigation). Next, calculate the amount of decrease in volumetric water content per day by dividing the amount of decrease in volumetric water content by the number of days elapsed, and evaluate the moisture retention characteristics of the artificial soil medium by averaging the values obtained up to the fourth irrigation. did. The calculation result of the decrease in volumetric water content is shown below.
Reduced volumetric water content per day from the 2nd to 3rd irrigation:
(42% -12%) / 12 days = 2.5% / day Amount of decrease in volumetric water content per day from the third to the fourth irrigation:
(41% -7%) / 13 days = 2.6% / day Average value of decrease in volumetric water content per day = 2.55%

上記のとおり、1日当たりの体積含水率の減少量は2.55%/日となり、この程度の減少量であれば灌水間隔を十分に確保でき、水遣りの頻度を低減することが可能であった。   As described above, the amount of decrease in the volumetric water content per day was 2.55% / day. With this amount of decrease, it was possible to secure a sufficient irrigation interval and reduce the frequency of watering. .

以上の結果から、人工土壌培地として、繊維塊状体を備える人工土壌粒子を使用し、人工土壌培地の体積含水率を、pF値2.3において10〜40%の範囲、pF値2.7において1〜15%の範囲となるように調整すると、観葉植物の灌水間隔を容易に延長することが可能となることが明らかとなった。   From the above results, artificial soil particles having fiber aggregates are used as the artificial soil medium, and the volumetric water content of the artificial soil medium is in the range of 10 to 40% at a pF value of 2.3 and at a pF value of 2.7. It was revealed that the irrigation interval of the foliage plants can be easily extended when adjusted to be in the range of 1 to 15%.

本発明に係る人工土壌培地の調整方法、及び観葉植物栽培方法は、家庭菜園、植物工場、屋内緑化等の農業及び園芸分野において利用することができる。   The method for adjusting an artificial soil medium and the method for cultivating foliage plants according to the present invention can be used in the fields of agriculture and horticulture such as home gardens, plant factories, and indoor greening.

1 繊維
2 空隙
10 繊維塊状体
50,51 人工土壌粒子
52 間隙
100 人工土壌培地
DESCRIPTION OF SYMBOLS 1 Fiber 2 Space | gap 10 Fiber mass 50,51 Artificial soil particle 52 Crevice 100 Artificial soil culture medium

Claims (6)

観葉植物の栽培に使用する人工土壌培地を、当該観葉植物の栽培に適した水分環境に調整する人工土壌培地の調整方法であって、
前記人工土壌培地として、繊維を集合してなる繊維塊状体を備える人工土壌粒子を使用し、
前記人工土壌培地の体積含水率を、pF値2.3において10〜40%の範囲、pF値2.7において1〜15%の範囲となるように調整する調整工程を実行する人工土壌培地の調整方法。
An artificial soil culture medium adjustment method for adjusting an artificial soil culture medium used for cultivation of foliage plants to a moisture environment suitable for cultivation of the foliage plants,
As the artificial soil medium, using artificial soil particles provided with a fiber mass formed by collecting fibers,
An artificial soil culture medium for performing an adjustment step of adjusting the volumetric water content of the artificial soil culture medium to a range of 10 to 40% at a pF value of 2.3 and a range of 1 to 15% at a pF value of 2.7 Adjustment method.
前記調整工程は、前記人工土壌粒子の粒度分布を1〜15mmの範囲に調整する粒度分布調整工程を含む請求項1に記載の人工土壌培地の調整方法。   The said adjustment process is an adjustment method of the artificial soil culture medium of Claim 1 including the particle size distribution adjustment process of adjusting the particle size distribution of the said artificial soil particle to the range of 1-15 mm. 前記粒度分布調整工程において、前記人工土壌粒子の粒度分布の中央値が2〜10mmの範囲に存在するように調整する請求項2に記載の人工土壌培地の調整方法。   The method for adjusting an artificial soil medium according to claim 2, wherein in the particle size distribution adjusting step, the median value of the particle size distribution of the artificial soil particles is adjusted to be in a range of 2 to 10 mm. 前記粒度分布調整工程において、前記人工土壌粒子の粒度分布に複数のピークが存在するように調整する請求項2又は3に記載の人工土壌培地の調整方法。   The method for adjusting an artificial soil medium according to claim 2 or 3, wherein in the particle size distribution adjusting step, the particle size distribution of the artificial soil particles is adjusted so that a plurality of peaks exist. 請求項1〜4の何れか一項に記載の人工土壌培地の調整方法により調整した人工土壌培地を用いて観葉植物に灌水を行う灌水工程を含む観葉植物栽培方法。   A foliage plant cultivation method including a irrigation step of irrigating a foliage plant using the artificial soil medium adjusted by the artificial soil medium adjustment method according to any one of claims 1 to 4. 前記灌水工程において、前記観葉植物への灌水の間隔を、天然土壌を使用して前記観葉植物を栽培する場合における灌水の間隔の1.5倍以上とする請求項5に記載の観葉植物栽培方法。   The method for cultivating a foliage plant according to claim 5, wherein, in the irrigation step, the interval of irrigation to the foliage plant is 1.5 times or more than the interval of irrigation when the foliage plant is cultivated using natural soil. .
JP2015222557A 2014-11-17 2015-11-13 Artificial soil media adjustment method, and foliage plant cultivation method Pending JP2016101160A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014232523 2014-11-17
JP2014232523 2014-11-17

Publications (1)

Publication Number Publication Date
JP2016101160A true JP2016101160A (en) 2016-06-02

Family

ID=56087710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015222557A Pending JP2016101160A (en) 2014-11-17 2015-11-13 Artificial soil media adjustment method, and foliage plant cultivation method

Country Status (1)

Country Link
JP (1) JP2016101160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748783A (en) * 2021-10-20 2021-12-07 广西壮族自治区中国科学院广西植物研究所 Method for promoting quick germination and seedling formation of purpleflower bicolor seeds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748783A (en) * 2021-10-20 2021-12-07 广西壮族自治区中国科学院广西植物研究所 Method for promoting quick germination and seedling formation of purpleflower bicolor seeds

Similar Documents

Publication Publication Date Title
JP5615461B2 (en) Artificial soil particles
JP5913452B2 (en) Artificial soil medium
US20150230419A1 (en) Artificial soil particle, artificial soil aggregate, and artificial soil molded product, and greening sheet, wall greening panel and horticultural block using artificial soil molded product
JP6209053B2 (en) Plant growth medium and plant growth kit
KR20150083915A (en) Artificial soil aggregates and artificial soil medium
JP6117676B2 (en) Plant growth medium and plant growth kit
JP2016101160A (en) Artificial soil media adjustment method, and foliage plant cultivation method
JP2015019653A (en) Artificial soil particles
JP2016106629A (en) Artificial soil particle
WO2015072549A1 (en) Artificial soil medium
JP2017104019A (en) Antibacterial fungicidal artificial soil particles and antibacterial fungicidal artificial soil medium
JP2016198068A (en) Adjustment method of artificial soil culture medium, and foliage plant cultivation method
JP5951952B2 (en) Water retention aggregate
JP6254380B2 (en) Artificial soil particles and method for producing artificial soil particles
JP6165259B2 (en) Artificial soil particles and artificial soil medium
JP2017018075A (en) Solidifying agent for artificial soil culture medium, and method for preparing artificial soil culture medium
JP2017176173A (en) Artificial soil particles, artificial soil medium, and method for producing artificial soil particles
JPH11113387A (en) Water absorbing resin for plant culture and plant culturing method using the same
JP2016178936A (en) Artificial soil grain, and manufacturing method of artificial soil grain
JP6034634B2 (en) Artificial soil molded body, greening sheet, wall greening panel, and gardening block
JP2015208258A (en) Artificial soil grains, and artificial soil culture medium
JP2016136860A (en) Artificial soil grain and manufacturing method of artificial soil grain
JP6218375B2 (en) Artificial soil particles and artificial soil medium
JP2016202083A (en) Artificial soil particles, and artificial soil culture medium
JP2015019652A (en) Artificial soil particles