JP2015193874A - Thick steel plate excellent in abrasion resistance and manufacturing method therefor - Google Patents

Thick steel plate excellent in abrasion resistance and manufacturing method therefor Download PDF

Info

Publication number
JP2015193874A
JP2015193874A JP2014071529A JP2014071529A JP2015193874A JP 2015193874 A JP2015193874 A JP 2015193874A JP 2014071529 A JP2014071529 A JP 2014071529A JP 2014071529 A JP2014071529 A JP 2014071529A JP 2015193874 A JP2015193874 A JP 2015193874A
Authority
JP
Japan
Prior art keywords
steel plate
less
wear resistance
steel
martensite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071529A
Other languages
Japanese (ja)
Other versions
JP6149778B2 (en
Inventor
進一 三浦
Shinichi Miura
進一 三浦
正雄 柚賀
Masao Yuga
正雄 柚賀
章夫 大森
Akio Omori
章夫 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014071529A priority Critical patent/JP6149778B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to CN201580017109.9A priority patent/CN106133171B/en
Priority to AU2015242070A priority patent/AU2015242070B2/en
Priority to BR112016022532-5A priority patent/BR112016022532B1/en
Priority to MX2016012595A priority patent/MX2016012595A/en
Priority to EP15774087.9A priority patent/EP3128032B1/en
Priority to PCT/JP2015/001559 priority patent/WO2015151443A1/en
Priority to US15/300,314 priority patent/US20170183750A1/en
Priority to KR1020167029952A priority patent/KR101898567B1/en
Publication of JP2015193874A publication Critical patent/JP2015193874A/en
Priority to CL2016002494A priority patent/CL2016002494A1/en
Application granted granted Critical
Publication of JP6149778B2 publication Critical patent/JP6149778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thick steel plate suitable as a member to which abrasion resistance to rock, sand, ore, slurry material or the like of industrial machinery, transfer, transportation device or the like is required and a manufacturing method therefor.SOLUTION: There is provided a thick steel plate having a composition consisting of, by mass%, C:0.200 to 0.350%, Si:0.05 to 0.45%, Mn:0.50 to 2.00%, P:0.020% or less, S:0.005% or less, Al:0.005 to 0.100%, one or more kind of Cu, Ni, Cr, Mo, V, Nb, Ti, B, REM, Ca and Mg, CI defined by a specific formula of 40 or more and the balance Fe with inevitable impurities and a steel structure consisting a bainite phase with area fraction of 60% or more, island martensite with area fraction of 5% or more and less than 20% and the balance one or more kind of a ferrite phase, a pearlite, a martensite phase. After hot rolling the steel with above described composition, acceleration cooling at 400°C to 650°C is conducted.

Description

本発明は、産業機械、運搬、輸送機器等の岩石、砂、鉱石、スラリー状物質等に対する耐摩耗性が要求される部材用として好適な厚鋼板およびその製造方法に関する。   The present invention relates to a thick steel plate suitable for use in members that require wear resistance against rocks, sand, ores, slurry-like substances, etc., such as industrial machines, transportation and transportation equipment, and a method for producing the same.

建設、土木、鉱山等の現場で使用される、例えば、パワーショベル、ブルドーザー、ホッパー、バケット、ダンプトラック等の産業機械や、スラリー状物質輸送用鋼管等の運搬、輸送機器の部材に土砂等により摩耗が生じる。   Used in construction, civil engineering, mining, etc., for example, industrial machines such as power shovels, bulldozers, hoppers, buckets, dump trucks, transportation of steel pipes for transporting slurries, etc. Wear occurs.

従来、鋼材の硬度を上昇させることで、その耐摩耗性が向上することが知られており、これまでにも、一部の耐摩耗性が要求される部材用途として、合金元素を多量に添加し硬度を上昇させた鋼材等が用いられてきた。   Conventionally, increasing the hardness of steel has been known to improve its wear resistance. To date, a large amount of alloying elements has been added as a component application that requires some wear resistance. Steel materials with increased hardness have been used.

しかし、耐摩耗性を向上させるために鋼材の硬度を上昇させると、加工性が大きく低下することが知られており、加工が必要な部材用途としては、高硬度材料の適用は難しいといった問題があった。   However, it is known that if the hardness of the steel material is increased in order to improve the wear resistance, the workability is greatly reduced, and it is difficult to apply a high-hardness material as a member application that requires processing. there were.

そこで、優れた耐摩耗性を堅持しつつ、さらに加工性にも優れた鋼材が求められ、例えば特許文献1には、質量%で、Cを0.13%〜0.18%含み、Si、Mn、P、S、Al、B、Nを適正量含有し、さらにCrを0.5%〜2.0%、Moを0.03%〜0.3%、Nbを0.03%〜0.1%含有し、成分組成が、HIが0.7以上を満たし、かつCeqが0.50超で、HBが25℃において360以上、440以下であることを特徴とする鋼板が提案されている。ここで、HI=[C]+0.59[Si]−0.58[Mn]+0.29[Cr]+0.39[Mo]+2.11([Nb]−0.02)−0.72[Ti]+0.56[V]、Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14で、各合金元素は含有量(質量%)である。   Therefore, a steel material that is excellent in workability while maintaining excellent wear resistance is demanded. For example, Patent Document 1 includes 0.13% to 0.18% C by mass%, Si, It contains Mn, P, S, Al, B, and N in appropriate amounts, and further Cr is 0.5% to 2.0%, Mo is 0.03% to 0.3%, and Nb is 0.03% to 0%. A steel sheet is proposed that has a content of 0.1%, a component composition that satisfies HI of 0.7 or more, Ceq of more than 0.50, and HB of 360 to 440 at 25 ° C. Yes. Here, HI = [C] +0.59 [Si] −0.58 [Mn] +0.29 [Cr] +0.39 [Mo] +2.11 ([Nb] −0.02) −0.72 [ Ti] +0.56 [V], Ceq = [C] + [Si] / 24 + [Mn] / 6 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14 Is content (mass%).

特許文献1には、上記技術によれば、焼入れ熱処理によりHB400クラスのマルテンサイト組織とし、さらに固溶Nb量を増加させることで高温での耐摩耗性向上が可能なことが記載されている。   Patent Document 1 describes that according to the above technique, it is possible to improve the wear resistance at high temperatures by forming a martensitic structure of HB400 class by quenching heat treatment and further increasing the amount of dissolved Nb.

特許文献2には、質量%で、Cを0.10%〜0.45%含み、Si、Mn、P、S、Nを適正量含有し、さらにTiを0.10%〜1.0%含有し、0.5μm以上の大きさを有するTiC析出物あるいはTiCとTiN、TiSとの複合析出物を1mm当たり400個以上を含み、かつ特定式で表せるTi*が0.05%〜0.4%未満であることを特徴とする鋼板が提案されている。 Patent Document 2 contains 0.10% to 0.45% C in mass%, contains appropriate amounts of Si, Mn, P, S, and N, and further contains 0.10% to 1.0% Ti. Containing TiC precipitates having a size of 0.5 μm or more, or composite precipitates of TiC and TiN, TiS, including 400 or more per 1 mm 2 , and Ti * which can be expressed by a specific formula is 0.05% to 0% A steel sheet characterized by less than 4% has been proposed.

特許文献3には、質量%で、Cを0.05〜0.35%含有し、Si、Mn、Alを適正量含有し、さらにTiを0.1%〜1.2%含有し、さらに特定式で表せるDI*が60未満であり、フェライト相−ベイナイト相を基地相とし、該基地相中に硬質相が分散していることを特徴する加工性に優れた耐磨耗鋼板が提案されている。   Patent Document 3 contains 0.05 to 0.35% of C by mass%, contains appropriate amounts of Si, Mn, and Al, further contains 0.1 to 1.2% of Ti, and A wear-resistant steel sheet with excellent workability, characterized in that DI * expressed by a specific formula is less than 60, a ferrite phase-bainite phase is a base phase, and a hard phase is dispersed in the base phase, has been proposed. ing.

特許文献2、3には、上記技術によれば、凝固時に粗大なTiCを主体とする析出物を生成させることで、安価に耐摩耗性の向上が可能なことが記載されている。   Patent Documents 2 and 3 describe that according to the above technique, it is possible to improve wear resistance at low cost by generating precipitates mainly composed of coarse TiC during solidification.

特許4590012号公報Japanese Patent No. 4590012 特許3089882号公報Japanese Patent No. 3089882 特開2010−222682号公報JP 2010-222682 A

しかしながら、特許文献1に記載された技術は、焼入れ工程を実施し、マルテンサイト組織としているため、硬度がHB360以上と高硬度であり、加工性が良好とは言い難く、合金元素を大量に添加しているために、合金コストが増大する。   However, since the technique described in Patent Document 1 performs a quenching process and has a martensite structure, the hardness is HB360 or higher and the hardness is high, and it is difficult to say that the workability is good. Therefore, the alloy cost increases.

特許文献2、3に記載された技術は、凝固時に粗大なTiCを形成させるため、圧延前にスラブ表面手入れを実施することが必要で、製造コストが増大し、耐高温摩耗性は不明である。   Since the techniques described in Patent Documents 2 and 3 form coarse TiC at the time of solidification, it is necessary to carry out slab surface maintenance before rolling, which increases the manufacturing cost and the high-temperature wear resistance is unknown. .

そこで、本発明は、安価で、優れた加工性を有し、耐摩耗性に優れた厚鋼板およびその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a thick steel plate that is inexpensive, has excellent workability, and has excellent wear resistance, and a method for producing the same.

本発明者等は、上記目的を達成するため、耐摩耗性に対する各種要因の影響について鋭意検討を重ねた。その結果、鋼材の組成を適正化し、かつ成分組成中の複数の合金元素の含有量の合計で定義される値を一定値とし、ベイナイト相の面積分率を60%以上、ベイナイト相中の島状マルテンサイトの面積分率を5%以上20%未満、残りをフェライト相、パーライト、マルテンサイト相の一種または二種以上とした鋼組織とすることで、鋼材を過度に高硬度化することなく、良好な加工性を有したまま、優れた耐摩耗性を具備できることを見出した。   In order to achieve the above-mentioned object, the present inventors conducted extensive studies on the influence of various factors on the wear resistance. As a result, the composition of the steel material is optimized, the value defined by the sum of the contents of the plurality of alloy elements in the component composition is set to a constant value, the area fraction of the bainite phase is 60% or more, and the island martensite in the bainite phase It is good without excessively hardening the steel material by making the steel structure with a site area fraction of 5% or more and less than 20% and the remainder being one or more of ferrite phase, pearlite, martensite phase The present inventors have found that excellent wear resistance can be achieved while maintaining excellent workability.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
[1]質量%で、
C:0.200〜0.350%、
Si:0.05〜0.45%、
Mn:0.50〜2.00%、
P:0.020%以下、
S:0.005%以下、
Al:0.005〜0.100%、
を下記(1)式で定義されるCIが40以上を満足するように含み、
残部Feおよび不可避的不純物からなる組成と、
ベイナイト相の面積分率が60%以上であり、ベイナイト相中の島状マルテンサイトが、組織全体に対する面積分率で5%以上20%未満であり、
残りがフェライト相、パーライト、マルテンサイト相の一種または二種以上からなる鋼組織を有することを特徴とする耐摩耗性に優れた厚鋼板。
CI=60C+8Si+22Mn+10(Cu+Ni)+14Cr+21Mo+15V・・・(1)
式において各合金元素は含有量(質量%)とする。但し、含有しない元素の含有量は零とする。
[2]
さらに、質量%で、
Cu:0.03〜1.00%、
Ni:0.03〜2.00%、
Cr:0.05〜2.00%、
Mo:0.05〜1.00%、
V:0.005〜0.100%、
Nb:0.005〜0.100%、
Ti:0.005〜0.100%、
B:0.0003〜0.0030%、
から選ばれる一種以上を含有することを特徴とする[1]に記載の耐摩耗性に優れた厚鋼板。
[3]
さらに、質量%で、
REM:0.0005〜0.0080%、
Ca:0.0005〜0.0050%、
Mg:0.0005〜0.0050%
から選ばれる一種以上を含有することを特徴とする[1]または[2]に記載の耐摩耗性に優れた厚鋼板。
[4]
[1]乃至[3]のいずれか一つに記載した鋼組成からなる鋳片または鋼片を、950〜1250℃に加熱後、Ar以上の温度で終了する熱間圧延を行い、熱間圧延後ただちに、5℃/sec以上の冷却速度で400℃〜650℃まで加速冷却を行うことを特徴とする耐摩耗性に優れた厚鋼板の製造方法。
[5]
[1]乃至[3]のいずれか一つに記載した鋼組成からなる鋳片または鋼片を、950〜1250℃に加熱後、熱間圧延を行い、400℃未満まで空冷を行ったのち、Ac〜950℃に再加熱し、再加熱後ただちに5℃/sec以上の冷却速度で400℃〜650℃まで冷却を行うことを特徴とする耐摩耗性に優れた厚鋼板の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
[1] By mass%
C: 0.200 to 0.350%,
Si: 0.05 to 0.45%,
Mn: 0.50 to 2.00%,
P: 0.020% or less,
S: 0.005% or less,
Al: 0.005 to 0.100%,
Including a CI defined by the following formula (1) satisfying 40 or more,
A composition comprising the balance Fe and inevitable impurities;
The area fraction of the bainite phase is 60% or more, and the island-like martensite in the bainite phase is 5% or more and less than 20% in the area fraction with respect to the entire structure,
A thick steel plate having excellent wear resistance, wherein the remainder has a steel structure composed of one or more of a ferrite phase, a pearlite, and a martensite phase.
CI = 60C + 8Si + 22Mn + 10 (Cu + Ni) + 14Cr + 21Mo + 15V (1)
In the formula, each alloy element has a content (% by mass). However, the content of elements not contained is zero.
[2]
Furthermore, in mass%,
Cu: 0.03-1.00%,
Ni: 0.03-2.00%,
Cr: 0.05 to 2.00%,
Mo: 0.05-1.00%,
V: 0.005-0.100%,
Nb: 0.005 to 0.100%,
Ti: 0.005 to 0.100%,
B: 0.0003 to 0.0030%,
The thick steel plate having excellent wear resistance according to [1], comprising at least one selected from the group consisting of:
[3]
Furthermore, in mass%,
REM: 0.0005 to 0.0080%,
Ca: 0.0005 to 0.0050%,
Mg: 0.0005 to 0.0050%
The thick steel plate having excellent wear resistance according to [1] or [2], comprising at least one selected from the group consisting of:
[4]
After the slab or steel slab comprising the steel composition described in any one of [1] to [3] is heated to 950 to 1250 ° C., hot rolling is performed at a temperature of Ar 3 or higher, A method for producing a thick steel plate having excellent wear resistance, wherein accelerated cooling is performed from 400 ° C. to 650 ° C. immediately after rolling at a cooling rate of 5 ° C./sec or more.
[5]
After heating the slab or steel slab comprising the steel composition described in any one of [1] to [3] to 950 to 1250 ° C., performing hot rolling and air cooling to less than 400 ° C., A method for producing a thick steel plate having excellent wear resistance, wherein the steel plate is reheated to Ac 3 to 950 ° C. and immediately cooled to 400 ° C. to 650 ° C. at a cooling rate of 5 ° C./sec or more.

本発明によれば、加工性に優れ、優れた耐摩耗性を安定的に有する耐摩耗鋼板を、容易にしかも安定して製造でき、産業上格段の効果を有する。   ADVANTAGE OF THE INVENTION According to this invention, the abrasion-resistant steel plate which is excellent in workability and has the outstanding abrasion resistance stably can be manufactured easily and stably, and it has a remarkable industrial effect.

摩耗試験機を説明する図。The figure explaining an abrasion tester.

本発明では成分組成と鋼組織を規定する。
[成分組成]
説明において%は質量%とする。
C:0.200〜0.350%
Cは、島状マルテンサイト生成に寄与する元素であり、優れた耐摩耗性を得るために重要な元素である。0.200%未満では上記した効果が十分に得られない。一方、0.350%を超える多量の含有は、溶接性および加工性を低下させる。このため、0.200〜0.350%の範囲に限定した。なお、好ましくは0.210〜0.300%である。
In the present invention, the component composition and the steel structure are defined.
[Ingredient composition]
In the description,% is mass%.
C: 0.200 to 0.350%
C is an element that contributes to the formation of island martensite, and is an important element for obtaining excellent wear resistance. If it is less than 0.200%, the above-mentioned effects cannot be obtained sufficiently. On the other hand, a large content exceeding 0.350% decreases weldability and workability. For this reason, it limited to the range of 0.200 to 0.350%. In addition, Preferably it is 0.210-0.300%.

Si:0.05〜0.45%
Siは、溶鋼の脱酸剤として作用する有効な元素であり、また、焼入性を向上させ、島状マルテンサイトの生成に寄与する作用を有する有効な元素である。このような効果を確保するためには0.05%以上の含有を必要とする。一方、0.45%を超えて多量に含有すると、溶接性が低下する。このため、0.05〜0.45%の範囲に限定した。なお、好ましくは0.15〜0.40%である。
Si: 0.05 to 0.45%
Si is an effective element that acts as a deoxidizer for molten steel, and is an effective element that improves the hardenability and contributes to the formation of island martensite. In order to ensure such an effect, the content of 0.05% or more is required. On the other hand, when it contains more than 0.45%, weldability will fall. For this reason, it limited to 0.05 to 0.45% of range. In addition, Preferably it is 0.15-0.40%.

Mn:0.50〜2.00%
Mnは、焼入れ性を向上させ、島状マルテンサイトの生成に寄与する作用を有する有効な元素である。このような効果を確保するためには、0.50%以上含有する必要がある。一方、2.00%を超えて多量に含有すると、溶接性の低下を招き、曲げなどの加工時に破壊の起点となるMnSを多量に生成する。このため、0.50〜2.00%の範囲に限定した。なお、好ましくは0.60〜1.70%である。
Mn: 0.50 to 2.00%
Mn is an effective element having an effect of improving the hardenability and contributing to the generation of island martensite. In order to ensure such an effect, it is necessary to contain 0.50% or more. On the other hand, if it is contained in a large amount exceeding 2.00%, the weldability is lowered, and a large amount of MnS that is the starting point of fracture during processing such as bending is generated. For this reason, it limited to 0.50 to 2.00% of range. In addition, Preferably it is 0.60 to 1.70%.

P:0.020%以下
Pは、鋼中に多量含有すると靭性の低下を招くため、できるだけ低減することが望ましいが、0.020%までは許容できる。このため、0.020%以下に限定した。なお、過度の低減は精錬コストの高騰を招くため、0.005%以上とすることが望ましい。
P: 0.020% or less P is desirably reduced as much as possible because it causes a decrease in toughness when contained in a large amount in steel, but it is acceptable up to 0.020%. For this reason, it was limited to 0.020% or less. In addition, since excessive reduction causes the refining cost to rise, it is desirable to set it as 0.005% or more.

S:0.005%以下
Sは、鋼中に多量に含まれるとMnSとして析出し、靭性の劣化を招くとともに、加工時に破壊の起点となるため、できるだけ低減することが望ましいが、0.005%までであれば許容できる。このため、0.005%以下に限定した。なお、過度の低減は精錬コストの高騰を招くため、0.0005%以上とすることが望ましい。
S: 0.005% or less S, if contained in a large amount in steel, precipitates as MnS, causes deterioration of toughness, and becomes a starting point of fracture during processing. % Is acceptable. For this reason, it was limited to 0.005% or less. In addition, since excessive reduction leads to an increase in refining cost, it is desirable to make it 0.0005% or more.

Al:0.005〜0.100%
Alは、溶鋼の脱酸剤として作用する有効な元素である。このような効果を得るためには0.005%以上の含有を必要とする。0.005%未満ではこれらの効果が十分に得られない。一方、0.100%を超えて含有すると、溶接性、靱性が低下する。このため、0.005〜0.100%の範囲に限定した。なお、好ましくは0.015〜0.040%である。
Al: 0.005 to 0.100%
Al is an effective element that acts as a deoxidizer for molten steel. In order to acquire such an effect, 0.005% or more of content is required. If it is less than 0.005%, these effects cannot be sufficiently obtained. On the other hand, when it contains exceeding 0.100%, weldability and toughness will fall. For this reason, it limited to 0.005 to 0.100% of range. In addition, Preferably it is 0.015-0.040%.

CI=60C+8Si+22Mn+10(Cu+Ni)+14Cr+21Mo+15V≧40
式において、各合金元素は含有量(質量%)を示し、含有しない元素は零として計算する。
CIが40未満では、焼入性が不足し、上記した鋼組織とはならず、良好な耐摩耗性が得られない。そのため、CIは40以上に限定した。なお、好ましくは44以上である。
CI = 60C + 8Si + 22Mn + 10 (Cu + Ni) + 14Cr + 21Mo + 15V ≧ 40
In the formula, each alloy element indicates the content (% by mass), and the element not included is calculated as zero.
When the CI is less than 40, the hardenability is insufficient, the above steel structure is not obtained, and good wear resistance cannot be obtained. Therefore, CI was limited to 40 or more. In addition, Preferably it is 44 or more.

上記成分が基本成分組成で残部Feおよび不可避的不純物であるが、特性を向上させるため、選択元素としてCu、Ni、Cr、Mo、V、Nb、Ti、B、REM、Ca、Mgの1種または2種以上を選択して含有できる。   Although the above components are the basic component composition and the balance is Fe and inevitable impurities, in order to improve the characteristics, Cu, Ni, Cr, Mo, V, Nb, Ti, B, REM, Ca, and Mg are selected as selective elements. Alternatively, two or more kinds can be selected and contained.

Cu:0.03〜1.00%、
Cuは、焼入れ性を向上させ、島状マルテンサイトの生成に寄与する効果を有する元素である。このような効果を得るためには、0.03%以上含有する必要がある。一方、1.00%を超えて含有すると、熱間加工性が低下し、製造コストも高騰する。このため、含有する場合には、0.03〜1.00%の範囲に限定することが好ましい。なお、熱間加工性の低下抑制、コスト低減の観点からは、0.03〜0.50%の範囲に限定することがより好ましい。
Cu: 0.03-1.00%,
Cu is an element having an effect of improving the hardenability and contributing to the generation of island martensite. In order to acquire such an effect, it is necessary to contain 0.03% or more. On the other hand, when it contains exceeding 1.00%, hot workability will fall and manufacturing cost will also rise. For this reason, when it contains, it is preferable to limit to 0.03 to 1.00% of range. In addition, it is more preferable to limit to the range of 0.03-0.50% from a viewpoint of suppression of a fall of hot workability and cost reduction.

Ni:0.03〜2.00%、
Niは、焼入れ性を向上させるとともに、低温靭性向上にも寄与する元素である。このような効果を得るためには、0.03%以上の含有を必要とする。一方、2.00%を超える含有は、製造コストを上昇させる。このため、含有する場合には、0.03〜2.00%の範囲に限定することが好ましい。なお、コスト低減の観点からは、0.03〜0.50%の範囲に限定することがより好ましい。
Ni: 0.03-2.00%,
Ni is an element that improves the hardenability and contributes to the improvement of low temperature toughness. In order to obtain such an effect, a content of 0.03% or more is required. On the other hand, the content exceeding 2.00% increases the production cost. For this reason, when it contains, it is preferable to limit to 0.03 to 2.00% of range. In addition, it is more preferable to limit to 0.03 to 0.50% of range from a viewpoint of cost reduction.

Cr:0.05〜2.00%、
Crは、焼入れ性を向上させ、島状マルテンサイトの生成に寄与する効果を有する元素である。このような効果を得るためには0.05%以上の含有を必要とする。一方、2.00%を超えて含有すると、溶接性が低下するとともに、製造コストが高騰する。このため、含有する場合には、0.05〜2.00%の範囲に限定する。なお、好ましくは、0.07〜1.50%、より好ましくは0.20〜1.00%の範囲である。
Cr: 0.05 to 2.00%,
Cr is an element that has the effect of improving hardenability and contributing to the formation of island martensite. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, when it contains exceeding 2.00%, weldability will fall and manufacturing cost will rise. For this reason, when it contains, it limits to 0.05 to 2.00% of range. In addition, Preferably it is 0.07 to 1.50%, More preferably, it is 0.20 to 1.00% of range.

Mo:0.05〜1.00%、
Moは、焼入れ性を向上させ、島状マルテンサイトの生成に寄与する効果を有する元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.00%を超えて含有すると、溶接性が低下し、製造コストも高騰する。このため、含有する場合には、0.05〜1.00%の範囲に限定する。なお、好ましくは、0.10〜0.80%、より好ましくは0.20〜0.50%である。
Mo: 0.05-1.00%,
Mo is an element having an effect of improving hardenability and contributing to the generation of island martensite. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, when it contains exceeding 1.00%, weldability will fall and manufacturing cost will also rise. For this reason, when it contains, it limits to 0.05 to 1.00% of range. In addition, Preferably, it is 0.10 to 0.80%, More preferably, it is 0.20 to 0.50%.

V:0.005〜0.100%
Vは、焼入性を向上させるとともに、炭窒化物として析出し、組織を微細化する効果を介して靱性向上に寄与する元素である。このような効果を得るためには、0.005%以上含有する必要がある。一方、0.100%を超えて含有すると、溶接性が低下する。このため、含有する場合には、0.005〜0.100%の範囲に限定する。
V: 0.005-0.100%
V is an element that improves hardenability and precipitates as carbonitride to contribute to improvement of toughness through the effect of refining the structure. In order to acquire such an effect, it is necessary to contain 0.005% or more. On the other hand, if it exceeds 0.100%, the weldability is lowered. For this reason, when it contains, it limits to 0.005 to 0.100% of range.

Nb:0.005〜0.100%
Nbは、炭窒化物として析出し、組織の微細化を介して靭性の向上に有効に寄与する元素である。このような効果を得るためには0.005%以上の含有を必要とする。一方、0.100%を超えて含有すると溶接性が低下する。このため、含有する場合には、0.005〜0.100%の範囲に限定する。なお、組織微細化の観点から、0.010〜0.030%の範囲とすることが好ましい。
Nb: 0.005 to 0.100%
Nb is an element that precipitates as carbonitride and contributes effectively to improving toughness through refinement of the structure. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if the content exceeds 0.100%, weldability decreases. For this reason, when it contains, it limits to 0.005 to 0.100% of range. In addition, it is preferable to set it as the range of 0.010 to 0.030% from a viewpoint of refinement | miniaturization of structure | tissue.

Ti:0.005〜0.100%
Tiは、TiNとして析出し、固溶Nの固定を介して靭性向上に寄与する元素である。このような効果を得るためには0.005%以上含有する必要がある。一方、0.100%を超えて含有すると、粗大な炭窒化物が析出し、靭性が低下する。このため、含有する場合には、0.005〜0.100%の範囲に限定する。なお、コスト低減の観点から、0.005〜0.030%の範囲に限定することが好ましい。
Ti: 0.005 to 0.100%
Ti is an element that precipitates as TiN and contributes to improvement of toughness through fixation of solute N. In order to acquire such an effect, it is necessary to contain 0.005% or more. On the other hand, when it contains exceeding 0.100%, coarse carbonitride precipitates and toughness falls. For this reason, when it contains, it limits to 0.005 to 0.100% of range. In addition, it is preferable to limit to 0.005 to 0.030% of range from a viewpoint of cost reduction.

B:0.0003〜0.0030%、
Bは、微量含有で焼入れ性向上に寄与する元素である。このような効果を得るためには、0.0003%以上含有する必要がある。一方、0.0030%を超えて含有すると靭性が低下する。このため、含有する場合には、0.0003〜0.0030%の範囲に限定する。
B: 0.0003 to 0.0030%,
B is an element that contributes to improving the hardenability when contained in a small amount. In order to acquire such an effect, it is necessary to contain 0.0003% or more. On the other hand, when it contains exceeding 0.0030%, toughness will fall. For this reason, when it contains, it limits to 0.0003 to 0.0030% of range.

REM:0.0005〜0.0080%
REMは、Sを固定し、靱性低下および加工時に破壊の原因となるMnSの生成を抑制する。このような効果を得るためには0.0005%以上含有する必要がある。一方、0.0080%を超えて含有すると鋼中介在物量が増加し、靱性の低下を招く。このため、含有する場合には、0.0005〜0.0080%の範囲に限定する。なお、好ましくは0.0005〜0.0020%である。
REM: 0.0005 to 0.0080%
REM fixes S and suppresses the production of MnS that causes toughness reduction and fracture during processing. In order to acquire such an effect, it is necessary to contain 0.0005% or more. On the other hand, if the content exceeds 0.0080%, the amount of inclusions in the steel increases, leading to a decrease in toughness. For this reason, when it contains, it limits to 0.0005 to 0.0080% of range. In addition, Preferably it is 0.0005 to 0.0020%.

Ca:0.0005〜0.0050%、
Caは、Sを固定し、靱性低下および加工時に破壊の原因となるMnSの生成を抑制する。このような効果を得るためには0.0005%以上含有する必要がある。一方、0.0050%を超えて含有すると鋼中介在物量が増加し、靱性の低下を招く。このため、含有する場合には、0.0005〜0.0050%の範囲に限定する。なお、好ましくは0.0005〜0.0030%である。
Ca: 0.0005 to 0.0050%,
Ca fixes S and suppresses generation of MnS that causes toughness reduction and fracture during processing. In order to acquire such an effect, it is necessary to contain 0.0005% or more. On the other hand, if the content exceeds 0.0050%, the amount of inclusions in the steel increases, leading to a decrease in toughness. For this reason, when it contains, it limits to 0.0005 to 0.0050% of range. In addition, Preferably it is 0.0005 to 0.0030%.

Mg:0.0005〜0.0050%
Mgは、Sを固定し、靱性低下および加工時に破壊の原因となるMnSの生成を抑制する。このような効果を得るためには0.0005%以上含有する必要がある。一方、0.0050%を超えて含有すると鋼中介在物量が増加し、靱性の低下を招く。このため、含有する場合には、0.0005〜0.0050%の範囲に限定することが好ましい。なお、好ましくは0.0005〜0.0040%である。
Mg: 0.0005 to 0.0050%
Mg fixes S and suppresses the production of MnS that causes toughness reduction and fracture during processing. In order to acquire such an effect, it is necessary to contain 0.0005% or more. On the other hand, if the content exceeds 0.0050%, the amount of inclusions in the steel increases, leading to a decrease in toughness. For this reason, when it contains, it is preferable to limit to 0.0005 to 0.0050% of range. In addition, Preferably it is 0.0005 to 0.0040%.

[鋼組織]
ベイナイト相を面積分率で60%以上含み、さらにベイナイト相中の島状マルテンサイトを面積分率で5〜20%含み、残部がフェライト相、パーライトおよびマルテンサイト相の一種または二種以上からなる鋼組織とする。このような組織分率とすることで、鋼板の塑性変形能が向上し、良好な加工性が得られる。また、鋼板を過度に高硬度としなくとも優れた耐摩耗性を得ることができる。
[Steel structure]
Steel structure containing a bainite phase in an area fraction of 60% or more, further including island-like martensite in the bainite phase in an area fraction of 5 to 20%, with the balance being one or more of ferrite phase, pearlite and martensite phase. And By setting it as such a structure fraction, the plastic deformability of a steel plate improves and favorable workability is obtained. In addition, excellent wear resistance can be obtained without excessively increasing the hardness of the steel sheet.

ベイナイト相:面積分率で60%以上
ベイナイト相の分率が、面積分率で60%未満では、所望の耐摩耗性、加工性を確保できないため、面積分率で60%以上とする。好ましくは80%以上である。
Bainitic phase: 60% or more in area fraction If the fraction of bainite phase is less than 60% in area fraction, desired wear resistance and workability cannot be secured, so the area fraction is set to 60% or more. Preferably it is 80% or more.

島状マルテンサイト:面積分率で5%以上20%未満
島状マルテンサイトはベイナイト相中に微細に分散し、高硬度であるため、耐摩耗性の向上に寄与する。島状マルテンサイトの分率が、面積分率で5%未満では、所望の耐摩耗性を確保できない。一方、20%以上となると、耐摩耗性の向上効果は飽和し、鋼板の硬さの過度な上昇を招いて加工性や靭性が劣化するので、面積分率で5%以上20%未満とする。なお、島状マルテンサイトは、ベイナイト相のラス間あるいはベイナイト相の粒界に生成し、微小であるため、光学顕微鏡ではベイナイト相と分離することは困難である。このため、島状マルテンサイトはベイナイト相の一部とみなされる。すなわち、ベイナイト相の面積には島状マルテンサイトの面積が含まれる。ただし、島状マルテンサイトの面積分率は組織全体に対するものとして計算する。
Island-like martensite: 5% or more and less than 20% in the area fraction Island-like martensite is finely dispersed in the bainite phase and has high hardness, which contributes to improvement in wear resistance. If the fraction of island martensite is less than 5% in terms of area fraction, desired wear resistance cannot be ensured. On the other hand, if it is 20% or more, the effect of improving the wear resistance is saturated, and the workability and toughness deteriorate due to excessive increase in the hardness of the steel sheet, so the area fraction is 5% or more and less than 20%. . The island martensite is generated between the laths of the bainite phase or at the grain boundaries of the bainite phase, and is very small. Therefore, it is difficult to separate it from the bainite phase with an optical microscope. For this reason, island-like martensite is considered part of the bainite phase. That is, the area of the bainite phase includes the area of island martensite. However, the area fraction of island martensite is calculated for the entire structure.

鋼組織の残部はフェライト相、パーライトおよびマルテンサイト相の一種または二種以上とする。   The balance of the steel structure is one or more of ferrite phase, pearlite and martensite phase.

次に、本発明に係る厚鋼板の製造方法について説明する。
上述した成分組成の鋼素材を、鋳造後、所定の温度を保持している場合には冷却せずにそのまま、あるいは一旦、冷却し、加熱し、熱間圧延して、所望の寸法形状の鋼板とする。鋼素材の製造方法は、とくに限定する必要はないが、溶鋼を、転炉等の公知の溶製方法で溶製し、連続鋳造法等の公知の鋳造方法で所定寸法のスラブとすることが好ましい。造塊−分塊圧延法でスラブとしてもよい。
Next, the manufacturing method of the thick steel plate concerning this invention is demonstrated.
When the steel material having the above-described composition is maintained at a predetermined temperature after casting, it is not cooled, or once cooled, heated, hot-rolled, and then rolled into a desired size and shape. And The method for producing the steel material is not particularly limited, but the molten steel is melted by a known melting method such as a converter, and a slab having a predetermined size is obtained by a known casting method such as a continuous casting method. preferable. It is good also as a slab by the ingot-making-bundling rolling method.

スラブ加熱温度は950〜1250℃の範囲に限定する。950℃未満では、変形抵抗が高くて圧延負荷が過大となり、圧延能率を阻害する。また、耐磨耗特性を安定的に得るためには、島状マルテンサイトを鋼板全体にわたって均一に生成させることが必要であるが、950℃未満では鋼素材中のミクロ偏析部に存在するC、Mn等の偏析元素の拡散が不十分で、島状マルテンサイトが偏析部で優先的に生成して分布に偏りが生じる。一方、1250℃を超える高温では、過度のスケール生成による歩留りの低下およびエネルギー消費量の増大を招くため、加熱温度は950〜1250℃の範囲に限定する。   The slab heating temperature is limited to a range of 950 to 1250 ° C. If it is less than 950 ° C., the deformation resistance is high, the rolling load becomes excessive, and the rolling efficiency is impaired. Moreover, in order to stably obtain the wear resistance characteristics, it is necessary to uniformly generate island martensite throughout the steel sheet, but if it is less than 950 ° C., C present in the microsegregation part in the steel material, Diffusion of segregating elements such as Mn is insufficient, and island martensite is preferentially generated in the segregating portion, resulting in uneven distribution. On the other hand, at a high temperature exceeding 1250 ° C., the yield decreases due to excessive scale generation and the energy consumption increases, so the heating temperature is limited to the range of 950 to 1250 ° C.

熱間圧延は圧延仕上げ温度をAr以上とする。圧延仕上げ温度がAr未満では、フェライトが生成し、十分な量のベイナイトが生成しない。従って、圧延仕上げ温度はAr以上とする。なお、Ar変態点はオーステナイトから冷却する際の熱膨張曲線より測定することができる。 In hot rolling, the rolling finishing temperature is Ar 3 or higher. When the rolling finishing temperature is less than Ar 3 , ferrite is generated and a sufficient amount of bainite is not generated. Therefore, the rolling finishing temperature is Ar 3 or higher. The Ar 3 transformation point can be measured from a thermal expansion curve when cooling from austenite.

熱間圧延を終了した後、加速冷却を開始する。冷却速度は5℃/sec以上、冷却停止温度は400℃〜650℃とする。冷却速度が5℃/sec未満では、フェライトが生成し、十分な量のベイナイトが生成しないため、5℃/sec以上とする。   After the hot rolling is finished, accelerated cooling is started. The cooling rate is 5 ° C./sec or more, and the cooling stop temperature is 400 ° C. to 650 ° C. When the cooling rate is less than 5 ° C./sec, ferrite is generated and a sufficient amount of bainite is not generated.

冷却停止温度が400℃未満では、ベイナイト変態が完了してしまうため、十分な量の島状マルテンサイトが生成しない。一方、冷却停止温度が650℃を超えると、その後の空冷時に生成するパーライトにCが消費され、十分な量の島状マルテンサイトが生成しないため、400〜650℃とする。   When the cooling stop temperature is less than 400 ° C., the bainite transformation is completed, and thus a sufficient amount of island martensite is not generated. On the other hand, when the cooling stop temperature exceeds 650 ° C., C is consumed in the pearlite generated during the subsequent air cooling, and a sufficient amount of island martensite is not generated, so the temperature is set to 400 to 650 ° C.

熱間圧延終了後、加速冷却を実施する工程に代えて、熱間圧延終了後、フェライト変態あるいはベイナイト変態が完了する400℃未満まで放冷した後、Ac以上950℃以下に再加熱し、その後、上記加速冷却を行っても良い。 After completion of hot rolling, instead of the step of performing accelerated cooling, after completion of hot rolling, the ferrite transformation or bainite transformation is allowed to cool to less than 400 ° C, and then reheated to Ac 3 or more and 950 ° C or less, Thereafter, the accelerated cooling may be performed.

再加熱温度がAc未満では、フェライトからオーステナイトへの逆変態が十分に起こらない。再加熱温度が950℃を超えると、オーステナイト粒径が粗大化して靱性に悪影響を及ぼし、エネルギー消費量の増大を招くため、再加熱温度はAc以上950℃以下とする。なお、Ac変態点はフェライトからオーステナイトへ加熱する際の熱膨張曲線より測定することができる。 Is less than the reheat temperature Ac 3, does not occur sufficiently reverse transformation from ferrite to austenite. When the reheating temperature exceeds 950 ° C., the austenite grain size becomes coarse and adversely affects the toughness, leading to an increase in energy consumption. Therefore, the reheating temperature is set to Ac 3 to 950 ° C. The Ac 3 transformation point can be measured from a thermal expansion curve when heating from ferrite to austenite.

表1に示す組成の溶鋼を、真空溶解炉で溶製し、鋳型に鋳造し、150kg鋼塊(スラブ)とした。得られたスラブを、加熱し、熱間圧延後、加速冷却を行った。なお、一部の鋼板では、熱間圧延終了後、空冷し、さらに再加熱した後、加速冷却する処理を行った。
得られた鋼板から、試験片を採取し、組織観察、摩耗試験を実施した。試験方法は次のとおりとした。
(1)組織観察
得られた鋼板の板厚の1/4位置から、観察面が圧延方向と平行方向断面となるように組織観察用試験片を採取した後、鏡面まで研磨し、ナイタールエッチングにより組織を現出した。その後、光学顕微鏡を用いて400倍の倍率で無作為に3視野を観察、撮影し、ベイナイト相を目視により同定し、面積率を算出した。さらに、同じ織観察用試験片を、再び鏡面研磨し、2段エッチング法にて島状マルテンサイトを現出した。その後、走査型電子顕微鏡を用いて2000倍の倍率でベイナイト組織となっている箇所から10視野を観察、撮影し、島状マルテンサイトの面積率を、画像解析ソフトを用いて算出した。なお、ベイナイト相、島状マルテンサイトの面積率は組織全体に対する面積率である。
(2)摩耗試験
得られた鋼板から、鋼板表面から0.5mmの位置が試験面(磨耗面)となるように、摩耗試験片(大きさ:10mm厚×25mm幅×75mm長さ)を採取し、図1に示す摩耗試験機に装着し、摩耗試験を実施した。
Molten steel having the composition shown in Table 1 was melted in a vacuum melting furnace and cast into a mold to obtain a 150 kg steel ingot (slab). The obtained slab was heated and subjected to accelerated cooling after hot rolling. In some steel plates, after the hot rolling was completed, air cooling was performed, and after reheating, accelerated cooling was performed.
A test piece was collected from the obtained steel sheet and subjected to a structure observation and a wear test. The test method was as follows.
(1) Microstructure observation From a 1/4 position of the thickness of the obtained steel sheet, a specimen for microstructural observation was collected so that the observation surface had a cross section parallel to the rolling direction, and then polished to a mirror surface and etched by nital. The organization was revealed. Thereafter, three visual fields were randomly observed and photographed at a magnification of 400 times using an optical microscope, the bainite phase was visually identified, and the area ratio was calculated. Further, the same specimen for woven observation was mirror-polished again to reveal island martensite by a two-step etching method. Thereafter, 10 visual fields were observed and photographed from a portion having a bainite structure at a magnification of 2000 using a scanning electron microscope, and the area ratio of island martensite was calculated using image analysis software. In addition, the area ratio of a bainite phase and an island-like martensite is an area ratio with respect to the whole structure | tissue.
(2) Abrasion test Abrasion test piece (size: 10mm thickness x 25mm width x 75mm length) is taken from the obtained steel sheet so that the position 0.5mm from the steel sheet surface becomes the test surface (wear surface). Then, it was mounted on the wear tester shown in FIG.

摩耗試験片は、試験機ローターの回転軸と垂直に、かつ25mm×75mmの面が回転円の円周接線方向となるように、取り付けた後、内部に摩耗材を導入した。摩耗材は、平均粒径30mmの硅石を用いた。   The wear test piece was attached so that the surface of the test machine rotor was perpendicular to the rotation axis of the tester rotor and the surface of 25 mm × 75 mm was in the circumferential tangent direction of the rotation circle, and then the wear material was introduced inside. As the wear material, a meteorite having an average particle diameter of 30 mm was used.

試験条件は、ローター:600回/分、ドラム:45回/分でそれぞれ回転させて行った。ローターの回転数が、計10000回となるまで回転させた後、試験を終了した。試験終了後、各試験片の重量を測定した。試験後の重量と初期重量との差(=重量減少量)を算出し、SS400(JIS G3101 一般構造用圧延鋼材)の重量減少量を基準値とし、耐摩耗比(=(基準値)/(試験片の重量減少量))を算出した。耐摩耗比が1.5以上である場合を「耐摩耗性に優れる」と評価した。
(3)曲げ加工性
JIS Z2248(2006年)に基づき、鋼材サンプル(幅100mm×長さ300mm×鋼板の元厚のまま;tmm)を用いて、曲げ半径2.0t(t=板厚)の条件で押曲げ法による180度曲げ試験を行った。曲げ試験後のサンプルに裂け傷やその他の欠陥が無ければ、曲げ加工性が良好であるとした。
The test conditions were such that the rotor was rotated at 600 times / min and the drum was rotated at 45 times / min. The test was completed after rotating the rotor until the total number of rotations reached 10,000. After completion of the test, the weight of each test piece was measured. The difference between the weight after the test and the initial weight (= weight reduction amount) is calculated, the weight reduction amount of SS400 (JIS G3101 general structural rolled steel) is used as a reference value, and the wear resistance ratio (= (reference value) / ( The weight reduction amount of the test piece)) was calculated. The case where the wear resistance ratio was 1.5 or more was evaluated as “excellent in wear resistance”.
(3) Bending workability Based on JIS Z2248 (2006), using a steel sample (width 100 mm x length 300 mm x original thickness of steel plate; tmm), a bending radius of 2.0 t (t = plate thickness) The 180 degree bending test by the press bending method was performed under the conditions. If the sample after the bending test had no tears or other defects, the bending workability was considered good.

表2に製造条件に合わせて上記試験項目の結果を示す。No.1〜15、17、18、20の本発明例は、耐磨耗比が1.5以上で、優れた耐摩耗性が確認された。一方、比較例のNo.16は、鋼組織のベイナイト分率と島状マルテンサイト分率が本発明の規定を満足せず、曲げ加工性に劣る。また、比較例のNo.19は、鋼組織のベイナイト分率と島状マルテンサイト分率が本発明の規定を満足せず、耐摩耗性に劣る。No.21〜23は鋼組織のうち、島状マルテンサイト分率が本発明の規定を満たさず、耐摩耗性に劣っていた。   Table 2 shows the results of the above test items according to the manufacturing conditions. No. In the present invention examples 1 to 15, 17, 18, and 20, the wear resistance ratio was 1.5 or more, and excellent wear resistance was confirmed. On the other hand, no. No. 16 is inferior in bending workability because the bainite fraction and the island-like martensite fraction of the steel structure do not satisfy the provisions of the present invention. Moreover, No. of the comparative example. In No. 19, the bainite fraction and the island-like martensite fraction of the steel structure do not satisfy the provisions of the present invention, and are inferior in wear resistance. No. In Nos. 21 to 23, among the steel structures, the island-like martensite fraction did not satisfy the provisions of the present invention, and the wear resistance was poor.

Figure 2015193874
Figure 2015193874

Figure 2015193874
Figure 2015193874

Claims (5)

質量%で、
C:0.200〜0.350%、
Si:0.05〜0.45%、
Mn:0.50〜2.00%、
P:0.020%以下、
S:0.005%以下、
Al:0.005〜0.100%、
を下記(1)式で定義されるCIが40以上を満足するように含み、
残部Feおよび不可避的不純物からなる組成と、
ベイナイト相の面積分率が60%以上であり、ベイナイト相中の島状マルテンサイトが、組織全体に対する面積分率で5%以上20%未満であり、
残りがフェライト相、パーライト、マルテンサイト相の一種または二種以上からなる鋼組織を有することを特徴とする耐摩耗性に優れた厚鋼板。
CI=60C+8Si+22Mn+10(Cu+Ni)+14Cr+21Mo+15V・・・(1)
式において各合金元素は含有量(質量%)とする。但し、含有しない元素の含有量は零とする。
% By mass
C: 0.200 to 0.350%,
Si: 0.05 to 0.45%,
Mn: 0.50 to 2.00%,
P: 0.020% or less,
S: 0.005% or less,
Al: 0.005 to 0.100%,
Including a CI defined by the following formula (1) satisfying 40 or more,
A composition comprising the balance Fe and inevitable impurities;
The area fraction of the bainite phase is 60% or more, and the island-like martensite in the bainite phase is 5% or more and less than 20% in the area fraction with respect to the entire structure,
A thick steel plate having excellent wear resistance, wherein the remainder has a steel structure composed of one or more of a ferrite phase, a pearlite, and a martensite phase.
CI = 60C + 8Si + 22Mn + 10 (Cu + Ni) + 14Cr + 21Mo + 15V (1)
In the formula, each alloy element has a content (% by mass). However, the content of elements not contained is zero.
さらに、質量%で、
Cu:0.03〜1.00%、
Ni:0.03〜2.00%、
Cr:0.05〜2.00%、
Mo:0.05〜1.00%、
V:0.005〜0.100%、
Nb:0.005〜0.100%、
Ti:0.005〜0.100%、
B:0.0003〜0.0030%、
から選ばれる一種以上を含有することを特徴とする請求項1に記載の耐摩耗性に優れた厚鋼板。
Furthermore, in mass%,
Cu: 0.03-1.00%,
Ni: 0.03-2.00%,
Cr: 0.05 to 2.00%,
Mo: 0.05-1.00%,
V: 0.005-0.100%,
Nb: 0.005 to 0.100%,
Ti: 0.005 to 0.100%,
B: 0.0003 to 0.0030%,
2. The thick steel plate having excellent wear resistance according to claim 1, comprising at least one selected from the group consisting of:
さらに、質量%で、
REM:0.0005〜0.0080%、
Ca:0.0005〜0.0050%、
Mg:0.0005〜0.0050%
から選ばれる一種以上を含有することを特徴とする請求項1または2に記載の耐摩耗性に優れた厚鋼板。
Furthermore, in mass%,
REM: 0.0005 to 0.0080%,
Ca: 0.0005 to 0.0050%,
Mg: 0.0005 to 0.0050%
The thick steel plate having excellent wear resistance according to claim 1, comprising at least one selected from the group consisting of:
請求項1乃至3のいずれか一つに記載した鋼組成からなる鋳片または鋼片を、950〜1250℃に加熱後、Ar以上の温度で終了する熱間圧延を行い、熱間圧延後ただちに、5℃/sec以上の冷却速度で400℃〜650℃まで加速冷却を行うことを特徴とする耐摩耗性に優れた厚鋼板の製造方法。 After the slab or steel slab comprising the steel composition according to any one of claims 1 to 3 is heated to 950 to 1250 ° C, hot rolling is performed at a temperature of Ar 3 or higher, and after hot rolling. Immediately, accelerated cooling is performed to 400 ° C. to 650 ° C. at a cooling rate of 5 ° C./sec or more, and a method for producing a thick steel plate having excellent wear resistance. 請求項1乃至3のいずれか一つに記載した鋼組成からなる鋳片または鋼片を、950〜1250℃に加熱後、熱間圧延を行い、400℃未満まで空冷を行ったのち、Ac〜950℃に再加熱し、再加熱後ただちに5℃/sec以上の冷却速度で400℃〜650℃まで冷却を行うことを特徴とする耐摩耗性に優れた厚鋼板の製造方法。 The slab or steel slab comprising the steel composition according to any one of claims 1 to 3 is heated to 950 to 1250 ° C, hot-rolled, air-cooled to less than 400 ° C, and then Ac 3 A method for producing a thick steel plate having excellent wear resistance, wherein the steel plate is reheated to 950 ° C and immediately cooled to 400 ° C to 650 ° C at a cooling rate of 5 ° C / sec or more.
JP2014071529A 2014-03-31 2014-03-31 Steel plate with excellent wear resistance and method for producing the same Active JP6149778B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2014071529A JP6149778B2 (en) 2014-03-31 2014-03-31 Steel plate with excellent wear resistance and method for producing the same
KR1020167029952A KR101898567B1 (en) 2014-03-31 2015-03-19 Thick steel sheet and method for manufacturing the same
BR112016022532-5A BR112016022532B1 (en) 2014-03-31 2015-03-19 thick steel sheet and method for making it
MX2016012595A MX2016012595A (en) 2014-03-31 2015-03-19 Thick steel sheet and method for producing same.
EP15774087.9A EP3128032B1 (en) 2014-03-31 2015-03-19 Thick steel sheet and method for producing same
PCT/JP2015/001559 WO2015151443A1 (en) 2014-03-31 2015-03-19 Thick steel sheet and method for producing same
CN201580017109.9A CN106133171B (en) 2014-03-31 2015-03-19 Steel plate and its manufacture method
AU2015242070A AU2015242070B2 (en) 2014-03-31 2015-03-19 Thick steel plate and method for manufacturing the same
US15/300,314 US20170183750A1 (en) 2014-03-31 2015-03-19 Thick steel plate and method for manufacturing the same
CL2016002494A CL2016002494A1 (en) 2014-03-31 2016-09-30 Thick steel plate and method of manufacturing it.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071529A JP6149778B2 (en) 2014-03-31 2014-03-31 Steel plate with excellent wear resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015193874A true JP2015193874A (en) 2015-11-05
JP6149778B2 JP6149778B2 (en) 2017-06-21

Family

ID=54239792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071529A Active JP6149778B2 (en) 2014-03-31 2014-03-31 Steel plate with excellent wear resistance and method for producing the same

Country Status (10)

Country Link
US (1) US20170183750A1 (en)
EP (1) EP3128032B1 (en)
JP (1) JP6149778B2 (en)
KR (1) KR101898567B1 (en)
CN (1) CN106133171B (en)
AU (1) AU2015242070B2 (en)
BR (1) BR112016022532B1 (en)
CL (1) CL2016002494A1 (en)
MX (1) MX2016012595A (en)
WO (1) WO2015151443A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821316A (en) * 2016-05-23 2016-08-03 安徽鑫宏机械有限公司 Casting method for Ni-B-Si alloy surface modified composite valve body
CN105838998A (en) * 2016-05-23 2016-08-10 安徽鑫宏机械有限公司 Casting method of combined valve body adopting aluminum-silicon alloy surface modification
CN105838999A (en) * 2016-05-23 2016-08-10 安徽鑫宏机械有限公司 Casting method of combined valve body adopting nickel-titanium alloy surface modification
JP2017193740A (en) * 2016-04-19 2017-10-26 Jfeスチール株式会社 Wear-resistant steel plate and manufacturing process therefor
JP2019119934A (en) * 2018-01-10 2019-07-22 Jfeスチール株式会社 Super low yield ratio high tensile strength thick steel sheet and manufacturing method therefor
CN112322981A (en) * 2020-11-06 2021-02-05 首钢贵阳特殊钢有限责任公司 H22 and H25 drill rod hollow steel for rock drilling
CN113584378A (en) * 2021-06-25 2021-11-02 武汉钢铁有限公司 HB400 grade hot continuous rolling wear-resistant steel containing ferrite and production method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213973B2 (en) * 2018-11-30 2023-01-27 アルセロールミタル Cold-rolled and annealed steel sheet with high hole expansion ratio and its manufacturing method
KR102307928B1 (en) * 2019-12-02 2021-09-30 주식회사 포스코 High strength multiphase steel sheet with excellent durability and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174322A (en) * 1985-10-15 1987-07-31 Kobe Steel Ltd Manufacture of low yield ratio high tension steel plate superior in cold workability
JPH08269615A (en) * 1995-03-27 1996-10-15 Kobe Steel Ltd Hot rolled steel sheet for rapid heating and hardening excellent in stretch-flanging property, its use and production
JPH10251794A (en) * 1997-03-12 1998-09-22 Nisshin Steel Co Ltd Hot rolled steel plate for structural purpose, excellent in press formability and surface characteristic, and its production
WO2001042523A1 (en) * 1999-12-08 2001-06-14 Nkk Corporation Wear-resistant steel product and method for production thereof
JP2008214736A (en) * 2007-03-08 2008-09-18 Jfe Steel Kk Wear resistant steel sheet having excellent workability, and method for producing the same
JP2010174343A (en) * 2009-01-30 2010-08-12 Jfe Steel Corp Method for producing thick and high tension hot-rolled steel plate excellent in low temperature toughness
JP2010174342A (en) * 2009-01-30 2010-08-12 Jfe Steel Corp Thick and high tension hot-rolled steel plate excellent in low temperature toughness, and producing method therefor
JP2010222682A (en) * 2009-03-25 2010-10-07 Jfe Steel Corp Wear resistant steel sheet having excellent workability and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3089882B2 (en) 1993-03-09 2000-09-18 日本鋼管株式会社 Abrasion-resistant steel having excellent surface properties and method for producing the same
CN100432261C (en) * 2003-06-12 2008-11-12 杰富意钢铁株式会社 Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for producing thereof
JP4490472B2 (en) * 2007-11-12 2010-06-23 株式会社神戸製鋼所 Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
TWI341332B (en) 2008-01-07 2011-05-01 Nippon Steel Corp Wear-resistant steel sheet having excellent wear resistnace at high temperatures and excellent bending workability and method for manufacturing the same
JP5162382B2 (en) * 2008-09-03 2013-03-13 株式会社神戸製鋼所 Low yield ratio high toughness steel plate
JP5966730B2 (en) * 2012-07-30 2016-08-10 Jfeスチール株式会社 Abrasion resistant steel plate with excellent impact wear resistance and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174322A (en) * 1985-10-15 1987-07-31 Kobe Steel Ltd Manufacture of low yield ratio high tension steel plate superior in cold workability
JPH08269615A (en) * 1995-03-27 1996-10-15 Kobe Steel Ltd Hot rolled steel sheet for rapid heating and hardening excellent in stretch-flanging property, its use and production
JPH10251794A (en) * 1997-03-12 1998-09-22 Nisshin Steel Co Ltd Hot rolled steel plate for structural purpose, excellent in press formability and surface characteristic, and its production
WO2001042523A1 (en) * 1999-12-08 2001-06-14 Nkk Corporation Wear-resistant steel product and method for production thereof
JP2008214736A (en) * 2007-03-08 2008-09-18 Jfe Steel Kk Wear resistant steel sheet having excellent workability, and method for producing the same
JP2010174343A (en) * 2009-01-30 2010-08-12 Jfe Steel Corp Method for producing thick and high tension hot-rolled steel plate excellent in low temperature toughness
JP2010174342A (en) * 2009-01-30 2010-08-12 Jfe Steel Corp Thick and high tension hot-rolled steel plate excellent in low temperature toughness, and producing method therefor
JP2010222682A (en) * 2009-03-25 2010-10-07 Jfe Steel Corp Wear resistant steel sheet having excellent workability and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193740A (en) * 2016-04-19 2017-10-26 Jfeスチール株式会社 Wear-resistant steel plate and manufacturing process therefor
CN105821316A (en) * 2016-05-23 2016-08-03 安徽鑫宏机械有限公司 Casting method for Ni-B-Si alloy surface modified composite valve body
CN105838998A (en) * 2016-05-23 2016-08-10 安徽鑫宏机械有限公司 Casting method of combined valve body adopting aluminum-silicon alloy surface modification
CN105838999A (en) * 2016-05-23 2016-08-10 安徽鑫宏机械有限公司 Casting method of combined valve body adopting nickel-titanium alloy surface modification
JP2019119934A (en) * 2018-01-10 2019-07-22 Jfeスチール株式会社 Super low yield ratio high tensile strength thick steel sheet and manufacturing method therefor
CN112322981A (en) * 2020-11-06 2021-02-05 首钢贵阳特殊钢有限责任公司 H22 and H25 drill rod hollow steel for rock drilling
CN113584378A (en) * 2021-06-25 2021-11-02 武汉钢铁有限公司 HB400 grade hot continuous rolling wear-resistant steel containing ferrite and production method thereof

Also Published As

Publication number Publication date
KR20160140802A (en) 2016-12-07
CN106133171A (en) 2016-11-16
BR112016022532B1 (en) 2021-05-25
EP3128032A1 (en) 2017-02-08
CL2016002494A1 (en) 2017-06-09
EP3128032B1 (en) 2019-02-27
AU2015242070A1 (en) 2016-09-15
US20170183750A1 (en) 2017-06-29
CN106133171B (en) 2018-04-10
JP6149778B2 (en) 2017-06-21
AU2015242070B2 (en) 2018-02-22
EP3128032A4 (en) 2017-02-08
KR101898567B1 (en) 2018-09-13
WO2015151443A1 (en) 2015-10-08
MX2016012595A (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6149778B2 (en) Steel plate with excellent wear resistance and method for producing the same
JP6194951B2 (en) Hot rolled steel sheet
JP6225874B2 (en) Abrasion-resistant steel plate and method for producing the same
WO2014020891A1 (en) Abrasion-resistant steel plate and manufacturing process therefor
JP5804229B1 (en) Abrasion-resistant steel plate and method for producing the same
US20160083823A1 (en) Rolled round steel material for steering rack bar and steering rack bar
JP5590254B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6252291B2 (en) Steel sheet and manufacturing method thereof
JP6135697B2 (en) Abrasion-resistant steel sheet having excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties and method for producing the same
JP6217671B2 (en) Thick steel plate with excellent wear resistance in high temperature environments
JP6245220B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and corrosion wear resistance
JP5971404B2 (en) High-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more and method for producing the same
JP2015193873A (en) Thick steel plate excellent in abrasion resistance in corrosive environment
JP6284813B2 (en) Hot-rolled steel sheet with excellent cold workability and excellent hardness after processing
JP6280824B2 (en) High strength steel plate and manufacturing method thereof
JPWO2021039021A1 (en) Wear-resistant thin steel sheet and its manufacturing method
JP2010222681A (en) Thick high toughness steel pipe stock and method for producing the same
JP6164193B2 (en) Abrasion resistant steel plate excellent in bending workability and impact wear resistance and method for producing the same
JP6217586B2 (en) Abrasion resistant steel plate excellent in bending workability and impact wear resistance and method for producing the same
JP2007197813A (en) Wear-resistant steel sheet superior in bendability
JP6135595B2 (en) High-efficiency manufacturing method for steel plates with excellent impact resistance
WO2017208329A1 (en) High-tensile steel plate having excellent low-temperature toughness
JP6534240B2 (en) Continuous cast slab of B-containing steel
JP2007262429A (en) Wear-resistant steel sheet excellent in bendability
JP2007277590A (en) Wear resistant steel sheet having excellent bending workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6149778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250