JP2015193517A - Cement composition for low temperature environment - Google Patents

Cement composition for low temperature environment Download PDF

Info

Publication number
JP2015193517A
JP2015193517A JP2014172619A JP2014172619A JP2015193517A JP 2015193517 A JP2015193517 A JP 2015193517A JP 2014172619 A JP2014172619 A JP 2014172619A JP 2014172619 A JP2014172619 A JP 2014172619A JP 2015193517 A JP2015193517 A JP 2015193517A
Authority
JP
Japan
Prior art keywords
cement
temperature environment
low temperature
portland cement
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014172619A
Other languages
Japanese (ja)
Other versions
JP6320878B2 (en
Inventor
山本 拓也
Takuya Yamamoto
拓也 山本
龍一郎 久我
Ryuichiro Kuga
龍一郎 久我
隆之 早川
Takayuki Hayakawa
隆之 早川
宙 平尾
Hiroshi Hirao
宙 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2014172619A priority Critical patent/JP6320878B2/en
Publication of JP2015193517A publication Critical patent/JP2015193517A/en
Application granted granted Critical
Publication of JP6320878B2 publication Critical patent/JP6320878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cement composition for low temperature environment constituted by inexpensive materials and showing high strength development even under low temperature environment.SOLUTION: There is provided a cement composition for low temperature environment containing at least Portland cement and limestone fine aggregate. Preferably the Portland cement is a cement composition for low temperature environment which is low heat generating type Portland cement, and more preferably, a cement composition for low temperature environment containing 100 to 500 pts.mass of the limestone fine aggregate based on 100 pts.mass of the Portland cement.

Description

本発明は、低温環境下でも強度発現性に優れたセメント組成物に関する。   The present invention relates to a cement composition having excellent strength development even in a low temperature environment.

震災復旧工事や自然災害に対する防災工事等では、早期の完工が求められている。また、寒冷地域では、冬季の建設活動の停滞が、地域経済全体に悪影響を及ぼしている。かかる背景から、震災復旧工事が急がれる東北地方等の寒冷地域において、年間を通じたコンクリート工事(通年施工)の重要性が増している。
低温環境におけるコンクリート工事では、寒中コンクリート(日平均気温が4℃以下)としての施工、すなわち、凝結硬化の初期に凍結させないこと、凍結融解作用への抵抗性を有すること、工事中の予想荷重に対して十分な強度を有することが必要となる(土木学会編コンクリート標準示方書(施工編))。
これら寒中コンクリートとしての要求品質は、通常、本来要求されるコンクリートの品質、例えば、マスコンクリートでは低発熱性等に追加されることになる。
このように、高度な品質が要求され、低温環境で施工されるコンクリートを提供するための基礎技術として、低温環境でポルトランドセメントの強度発現性を良好にする技術が求められている。
Early completion is required for earthquake restoration work and disaster prevention work for natural disasters. In cold regions, stagnation in construction activities during the winter season has had an adverse effect on the overall regional economy. Against this background, the importance of concrete work (year-round construction) throughout the year is increasing in cold regions such as the Tohoku region where earthquake restoration work is urgently needed.
In concrete construction in a low temperature environment, construction as cold concrete (daily average temperature is 4 ° C or less), that is, not freeze at the initial stage of setting and hardening, resistance to freezing and thawing, and expected load during construction It is necessary to have sufficient strength (Concrete Standard Specification (Construction), Japan Society of Civil Engineers).
The required quality as cold concrete is usually added to the originally required concrete quality, for example, low exothermicity in mass concrete.
As described above, as a basic technology for providing concrete that is required to have a high quality and is constructed in a low temperature environment, there is a demand for a technology for improving the strength development of Portland cement in a low temperature environment.

そこで、低温環境下で強度発現性に優れたセメント組成物がいくつか提案されている。
例えば、特許文献1に記載のセメント組成物は、早強ポルトランドセメントに、無水石膏、硫酸アルミニウム、アルミン酸塩、および硝酸塩類を含有してなる組成物である。しかし、特許文献1のセメント組成物は、アルミン酸塩、および硝酸塩類等の比較的高価な薬剤を必須の構成材料として含み、また基材となるポルトランドセメントは、3CaO・SiOの含有率が60質量%以上(早強ポルトランドセメントに相当する。)であるため、マスコンクリート等の水和発熱の抑制が必要なコンクリートには不向きである。
Thus, several cement compositions that are excellent in strength development under a low temperature environment have been proposed.
For example, the cement composition described in Patent Document 1 is a composition comprising an early gypsum Portland cement containing anhydrous gypsum, aluminum sulfate, aluminate, and nitrates. However, the cement composition of Patent Document 1 contains relatively expensive drugs such as aluminates and nitrates as essential constituent materials, and Portland cement as a base material has a content ratio of 3CaO · SiO 2. Since it is 60% by mass or more (corresponding to early-strength Portland cement), it is not suitable for concrete such as mass concrete which needs to suppress hydration heat generation.

特開平08−59319号公報JP-A-08-59319

したがって、本発明は、各種ポルトランドセメントが有している品質特性はそのままで、低温環境下での強度発現性が良好な低温環境用セメント組成物を安価に提供することを目的とする。   Accordingly, an object of the present invention is to provide a low-temperature environment cement composition that exhibits good strength characteristics in a low-temperature environment while maintaining the quality characteristics of various Portland cements as they are.

そこで、本発明者は前記目的を達成するため鋭意検討した結果、以下の発明は前記目的を達成できることを見い出し、本発明を完成させた。すなわち、本発明は下記の構成を有する低温環境用セメント組成物である。
[1]ポルトランドセメントおよび石灰石細骨材を少なくとも含む、低温環境用セメント組成物。
[2]前記ポルトランドセメントが低発熱型ポルトランドセメントである、前記[1]に記載の低温環境用セメント組成物。
[3]ポルトランドセメント100質量部に対し、石灰石細骨材を100〜500質量部含む、前記[1]または[2]に記載の低温環境用セメント組成物。
Therefore, as a result of intensive studies to achieve the above object, the present inventor found that the following invention can achieve the above object, and completed the present invention. That is, the present invention is a cement composition for low temperature environment having the following constitution.
[1] A cement composition for low temperature environment, comprising at least Portland cement and limestone fine aggregate.
[2] The cement composition for low temperature environment according to [1], wherein the Portland cement is a low heat generation Portland cement.
[3] The cement composition for low temperature environment according to the above [1] or [2], comprising 100 to 500 parts by mass of limestone fine aggregate with respect to 100 parts by mass of Portland cement.

本発明の低温環境用セメント組成物は、低温環境下でも強度発現性が高い。   The low temperature environment cement composition of the present invention has high strength development even under a low temperature environment.

本発明の低温環境用セメント組成物は、前記のとおり、ポルトランドセメントおよび石灰石細骨材を少なくとも含む組成物である。以下、本発明について各構成成分に分けて説明する。   As described above, the low-temperature environment cement composition of the present invention is a composition containing at least Portland cement and limestone fine aggregate. Hereinafter, the present invention will be described separately for each component.

1.ポルトランドセメント
本発明で用いるポルトランドセメントは、特に制限されず、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、白色ポルトランドセメント、およびエコセメント等から選ばれる1種以上が挙げられる。これらの中でも、後掲の表7、表8、および表12に示すように、強度発現性がより高いことから、好ましくは中庸熱ポルトランドセメントおよび低熱ポルトランドセメント等の低発熱型ポルトランドセメントである。
1. Portland cement The Portland cement used in the present invention is not particularly limited, and is usually ordinary Portland cement, early-strength Portland cement, ultra-early strength Portland cement, moderately hot Portland cement, low heat Portland cement, sulfate-resistant Portland cement, white Portland cement, and 1 or more types chosen from eco-cement etc. are mentioned. Among these, as shown in Table 7, Table 8, and Table 12 below, since the strength development is higher, low heat generation Portland cement such as moderately heated Portland cement and low heat Portland cement is preferable.

2.石灰石細骨材
本発明で用いる石灰石細骨材は、好ましくは炭酸カルシウムを90質量%以上含むものである。炭酸カルシウムの含有率が90質量%以上である石灰石細骨材を用いた低温環境用セメント組成物は強度発現性が高い。該含有率は、より好ましく95質量%以上、さらに好ましくは98質量%以上である。ここで、石灰石の炭酸カルシウム(CaCO)の含有率は、下記(1)式によってCaOの化学分析値から換算する。
CaCO=CaO×100.09/56.08 ・・・(1)
ただし、式中の化学式は該化学式が示す物質の含有率(質量%)を表す。
2. Limestone fine aggregate The limestone fine aggregate used in the present invention preferably contains 90% by mass or more of calcium carbonate. A cement composition for low temperature environment using a limestone fine aggregate having a calcium carbonate content of 90% by mass or more has high strength development. The content is more preferably 95% by mass or more, and still more preferably 98% by mass or more. Here, the content rate of calcium carbonate (CaCO 3 ) of limestone is converted from the chemical analysis value of CaO by the following equation (1).
CaCO 3 = CaO × 100.09 / 56.08 (1)
However, the chemical formula in a formula represents the content rate (mass%) of the substance which this chemical formula shows.

3.低温環境用セメント組成物の配合
本発明の低温環境用セメント組成物は、ポルトランドセメント100質量部に対し、好ましくは石灰石細骨材を100〜500質量部含む組成物である。該含有量が100未満では、低温環境下での強度発現性が低下し、500質量部を超えると、単位セメント量が少なくなり強度発現性が低下する。該含有量は、より好ましくは150〜450質量部、さらに好ましくは200〜400質量部である。
なお、本発明の低温環境用セメント組成物は、日平均気温が10℃以下、好ましくは7℃以下、より好ましくは4℃以下の低温環境下で用いるセメント組成物である。
3. Formulation of Cement Composition for Low Temperature Environment The cement composition for low temperature environment of the present invention is preferably a composition containing 100 to 500 parts by mass of limestone fine aggregate with respect to 100 parts by mass of Portland cement. When the content is less than 100, the strength development under a low temperature environment decreases, and when the content exceeds 500 parts by mass, the unit cement amount decreases and the strength development decreases. The content is more preferably 150 to 450 parts by mass, still more preferably 200 to 400 parts by mass.
In addition, the cement composition for low temperature environments of this invention is a cement composition used in a low temperature environment whose daily average temperature is 10 ° C. or less, preferably 7 ° C. or less, more preferably 4 ° C. or less.

前記低温環境用セメント組成物の混練に用いる水は、強度や流動性等の物性に悪影響を与えないものであればよく、JIS A 5308「レディーミクストコンクリート 付属書C」に規定する、上水道水、上水道水以外の水、および回収水からなる群より選ばれる1種以上が挙げられる。
また、前記低温環境用セメント組成物は、粗骨材を含むことができる。該粗骨材は、特に制限されず、例えば、砂利、砕石、スラグ粗骨材、軽量粗骨材からなる群から選ばれる1種以上が挙げられる。これらの粗骨材は、天然骨材のほか再生骨材も用いることができる。
さらに、本発明の低温環境用セメント組成物には、高性能AE減水剤、高性能減水剤、減水剤、AE剤、遅延剤等の混和剤を用いることができる。
The water used for kneading the cement composition for low temperature environment may be any water as long as it does not adversely affect physical properties such as strength and fluidity, and is provided with tap water as defined in JIS A 5308 “Ready Mixed Concrete Annex C”. One or more types selected from the group consisting of water other than tap water and recovered water may be mentioned.
In addition, the low temperature environment cement composition may include a coarse aggregate. The coarse aggregate is not particularly limited, and examples thereof include one or more selected from the group consisting of gravel, crushed stone, slag coarse aggregate, and lightweight coarse aggregate. As these coarse aggregates, natural aggregates as well as recycled aggregates can be used.
Furthermore, admixtures such as a high performance AE water reducing agent, a high performance water reducing agent, a water reducing agent, an AE agent, and a retarder can be used in the cement composition for low temperature environment of the present invention.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
(1)セメント
(i)普通ポルトランドセメント(太平洋セメント社製)
(ii)中庸熱ポルトランドセメント(太平洋セメント社製)
(iii)低熱ポルトランドセメント(太平洋セメント社製)
(iv)高炉セメントB種(太平洋セメント社製)
これらのセメントの化学組成を表1に示し、XRD−リートベルト解析による鉱物組成を表2に示す。なお、表1、表2、および表9において、普通ポルトランドセメントは「普通」、中庸熱ポルトランドセメントは「中庸熱」、低熱ポルトランドセメントは「低熱」、高炉セメントB種は「高炉」とそれぞれ記す。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
1. Materials used (1) Cement (i) Ordinary Portland cement (manufactured by Taiheiyo Cement)
(Ii) Moderate heat Portland cement (manufactured by Taiheiyo Cement)
(Iii) Low heat Portland cement (manufactured by Taiheiyo Cement)
(Iv) Blast furnace cement type B (manufactured by Taiheiyo Cement)
The chemical composition of these cements is shown in Table 1, and the mineral composition by XRD-Rietveld analysis is shown in Table 2. In Tables 1, 2, and 9, normal portland cement is described as “ordinary”, moderately heated portland cement as “moderately heated”, low heat portland cement as “low heat”, and blast furnace cement type B as “blast furnace”. .

Figure 2015193517
Figure 2015193517

Figure 2015193517
Figure 2015193517

(2)細骨材および粗骨材
細骨材は下記(i)〜(iv)の4銘柄を使用し、粗骨材は下記(v)の1銘柄を使用した。ただし、石灰石砕砂については、微粉分によるセメント硬化体の強度増強効果を無くすために、JIS A 1103「骨材の微粒分量試験方法付属書(参考)練混ぜ機を用いた細骨材の微粒分量試験方法」に準拠して洗い作業を行い、微粉分を除去して使用した。
(i)硅砂(セメント強さ試験用標準砂、一般社団法人セメント協会)
(ii)石灰石砕砂(大分県津久見産、炭酸カルシウムの含有率99.2質量%)
(iii)山砂(静岡県掛川産)
(iv)安山岩砕砂(山梨県甲州産)
(v)硬質砂岩(茨城県桜川産、密度2.64g/cm
前記細骨材の化学組成を表3に、XRDによる相対的な鉱物組成を表4に示す。また、細骨材のふるい分け試験と微粒分量の試験の結果を表5に示す。
(2) Fine Aggregate and Coarse Aggregate The following four brands (i) to (iv) were used for the fine aggregate, and one brand (v) was used for the coarse aggregate. However, with regard to limestone crushed sand, in order to eliminate the effect of strengthening the cement hardened body by fine powder, JIS A 1103 "Aggregate fine particle amount test method appendix (reference) Fine aggregate amount of fine aggregate using a kneader" Washing was performed in accordance with “Test method” to remove fine powder.
(I) Cinnabar (standard sand for cement strength test, Japan Cement Association)
(Ii) Limestone crushed sand (produced by Tsukumi, Oita Prefecture, content of calcium carbonate 99.2% by mass)
(Iii) Mountain sand (from Kakegawa, Shizuoka Prefecture)
(Iv) Andesite crushing sand (from Koshu, Yamanashi Prefecture)
(V) Hard sandstone (from Sakuragawa, Ibaraki Prefecture, density 2.64 g / cm 3 )
Table 3 shows the chemical composition of the fine aggregate, and Table 4 shows the relative mineral composition by XRD. Table 5 shows the results of the fine aggregate screening test and the fine particle amount test.

Figure 2015193517
Figure 2015193517

Figure 2015193517
Figure 2015193517

Figure 2015193517
Figure 2015193517

(3)混和材
(i)AE減水剤:ポゾリスNo.70(登録商標、BASFジャパン社製)
(ii)AE剤:マスターエア303A(登録商標、BASFジャパン社製)
(3) Admixture (i) AE water reducing agent: Pozzolith no. 70 (registered trademark, manufactured by BASF Japan)
(Ii) AE agent: Master Air 303A (registered trademark, manufactured by BASF Japan)

2.モルタルの圧縮強さ試験
(1)試験方法
前記ポルトランドセメント100質量部に対し、前記細骨材を300質量部用いて、JIS R 5201「セメントの物理試験方法」に準拠してモルタルを混練しモルタル供試体を作製した。次に、該供試体を水中養生して、前記JISに準拠して、材齢7日と材齢28日におけるモルタル供試体の圧縮強さを測定した。なお、前記モルタルの混練から水中養生までは、20℃と5℃の2種類の温度条件下で行った。
前記測定して得られた圧縮強さ、材齢7日および材齢28日における、下記(2)式で表される圧縮強さ比と、材齢7日および材齢28日における、下記(3)式で表される圧縮強さ比/圧縮強さ比を、普通ポルトランドセメントモルタルについては表6に示し、中庸熱ポルトランドセメントモルタルについては表7に示し、低熱ポルトランドセメントモルタルについては表8に示す。
圧縮強さ比(%)=100×(5℃の条件での圧縮強さ)/(20℃の条件での圧縮強さ) ・・・(2)
圧縮強さ比/圧縮強さ比=細骨材が安山岩砕砂以外の細骨材の場合の圧縮強さ比/細骨材が安山岩砕砂の場合の圧縮強さ比 ・・・(3)
天然骨材の枯渇により、実際の工事で用いられる細骨材は砕砂であるため、前記圧縮強さ比/圧縮強さ比の分母は、細骨材が安山岩砕砂の場合の圧縮強さ比を採用した。
2. Mortar Compressive Strength Test (1) Test Method Mortar is kneaded according to JIS R 5201 “Physical Test Method for Cement” using 300 parts by mass of the fine aggregate for 100 parts by mass of Portland cement. A specimen was prepared. Next, the specimen was cured in water, and the compressive strength of the mortar specimen at a material age of 7 days and a material age of 28 days was measured according to the JIS. In addition, from the kneading | mixing of the said mortar to underwater curing was performed on two types of temperature conditions, 20 degreeC and 5 degreeC.
The compression strength ratio obtained by the above measurement, the compression strength ratio represented by the following formula (2) in the material age 7 days and the material age 28 days, and the material strength 7 days and the material age 28 days below ( 3) The compressive strength ratio / compressive strength ratio represented by the formula is shown in Table 6 for ordinary Portland cement mortar, in Table 7 for moderately heated Portland cement mortar, and in Table 8 for low heat Portland cement mortar. Show.
Compressive strength ratio (%) = 100 × (Compressive strength at 5 ° C.) / (Compressive strength at 20 ° C.) (2)
Compressive strength ratio / compressive strength ratio = compressive strength ratio when fine aggregate is fine aggregate other than andesite crushed sand / compressive strength ratio when fine aggregate is andesite crushed sand (3)
Since the fine aggregate used in actual construction is crushed sand due to the depletion of natural aggregate, the denominator of the compression strength ratio / compression strength ratio is the compression strength ratio when the fine aggregate is andesite crushed sand. Adopted.

Figure 2015193517
Figure 2015193517

Figure 2015193517
Figure 2015193517

Figure 2015193517
Figure 2015193517

(2)モルタルの圧縮強さの試験結果について
表6〜8の圧縮強さ比/圧縮強さ比の列に示すように、いずれのセメントにおいても、細骨材に石灰石砕砂を用いた場合は、他の細骨材と比べ低温(5℃)環境下における強度発現性が、最高で2.0倍も高い。特に、短期材齢(7日)に比べて、長期材齢(28日)における強度の伸びが大きい傾向にある。したがって、本発明の低温環境用セメント組成物は、そこに含まれるセメントが、普通ポルトランドセメント、中庸熱ポルトランドセメント、および低熱ポルトランドセメント等の、物理・化学的特性(強度発現性、水和熱、および流動性等)が大きく異なるセメントであっても、セメントの種類に依らず、低温環境下における強度発現性が高いことが分かる。特に、セメントとして中庸熱ポルトランドセメントや低熱ポルトランドセメントを含む本発明の低温環境用セメント組成物のモルタルは、安山岩砕砂を用いたモルタルに比べ、材齢28日では1.4〜2.0倍も高い。
(2) Test result of compressive strength of mortar As shown in the columns of compressive strength ratio / compressive strength ratio in Tables 6 to 8, when limestone crushed sand is used for fine aggregate in any cement, Compared with other fine aggregates, the strength development in a low temperature (5 ° C.) environment is 2.0 times as high as the maximum. In particular, the elongation of strength at the long-term age (28 days) tends to be larger than the short-term age (7 days). Therefore, the cement composition for low-temperature environment of the present invention includes physical and chemical characteristics (strength development, heat of hydration, etc.) such as ordinary Portland cement, moderately hot Portland cement, and low heat Portland cement. It can be seen that even if the cement is greatly different in the fluidity, etc., the strength developability in a low temperature environment is high regardless of the type of cement. In particular, the mortar of the cement composition for low-temperature environment of the present invention containing medium-heated Portland cement or low-heat Portland cement as the cement is 1.4 to 2.0 times as long as the mortar using andesite crushed sand as compared with the mortar using 28 days old high.

3.コンクリートのフレッシュ性状試験および圧縮強度試験
(1)コンクリートの配合
コンクリートに用いたセメント、細骨材、および粗骨材の組合せを表9に示し、コンクリートの配合を表10に示す。
3. Fresh Property Test and Compressive Strength Test of Concrete (1) Mixture of concrete Table 9 shows combinations of cement, fine aggregate and coarse aggregate used in concrete, and Table 10 shows the mix of concrete.

Figure 2015193517
Figure 2015193517

Figure 2015193517
Figure 2015193517

(2)試験方法
(i)コンクリートの練混ぜ方法
該練混ぜは、JIS A 1138「試験室におけるコンクリートの作り方」に準拠した。具体的には、コンクリートの練混ぜにはパン型強制練りミキサ(容量50リットル)を使用し、セメント、細骨材、粗骨材を20秒間空練りした後、水、AE減水剤およびAE剤を投入して60秒間混練し、コンクリートを掻き落とした後、再び60秒間混練した。
(ii)フレッシュ性状試験
前記コンクリートの練り混ぜ後、JIS A 1101「コンクリートのスランプ試験方法」、JIS A 1128「フレッシュコンクリートの空気量の圧力による試験方法−空気室圧力方法」、およびJIS A 1156「フレッシュコンクリートの温度測定方法」に準拠して、コンクリートのフレッシュ性状であるスランプ、空気量、および温度を測定した。その結果を表11に示す。
(2) Test method
(i) Concrete mixing method The mixing was in accordance with JIS A 1138 “How to make concrete in a test room”. Specifically, for the mixing of concrete, a pan-type forced kneading mixer (capacity 50 liters) is used. After cement, fine aggregate and coarse aggregate are kneaded for 20 seconds, water, AE water reducing agent and AE agent are mixed. Was added and kneaded for 60 seconds. The concrete was scraped off and then kneaded again for 60 seconds.
(ii) Fresh property test After kneading the concrete, JIS A 1101 “Method of testing concrete slump”, JIS A 1128 “Test method of fresh concrete with air pressure—Air chamber pressure method”, and JIS A 1156 “ In accordance with “Method for Measuring Temperature of Fresh Concrete”, slump, air content, and temperature, which are the fresh properties of concrete, were measured. The results are shown in Table 11.

Figure 2015193517
Figure 2015193517

(ii)圧縮強度試験
前記フレッシュ性状試験の後、コンクリートをφ10×20cmの型枠に充填し、相対湿度80%の条件下で1日間保管した後に脱型した。脱型後、材齢3日、材齢7日、および材齢28日まで水中養生を行った。次に、JIS A 1108「コンクリートの圧縮強度試験方法」に準拠して、前記水中養生した材齢3日、材齢7日、および材齢28日のコンクリート供試体の圧縮強度を測定した。なお、前記コンクリートの混練から水中養生までは、20℃と5℃の2種類の温度条件下で行った。
得られた圧縮強度、圧縮強度比、圧縮強度比/圧縮強度比を表12に示す。なお、圧縮強度比は、前記(2)式中の圧縮強さを圧縮強度に代えて算出した。また、圧縮強度比/圧縮強度比は、同種のセメントを用いたコンクリートにおいて、細骨材として安山岩砕砂を用いた圧縮強度比を1とした場合の石灰石砕砂を用いた圧縮強度比の比である。
(ii) Compressive strength test After the fresh property test, the concrete was filled in a φ10 × 20 cm mold, stored for one day under the condition of 80% relative humidity, and then demolded. After demolding, underwater curing was performed until the age of 3 days, the age of 7 days, and the age of 28 days. Next, in accordance with JIS A 1108 “Concrete compressive strength test method”, the compressive strength of the concrete specimens aged 3 days, 7 days and 28 days after the above water curing was measured. In addition, from the kneading | mixing of the said concrete to underwater curing was performed on two types of temperature conditions, 20 degreeC and 5 degreeC.
Table 12 shows the obtained compression strength, compression strength ratio, and compression strength ratio / compression strength ratio. The compressive strength ratio was calculated by replacing the compressive strength in the formula (2) with the compressive strength. The compressive strength ratio / compressive strength ratio is the ratio of the compressive strength ratio using limestone crushed sand when the compressive strength ratio using andesite crushed sand as fine aggregate is set to 1 in concrete using the same kind of cement. .

Figure 2015193517
Figure 2015193517

(3)試験結果について
表11に示すように、AE減水剤を同量(25kg/m)用いた場合、コンクリートのスランプは、安山岩砕砂を用いたコンクリートと比べ石灰石砕砂を用いたコンクリートの方が、セメントの種類に依らず大きい。したがって、石灰石砕砂を用いたコンクリートは流動性が高いといえる。
また、表12に示すように、低熱ポルトランドセメントと石灰石砕砂を用いたコンクリートの材齢28日における圧縮強度比/圧縮強度比は1.8であり、細骨材に安山岩砕石を用いたコンクリートに比べ低温(5℃)環境下における強度発現性が高い。ただし、この低温(5℃)環境下において強度発現性の向上効果は、ポルトランドセメントと異なり高炉セメントには認められない。
(3) Test results As shown in Table 11, when the same amount of AE water reducing agent (25 kg / m 3 ) is used, the concrete slump is more concrete with limestone crushed sand than with concrete with andesite crushed sand. However, it is large regardless of the type of cement. Therefore, it can be said that the concrete using limestone crushed sand has high fluidity.
Moreover, as shown in Table 12, the compression strength ratio / compression strength ratio of concrete using low heat Portland cement and limestone crushed sand at the age of 28 days is 1.8, and the concrete using andesite crushed stone for fine aggregate is used. Compared to high strength in a low temperature (5 ° C) environment. However, unlike the Portland cement, the effect of improving the strength development under the low temperature (5 ° C.) environment is not recognized in the blast furnace cement.

Claims (3)

ポルトランドセメントおよび石灰石細骨材を少なくとも含む、低温環境用セメント組成物。   A cement composition for low temperature environment, comprising at least Portland cement and limestone fine aggregate. 前記ポルトランドセメントが低発熱型ポルトランドセメントである、請求項1に記載の低温環境用セメント組成物。   The cement composition for low-temperature environments according to claim 1, wherein the Portland cement is a low heat generation Portland cement. ポルトランドセメント100質量部に対し、石灰石細骨材を100〜500質量部含む、請求項1または2に記載の低温環境用セメント組成物。   The cement composition for low-temperature environments of Claim 1 or 2 containing 100-500 mass parts of limestone fine aggregates with respect to 100 mass parts of Portland cement.
JP2014172619A 2014-03-25 2014-08-27 Cement composition for low temperature environment Active JP6320878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014172619A JP6320878B2 (en) 2014-03-25 2014-08-27 Cement composition for low temperature environment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014061218 2014-03-25
JP2014061218 2014-03-25
JP2014172619A JP6320878B2 (en) 2014-03-25 2014-08-27 Cement composition for low temperature environment

Publications (2)

Publication Number Publication Date
JP2015193517A true JP2015193517A (en) 2015-11-05
JP6320878B2 JP6320878B2 (en) 2018-05-09

Family

ID=54432936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014172619A Active JP6320878B2 (en) 2014-03-25 2014-08-27 Cement composition for low temperature environment

Country Status (1)

Country Link
JP (1) JP6320878B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149599A (en) * 2016-02-24 2017-08-31 太平洋マテリアル株式会社 Non-shrink grout composition
JP2017165625A (en) * 2016-03-17 2017-09-21 太平洋マテリアル株式会社 Grout composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178062A (en) * 1998-12-18 2000-06-27 Taiheiyo Cement Corp High durability concrete composition and its hardened body
JP2000247716A (en) * 1999-02-26 2000-09-12 Taiheiyo Cement Corp Powdery or granular cement-based grout composition
JP2011148647A (en) * 2010-01-20 2011-08-04 Sumitomo Osaka Cement Co Ltd High-strength concrete composition using silica fume slurry and method for producing the same
JP2012140294A (en) * 2010-12-28 2012-07-26 Taiheiyo Materials Corp Quick-hardening, highly flowable cement composition for low temperature
JP2013133241A (en) * 2011-12-26 2013-07-08 Kao Corp Admixture for hydraulic composition
JP2013227172A (en) * 2012-04-26 2013-11-07 Taiheiyo Materials Corp Concrete

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178062A (en) * 1998-12-18 2000-06-27 Taiheiyo Cement Corp High durability concrete composition and its hardened body
JP2000247716A (en) * 1999-02-26 2000-09-12 Taiheiyo Cement Corp Powdery or granular cement-based grout composition
JP2011148647A (en) * 2010-01-20 2011-08-04 Sumitomo Osaka Cement Co Ltd High-strength concrete composition using silica fume slurry and method for producing the same
JP2012140294A (en) * 2010-12-28 2012-07-26 Taiheiyo Materials Corp Quick-hardening, highly flowable cement composition for low temperature
JP2013133241A (en) * 2011-12-26 2013-07-08 Kao Corp Admixture for hydraulic composition
JP2013227172A (en) * 2012-04-26 2013-11-07 Taiheiyo Materials Corp Concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149599A (en) * 2016-02-24 2017-08-31 太平洋マテリアル株式会社 Non-shrink grout composition
JP2017165625A (en) * 2016-03-17 2017-09-21 太平洋マテリアル株式会社 Grout composition

Also Published As

Publication number Publication date
JP6320878B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
KR101000258B1 (en) High performance composite material for shotcrete
JP2010189202A (en) Cement composition, cement admixture and concrete using the same
JP2015124136A (en) Concrete composition having initial-stage and long-term high strength developability and high crack resistance, and concrete body using the composition
DK3018109T3 (en) HYDRAULIC MIXING COMPREHENSIVE GRANULATES OF VEGETABLE ORIGIN AND PROCEDURE FOR THE PREPARATION OF CONCRETE OR MORTAL FROM THIS MIXTURE
JP6876489B2 (en) Fast-hardening concrete and its manufacturing method
JP6320878B2 (en) Cement composition for low temperature environment
JP2014125392A (en) Spray material, and spray method with use of the same
JPWO2007097435A1 (en) Hardened concrete and concrete composition
JP6783118B2 (en) Cement composition and its manufacturing method
JP6965136B2 (en) Construction method of mortar or concrete using ultra-fast hard cement
JP2017105672A (en) Concrete spray material
JP7034573B2 (en) Fast-curing polymer cement composition and fast-curing polymer cement mortar
JP2020011871A (en) Concrete having durability
JP2004284873A (en) Hydraulic complex material
JP6896578B2 (en) Hydraulic powder composition
JP5863296B2 (en) Method for producing ultra-high-strength cement-based hardened body
JPH0859319A (en) Cement admixture and cement composition
JP6682309B2 (en) Grout composition
JP5383045B2 (en) Cement composition for grout and grout material using the same
JP7333019B2 (en) Cement composition and method for producing hardened cement
JP7158306B2 (en) cement composite
JP6843666B2 (en) Durability improver for concrete, and concrete
JP2012240874A (en) Cement composition
JP2004315240A (en) Hydraulic composition and high strength concrete
JP7081939B2 (en) concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180404

R150 Certificate of patent or registration of utility model

Ref document number: 6320878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250