JP2015194488A - position detecting device - Google Patents

position detecting device Download PDF

Info

Publication number
JP2015194488A
JP2015194488A JP2015052222A JP2015052222A JP2015194488A JP 2015194488 A JP2015194488 A JP 2015194488A JP 2015052222 A JP2015052222 A JP 2015052222A JP 2015052222 A JP2015052222 A JP 2015052222A JP 2015194488 A JP2015194488 A JP 2015194488A
Authority
JP
Japan
Prior art keywords
detection
detected
output signals
coil
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015052222A
Other languages
Japanese (ja)
Other versions
JP6145467B2 (en
Inventor
栄作 新井
Eisaku Arai
栄作 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macome Corp
Original Assignee
Macome Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macome Corp filed Critical Macome Corp
Priority to JP2015052222A priority Critical patent/JP6145467B2/en
Publication of JP2015194488A publication Critical patent/JP2015194488A/en
Application granted granted Critical
Publication of JP6145467B2 publication Critical patent/JP6145467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a position detecting device not affected by a detection distance between a detected part and a detection part when detecting a position of the detected part using at least two detection parts.SOLUTION: A position detecting device 1 includes: a detected part 2 mounted on an object whose position is detected; and at least two detection parts 3, 4 arranged apart from each other and detecting a physical amount from the detected part, respectively, and obtains a position of the detected part from two output signals obtained by adjacent two detection parts. The position detecting device 1 further includes: an arithmetic operation part 10 for dividing a value based on a difference signal between these two output signals by the value raising the sum signal of two output signals to an N-th power (real number of n>1); and an output part 11 for outputting an output value from the arithmetic operation part.

Description

本発明は、移動可能な被検出部の位置を少なくとも2個の検出部で得られた物理量から求める位置検出装置に関する。   The present invention relates to a position detection apparatus that obtains the position of a movable detection target part from physical quantities obtained by at least two detection parts.

移動する物体の位置を検出する場合、例えば、磁石やホール素子を用いた磁気検出方式による位置検出装置が知られている。この磁気検出方式では、磁石が移動する物体に取り付けられ、例えば2個のホール素子が互いに離間して実装基板上に配置されている。そして、各ホール素子が磁石からの磁力をそれぞれ検出し、その検出された信号の大きさから磁石の位置を求める。   In the case of detecting the position of a moving object, for example, a position detection device using a magnetic detection method using a magnet or a Hall element is known. In this magnetic detection system, a magnet is attached to a moving object, and for example, two Hall elements are arranged on a mounting board so as to be separated from each other. Each Hall element detects the magnetic force from the magnet, and obtains the position of the magnet from the magnitude of the detected signal.

ここで、各ホール素子で検出された信号の大きさは、磁石と各ホール素子との間の検出距離によって異なる。このため、例えば、特許文献1,2には、各ホール素子からの出力信号の差信号を各出力信号の和信号で除算した値から、移動する磁石の位置を求める技術が開示されている。   Here, the magnitude of the signal detected by each Hall element differs depending on the detection distance between the magnet and each Hall element. For this reason, for example, Patent Documents 1 and 2 disclose techniques for obtaining the position of a moving magnet from a value obtained by dividing a difference signal of output signals from each Hall element by a sum signal of the respective output signals.

特開2004−348173号公報JP 2004-348173 A 特開2011−38919号公報JP 2011-38919 A 特開2011−66486号公報JP 2011-66486 A

しかしながら、特許文献1,2のように、各出力信号の差信号を各出力信号の和信号で除算した値を用いると、線形に近い距離の信号が得られないという問題がある。   However, as in Patent Documents 1 and 2, if a value obtained by dividing the difference signal of each output signal by the sum signal of each output signal is used, there is a problem in that a signal having a linear distance cannot be obtained.

また、特許文献3に記載の位置検出回路では、ホール素子の出力信号を検出するための一般的な回路として差動増幅回路を用い、この差動増幅回路の出力信号とAD変換回路の信号入力範囲とを合わせるために差動増幅回路に所定の基準電圧を設けて、この基準電圧を中心電圧とするように差動増幅回路の出力信号を変換してAD変換回路に入力する構成をとった際に、基準電圧に起因する位置検出誤差を少なくする方法が記載されている。しかしながら、特許文献3も、特許文献1,2と同様に、検出軸上に配置された2つの検出素子の出力信号から和信号と差信号を生成し、これらの商を求めて正規化したものにすぎない。   In the position detection circuit described in Patent Document 3, a differential amplifier circuit is used as a general circuit for detecting the output signal of the Hall element, and the output signal of the differential amplifier circuit and the signal input of the AD conversion circuit are used. In order to match the range, a predetermined reference voltage is provided in the differential amplifier circuit, and the output signal of the differential amplifier circuit is converted and input to the AD converter circuit so that the reference voltage is the central voltage. In this case, a method for reducing the position detection error caused by the reference voltage is described. However, Patent Document 3 also generates the sum signal and the difference signal from the output signals of the two detection elements arranged on the detection axis and normalizes them by calculating their quotients, similarly to Patent Documents 1 and 2. Only.

本発明は、上述のような実情に鑑みてなされたもので、少なくとも2個の検出部を用いて被検出部の位置を検出する場合、被検出部と検出部との間の検出距離の影響を受けない位置検出装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and when detecting the position of a detected portion using at least two detecting portions, the influence of the detection distance between the detected portion and the detecting portion. An object of the present invention is to provide a position detection device that is not subject to interference.

上記課題を解決するために、本発明の第1の技術手段は、位置検出される物体に取り付けられた被検出部と、互いに離間して配置され、前記被検出部からの物理量をそれぞれ検出する少なくとも2個の検出部とを備え、隣接する2個の該検出部で得られた2つの出力信号から前記被検出部の位置を求める位置検出装置であって、前記2つの出力信号の差信号に基づいた値を、前記2つの出力信号の和信号をn乗(ただしn>1の実数)した値で除算する演算部と、該演算部からの出力値を出力する出力部とを備えることを特徴としたものである。   In order to solve the above-described problem, the first technical means of the present invention is configured to detect a physical quantity from each of the detected parts attached to the object whose position is to be detected and spaced apart from each other. And a position detection device for determining the position of the detected part from two output signals obtained by two adjacent detection parts, the difference signal between the two output signals. An arithmetic unit that divides a value based on the sum of the two output signals by a value obtained by dividing the sum signal of the two output signals to the n-th power (where n> 1 is a real number), and an output unit that outputs an output value from the arithmetic unit It is characterized by.

第2の技術手段は、前記nが1.5から2.2までの範囲の値であることを特徴としたものである。
第3の技術手段は、前記被検出部は磁石であり、前記検出部は磁気検出素子を含むことを特徴としたものである。
第4の技術手段は、前記被検出部は送信コイルを含み、前記検出部は検出コイルを含むことを特徴としたものである。
The second technical means is characterized in that n is a value in the range from 1.5 to 2.2.
The third technical means is characterized in that the detected part is a magnet and the detecting part includes a magnetic detecting element.
According to a fourth technical means, the detected part includes a transmission coil, and the detection part includes a detection coil.

第5の技術手段は、前記被検出部は導電体を含み、前記検出部は、前記被検出部の導電体と容量結合する導電体を含むことを特徴としたものである。
第6の技術手段は、前記検出部が格子状に配置されることを特徴としたものである。
According to a fifth technical means, the detected part includes a conductor, and the detecting part includes a conductor capacitively coupled to the conductor of the detected part.
A sixth technical means is characterized in that the detection units are arranged in a grid pattern.

本発明によれば、演算部では、検出部で得られた2つの出力信号の差信号に基づいた値を、この2つの出力信号の和信号をn乗(ただしn>1)した値で除算しており、この割る数が従来(n=1)に比べて非常に大きな値になるので、演算部では小さな演算結果が得られる。よって、被検出部と検出部との間の検出距離が変動してもその変動の影響を抑制でき、演算部で得られた値がリニアな特性を持つことができる。この結果、被検出部の位置検出誤差が小さくなる。   According to the present invention, the calculation unit divides the value based on the difference signal between the two output signals obtained by the detection unit by the value obtained by raising the sum signal of the two output signals to the nth power (where n> 1). In this case, the division number is very large as compared with the conventional case (n = 1), so that a small calculation result can be obtained in the calculation unit. Therefore, even if the detection distance between the detection unit and the detection unit varies, the influence of the variation can be suppressed, and the value obtained by the calculation unit can have a linear characteristic. As a result, the position detection error of the detected portion is reduced.

本発明の位置検出装置に適用可能な回路ブロック図である。It is a circuit block diagram applicable to the position detection device of the present invention. 本発明の被検出部および検出部の配置を説明するための図である。It is a figure for demonstrating arrangement | positioning of the to-be-detected part and detection part of this invention. (A)は第1実施例による磁束密度と磁石の位置との関係を示す図、(B)は第1実施例による2つの出力信号の差信号と磁石の位置との関係を示す図である。(A) is a figure which shows the relationship between the magnetic flux density by 1st Example, and the position of a magnet, (B) is a figure which shows the relationship between the difference signal of two output signals by 1st Example, and the position of a magnet. . (A)は第1実施例による2つの出力信号の和信号と磁石の位置との関係を示す図、(B)は第1実施例による演算部の演算結果と磁石の位置の関係を示す図である。(A) is a figure which shows the relationship between the sum signal of two output signals by 1st Example, and the position of a magnet, (B) is a figure which shows the relationship between the calculation result of the calculating part by 1st Example, and the position of a magnet. It is. 比較例による演算結果と磁石の位置の関係を示す図である。It is a figure which shows the relationship between the calculation result by a comparative example, and the position of a magnet. 比較例による演算結果と磁石の位置の関係を示す図である。It is a figure which shows the relationship between the calculation result by a comparative example, and the position of a magnet. 第2実施例による検出コイルおよび送信コイルの配置を説明するための図である。It is a figure for demonstrating arrangement | positioning of the detection coil and transmission coil by 2nd Example. (A)は第2実施例による振幅と送信コイルの位置との関係を示す図、(B)は第2実施例による2つの出力信号の差信号と送信コイルの位置の関係を示す図である。(A) is a figure which shows the relationship between the amplitude by 2nd Example, and the position of a transmission coil, (B) is a figure which shows the relationship between the difference signal of two output signals by 2nd Example, and the position of a transmission coil. . (A)は第2実施例による2つの出力信号の和信号と送信コイルの位置との関係を示す図、(B)は第2実施例による演算部の演算結果と送信コイルの位置の関係を示す図である。(A) is a figure which shows the relationship between the sum signal of two output signals by 2nd Example, and the position of a transmission coil, (B) shows the relationship between the calculation result of the calculating part by 2nd Example, and the position of a transmission coil. FIG. 第2実施例による検出コイルおよび送信コイルの配置を説明するための図である。It is a figure for demonstrating arrangement | positioning of the detection coil and transmission coil by 2nd Example. (A)は第2実施例による振幅と送信コイルの位置との関係を示す図、(B)は第2実施例による2つの出力信号の差信号と送信コイルの位置の関係を示す図である。(A) is a figure which shows the relationship between the amplitude by 2nd Example, and the position of a transmission coil, (B) is a figure which shows the relationship between the difference signal of two output signals by 2nd Example, and the position of a transmission coil. . (A)は第2実施例による2つの出力信号の和信号と送信コイルの位置との関係を示す図、(B)は第2実施例による演算部の演算結果と送信コイルの位置の関係を示す図である。(A) is a figure which shows the relationship between the sum signal of two output signals by 2nd Example, and the position of a transmission coil, (B) shows the relationship between the calculation result of the calculating part by 2nd Example, and the position of a transmission coil. FIG. 第3実施例による送信コイルおよび検出コイルの配置を説明するための図である。It is a figure for demonstrating arrangement | positioning of the transmission coil and detection coil by 3rd Example. 第1実施例による検出部を説明するための図である。It is a figure for demonstrating the detection part by 1st Example. 第2実施例による被検出部および検出部を説明するための図である。It is a figure for demonstrating the to-be-detected part and detection part by 2nd Example. 第4実施例による被検出部および検出部を説明するための図である。It is a figure for demonstrating the to-be-detected part and detection part by 4th Example. 第5実施例による電極の配置を説明するための図である。It is a figure for demonstrating arrangement | positioning of the electrode by 5th Example.

以下、図面を参照しながら本発明の位置検出装置について説明する。図1は、本発明の位置検出装置に適用可能な回路ブロック図であり、図2は、本発明の被検出部および検出部の配置を説明するための図である。
図1に示すように、位置検出装置1は、被検出部2の位置を2個の検出部3,4で得られた物理量(例えば、静磁界、交流磁界、音など)から求めることができる。
The position detection apparatus of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit block diagram applicable to the position detection apparatus of the present invention, and FIG. 2 is a diagram for explaining the arrangement of detected parts and detection parts of the present invention.
As shown in FIG. 1, the position detection device 1 can determine the position of the detected portion 2 from physical quantities (for example, a static magnetic field, an alternating magnetic field, and a sound) obtained by the two detection portions 3 and 4. .

被検出部2は移動する物体に取り付けられており、例えば非接触式の変位センサに取り付けられた検出部3,4に対して移動自在である。
検出部3,4は、同じ性能を有して図2に示す実装基板5の表面に実装され、その検出面が被検出部2を通る軸(Z軸)に向いている。また、検出部3,4は、例えばX軸上の対称位置に互いに離間して配置されている。
The detected portion 2 is attached to a moving object, and is movable with respect to the detecting portions 3 and 4 attached to, for example, a non-contact type displacement sensor.
The detection units 3 and 4 have the same performance and are mounted on the surface of the mounting substrate 5 shown in FIG. 2, and the detection surface faces the axis (Z axis) passing through the detected portion 2. Moreover, the detection parts 3 and 4 are arrange | positioned mutually spaced apart in the symmetrical position on the X-axis, for example.

このため、被検出部2が2個の検出部3,4を結ぶ線に対して平行に移動し、例えば原点の位置から検出部3に近づくと、検出部3からの出力信号(検出値をAとする)が大きくなり、検出部4からの出力信号(検出値をBとする)が小さくなる。一方、例えば原点の位置から検出部4に近づくと、検出部4からの出力信号Bが大きくなり、検出部3からの出力信号Aが小さくなる。   For this reason, when the detected part 2 moves in parallel to the line connecting the two detecting parts 3 and 4, for example, when it approaches the detecting part 3 from the position of the origin, an output signal (detected value is detected from the detecting part 3). A) increases, and the output signal from the detection unit 4 (detection value B) decreases. On the other hand, for example, when approaching the detection unit 4 from the position of the origin, the output signal B from the detection unit 4 increases and the output signal A from the detection unit 3 decreases.

検出部3からの出力信号Aは、アンプ7aで増幅された後、A/Dコンバータ8aでデジタル変換されてマイコン9に入力される。また、検出部4からの出力信号Bも、アンプ7b、A/Dコンバータ8bを経由してマイコン9に入力される。マイコン9は演算部10や出力部11を有している。
ここで、演算部10は、検出部3,4で得られた2つの出力信号の差信号に基づいた値を、これら2つの出力信号の和信号をn乗(n>1の実数)した値で除算する。
The output signal A from the detection unit 3 is amplified by the amplifier 7a, then digitally converted by the A / D converter 8a, and input to the microcomputer 9. The output signal B from the detection unit 4 is also input to the microcomputer 9 via the amplifier 7b and the A / D converter 8b. The microcomputer 9 has a calculation unit 10 and an output unit 11.
Here, the calculation unit 10 is a value obtained by calculating the value based on the difference signal between the two output signals obtained by the detection units 3 and 4 to the nth power (n> 1 real number) of the sum signal of the two output signals. Divide by.

より詳しくは、2つの出力信号A,Bを用い、所定の定数、例えば、検出対象となる物理量、被検出部2や検出部3,4の構造や形状などに応じて設定される定数をkとすると、演算部10は式1に示すように演算する。
k(A−B)/(A+B)n …式1
More specifically, the two output signals A and B are used, and a predetermined constant, for example, a constant set according to the physical quantity to be detected, the structure and shape of the detected part 2 and the detection parts 3 and 4, and the like. Then, the calculation unit 10 calculates as shown in Equation 1.
k (A−B) / (A + B) n Formula 1

演算部10の演算結果は出力部11に入力され、出力部11は、この演算部10で得られた値から被検出部2を移動させる例えばモータ(図示省略)に出力する。
なお、図2で示した検出部3,4はX軸上の対称位置に配置されているが、Y軸上の対称位置にも互いに離間した2個の検出部を配置し、平面上な位置を検出してもよい。
The calculation result of the calculation unit 10 is input to the output unit 11, and the output unit 11 outputs the detected unit 2 from the value obtained by the calculation unit 10 to, for example, a motor (not shown).
The detection units 3 and 4 shown in FIG. 2 are arranged at symmetric positions on the X axis, but two detection units that are separated from each other are also arranged at the symmetric positions on the Y axis so that they are positioned on the plane. May be detected.

(第1実施例)
第1実施例は磁気検出方式の位置検出装置である。このため、被検出部2は静磁界を発生する磁石であり、検出部3,4は例えばホール素子の例を挙げるが、半導体磁気抵抗素子、感磁性体磁気抵抗素子、GMR素子等の磁気検出素子を用いることもできる。
図3(A)は第1実施例による磁束密度と磁石の位置との関係を示す図、図3(B)は第1実施例による2つの出力信号の差信号と磁石の位置との関係を示す図であり、図4(A)は第1実施例による2つの出力信号の和信号と磁石の位置との関係を示す図、図4(B)は第1実施例による演算部の演算結果と磁石の位置の関係を示す図である。
(First embodiment)
The first embodiment is a magnetic detection type position detection device. For this reason, the detected portion 2 is a magnet that generates a static magnetic field, and the detecting portions 3 and 4 are, for example, Hall elements, but magnetic detection of semiconductor magnetoresistive elements, magnetosensitive magnetoresistive elements, GMR elements, etc. An element can also be used.
FIG. 3A shows the relationship between the magnetic flux density and the magnet position according to the first embodiment, and FIG. 3B shows the relationship between the difference signal between the two output signals and the magnet position according to the first embodiment. 4A is a diagram showing a relationship between the sum signal of two output signals and the position of the magnet according to the first embodiment, and FIG. 4B is a calculation result of the calculation unit according to the first embodiment. It is a figure which shows the relationship between the position of a magnet.

図14は、第1実施例による検出部を説明するための図である。本発明の検出部とは、物理量(例えば、静磁界、交流磁界、音、電界など)を電気信号に変換するものである。詳しくは、第1実施例でいえば、ホール素子は、図14(A),(B)に示すように、一定電流Iを与えた場合、磁束密度Bに比例した電圧Vが生ずるものである。よって、検出部3は、ホール素子の他、例えば、ホール素子に電流Iを供給するための電源36、電流Iの供給ラインや電圧Vの検出ラインを含む。なお、本発明の検出部は、検出素子からの物理量に応じた電気信号を得るために必要な構成、あるいは、検出素子から得られた交流信号を直流信号に変換するための構成を含むものであるが、検出素子から得られた信号の大きさを変える構成を含むものではなく、さらに、検出部の後段に設けた信号処理に必要な構成を含むものではない。したがって、例えば、特許文献3のバイアス出力生成部や基準電圧生成部が含まれるものではない。   FIG. 14 is a diagram for explaining the detection unit according to the first embodiment. The detection unit of the present invention converts a physical quantity (for example, a static magnetic field, an alternating magnetic field, sound, an electric field, etc.) into an electric signal. Specifically, in the first embodiment, the Hall element generates a voltage V proportional to the magnetic flux density B when a constant current I is applied, as shown in FIGS. . Therefore, the detection unit 3 includes, in addition to the Hall element, for example, a power source 36 for supplying the current I to the Hall element, a supply line for the current I, and a detection line for the voltage V. The detection unit of the present invention includes a configuration necessary for obtaining an electrical signal corresponding to a physical quantity from the detection element, or a configuration for converting an AC signal obtained from the detection element into a DC signal. It does not include a configuration for changing the magnitude of the signal obtained from the detection element, and further does not include a configuration necessary for signal processing provided in the subsequent stage of the detection unit. Therefore, for example, the bias output generation unit and the reference voltage generation unit of Patent Document 3 are not included.

第1実施例では、ホール素子3の中心とホール素子4の中心との間の距離を50mm、磁石2には、幅50mm、厚さ0.8mmの磁気テープを用いており、磁気テープの幅方向に沿って移動させる。
また、図2で説明した実装基板5の表面から磁石2の中心位置までのZ軸方向の距離をCLとし、CL=40mmを○印、CL=50mmを●印、CL=60mmを□印、CL=70mmを■印で示している。
In the first embodiment, the distance between the center of the Hall element 3 and the center of the Hall element 4 is 50 mm, and the magnet 2 is a magnetic tape having a width of 50 mm and a thickness of 0.8 mm. Move along the direction.
Further, the distance in the Z-axis direction from the surface of the mounting substrate 5 described in FIG. 2 to the center position of the magnet 2 is CL, CL = 40 mm is marked with a circle, CL = 50 mm is marked with a circle, CL = 60 mm is marked with a square, CL = 70 mm is indicated by ■.

まず、磁束密度を磁石2の位置1mm刻みで検出すると、図3(A)に示すように、いずれのCLの場合も上方に向けて凸状をなし、0mmから+2mmまでの間に頂点を有し、この0mm付近に対してほぼ対称の値が得られている。また、CLが小さくなるに連れて磁束密度の勾配が大きくなっている。
次に、ホール素子3,4で得られた2つの出力信号の差信号(A−B)を磁石2の位置1mm刻みで求めると、図3(B)に示すように、いずれのCLの場合もホール素子4に近づくと、上方に向けて凸状をなしているが、+30mmから+37mmまでの間に頂点を有している。一方、いずれのCLの場合もホール素子3に近づくと、下方に向けて凸状をなしているが、−30mmから−38mmまでの間に頂点を有している。また、CLが小さくなるに連れて差信号の勾配が大きくなっている。
First, when the magnetic flux density is detected in increments of 1 mm of the position of the magnet 2, as shown in FIG. 3A, in any CL, a convex shape is formed upward, and there is a vertex between 0 mm and +2 mm. In addition, a substantially symmetric value is obtained with respect to the vicinity of 0 mm. Further, the gradient of magnetic flux density increases as CL decreases.
Next, when the difference signal (A-B) between the two output signals obtained by the Hall elements 3 and 4 is obtained in increments of 1 mm at the position of the magnet 2, as shown in FIG. However, when it approaches the Hall element 4, it has a convex shape upward, but has a vertex between +30 mm and +37 mm. On the other hand, in any case, when approaching the Hall element 3, it has a convex shape downward, but has a vertex between −30 mm and −38 mm. In addition, the gradient of the difference signal increases as CL decreases.

続いて、ホール素子3,4で得られた2つの出力信号の和信号(A+B)を磁石2の位置1mm刻みで求めると、図4(A)に示すように、いずれのCLの場合も上方に向けて凸状をなし、−1mmから0mmまでの間に頂点を有し、この0mm付近に対してほぼ対称の値が得られた。また、CLが小さくなるに連れて和信号の勾配が大きくなっている。
そして、演算部10の演算結果を磁石2の位置1mm刻みで求める。なお、第1実施例においては、磁気テープの形状などを考慮し、k=50、n=2.2を式1に代入した。
Subsequently, when the sum signal (A + B) of the two output signals obtained by the Hall elements 3 and 4 is obtained in increments of 1 mm of the position of the magnet 2, as shown in FIG. Convex-shaped toward the surface, having a vertex between -1 mm and 0 mm, and a value almost symmetrical with respect to the vicinity of 0 mm was obtained. Further, the gradient of the sum signal increases as CL decreases.
And the calculation result of the calculating part 10 is calculated | required by the position of the position of the magnet 2 1mm. In the first embodiment, k = 50 and n = 2.2 were substituted into Equation 1 in consideration of the shape of the magnetic tape.

図4(B)に示すように、第1実施例における式1の演算結果は、いずれのCLの場合も+25mmから+40mmまでの範囲や−25mmから−40mmまでの範囲では、やや曲線を描いているが、−25mmから+25mmまでの範囲では、ほぼ直線を描いていると認められた。また、−25mmから+25mmまでの範囲については、各CLの違いはほとんど無いと認められた。   As shown in FIG. 4B, the calculation result of Expression 1 in the first example shows a slight curve in the range from +25 mm to +40 mm and the range from −25 mm to −40 mm in any CL. However, in the range from -25 mm to +25 mm, it was recognized that a substantially straight line was drawn. Further, it was recognized that there was almost no difference between the CLs in the range from −25 mm to +25 mm.

図5,6は、比較例による演算結果と磁石の位置の関係を示す図である。上記式1でn=1にした場合には、図5(A)に示すように、−10mmから+10mmまでの範囲ではほぼ直線を描いているが、その直線を描ける範囲が狭いため実用的ではない。また、CLが小さくなるに連れて演算結果の勾配が大きくなっている。次に、n=1.3にした場合には、図5(B)に■印で示すように、−25mmから+25mmまでの範囲でほぼ直線を描くので、実用的なものもあるが、○印で示すように、−10mmから+10mmまでの範囲のような狭い範囲でしか直線を描けないものがある。さらに、n=3にした場合には、図6に示すように、CLが小さくなるに連れて演算結果の勾配が小さくなり、また、■印で示すように、0mm付近で波打つような曲線を描き、直線を描けないものがある。これに対し、第1実施例の場合(1<n≦2.2)によれば、各CLの違いはほとんど無く、かつ、直線を描く範囲も非常に広くなることが分かる。   5 and 6 are diagrams illustrating the relationship between the calculation result and the magnet position according to the comparative example. When n = 1 in the above formula 1, as shown in FIG. 5 (A), a straight line is almost drawn in the range from −10 mm to +10 mm, but it is not practical because the range in which the straight line can be drawn is narrow. Absent. In addition, the gradient of the calculation result increases as CL decreases. Next, when n = 1.3, a straight line is drawn in the range from −25 mm to +25 mm as indicated by the ■ marks in FIG. As indicated by the mark, there are some that can draw a straight line only in a narrow range such as a range from -10 mm to +10 mm. Further, when n = 3, as shown in FIG. 6, the gradient of the calculation result becomes smaller as CL becomes smaller, and a curve that undulates around 0 mm as shown by the ■ mark. There are things that can't be drawn and drawn. On the other hand, according to the case of the first embodiment (1 <n ≦ 2.2), it is understood that there is almost no difference between the CLs, and the range in which a straight line is drawn becomes very wide.

(第2実施例)
第2実施例は電磁波検出方式の位置検出装置である。この場合、被検出部2は、例えば発振回路やコンデンサに接続され、電磁波を発生する送信コイルである。なお、コンデンサや送信コイルには所定の周波数で共振するような定数が設定されている。また、検出部3,4は検出コイルであり、例えば所定の周波数で共振するようにコンデンサに接続されている。送信コイルが検出コイルに近づくと、検出コイルには電磁誘導によって起電力が発生し、所定の周波数の正弦波が発生する。検出コイルに対する送信コイルの向きが一定であれば、この正弦波の振幅は、送信コイルが検出コイルに近づくに連れて大きくなる。
(Second embodiment)
The second embodiment is an electromagnetic wave detection type position detection device. In this case, the detected part 2 is a transmission coil that is connected to, for example, an oscillation circuit or a capacitor and generates electromagnetic waves. A constant that resonates at a predetermined frequency is set for the capacitor and the transmission coil. The detection units 3 and 4 are detection coils, and are connected to a capacitor so as to resonate at a predetermined frequency, for example. When the transmission coil approaches the detection coil, an electromotive force is generated in the detection coil by electromagnetic induction, and a sine wave having a predetermined frequency is generated. If the direction of the transmission coil relative to the detection coil is constant, the amplitude of this sine wave increases as the transmission coil approaches the detection coil.

図15は、第2実施例による被検出部および検出部を説明するための図であり、例えば被検出部2は、コイル部(本発明の送信コイルに相当)21と、交流信号を発生させてコイル部21に付与する発振回路22とを有している。また、検出部3は、コイル部(本発明の検出コイルに相当)31と、コイル部31で生じた交流信号を直流信号に変換する交直変換回路35とを有している。なお、交直変換回路35は例えば全波整流器である。   FIG. 15 is a diagram for explaining a detected part and a detecting part according to the second embodiment. For example, the detected part 2 generates a coil part (corresponding to the transmission coil of the present invention) 21 and an AC signal. And an oscillation circuit 22 applied to the coil unit 21. The detection unit 3 includes a coil unit (corresponding to the detection coil of the present invention) 31 and an AC / DC conversion circuit 35 that converts an AC signal generated in the coil unit 31 into a DC signal. The AC / DC converter circuit 35 is, for example, a full-wave rectifier.

図7は、第2実施例による検出コイルおよび送信コイルの配置を説明するための図である。第2実施例では、検出コイル3の中心と検出コイル4の中心との間の距離を50mm、送信コイル2や検出コイル3,4は、コイルの巻回軸(コイル軸ともいう)に沿って螺旋状に巻回され、径1.2mm、長さ7mmで形成されており、互いに平行に配置されている。送信コイル2は、例えば、コイル軸(縦方向ともいう)に沿って移動させる。   FIG. 7 is a diagram for explaining the arrangement of detection coils and transmission coils according to the second embodiment. In the second embodiment, the distance between the center of the detection coil 3 and the center of the detection coil 4 is 50 mm, and the transmission coil 2 and the detection coils 3 and 4 are along the winding axis (also referred to as a coil axis) of the coil. It is spirally wound, formed with a diameter of 1.2 mm and a length of 7 mm, and is arranged in parallel to each other. For example, the transmission coil 2 is moved along a coil axis (also referred to as a vertical direction).

図8(A)は第2実施例による振幅と送信コイルの位置との関係を示す図、図8(B)は第2実施例による2つの出力信号の差信号と送信コイルの位置の関係を示す図であり、図9(A)は第2実施例による2つの出力信号の和信号と送信コイルの位置との関係を示す図、図9(B)は第2実施例による演算部の演算結果と送信コイルの位置の関係を示す図である。また、図7に示したCL=90mmを○印、CL=100mmを●印、CL=110mmを□印、CL=120mmを■印、CL=130mmを◇印で示している。   FIG. 8A shows the relationship between the amplitude and the position of the transmission coil according to the second embodiment, and FIG. 8B shows the relationship between the difference signal between the two output signals and the position of the transmission coil according to the second embodiment. FIG. 9A is a diagram showing the relationship between the sum signal of two output signals and the position of the transmission coil according to the second embodiment, and FIG. 9B is the calculation of the arithmetic unit according to the second embodiment. It is a figure which shows the relationship between a result and the position of a transmission coil. In FIG. 7, CL = 90 mm is indicated by a circle, CL = 100 mm by a circle, CL = 110 mm by a square, CL = 120 mm by a square, and CL = 130 mm by a circle.

まず、振幅(A/D値)を送信コイル2の位置1mm刻みで検出すると、図8(A)に示すように、いずれのCLの場合も上方に向けて凸状をなし、0mmから+1mmまでの間に頂点を有し、この0mm付近に対してほぼ対称の値が得られている。また、CLが小さくなるに連れて振幅の勾配が大きくなっている。
次に、検出コイル3,4で得られた2つの出力信号の差信号(A−B)を送信コイル2の位置1mm刻みで求めると、図8(B)に示すように、いずれのCLの場合も検出コイル4に近づくと、上方に向けて凸状をなしているが、+35mmから+50mmまでの間に頂点を有している。一方、いずれのCLの場合も検出コイル3に近づくと、下方に向けて凸状をなしているが、−50mmから−36mmまでの間に頂点を有している。また、CLが小さくなるに連れて差信号の勾配が大きくなっている。
First, when the amplitude (A / D value) is detected in increments of 1 mm of the position of the transmitting coil 2, as shown in FIG. 8A, in any CL, a convex shape is formed upward, from 0 mm to +1 mm. The value is almost symmetrical with respect to the vicinity of 0 mm. Also, the amplitude gradient increases as CL decreases.
Next, when the difference signal (A-B) between the two output signals obtained by the detection coils 3 and 4 is obtained in increments of 1 mm at the position of the transmission coil 2, as shown in FIG. Also in this case, when it approaches the detection coil 4, it has a convex shape upward, but has a vertex between +35 mm and +50 mm. On the other hand, in any case, when approaching the detection coil 3, it has a convex shape downward, but has a vertex between −50 mm and −36 mm. In addition, the gradient of the difference signal increases as CL decreases.

続いて、検出コイル3,4で得られた2つの出力信号の和信号(A+B)を送信コイル2の位置1mm刻みで求めると、図9(A)に示すように、いずれのCLの場合も上方に向けて凸状をなし、−1mmから0mmまでの間に頂点を有し、この0mm付近に対してほぼ対称の値が得られている。また、CLが小さくなるに連れて和信号の勾配が大きくなっている。   Subsequently, when the sum signal (A + B) of the two output signals obtained by the detection coils 3 and 4 is obtained in increments of 1 mm of the position of the transmission coil 2, as shown in FIG. A convex shape is formed upward, and has a vertex between -1 mm and 0 mm, and a substantially symmetric value is obtained with respect to the vicinity of 0 mm. Further, the gradient of the sum signal increases as CL decreases.

そして、演算部10の演算結果を送信コイル2の位置1mm刻みで求める。なお、第2実施例の縦方向においては、コイルの形状などを考慮し、k=6000、n=2を式1に代入している。
図9(B)に示すように、第2実施例の縦方向における式1の演算結果は、いずれのCLの場合も+25mm以上や−25mm以下では、やや曲線を描いているが、−25mmから+25mmまでの範囲では、ほぼ直線を描いていると認められた。また、−20mmから+20mmまでの範囲については、各CLの違いはほとんど無いと認められた。
And the calculation result of the calculating part 10 is calculated | required for every position of the position of the transmission coil 2 1 mm. In the vertical direction of the second embodiment, k = 6000 and n = 2 are substituted into Equation 1 in consideration of the coil shape and the like.
As shown in FIG. 9 (B), the calculation result of Formula 1 in the vertical direction of the second example is slightly curved at +25 mm or more and −25 mm or less in any CL, but from −25 mm In the range up to +25 mm, it was recognized that a substantially straight line was drawn. Further, in the range from −20 mm to +20 mm, it was recognized that there was almost no difference between the CLs.

図10は、第2実施例による検出コイルおよび送信コイルの配置を説明するための図であり、この第2実施例では、送信コイル2をコイル軸に対して直交方向(横方向ともいう)に沿って移動させた場合についても演算結果等を求めている。
図11(A)は第2実施例による振幅と送信コイルの位置との関係を示す図、図11(B)は第2実施例による2つの出力信号の差信号と送信コイルの位置の関係を示す図であり、図12(A)は第2実施例による2つの出力信号の和信号と送信コイルの位置との関係を示す図、図12(B)は第2実施例による演算部の演算結果と送信コイルの位置の関係を示す図である。また、図10に示したCL=90mmを○印、CL=100mmを●印、CL=110mmを□印、CL=120mmを■印、CL=130mmを◇印で示している。
FIG. 10 is a diagram for explaining the arrangement of the detection coil and the transmission coil according to the second embodiment. In the second embodiment, the transmission coil 2 is orthogonal to the coil axis (also referred to as a transverse direction). The calculation results and the like are also obtained for the case of moving along.
FIG. 11A shows the relationship between the amplitude and the position of the transmission coil according to the second embodiment, and FIG. 11B shows the relationship between the difference signal between the two output signals and the position of the transmission coil according to the second embodiment. FIG. 12A is a diagram showing the relationship between the sum signal of two output signals and the position of the transmission coil according to the second embodiment, and FIG. 12B is the calculation of the arithmetic unit according to the second embodiment. It is a figure which shows the relationship between a result and the position of a transmission coil. In FIG. 10, CL = 90 mm is indicated by a circle, CL = 100 mm by a circle, CL = 110 mm by a square, CL = 120 mm by a square, and CL = 130 mm by a circle.

まず、振幅(A/D値)を送信コイル2の位置1mm刻みで検出すると、図11(A)に示すように、いずれのCLの場合も上方に向けて凸状をなし、−1mmから−0mmまでの間に頂点を有し、この0mm付近に対してほぼ対称の値が得られている。また、CLが小さくなるに連れて振幅の勾配が大きくなっている。
次に、検出コイル3,4で得られた2つの出力信号の差信号(A−B)を送信コイル2の位置1mm刻みで求めると、図11(B)に示すように、いずれのCLの場合も検出コイル4に近づくと、上方に向けて凸状をなしているが、+52mm以上で頂点を有している。一方、いずれのCLの場合も検出コイル3に近づくと、下方に向けて凸状をなしているが、−50mm以下で頂点を有している。また、CLが小さくなるに連れて差信号の勾配が大きくなっている。
First, when the amplitude (A / D value) is detected in increments of 1 mm of the position of the transmission coil 2, as shown in FIG. 11A, a convex shape is formed upward in any CL, from −1 mm to − It has a vertex up to 0 mm, and a nearly symmetric value is obtained with respect to the vicinity of 0 mm. Also, the amplitude gradient increases as CL decreases.
Next, when the difference signal (A−B) between the two output signals obtained by the detection coils 3 and 4 is obtained in increments of 1 mm of the position of the transmission coil 2, as shown in FIG. Also in this case, when it approaches the detection coil 4, it has a convex shape upward, but has a vertex at +52 mm or more. On the other hand, in any CL, when it approaches the detection coil 3, it forms a convex shape downward, but has a vertex at -50 mm or less. In addition, the gradient of the difference signal increases as CL decreases.

続いて、検出コイル3,4で得られた2つの出力信号の和信号(A+B)を送信コイル2の位置1mm刻みで求めると、図12(A)に示すように、いずれのCLの場合も上方に向けて凸状をなし、0mmから+1mmまでの間に頂点を有し、この0mmに対してほぼ対称の値が得られている。また、CLが小さくなるに連れて和信号の勾配が大きくなっている。   Subsequently, when the sum signal (A + B) of the two output signals obtained by the detection coils 3 and 4 is obtained in increments of 1 mm at the position of the transmission coil 2, as shown in FIG. A convex shape is formed upward, and there is a vertex between 0 mm and +1 mm, and a substantially symmetric value is obtained with respect to this 0 mm. Further, the gradient of the sum signal increases as CL decreases.

そして、演算部10の演算結果を送信コイル2の位置1mm刻みで求める。なお、第2実施例の横方向においては、コイルの形状などを考慮し、k=900、n=1.5を式1に代入した。
図12(B)に示すように、第2実施例の横方向における式1の演算結果は、いずれのCLの場合も+30mm以上や−30mm以下では、やや曲線を描いているが、−30mmから+30mmまでの範囲では、ほぼ直線を描いていると認められた。また、−10mmから+10mmまでの範囲については、各CLの違いはほとんど無いと認められた。
And the calculation result of the calculating part 10 is calculated | required for every position of the position of the transmission coil 2 1 mm. In the lateral direction of the second embodiment, k = 900 and n = 1.5 were substituted into Equation 1 in consideration of the coil shape and the like.
As shown in FIG. 12 (B), the calculation result of the expression 1 in the horizontal direction of the second embodiment draws a slight curve at +30 mm or more and −30 mm or less in any CL, but from −30 mm In the range up to +30 mm, it was recognized that a substantially straight line was drawn. Further, in the range from −10 mm to +10 mm, it was recognized that there was almost no difference between the CLs.

このように、演算部10では、ホール素子や検出コイルのような検出部3,4で得られた2つの出力信号の差信号(A−B)に基づいた値を、和信号(A+B)をn乗(ただしn>1)した値で除算しており、この割る数(分母)が従来(n=1)に比べて非常に大きな値になるので、当該割る数が演算結果に与える影響が大きくなり、磁石や送信コイルのような被検出部2の移動に伴う検出距離の変動を吸収できる。このため、演算部10で得られた値がリニアな特性を持つことができ、被検出部2の位置検出誤差が小さくすることができる。   As described above, the calculation unit 10 calculates a value based on the difference signal (A−B) between the two output signals obtained by the detection units 3 and 4 such as a Hall element and a detection coil as a sum signal (A + B). Division is performed by a value raised to the power of n (where n> 1), and this division number (denominator) is much larger than the conventional value (n = 1). It becomes large and can absorb the fluctuation | variation of the detection distance accompanying the movement of the to-be-detected part 2 like a magnet or a transmission coil. For this reason, the value obtained by the calculation unit 10 can have a linear characteristic, and the position detection error of the detected unit 2 can be reduced.

また、nは1.5から2.2までの範囲の値であることから、所定の定数kが50から6000までの範囲の値に変動しても、演算部10で得られた値がリニアな特性を持つことができる。
なお、磁石や磁気検出素子が例えば円柱形の場合には、所定の定数k=1であってもよい。
Further, since n is a value in the range from 1.5 to 2.2, even if the predetermined constant k fluctuates to a value in the range from 50 to 6000, the value obtained by the calculation unit 10 is linear. Can have special characteristics.
In addition, when the magnet and the magnetic detection element are, for example, cylindrical, the predetermined constant k = 1 may be used.

図13は、第3実施例による送信コイルおよび検出コイルの配置を説明するための図である。上記各実施例では2個の検出コイル3,4の例を挙げて説明したが、3個以上の検出コイル3a,3b,3c,3d・・・を一直線上に並べ、演算部10は、隣接する2個の検出コイルで得られた2つの出力信号から送信コイル2の位置を求めてもよい。
より具体的には、各検出コイル3a,3b,3c,3d・・・も、上記検出コイル3,4と同様にそれぞれマイコン9に接続されており、送信コイル2の例えばX軸の正方向への移動に応じて、検出コイル3aと隣の検出コイル3bの出力信号、次に、この検出コイル3bと隣の検出コイル3cの出力信号、さらに、この検出コイル3cと隣の検出コイル3dの出力信号のように、受け渡すように検出することもできる。
FIG. 13 is a diagram for explaining the arrangement of the transmission coil and the detection coil according to the third embodiment. In each of the above-described embodiments, the example of the two detection coils 3 and 4 has been described. However, the three or more detection coils 3a, 3b, 3c, 3d,. The position of the transmission coil 2 may be obtained from two output signals obtained by the two detection coils.
More specifically, each of the detection coils 3a, 3b, 3c, 3d... Is also connected to the microcomputer 9 in the same manner as the detection coils 3 and 4, and the transmission coil 2 is, for example, in the positive direction of the X axis. Output signal of the detection coil 3a and the adjacent detection coil 3b, then output signal of the detection coil 3b and the adjacent detection coil 3c, and further output of the detection coil 3c and the adjacent detection coil 3d It can also be detected as a signal.

(第4実施例)
第4実施例は静電容量検出方式の位置検出装置である。この場合、被検出部2は電極や人体などの導電体で構成される。また、検出部3,4は、被検出部2の導電体と容量結合する導電体からなる電極である。この静電容量検出方式によれば、磁気検出方式のような磁場の影響を受けず、また、電磁波検出方式よりも消費電力が少なくて済む。
(Fourth embodiment)
The fourth embodiment is a capacitance detection type position detection device. In this case, the detected part 2 is composed of a conductor such as an electrode or a human body. The detection units 3 and 4 are electrodes made of a conductor that is capacitively coupled to the conductor of the detected unit 2. According to this capacitance detection method, it is not affected by the magnetic field as in the magnetic detection method, and consumes less power than the electromagnetic wave detection method.

図16(A)に示すように、被検出部2は、例えば金属板状の電極部(本発明の導電体に相当)23と、交流信号を発生させて電極23に付与する発振回路22とを有する。一方、検出部3は、電極部(本発明の導電体に相当)33と、電極部33で生じた交流信号を直流信号に変換する交直変換回路35とを有している。そして、発振回路22の出力は、電極部23と電極部33とが形成するコンデンサを介して交直変換回路35に伝わる。この場合、図15の例と同様に、電極部23と電極部33との距離に応じて交直変換回路35からの出力が変化する。   As shown in FIG. 16A, the detected portion 2 includes, for example, a metal plate-like electrode portion (corresponding to the conductor of the present invention) 23, and an oscillation circuit 22 that generates an AC signal and applies it to the electrode 23. Have On the other hand, the detection unit 3 includes an electrode unit (corresponding to the conductor of the present invention) 33 and an AC / DC conversion circuit 35 that converts an AC signal generated at the electrode unit 33 into a DC signal. The output of the oscillation circuit 22 is transmitted to the AC / DC conversion circuit 35 via a capacitor formed by the electrode portion 23 and the electrode portion 33. In this case, as in the example of FIG. 15, the output from the AC / DC conversion circuit 35 changes according to the distance between the electrode part 23 and the electrode part 33.

あるいは、図16(B)に示すように、被検出部2は電極部(本発明の導電体に相当)23を有し、検出部3は、電極部(本発明の導電体に相当)33と、交流信号を発生させて電極部33に付与する発振回路32と、発振回路32の出力を、電極部23と電極部33とが形成するコンデンサで分圧させるコンデンサ34と、交直変換回路35とを有している。なお、交直変換回路35は例えば全波整流器や同期検波回路を用いることができ、同期検波回路を用いた場合、同期のために、図中に破線で示した信号が発振回路32から交直変換回路35に入力される。   Alternatively, as shown in FIG. 16B, the detected portion 2 has an electrode portion (corresponding to the conductor of the present invention) 23, and the detecting portion 3 is an electrode portion (corresponding to the conductor of the present invention) 33. An oscillation circuit 32 that generates an AC signal and applies it to the electrode unit 33, a capacitor 34 that divides the output of the oscillation circuit 32 by a capacitor formed by the electrode unit 23 and the electrode unit 33, and an AC / DC conversion circuit 35 And have. For example, a full wave rectifier or a synchronous detection circuit can be used as the AC / DC conversion circuit 35. When the synchronous detection circuit is used, a signal indicated by a broken line in FIG. 35.

図16(B)の例の場合、被検出部2が検出部3に近づくにしたがって、電極部23と電極部33とが形成するコンデンサの容量が大きくなり、出力信号の振幅と位置の関係は、図示しないが、図8(A)に示した山形ではなく谷形となる。このため、図1で説明した演算部10は式2に示すように演算する。
k((−A)−(−B))/((−A)+(−B))n …式2
そして、演算部10で演算して得られた値を反転すれば、上記と同様の結果が得られる。
In the case of the example of FIG. 16B, as the detected portion 2 approaches the detecting portion 3, the capacitance of the capacitor formed by the electrode portion 23 and the electrode portion 33 increases, and the relationship between the amplitude and position of the output signal is Although not shown in the figure, it is not a mountain shape shown in FIG. For this reason, the calculation part 10 demonstrated in FIG. 1 calculates as shown in Formula 2. FIG.
k ((-A)-(-B)) / ((-A) + (-B)) n ... Formula 2
Then, if the value obtained by the calculation by the calculation unit 10 is inverted, the same result as above can be obtained.

図17は、第5実施例による電極の配置を説明するための図であり、検出部では各電極が格子状(マトリックス状ともいう)に配置されている。例えばスタイラスペンを用いた座標入力装置の例を挙げると、電極3a,3b・・・が座標入力装置の筐体表面に格子状に配置され、各電極上には絶縁シートが設けられている。そして、スタイラスペンの先端で筐体表面にタッチする。なお、スタイラスペンの先端を金属製で丸形状に形成すれば、スタイラスペンを傾けても、この傾けたことによる誤差の発生を小さく抑えることができる。なお、上記のように直線性の良い演算結果が得られれば、電極の面積を大きくして電極数を減らすことも可能である。   FIG. 17 is a diagram for explaining the arrangement of electrodes according to the fifth embodiment. In the detection unit, each electrode is arranged in a grid pattern (also referred to as a matrix pattern). For example, in an example of a coordinate input device using a stylus pen, the electrodes 3a, 3b,... Are arranged in a grid pattern on the surface of the coordinate input device housing, and an insulating sheet is provided on each electrode. Then, the surface of the housing is touched with the tip of the stylus pen. If the tip of the stylus pen is made of a metal and has a round shape, even if the stylus pen is tilted, the occurrence of errors due to the tilt can be suppressed to a small level. If a calculation result with good linearity is obtained as described above, the number of electrodes can be reduced by increasing the area of the electrodes.

この例の演算部10は、例えば、隣接する3個の電極で得られた3つの出力信号から被検出部の位置を求めることができる。図17(A)に示した電極3aが最大出力値であると判定された場合、まず、この電極3aを1点目に選び、この電極3aからX,Y方向で並んだ2,3点目の電極を選ぶ。具体的には、電極3aに対してX方向に隣接した電極3eと電極3bのうち、出力値の大きな電極(例えば電極3b)を2点目に選び、電極3aに対してY方向に隣接した電極3fと電極3cのうち、出力値の大きな電極(例えば電極3c)を3点目に選ぶ。   For example, the calculation unit 10 of this example can obtain the position of the detected portion from three output signals obtained from three adjacent electrodes. When it is determined that the electrode 3a shown in FIG. 17A has the maximum output value, this electrode 3a is first selected as the first point, and the second and third points arranged in the X and Y directions from this electrode 3a. Select the electrode. Specifically, of the electrodes 3e and 3b adjacent to the electrode 3a in the X direction, the electrode having a large output value (for example, the electrode 3b) is selected as the second point, and adjacent to the electrode 3a in the Y direction. Of the electrodes 3f and 3c, an electrode having a large output value (for example, electrode 3c) is selected as the third point.

続いて、図17(B)に示すように、1点目の電極3aとX方向で並んだ2点目の電極3bとの間の位置Pを、電極3aと電極3bの各出力信号から上記式で求める。また、1点目の電極3aとY方向で並んだ3点目の電極3cとの間の位置Qを、電極3aと電極3cの各出力信号から上記式で求める。そして、位置Pを通ってY方向に延びた直線と、位置Qを通ってX方向に延びた直線との交点Rをタッチ位置に決定できる。
なお、電極の他、ホール素子やコイルを格子状に配置することも可能である。
Subsequently, as shown in FIG. 17B, the position P between the first electrode 3a and the second electrode 3b arranged in the X direction is determined from the output signals of the electrodes 3a and 3b. Calculate by formula. Further, the position Q between the first electrode 3a and the third electrode 3c arranged in the Y direction is obtained from the output signals of the electrodes 3a and 3c by the above formula. An intersection R between a straight line extending in the Y direction through the position P and a straight line extending in the X direction through the position Q can be determined as the touch position.
In addition to the electrodes, Hall elements and coils can be arranged in a lattice pattern.

1…位置検出装置、2…被検出部,磁石,送信コイル、3,3a,3b,3c,3d,3e,3f…検出部,ホール素子,検出コイル,電極、4…検出部,ホール素子,検出コイル、5…実装基板、7a,7b…アンプ、8a,8b…A/Dコンバータ、9…マイコン、10…演算部、11…出力部、21,31…コイル部、22,32…発振回路、23,33…電極部、34…コンデンサ、35…交直変換回路、36…電源。 DESCRIPTION OF SYMBOLS 1 ... Position detection apparatus, 2 ... Detected part, magnet, transmission coil, 3, 3a, 3b, 3c, 3d, 3e, 3f ... detection part, Hall element, detection coil, electrode, 4 ... detection part, Hall element, Detection coil, 5 ... Mounting board, 7a, 7b ... Amplifier, 8a, 8b ... A / D converter, 9 ... Microcomputer, 10 ... Calculation unit, 11 ... Output unit, 21,31 ... Coil unit, 22,32 ... Oscillation circuit , 23, 33 ... electrode part, 34 ... capacitor, 35 ... AC / DC conversion circuit, 36 ... power supply.

Claims (6)

位置検出される物体に取り付けられた被検出部と、互いに離間して配置され、前記被検出部からの物理量をそれぞれ検出する少なくとも2個の検出部とを備え、隣接する2個の該検出部で得られた2つの出力信号から前記被検出部の位置を求める位置検出装置であって、
前記2つの出力信号の差信号に基づいた値を、前記2つの出力信号の和信号をn乗(ただしn>1の実数)した値で除算する演算部と、該演算部からの出力値を出力する出力部とを備えることを特徴とする位置検出装置。
Two detection units adjacent to each other, comprising: a detection unit attached to an object whose position is to be detected; and at least two detection units that are spaced apart from each other and detect a physical quantity from each of the detection units. A position detection device for determining the position of the detected portion from the two output signals obtained in
An arithmetic unit that divides a value based on a difference signal between the two output signals by a value obtained by multiplying the sum signal of the two output signals by a power of n (where n> 1 is a real number), and an output value from the arithmetic unit A position detection device comprising: an output unit for outputting.
前記nが1.5から2.2までの範囲の値であることを特徴とする請求項1に記載の位置検出装置。   The position detection apparatus according to claim 1, wherein n is a value in a range from 1.5 to 2.2. 前記被検出部は磁石であり、前記検出部は磁気検出素子を含むことを特徴とする請求項1又は2に記載の位置検出装置。   The position detection apparatus according to claim 1, wherein the detected part is a magnet, and the detection part includes a magnetic detection element. 前記被検出部は送信コイルを含み、前記検出部は検出コイルを含むことを特徴とする請求項1又は2に記載の位置検出装置。   The position detection apparatus according to claim 1, wherein the detected part includes a transmission coil, and the detection part includes a detection coil. 前記被検出部は導電体を含み、前記検出部は、前記被検出部の導電体と容量結合する導電体を含むことを特徴とする請求項1又は2に記載の位置検出装置。   The position detection apparatus according to claim 1, wherein the detected portion includes a conductor, and the detecting portion includes a conductor that is capacitively coupled to the conductor of the detected portion. 前記検出部が格子状に配置されることを特徴とする請求項1〜5のいずれか1項に記載の位置検出装置。
The position detection device according to claim 1, wherein the detection units are arranged in a grid pattern.
JP2015052222A 2014-03-27 2015-03-16 Position detection device Active JP6145467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015052222A JP6145467B2 (en) 2014-03-27 2015-03-16 Position detection device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014066371 2014-03-27
JP2014066371 2014-03-27
JP2015052222A JP6145467B2 (en) 2014-03-27 2015-03-16 Position detection device

Publications (2)

Publication Number Publication Date
JP2015194488A true JP2015194488A (en) 2015-11-05
JP6145467B2 JP6145467B2 (en) 2017-06-14

Family

ID=54433613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015052222A Active JP6145467B2 (en) 2014-03-27 2015-03-16 Position detection device

Country Status (1)

Country Link
JP (1) JP6145467B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144086A (en) * 2018-02-20 2019-08-29 株式会社マコメ研究所 Position detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740709B (en) 2020-11-10 2021-09-21 禾聚實業有限公司 Styrene copolymer composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133923A (en) * 2008-12-04 2010-06-17 Hyundai Motor Co Ltd Accelerator position sensor
JP2011038919A (en) * 2009-08-12 2011-02-24 Asahi Kasei Electronics Co Ltd Position detector
JP2011066486A (en) * 2009-09-15 2011-03-31 Olympus Corp Position detection circuit and blur correction device
JP2011247847A (en) * 2010-05-31 2011-12-08 Onkyo Corp Displacement detection device and pre-amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133923A (en) * 2008-12-04 2010-06-17 Hyundai Motor Co Ltd Accelerator position sensor
JP2011038919A (en) * 2009-08-12 2011-02-24 Asahi Kasei Electronics Co Ltd Position detector
JP2011066486A (en) * 2009-09-15 2011-03-31 Olympus Corp Position detection circuit and blur correction device
JP2011247847A (en) * 2010-05-31 2011-12-08 Onkyo Corp Displacement detection device and pre-amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144086A (en) * 2018-02-20 2019-08-29 株式会社マコメ研究所 Position detector

Also Published As

Publication number Publication date
JP6145467B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
US10036656B2 (en) Position detecting system based on inductive sensing
CN102870013B (en) Detection of a metal or magnetic object
US11226211B2 (en) Inductive position detection
US9157768B2 (en) Inductive sensing including inductance multiplication with series connected coils
JP2018031777A (en) Winding configuration of electromagnetic induction type encoder
JP2002039793A (en) Induction-type length measuring system
US11293744B2 (en) Method for increasing the position measurement accuracy using inductive position sensor
JP6621829B2 (en) Inductive displacement sensor
JP6835724B2 (en) Inductive displacement sensor
JP2020003492A (en) Scale composition for electromagnetic induction encoder
CN106441059B (en) Grating straight-line displacement sensor when a kind of single-row double-row type
JP6739436B2 (en) Inductive motion sensor
CN104819682B (en) Induction type position measurement apparatus
CN107202966B (en) The measurement method and system of a kind of alternate magnetic flux leakage of transformer winding
US9581425B2 (en) Sensor for indicating a position or a change in position of a coupling element and method for operating the sensor
JP6145467B2 (en) Position detection device
JP6395942B2 (en) Position sensor
JP5783361B2 (en) Current measuring device
JP2013210216A (en) Current detection device and current detection method
JP2012098190A (en) Rectilinear displacement detector
JP2014066623A (en) Current sensor
JP2017044548A (en) Current sensor
JP2001022992A (en) Object kind discriminating device
Chaturvedi et al. Suppression efficiency of the correlated-noise and drift of self-oscillating pseudo-differential eddy current displacement sensor
JP2016125940A (en) Position sensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170515

R150 Certificate of patent or registration of utility model

Ref document number: 6145467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250