JP2015193486A - Polishing metal-carrying metal oxide particle, and polisher - Google Patents

Polishing metal-carrying metal oxide particle, and polisher Download PDF

Info

Publication number
JP2015193486A
JP2015193486A JP2014071087A JP2014071087A JP2015193486A JP 2015193486 A JP2015193486 A JP 2015193486A JP 2014071087 A JP2014071087 A JP 2014071087A JP 2014071087 A JP2014071087 A JP 2014071087A JP 2015193486 A JP2015193486 A JP 2015193486A
Authority
JP
Japan
Prior art keywords
metal
polishing
metal oxide
weight
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014071087A
Other languages
Japanese (ja)
Other versions
JP6285775B2 (en
Inventor
光章 熊澤
Mitsuaki Kumazawa
光章 熊澤
小柳 嗣雄
Tsuguo Koyanagi
嗣雄 小柳
祐二 俵迫
Yuji Tawarasako
祐二 俵迫
中山 和洋
Kazuhiro Nakayama
和洋 中山
吉田 聡
Satoshi Yoshida
聡 吉田
若宮 義憲
Yoshinori Wakamiya
義憲 若宮
真吾 柏田
Shingo Kashiwada
真吾 柏田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2014071087A priority Critical patent/JP6285775B2/en
Publication of JP2015193486A publication Critical patent/JP2015193486A/en
Application granted granted Critical
Publication of JP6285775B2 publication Critical patent/JP6285775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal-carrying metal oxide particle which can be used suitably for polishing an aluminum disk, a silicon semiconductor wafer, and a compound semiconductor wafer or the like, and a production method thereof.SOLUTION: This invention provides a metal-carrying metal oxide particle in which a metal oxide particle with an average particle diameter in the range of 7-600 nm carries at least one metal selected from Ag, Pd, Au, Pt, Cu, and Fe in the range of 0.01-1200 pts. wt. as metal relative to the metal oxide particle of 100 pts. wt.

Description

本発明は、金属が金属酸化物粒子に担持されてなる研磨用金属担持金属酸化物粒子および該粒子を含む研磨剤に関する。   The present invention relates to a metal-supporting metal oxide particle for polishing in which a metal is supported on metal oxide particles, and an abrasive containing the particle.

半導体の集積回路付基板の製造においては、例えば、シリコンウェハー上にアルミ配線を形成し、この上に絶縁膜としてシリカ等の酸化膜を設けると配線による凹凸が生じるので、この酸化膜を研磨して平坦化することが行われている。このような基板の研磨においては、研磨後の表面は段差や凹凸がなく平坦で、さらにミクロな傷等もなく平滑であることが求められており、また研磨速度が速いことも必要である。   In the manufacture of a substrate with a semiconductor integrated circuit, for example, when an aluminum wiring is formed on a silicon wafer and an oxide film such as silica is provided thereon as an insulating film, irregularities are caused by the wiring. It is done to flatten. In the polishing of such a substrate, the surface after polishing is required to be flat with no steps or irregularities, smooth without microscopic scratches, etc., and the polishing rate must be high.

研磨用粒子としては、従来、シリカゾルやヒュームドシリカ、ヒュームドアルミナなどが用いられている。
化学的機械的研磨(CMP)で使用される研磨材は、通常、シリカ、アルミナ、セリア等の金属酸化物からなる平均粒子径が200nm程度の研磨用粒子と、配線・回路用金属の研磨速度を早めるための酸化剤、有機酸等の添加剤及び純水などの溶媒から構成されている。
Conventionally, silica sol, fumed silica, fumed alumina, or the like is used as the abrasive particles.
The abrasive used in chemical mechanical polishing (CMP) is usually polishing particles having an average particle diameter of about 200 nm made of a metal oxide such as silica, alumina, and ceria, and the polishing rate of metal for wiring and circuits. It is composed of an oxidizer, an organic acid additive, and a solvent such as pure water.

例えば、特開2001−150334号公報(特許文献1)には、水ガラスなどのアルカリ金属珪酸塩の水溶液を脱陽イオン処理することにより得られるSiO濃度2〜6重量% 程度の活性珪酸の酸性水溶液に、アルカリ土類金属、例えば、Ca、Mg、Baなどの塩をその酸化物換算で上記活性珪酸のSiOに対し100〜1500ppmの重量比に添加し、更にこの液中SiO/MO(Mは、アルカリ金属原子、NH又は第4級アンモニウム基を表す。) モル比が20〜150となる量の同アルカリ物質を添加することにより得られる液を当初ヒール液とし、同様にして得られる2〜6重量%のSiO濃度と20〜150 のSiO/MO(Mは、上記と同じ) モル比を有する活性珪酸水溶液をチャージ液として、60〜150℃で前記当初ヒール液に前記チャージ液を、1時間当たり、チャージ液SiO /当初ヒール液SiOの重量比として0. 05〜1. 0の速度で、液から水を蒸発除去しながら( 又はせずに)、添加してなる歪な形状を有するシリカゾルの製造方法が記載されている。 For example, Japanese Patent Laid-Open No. 2001-150334 (Patent Document 1) discloses an active silicic acid having a SiO 2 concentration of about 2 to 6% by weight obtained by decation treatment of an aqueous solution of an alkali metal silicate such as water glass. An alkaline earth metal such as a salt of Ca, Mg, Ba or the like is added to the acidic aqueous solution at a weight ratio of 100 to 1500 ppm with respect to SiO 2 of the above active silicic acid in terms of its oxide, and SiO 2 / M 2 O (M represents an alkali metal atom, NH 4 or a quaternary ammonium group.) The liquid obtained by adding the same alkali substance in an amount that the molar ratio is 20 to 150 is the initial heel liquid, 2-6 wt% of SiO 2 / M 2 O of SiO 2 concentration of 20 to 150 obtained in the same manner as in (M is as defined above) of the active silicic acid aqueous solution having a molar ratio as charged liquid, The charge liquid the initially heel solution at 0 to 150 ° C., per hour, the charge liquid SiO 2 / initial 0. As the weight ratio of the heel solution SiO 2 05-1. 0 rate, evaporative removal of water from the liquid While (or without), a method for producing a silica sol having a distorted shape is described.

特開平8−279480号公報(特許文献2)には、(1)珪酸アルカリ水溶液を鉱酸で中和しアルカリ性物質を添加して加熱熟成する方法、(2)珪酸アルカリ水溶液を陽イオン交換処理して得られる活性珪酸にアルカリ性物質を添加して加熱熟成する方法、(3)エチルシリケート等のアルコキシシランを加水分解して得られる活性珪酸を加熱熟成する方法、または、(4)シリカ微粉末を水性媒体中で直接に分散する方法等によって製造されるコロイダルシリカ水溶液は、通常、4〜1,000nm(ナノメートル)、好ましくは7〜500nmの粒子径を有するコロイド状シリカ粒子が水性媒体に分散したものであり、SiOとして0.5〜50重量% 、好ましくは0.5〜30重量%の濃度を有する。上記シリカ粒子の粒子形状は、球状、いびつ状、偏平状、板状、細長い形状、繊維状等が挙げられることが記載されている。 In JP-A-8-279480 (Patent Document 2), (1) a method in which an alkali silicate aqueous solution is neutralized with a mineral acid and an alkaline substance is added and heated to age, (2) a cation exchange treatment of the alkali silicate aqueous solution is performed. (3) A method of heating and aging active silicic acid obtained by hydrolyzing an alkoxysilane such as ethyl silicate, or (4) Fine silica powder Colloidal silica aqueous solution produced by, for example, a method of directly dispersing in an aqueous medium usually contains colloidal silica particles having a particle diameter of 4 to 1,000 nm (nanometer), preferably 7 to 500 nm. is obtained by dispersing 0.5 to 50% by weight SiO 2, preferably has a concentration of 0.5 to 30 wt%. It is described that the particle shape of the silica particles includes a spherical shape, a distorted shape, a flat shape, a plate shape, an elongated shape, and a fibrous shape.

特表2003−529662号公報(特許文献3)には、互いにボンドによって連結していない球形の、分離したシリカ粒子を含む研磨剤であって、a )寸法5−50nmのシリカ粒子5−95重量% 、及びb)寸法50−200nmのシリカ粒子95−5重量%を含む、但し粒子の全体がバイモーダルな粒径分布を有する研磨剤が高い研磨速度を与えることが開示されている。   Japanese Patent Publication No. 2003-52962 (Patent Document 3) discloses a polishing agent containing spherical, separated silica particles which are not connected to each other by a bond, and a) a silica particle having a size of 5-50 nm, 5-95 weight. And b) an abrasive comprising 95-5% by weight of silica particles of size 50-200 nm, but with the entire particle having a bimodal particle size distribution is disclosed to provide a high polishing rate.

また、本願出願人は異形度が1.55〜4の範囲にあり、動的光散乱法による粒子径分布において30〜70nmの粒子径範囲と71〜150nmの粒子径範囲に粒子径分布のピークがあり、両ピークの粒子径差が50〜100nmの範囲にある研磨用シリカゾルを用いると優れた研磨レートが達成されることを開示している(特開2007−137972号公報:特許文献4)。   Further, the applicant of the present invention has a degree of irregularity in the range of 1.55 to 4, and in the particle size distribution by the dynamic light scattering method, the particle size distribution peaks in a particle size range of 30 to 70 nm and a particle size range of 71 to 150 nm. It is disclosed that an excellent polishing rate can be achieved when a polishing silica sol having a particle size difference between both peaks in the range of 50 to 100 nm is used (Japanese Patent Laid-Open No. 2007-137972: Patent Document 4). .

さらに、本願出願人は真球度が0.9以上の球状粒子とこの球状粒子に該当しない非球状粒子を所定重量比で含む研磨用組成物は被研磨面が凹凸を有していても研磨後の表面が平坦性に優れ、長時間の研磨に供しても研磨性能の低下が抑制できることを開示している(特開2006−80406号公報:特許文献5)。   Further, the applicant of the present application is a polishing composition containing spherical particles having a sphericity of 0.9 or more and non-spherical particles that do not correspond to the spherical particles in a predetermined weight ratio, even if the surface to be polished has irregularities. It is disclosed that the subsequent surface is excellent in flatness, and deterioration in polishing performance can be suppressed even when subjected to long-time polishing (Japanese Patent Laid-Open No. 2006-80406: Patent Document 5).

また、本願出願人は非球状シリカ微粒子と、その表面に形成されたシリカ以外の金属酸化物から形成される複数の突起とからなり、動的散乱法により測定される平均粒子径が3〜150nmの範囲、短径/長径比が0.01〜0.8の範囲、比表面積が10〜800m/gの範囲にある非球状複合シリカ微粒子が分散媒に分散したゾルとその製造方法を開示しており、研磨剤と有用であることを開示している(特開2009−137791号公報:特許文献6)。 Further, the applicant of the present application comprises non-spherical silica fine particles and a plurality of protrusions formed from a metal oxide other than silica formed on the surface thereof, and the average particle diameter measured by a dynamic scattering method is 3 to 150 nm. Sol in which non-spherical composite silica fine particles having a short diameter / long diameter ratio in the range of 0.01 to 0.8 and a specific surface area in the range of 10 to 800 m 2 / g are dispersed in a dispersion medium and a method for producing the same It is disclosed that it is useful as an abrasive (Japanese Patent Laid-Open No. 2009-137771: Patent Document 6).

また、本願出願人は球状シリカ系微粒子の表面に複数の疣状突起を有し、表面粗度が1.7〜10の範囲にある金平糖状シリカ系微粒子と、該微粒子を含む研磨剤を開示している(特開2013−47180号公報:特許文献7)。
さらに、特開2010−188487号公報(特許文献8)には、遷移金属微粒子と酸化物微粒子と過酸化水素をベースとした配合研磨液を用いるとSiC基板等の非加工物の表面平滑性を損なうことなく研磨速度が大きく向上することが開示されている。
In addition, the applicant of the present application discloses a confetti-like silica-based fine particle having a plurality of ridge-like protrusions on the surface of the spherical silica-based fine particle and having a surface roughness in the range of 1.7 to 10, and an abrasive containing the fine particle. (JP 2013-47180 A: Patent Document 7).
Furthermore, JP 2010-188487A (Patent Document 8) describes the surface smoothness of a non-processed material such as a SiC substrate when a compounding polishing liquid based on transition metal fine particles, oxide fine particles and hydrogen peroxide is used. It is disclosed that the polishing rate is greatly improved without loss.

特開2001−150334号公報JP 2001-150334 A 特開平8−279480号公報JP-A-8-279480 特表2003−529662号公報Japanese translation of PCT publication No. 2003-52962 特開2007−137972号公報JP 2007-137972 A 特開2006−80406号公報JP 2006-80406 A 特開2009−137791号公報JP 2009-137791 A 特開2013−47180号公報JP2013-47180A 特開2010−188487号公報JP 2010-188487 A

しかしながら、特許文献7の金平糖状シリカ系微粒子等の異形粒子を研磨用粒子として用いた場合、表面が平滑な球状粒子に比べて研磨速度は向上するものの、表面の凹凸によりスクラッチが発生したり表面の平滑性の欠ける場合があった。また、製造する際に少量ではあるが粒子径の大きな凝集粒子が生成し、スクラッチの原因となることがあった。また、この凝集粒子を除去すると、生産性、経済性が低下する問題があった。
そこで、前記した異形粒子(非球状粒子)と特許文献8のように遷移金属微粒子とを混合して用いたところ、確かに研磨速度は向上したものの、遷移金属微粒子と球状粒子とを混合した場合と同程度の研磨速度となり、異形粒子(非球状粒子)を混合して用いた効果が得られなかった。
本発明者等はさらなる研磨速度の向上および表面の平滑性の向上を求めて鋭意検討した結果、金属を担持した粒子を用いたところ研磨速度がさらに向上するとともに表面平滑性も向上することを見出して本発明を完成するに至った。
本発明の課題は、アルミニウムディスク、珪素半導体ウェハー、化合物半導体ウェハー等の研磨に好適に用いることのできる金属酸化物粒子およびその製造方法を提供することにある。
However, when irregularly shaped particles such as the flat gold silica-based fine particles of Patent Document 7 are used as polishing particles, the polishing rate is improved compared to spherical particles having a smooth surface, but scratches may occur due to surface irregularities or the surface In some cases, the smoothness of the film was lacking. In addition, agglomerated particles having a large particle size are produced during production, which may cause scratches. Moreover, there has been a problem that productivity and economy are reduced when the aggregated particles are removed.
Therefore, when the above-mentioned irregularly shaped particles (non-spherical particles) and transition metal fine particles were mixed and used as in Patent Document 8, the polishing rate was improved, but the transition metal fine particles and spherical particles were mixed. The effect of using a mixture of irregularly shaped particles (non-spherical particles) was not obtained.
As a result of intensive investigations for further improvement of the polishing rate and surface smoothness, the present inventors have found that the use of metal-supported particles further improves the polishing rate and also improves the surface smoothness. The present invention has been completed.
The subject of this invention is providing the metal oxide particle which can be used suitably for grinding | polishing of an aluminum disk, a silicon semiconductor wafer, a compound semiconductor wafer, etc., and its manufacturing method.

本発明に係る研磨用金属担持金属酸化物粒子は、金属酸化物粒子に金属が担持されてなることを特徴としている。
平均粒子径(D)が7〜600nmの範囲にあることが好ましい。
前記金属がAg、Pd、Au、Pt、Cu、Feから選ばれる少なくとも一種であり、該金属の担持量が金属酸化物粒子100重量部に対し金属として0.01〜1200重量部の範囲にあることが好ましい。
前記金属酸化物粒子の形状が異形状粒子(非球状)であることが好ましい。
前記金属の少なくとも一部が金属酸化物粒子の外部表面に担持されていることが好ましい。
前記金属酸化物粒子がSiO、Al、Sb、ZrO、TiO、Fe、CeOおよびこれらの複合酸化物から選ばれる少なくとも1種あるいはこれらの混合物であることが好ましい。
The metal-supported metal oxide particles for polishing according to the present invention are characterized in that a metal is supported on the metal oxide particles.
The average particle diameter (D A ) is preferably in the range of 7 to 600 nm.
The metal is at least one selected from Ag, Pd, Au, Pt, Cu, and Fe, and the amount of the metal supported is in the range of 0.01 to 1200 parts by weight as a metal with respect to 100 parts by weight of the metal oxide particles. It is preferable.
The shape of the metal oxide particles is preferably irregularly shaped particles (non-spherical).
It is preferable that at least a part of the metal is supported on the outer surface of the metal oxide particles.
The metal oxide particles are at least one selected from SiO 2 , Al 2 O 3 , Sb 2 O 5 , ZrO 2 , TiO 2 , Fe 2 O 3 , CeO 2 and complex oxides thereof, or a mixture thereof. It is preferable.

本発明に係る研磨剤は、前記いずれかの研磨用金属担持金属酸化物粒子を含んでなることを特徴としている。
研磨剤はさらに酸化剤を含むことが好ましい。
研磨対象がSi、SiC、GaN、Al、AlN、Cu、TiN、SiNのいずれかから選ばれる少なくとも1種以上であることが好ましい。
The abrasive | polishing agent which concerns on this invention is characterized by including one of the said metal supporting metal oxide particles for grinding | polishing.
The abrasive preferably further contains an oxidizing agent.
The object to be polished is preferably at least one selected from Si, SiC, GaN, Al, AlN, Cu, TiN, and SiN.

本発明の研磨用金属担持金属酸化物粒子は研磨性能および表面平滑性に優れており、この研磨用金属担持金属酸化物粒子を含む研磨剤は、アルミニウムディスク、珪素半導体ウェハー、化合物半導体ウェハー等の研磨に好適に用いることができる。   The metal-supported metal oxide particles for polishing of the present invention are excellent in polishing performance and surface smoothness, and the abrasive containing the metal-supported metal oxide particles for polishing includes aluminum disks, silicon semiconductor wafers, compound semiconductor wafers, and the like. It can be suitably used for polishing.

以下、先ず本発明に係る金属が金属酸化物粒子に担持されてなる研磨用金属担持金属酸化物粒子について説明する。
[研磨用金属担持金属酸化物粒子]
本発明に係る研磨用金属担持金属酸化物粒子は、金属酸化物粒子に金属が担持されてなることを特徴としている。
金属酸化物粒子
金属酸化物粒子としては、後述する研磨に有効な金属を担持することができれば特に制限はなく従来公知の金属酸化物粒子を用いることができ、SiO、Al、Sb、ZrO、TiO、Fe、CeOおよびこれらの複合酸化物から選ばれる少なくとも1種あるいはこれらの混合物であることが好ましい。
これらの金属酸化物粒子は硬度が高く、化学的に安定で研磨性能に優れているので好適に用いることができる。
Hereinafter, the metal-supported metal oxide particles for polishing, in which the metal according to the present invention is supported on the metal oxide particles, will be described first.
[Polished metal-supported metal oxide particles]
The metal-supported metal oxide particles for polishing according to the present invention are characterized in that a metal is supported on the metal oxide particles.
The metal oxide particles are not particularly limited as long as they can carry a metal effective for polishing, which will be described later, and conventionally known metal oxide particles can be used. SiO 2 , Al 2 O 3 , Sb It is preferably at least one selected from 2 O 5 , ZrO 2 , TiO 2 , Fe 2 O 3 , CeO 2 and a composite oxide thereof, or a mixture thereof.
Since these metal oxide particles have high hardness, are chemically stable and have excellent polishing performance, they can be suitably used.

本発明に用いる金属酸化物粒子の形状は、研磨性能を有していれば特に制限はなく、球状であってもよいが、非球状あるいは表面に凹凸を有する異形粒子であることが好ましい。
ここで、異形粒子としては、繊維状、鎖状、板状、サイコロ状、金平糖状、ヒマワリ状、クラスター状等種々の形状の粒子が挙げられる。
鎖状粒子は一次粒子が鎖状に連結した粒子であり、金平糖状粒子、ヒマワリ状粒子、クラスター状粒子は粒子の外部表面に微細な疣状突起(凸部)を有した粒子である。
The shape of the metal oxide particles used in the present invention is not particularly limited as long as it has polishing performance, and may be spherical, but preferably non-spherical or irregularly shaped particles having irregularities on the surface.
Here, examples of the irregularly shaped particles include particles having various shapes such as a fibrous shape, a chain shape, a plate shape, a dice shape, a confetti shape, a sunflower shape, and a cluster shape.
The chain particles are particles in which primary particles are connected in a chain, and the gold flat sugar particles, the sunflower particles, and the cluster particles are particles having fine hook-like projections (convex portions) on the outer surface of the particles.

金平糖状粒子はとして、例えば、本出願人の出願による特開2009−78935号公報に開示した金平糖状複合シリカ微粒子等が挙げられる。
金平糖状金属酸化物粒子の製造方法としては、例えば、粒子径が3〜140nmのシリカ粒子が溶媒に分散してなるシード粒子分散液のpHを8〜12、温度を概ね60〜200℃の範囲に調整し、シリカを除く金属酸化物の前駆体または該金属酸化物の前駆体と珪酸液の所定量を連続的にまたは断続的に添加することにより調製することができる。
金平糖状金属酸化物粒子の別の製造方法としては、シリカ微粒子が溶媒に分散してなるシードシリカゾルのpHおよび温度を所定の範囲に調整し、金属過酸化物または金属過酸化物と珪酸液の所定量を一時に一括して全量添加することによっても調製することができる。
Examples of the confetti particles include the confetti particles disclosed in Japanese Patent Application Laid-Open No. 2009-78935 filed by the present applicant.
Examples of the method for producing the gold-plated sugar-like metal oxide particles include a seed particle dispersion in which silica particles having a particle diameter of 3 to 140 nm are dispersed in a solvent having a pH of 8 to 12 and a temperature in the range of about 60 to 200 ° C. And a metal oxide precursor excluding silica or a predetermined amount of the metal oxide precursor and silicic acid solution can be added continuously or intermittently.
As another method for producing the gold flat sugar-like metal oxide particles, the pH and temperature of the seed silica sol in which silica fine particles are dispersed in a solvent are adjusted to a predetermined range, and the metal peroxide or the metal peroxide and the silicic acid solution are mixed. It can also be prepared by adding a predetermined amount all at once.

クラスター状粒子とは、金属酸化物粒子の一次粒子が多数集合した二次粒子であり、金平糖状粒子と類似した構造を有している。
クラスター状粒子の製造方法としては、例えば、平均一次粒子径が概ね10〜150nmの範囲にある金属酸化物粒子の水分散液を塩の存在下で水熱処理する方法が挙げられる。
このとき、塩としては、硫酸マグネシウム、塩化マグネシウム、硝酸マグネシウム、塩化カルシウム、硝酸カルシウム等の塩が好適に用いることができる。また、このときの金属酸化物粒子水分散液の濃度は概2〜20重量%の範囲にあり、水熱処理温度は概80〜120℃の範囲にあることが好ましい。
A cluster-like particle is a secondary particle in which a large number of primary particles of metal oxide particles are aggregated, and has a structure similar to that of a confetti particle.
Examples of the method for producing cluster particles include a method in which an aqueous dispersion of metal oxide particles having an average primary particle diameter in the range of about 10 to 150 nm is hydrothermally treated in the presence of a salt.
At this time, as a salt, salts such as magnesium sulfate, magnesium chloride, magnesium nitrate, calcium chloride, and calcium nitrate can be preferably used. Moreover, it is preferable that the density | concentration of the metal oxide particle aqueous dispersion at this time exists in the range of about 2 to 20 weight%, and the hydrothermal treatment temperature exists in the range of about 80-120 degreeC.

また、ヒマワリ状粒子とは、粒子径の大きな基体用金属酸化物粒子の外部表面に粒子径の小さい被覆用金属酸化物粒子が単層で被覆した金属酸化物粒子を意味している。
ヒマワリ状粒子の製造方法としては、正または負の表面電位を有し、平均粒子径が概ね40〜600nmの範囲にある基体用金属酸化物粒子と、これと異なる正または負の表面電位を有し、平均粒子径が概ね4〜60nmの範囲にある被覆用金属酸化物粒子との混合分散液を調製し、ついで、陰イオン交換樹脂で処理して混合分散液のpHを6〜10に調整して基体用粒子表面に被覆用粒子を付着させ、ついで、加熱熟成して被覆用金属酸化物粒子を基体用金属酸化物粒子へ接合させ、必要に応じて、乾燥、加熱処理することによって調製することができる。
The sunflower-like particle means a metal oxide particle in which a coating metal oxide particle having a small particle size is coated with a single layer on the outer surface of a metal oxide particle for a substrate having a large particle size.
As a method for producing sunflower-like particles, a metal oxide particle for a substrate having a positive or negative surface potential and an average particle diameter in the range of about 40 to 600 nm and a positive or negative surface potential different from this are used. Then, a mixed dispersion liquid with coating metal oxide particles having an average particle diameter of approximately 4 to 60 nm is prepared, and then the pH of the mixed dispersion liquid is adjusted to 6 to 10 by treatment with an anion exchange resin. Then, the coating particles are attached to the surface of the substrate particles, and then heated and aged to join the coating metal oxide particles to the substrate metal oxide particles, and if necessary, dried and heat-treated. can do.

このような外部表面に微細な疣状突起(凸部)を有する異形粒子であると、後述する金属が凹部に担持されるが、金属が凹部に微細な粒子として担持され、この金属がOHラジカルの発生に有効に寄与し、一方、金属酸化物粒子の凸部が被研磨基板との衝突による研磨能を発揮、この両者が有効に寄与すると考えられる。   If the outer surface has fine irregular-shaped projections (projections), the metal described later is supported in the recesses, but the metal is supported in the recesses as fine particles, and this metal is OH radical. On the other hand, it is considered that the convex portions of the metal oxide particles exhibit polishing ability due to collision with the substrate to be polished, and both of these effectively contribute.

金属酸化物粒子の平均粒子径(D)は7〜600nm、さらには10〜400nm、特に10〜100nmの範囲にあることが好ましい。
金属酸化物粒子の平均粒子径(D)が7nm未満の場合は、金属を担持できない場合があり、できたとしても充分な研磨性能が得られない場合がある。
金属酸化物粒子の平均粒子径(D)が600nmを超えると、研磨時にスクラッチ傷が入り面精度、表面平滑性等が不充分となる場合がある。
本発明では、金属酸化物粒子の平均粒子径(D)はレーザー方式粒度分布測定装置(日機装(株)製:マイクロトラックUPA)で測定する。
The average particle diameter (D A ) of the metal oxide particles is preferably 7 to 600 nm, more preferably 10 to 400 nm, and particularly preferably 10 to 100 nm.
When the average particle diameter (D A ) of the metal oxide particles is less than 7 nm, the metal may not be supported, and even if it can, sufficient polishing performance may not be obtained.
If the average particle diameter (D A ) of the metal oxide particles exceeds 600 nm, scratching may occur during polishing and surface accuracy, surface smoothness, etc. may be insufficient.
In the present invention, the average particle diameter (D A ) of the metal oxide particles is measured with a laser-type particle size distribution analyzer (manufactured by Nikkiso Co., Ltd .: Microtrac UPA).

金属
金属としては、過酸化水素と反応しOHラジカルを発生することができれば特に制限はないが、Ag、Pd、Au、Pt、Cu、Feから選ばれる少なくとも一種であることが好ましい。
なかでも、Ag、Au、Pt、Pd活性が高く、ラジカル発生能が高いので好適に採用することができる。
このような金属の担持量は、金属酸化物粒子100重量部に対し金属として0.01〜1200重量部、さらには0.1〜800重量部、特に0.1〜600重量部の範囲にあることが好ましい。
The metal metal is not particularly limited as long as it can react with hydrogen peroxide to generate OH radicals, but is preferably at least one selected from Ag, Pd, Au, Pt, Cu, and Fe.
Especially, since Ag, Au, Pt, Pd activity is high and radical generating ability is high, it can employ | adopt suitably.
The amount of the metal supported is in the range of 0.01 to 1200 parts by weight, more preferably 0.1 to 800 parts by weight, particularly 0.1 to 600 parts by weight as metal with respect to 100 parts by weight of the metal oxide particles. It is preferable.

金属の担持量が、金属酸化物粒子100重量部に対し金属として0.01重量部未満の場合は、金属の触媒作用が充分発現できずに充分な研磨特性が得られない場合がある。
金属の担持量が、金属酸化物粒子100重量部に対し金属として1200重量部を超えてもさらに研磨性能が向上することもなく、高価な金属の使用量の増加により経済性が低下する。
特に、金属の担持量が、金属酸化物粒子100重量部に対して0.1〜600重量部の範囲にあれば、金属の種類、金属酸化物粒子の形状、粒子径等によっても異なるが、金属酸化物粒子が完全に被覆されることもなく、金属の触媒作用と表面に露出した金属酸化物粒子の研磨作用の相乗効果により研磨性能に優れた研磨用金属担持金属酸化物粒子が得られる。
If the amount of metal supported is less than 0.01 parts by weight as metal with respect to 100 parts by weight of metal oxide particles, the catalytic action of the metal cannot be sufficiently exhibited and sufficient polishing characteristics may not be obtained.
Even if the amount of the metal supported exceeds 1200 parts by weight as metal with respect to 100 parts by weight of the metal oxide particles, the polishing performance is not further improved, and the economical efficiency decreases due to an increase in the amount of expensive metal used.
In particular, if the amount of metal supported is in the range of 0.1 to 600 parts by weight with respect to 100 parts by weight of metal oxide particles, it varies depending on the type of metal, the shape of the metal oxide particles, the particle diameter, The metal oxide particles are not completely coated, and the metal-supported metal oxide particles for polishing having excellent polishing performance can be obtained by the synergistic effect of the catalytic action of the metal and the polishing action of the metal oxide particles exposed on the surface. .

このような金属の少なくとも一部は金属酸化物粒子の外部表面に担持されていることが好ましい。
金属が金属酸化物粒子の外部表面、特に異形粒子の場合は凹部に存在していると、前記したように、金属によるOHラジカルの生成が促進され、同時に凸部と被研磨基板との衝突による研磨能との相乗効果により研磨性能に優れた研磨用金属担持金属酸化物粒子が得られる。
It is preferable that at least a part of such a metal is supported on the outer surface of the metal oxide particles.
When the metal is present on the outer surface of the metal oxide particle, particularly in the case of irregularly shaped particles, as described above, the generation of OH radicals by the metal is promoted, and at the same time, due to the collision between the convex part and the substrate to be polished. Due to a synergistic effect with the polishing ability, metal-supporting metal oxide particles for polishing excellent in polishing performance can be obtained.

金属の担持方法としては、前記金属酸化物粒子に金属を所定量担持することができれば特に制限はなく、金属の種類、金属酸化物粒子の種類によっても異なるが、例えば、特開2012−116699号公報に開示した金属被覆金属酸化物微粒子の製造方法を採用することができる。
具体的には、金属酸化物粒子分散液に、金属錯化剤を固形分として、金属酸化物微粒子の重量の所定量の範囲となるように添加して金属酸化物微粒子にポリビニルピロリドン等の金属錯化剤を吸着させ、ついで、金属塩水溶液を添加し、ついで、水素、水素化ホウ素ナトリウムなどの還元剤を添加して金属塩を還元する方法が挙げられる。
The metal loading method is not particularly limited as long as a predetermined amount of metal can be loaded on the metal oxide particles, and differs depending on the type of metal and the type of metal oxide particles. For example, JP 2012-116699 A The method for producing metal-coated metal oxide fine particles disclosed in the publication can be employed.
Specifically, a metal complexing agent is added to the metal oxide particle dispersion as a solid component so that the weight of the metal oxide fine particles is within a predetermined range, and a metal such as polyvinylpyrrolidone is added to the metal oxide fine particles. Examples include a method of adsorbing a complexing agent, then adding an aqueous metal salt solution, and then adding a reducing agent such as hydrogen or sodium borohydride to reduce the metal salt.

また、特開2012−30149号公報に開示した金属粒子担持触媒の製造方法を採用することもできる。
具体的には、イオン交換体を含む一次粒子径が1〜500nmの担体物質を溶媒に分散させた懸濁液に、所定の1種以上の金属イオンを添加して担持する方法が挙げられる。
Moreover, the manufacturing method of the metal particle carrying catalyst disclosed by Unexamined-Japanese-Patent No. 2012-30149 can also be employ | adopted.
Specifically, there may be mentioned a method in which a predetermined one or more metal ions are added to and supported on a suspension in which a carrier substance having a primary particle size of 1 to 500 nm including an ion exchanger is dispersed in a solvent.

また、特開2009−96661号公報に開示した導電性シリカ粒子の製造方法に準じた方法を採用することもできる。
また、特開2010−103109号公報に開示した棒状導電性微粒子群の製造方法に準じた方法を採用することもできる。
例えば、アルミナ等の繊維状金属酸化物粒子を水・アルコール混合溶媒に分散させ、これに硝酸銀、硝酸パラジウムなどの金属塩を添加した後、所定量のクエン酸3ナトリウム、硫酸第1鉄等の還元剤を加え、窒素雰囲気下で撹拌することによって製造することができる。
Also, a method according to the method for producing conductive silica particles disclosed in JP-A-2009-96661 can be employed.
In addition, a method according to the method for producing a rod-shaped conductive fine particle group disclosed in JP 2010-103109 A can be employed.
For example, after dispersing fibrous metal oxide particles such as alumina in a water / alcohol mixed solvent, and adding a metal salt such as silver nitrate or palladium nitrate thereto, a predetermined amount of trisodium citrate, ferrous sulfate, etc. It can be produced by adding a reducing agent and stirring under a nitrogen atmosphere.

つぎに、本発明に係る研磨剤について説明する。
[研磨剤]
本発明に係る研磨剤は、前記した研磨用金属担持金属酸化物粒子を含んでなることを特徴としている。
研磨用金属担持金属酸化物粒子
研磨用金属担持金属酸化物粒子としては、前記した研磨用金属担持金属酸化物粒子を用いる。
さらに、本発明の研磨剤には、酸化剤が含まれており、酸化剤としては過酸化水素、オゾン、次亜塩素酸塩、過塩素酸塩等が挙げられる。なかでも、過酸化水素はOHラジカルが生成しやすく、研磨砥粒の凝集を伴うこともないので好適に用いることができる。
Next, the abrasive according to the present invention will be described.
[Abrasive]
The abrasive according to the present invention is characterized by comprising the above-described metal-supporting metal oxide particles for polishing.
Polishing metal-supporting metal oxide particles The polishing metal-supporting metal oxide particles described above are used as the polishing metal-supporting metal oxide particles.
Furthermore, the polishing agent of the present invention contains an oxidizing agent, and examples of the oxidizing agent include hydrogen peroxide, ozone, hypochlorite, and perchlorate. Among these, hydrogen peroxide can be suitably used because it easily generates OH radicals and does not accompany agglomeration of abrasive grains.

研磨剤に添加する酸化剤はPt、Au以外の金属を担持させたものを使用する場合は、研磨剤中に酸化物が存在すると酸化による金属イオン化が進み金属が溶解するので、研磨時に基材上に別添加すると金属が溶解せず、研磨が可能となる。
この理由は、さだかでないが、酸化剤が金属から電子を引き抜きイオン化させようとするが、金属は基材から電子を奪い酸化されないようにしていると推定している。基材は電子を奪われ、イオン化(研磨される)し酸化剤により酸化物として基材外に析出する。この原理(触媒作用)で基板は研磨され平滑性の高い基材が得られていると推定している。
When using an oxidant loaded with a metal other than Pt or Au, if the oxide is present in the abrasive, the metal ionization by oxidation proceeds and the metal dissolves. If added separately, the metal does not dissolve and polishing becomes possible.
The reason for this is not clear, but it is presumed that the oxidizing agent pulls electrons from the metal and ionizes them, but the metal takes electrons from the base material and prevents them from being oxidized. The substrate is deprived of electrons, is ionized (polished), and is deposited outside the substrate as an oxide by an oxidizing agent. Based on this principle (catalytic action), it is presumed that the substrate is polished and a highly smooth base material is obtained.

また、本発明の研磨剤の研磨対象はSi、SiC、GaN、Al、AlN、Cu、TiN、SiNのいずれかから選ばれる少なくと1種以上であることが好ましい。
これらの研磨対象に対しては、研磨速度が高く、平滑で高精細な研磨面を得ることができる。
さらに、本発明の研磨剤に、本発明の研磨用金属担持金属酸化物粒子、酸化剤とともに使用される他の成分の例を以下に列挙するが、これらに限定されるものではない。
Further, it is preferable that the polishing object of the present invention is at least one selected from Si, SiC, GaN, Al, AlN, Cu, TiN, and SiN.
For these objects to be polished, the polishing rate is high, and a smooth and finely polished surface can be obtained.
Furthermore, examples of other components used in the polishing agent of the present invention together with the metal-supported metal oxide particles for polishing and the oxidizing agent of the present invention are listed below, but are not limited thereto.

研磨促進剤として、アルカリ系では、水酸化カリウム、水酸化ナトリウムなどの金属水酸化物、炭酸ナトリウム、炭酸アンモニウム等の金属炭酸塩、アンモニア、モノエタノールアミン、ピペラジン等のアミン類、テトラメチルアンモニウムなどの第4級アンモニウム水酸化物等、酸化物系では、塩素化合物、フッ化水素酸などが挙げられる。とりわけフッ化水素酸は、研磨時の触媒反応で生成したSiO2面の溶解を促進するために好適に使用することができる。フッ化水素酸は金属酸化物としてシリカを利用した場合、金属担持量が少ない場合は、研磨剤に混合した際に溶解が生じる場合がある。そのため研磨剤に添加するのではなく、研磨時に基材上に別添加して使用することが好適である。
界面活性剤としては、アニオン系、カチオン系、ノニオン系、両性の界面活性剤を使用
することができる。
As a polishing accelerator, in alkaline systems, metal hydroxides such as potassium hydroxide and sodium hydroxide, metal carbonates such as sodium carbonate and ammonium carbonate, amines such as ammonia, monoethanolamine and piperazine, tetramethylammonium and the like Examples of oxides such as quaternary ammonium hydroxides include chlorine compounds and hydrofluoric acid. In particular, hydrofluoric acid can be suitably used to promote dissolution of the SiO 2 surface generated by the catalytic reaction during polishing. When hydrofluoric acid uses silica as a metal oxide, if the amount of metal supported is small, dissolution may occur when mixed with an abrasive. Therefore, it is preferable not to add it to the abrasive but to add it separately on the substrate during polishing.
As the surfactant, anionic, cationic, nonionic or amphoteric surfactants can be used.

緩衝剤として利用されるイオンとしては、調整するpH範囲にもよるが、陽イオンが第四級アンモニウムイオン及びアルカリ金属イオンの少なくとも1種以上であり、陰イオンが炭酸イオン、炭酸水素イオン、ホウ酸イオン、及びフェノールの少なくとも1種以上であることが好ましい。特に好適なのは炭酸イオンと炭酸水素イオンの混合物、あるいはホウ酸イオンなどを挙げることができる。   As ions used as a buffering agent, although depending on the pH range to be adjusted, the cation is at least one of quaternary ammonium ion and alkali metal ion, and the anion is carbonate ion, bicarbonate ion, boron. It is preferable that it is at least 1 type or more of an acid ion and phenol. Particularly preferred are a mixture of carbonate ions and bicarbonate ions, borate ions, and the like.

安定剤としては、カルボキシメチルセルロース、ヒドロキシエチルセルロースのようなセルロース類、ポリビニルアルコールのような水溶性高分子類、エタノール、エチレングリコール、プロピレングリコール、グリセリンのような水溶性アルコール類、アルキルベンゼンスルホン酸ソーダなどの界面活性剤、ポリアクリル酸塩のような有機系ポリアニオン系物質、塩化マグネシウム、酢酸カリウムのような無機塩等を挙げることができる。
研磨剤における、金属担持金属酸化物粒子の濃度は、通常は1〜20重量%で使用されるが、必ずしもこの範囲に限定されるものではない。
また、酸化剤の濃度は、酸化剤の種類、金属担持金属酸化物粒子の濃度、他の添加剤の種類および量等によっても異なるが概ね0.1〜30重量%の範囲であるが、必ずしもこの範囲に限定されるものではない。
Examples of the stabilizer include celluloses such as carboxymethyl cellulose and hydroxyethyl cellulose, water-soluble polymers such as polyvinyl alcohol, water-soluble alcohols such as ethanol, ethylene glycol, propylene glycol and glycerin, and sodium alkylbenzene sulfonate. Examples thereof include surfactants, organic polyanionic substances such as polyacrylates, inorganic salts such as magnesium chloride and potassium acetate.
The concentration of the metal-supported metal oxide particles in the abrasive is usually 1 to 20% by weight, but is not necessarily limited to this range.
The concentration of the oxidizing agent is generally in the range of 0.1 to 30% by weight although it varies depending on the type of oxidizing agent, the concentration of metal-supported metal oxide particles, the type and amount of other additives, etc. It is not limited to this range.

以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものでは
ない。
[実施例1]
研磨用金属酸化物粒子(1)の調製
金属酸化物微粒子としてシリカゾル(日揮触媒化成(株)製:カタロイドSI-45P、平均粒子径45nm、固形分濃度40重量%、比表面積61m/g)0.084gを水400gに分散させ、固形分濃度0.0084重量%のシリカ微粒子分散液400.08gを調製した。
別途、金属錯化剤としてポリビニルピロリドン(ARDRICH(株)製:MW55000)0.032gを水42.45gに溶解して、濃度0.075重量%のポリビニルピロリドン水溶液42.77gを調製した。
ついで、固形分濃度0.0084重量%のシリカ微粒子分散液に金属錯化剤(ポリビニルピロリドン)水溶液42.77gを添加し、20℃で 1時間撹拌してシリカ微粒子に金属錯化剤を吸着させた。この時の金属錯化剤/金属酸化物微粒子重量割合は0.95であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
[Example 1]
Preparation of metal oxide particles for polishing (1) Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-45P, average particle size 45 nm, solid content concentration 40% by weight, specific surface area 61 m 2 / g) as metal oxide fine particles 0.084 g was dispersed in 400 g of water to prepare 4000.08 g of a silica fine particle dispersion having a solid content concentration of 0.0084 wt%.
Separately, 0.032 g of polyvinylpyrrolidone (made by ARDRICH: MW55000) as a metal complexing agent was dissolved in 42.45 g of water to prepare 42.77 g of a polyvinylpyrrolidone aqueous solution having a concentration of 0.075% by weight.
Next, 42.77 g of a metal complexing agent (polyvinylpyrrolidone) aqueous solution was added to a dispersion of silica fine particles having a solid content concentration of 0.0084% by weight and stirred at 20 ° C. for 1 hour to adsorb the metal complexing agent to the silica fine particles. It was. The metal complexing agent / metal oxide fine particle weight ratio at this time was 0.95.

つぎに、金属塩水溶液として濃度6.65重量%の塩化白金酸水溶液7.01gを添加した。この時の金属塩/金属錯化剤モル比(MMS)/(MMC)は3.95であった。なお、ポリビニルピロリドンはポリマーであるためN-ビニル−2−ピロリドンの分子量:111.14を使用してモル比(MMS)/(MMC)を計算した。
つぎに、還元剤として濃度0.1重量%の水素化ホウ素ナトリウム水溶液17.21gを30秒で添加し、その後、50℃で1時間撹拌を継続した。この時、黒色に変色した。
この時の還元剤/金属塩モル比は0.4であった。
ついで、限外濾過膜法により充分なイオン交換水を用いて洗浄し、全固形分濃度20重量%まで濃縮して金属被覆シリカ粒子である研磨用金属酸化物粒子(1)分散液を調製した。
得られた研磨用金属酸化物粒子(1)について、平均粒子径を測定し、結果を表に示す。また、被覆状態は走査電子顕微鏡(日立製作所製:S-2000型)にて観察し、完全被覆状態か、部分被覆状態か確認した。
Next, 7.01 g of an aqueous chloroplatinic acid solution having a concentration of 6.65% by weight was added as an aqueous metal salt solution. The metal salt / metal complexing agent molar ratio (M MS ) / (M MC ) at this time was 3.95. Since polyvinylpyrrolidone is a polymer, the molar ratio (M MS ) / (M MC ) was calculated using the molecular weight of N-vinyl-2-pyrrolidone: 111.14.
Next, 17.21 g of a sodium borohydride aqueous solution having a concentration of 0.1% by weight as a reducing agent was added in 30 seconds, and then stirring was continued at 50 ° C. for 1 hour. At this time, the color changed to black.
The reducing agent / metal salt molar ratio at this time was 0.4.
Subsequently, it was washed with sufficient ion-exchanged water by the ultrafiltration membrane method, and concentrated to a total solid concentration of 20% by weight to prepare a metal oxide particle (1) dispersion for polishing, which was metal-coated silica particles. .
With respect to the obtained metal oxide particles for polishing (1), the average particle diameter was measured, and the results are shown in the table. Moreover, the coating state was observed with a scanning electron microscope (manufactured by Hitachi, Ltd .: S-2000 type), and it was confirmed whether it was a complete coating state or a partial coating state.

研磨用スラリー(1)の調製
全固形分濃度20重量%の研磨用金属酸化物粒子(1)分散液に、濃度1重量%の酢酸および超純水を加え、全固形分濃度10.0重量%、濃度35%の過酸化水素を酸化水素濃度5%になるように調整したpH5.0の研磨用スラリー(1)を調製した。
Preparation of polishing slurry (1) To a dispersion of polishing metal oxide particles (1) having a total solid concentration of 20% by weight, acetic acid and ultrapure water having a concentration of 1% by weight are added to obtain a total solid concentration of 10.0% by weight. A polishing slurry (1) having a pH of 5.0 adjusted to a hydrogen peroxide concentration of 5% with a hydrogen peroxide concentration of 5% and a concentration of 35% was prepared.

被研磨基板(SiC)
直径2インチの4H-SiC単結晶ウェハー表面の仕上げ研磨を実施した。ウェハー表面の方位は、Si(0001)面から(1-210)方向に8°傾けたSi面である。SiCウェハーの表面状態は、ダイヤモンド遊離砥粒で機械研磨した状態で、ウェハー表面の凹凸は、AFMで測定した結果、Ra=0.8nmであった。
Polished substrate (SiC)
Final polishing of the surface of a 4H—SiC single crystal wafer having a diameter of 2 inches was performed. The orientation of the wafer surface is a Si surface inclined by 8 ° in the (1-210) direction from the Si (0001) surface. The surface state of the SiC wafer was mechanically polished with diamond free abrasive grains, and the unevenness of the wafer surface was Ra = 0.8 nm as a result of measurement by AFM.

研磨試験
上記被研磨基板を、研磨装置( 日本エギンス株式会社 EJ-380IN)にセットし、研磨パッドとして、ニッタ・ハース社製「Suba800」を使用し、基板荷重26KPa、テーブル回転速度60rpmで研磨用スラリー(1)を10g/分の速度で、濃度3重量%のHF水溶液を10g/分の速度で別々に4時間供給して研磨を行った。研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。また、表面の平滑性を原子間力顕微鏡(AFM)((株)日立ハイテクサイエンス社製)でRaを測定した。結果を表に示す。
Polishing test The substrate to be polished is set in a polishing apparatus (Nippon Eggins Co., Ltd. EJ-380IN), and “Suba800” manufactured by Nitta Haas is used as a polishing pad. For polishing at a substrate load of 26 KPa and a table rotation speed of 60 rpm. The slurry (1) was polished at a rate of 10 g / min and an aqueous HF solution having a concentration of 3% by weight was separately supplied at a rate of 10 g / min for 4 hours. The polishing rate was calculated by determining the weight change of the substrate to be polished before and after polishing. Further, Ra was measured for surface smoothness with an atomic force microscope (AFM) (manufactured by Hitachi High-Tech Science Co., Ltd.). The results are shown in the table.

[実施例2]
研磨用金属酸化物粒子(2)の調製
金属酸化物微粒子として金平糖状シリカゾル(日揮触媒化成(株)製:カタロイドCO45A、平均粒子径45nm、固形分濃度40重量%、比表面積67m/g)0.084gを水400gに分散させ、固形分濃度0.0084重量%のシリカ微粒子分散液400.08gを調製した。
別途、金属錯化剤としてポリビニルピロリドン(ARDRICH(株)製:MW55000)0.032gを水42.45gに溶解して、濃度0.075重量%のポリビニルピロリドン水溶液42.77gを調製した。
ついで、固形分濃度0.0084重量%のシリカ微粒子分散液に金属錯化剤(ポリビニルピロリドン)水溶液42.77gを添加し、20℃で 1時間撹拌してシリカ微粒子に金属錯化剤を吸着させた。
この時の金属錯化剤/金属酸化物微粒子重量割合は0.95であった。
[Example 2]
Preparation of Metal Oxide Particles for Polishing (2) As a metal oxide fine particle, Kompei silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid CO45A, average particle size 45 nm, solid content concentration 40% by weight, specific surface area 67 m 2 / g) 0.084 g was dispersed in 400 g of water to prepare 4000.08 g of a silica fine particle dispersion having a solid content concentration of 0.0084 wt%.
Separately, 0.032 g of polyvinylpyrrolidone (made by ARDRICH: MW55000) as a metal complexing agent was dissolved in 42.45 g of water to prepare 42.77 g of a polyvinylpyrrolidone aqueous solution having a concentration of 0.075% by weight.
Next, 42.77 g of a metal complexing agent (polyvinylpyrrolidone) aqueous solution was added to a dispersion of silica fine particles having a solid content concentration of 0.0084% by weight and stirred at 20 ° C. for 1 hour to adsorb the metal complexing agent to the silica fine particles. It was.
The metal complexing agent / metal oxide fine particle weight ratio at this time was 0.95.

つぎに、金属塩水溶液として濃度6.65重量%の塩化白金酸水溶液3.17gを添加した。
この時の金属塩/金属錯化剤モル比(MMS)/(MMC)は1.8であった。
つぎに、還元剤として濃度0.1重量%の水素化ホウ素ナトリウム水溶液7.82gを30秒で添加し、その後、50℃で1時間撹拌を継続した。この時、黒色に変色した。
この時の還元剤/金属塩モル比は0.4であった。
ついで、限外濾過膜法により充分なイオン交換水を用いて洗浄して、全固形分濃度20重量%まで濃縮して金属被覆シリカ粒子である研磨用金属酸化物粒子(2)分散液を調製した。
以下実施例1と同様に平均粒子径の測定、被覆状態の観察を行った。結果を表に示す。
Next, 3.17 g of a chloroplatinic acid aqueous solution having a concentration of 6.65% by weight was added as an aqueous metal salt solution.
The metal salt / metal complexing agent molar ratio (M MS ) / (M MC ) at this time was 1.8.
Next, 7.82 g of a sodium borohydride aqueous solution having a concentration of 0.1% by weight as a reducing agent was added in 30 seconds, and then stirring was continued at 50 ° C. for 1 hour. At this time, the color changed to black.
The reducing agent / metal salt molar ratio at this time was 0.4.
Next, it is washed with sufficient ion exchange water by an ultrafiltration membrane method and concentrated to a total solid concentration of 20% by weight to prepare a metal oxide particle (2) dispersion for polishing which is a metal-coated silica particle. did.
Thereafter, the average particle diameter was measured and the coating state was observed in the same manner as in Example 1. The results are shown in the table.

研磨用スラリー(2)の調製
全固形分濃度20重量%の研磨用金属酸化物粒子(2)分散液を使用した以外は実施例1と同様に研磨用スラリー(2)を調製した。
研磨試験
研磨用スラリー(2)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
Preparation of Polishing Slurry (2) A polishing slurry (2) was prepared in the same manner as in Example 1 except that a dispersion of polishing metal oxide particles (2) having a total solid concentration of 20% by weight was used.
Polishing test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (2) was used. The results are shown in the table.

[実施例3]
研磨用金属酸化物粒子(3)の調製
金属酸化物微粒子として金平糖状シリカゾル(日揮触媒化成(株)製:カタロイドCO45A、平均粒子径45nm、固形分濃度40重量%、比表面積67m/g)0.084gを水400gに分散させ、固形分濃度0.0084重量%のシリカ微粒子分散液400.08gを調製した。
別途、金属錯化剤としてポリビニルピロリドン(ARDRICH(株)製:MW55000)0.032gを水42.45gに溶解して、濃度0.075重量%のポリビニルピロリドン水溶液42.77gを調製した。
ついで、固形分濃度0.0084重量%のシリカ微粒子分散液に金属錯化剤(ポリビニルピロリドン)水溶液42.77gを添加し、20℃で 1時間撹拌してシリカ微粒子に金属錯化剤を吸着させた。
この時の金属錯化剤/金属酸化物微粒子重量割合は0.95であった。
[Example 3]
Preparation of metal oxide particles (3) for polishing
As a metal oxide fine particle, 0.084 g of gold flat sugar-like silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid CO45A, average particle diameter 45 nm, solid content concentration 40 wt%, specific surface area 67 m 2 / g) is dispersed in 400 g of water and solid. 400.08 g of a silica fine particle dispersion having a partial concentration of 0.0084% by weight was prepared.
Separately, 0.032 g of polyvinylpyrrolidone (made by ARDRICH: MW55000) as a metal complexing agent was dissolved in 42.45 g of water to prepare 42.77 g of a polyvinylpyrrolidone aqueous solution having a concentration of 0.075% by weight.
Next, 42.77 g of a metal complexing agent (polyvinylpyrrolidone) aqueous solution was added to a dispersion of silica fine particles having a solid content concentration of 0.0084% by weight and stirred at 20 ° C. for 1 hour to adsorb the metal complexing agent to the silica fine particles. It was.
The metal complexing agent / metal oxide fine particle weight ratio at this time was 0.95.

つぎに、金属塩水溶液として濃度6.65重量%の塩化白金酸水溶液0.11gを添加した。
この時の金属塩/金属錯化剤モル比(MMS)/(MMC)は0.06であった。
つぎに、還元剤として濃度0.1重量%の水素化ホウ素ナトリウム水溶液0.26を30秒で添加し、その後、50℃で1時間撹拌を継続した。この時、黒色に変色した。
この時の還元剤/金属塩モル比は0.4であった。
ついで、限外濾過膜法により充分なイオン交換水を用いて洗浄して、全固形分濃度20重量%まで濃縮して金属被覆シリカ粒子である研磨用金属酸化物粒子(3)分散液を調製した。
以下実施例1と同様に平均粒子径の測定、被覆状態の観察を行った。結果を表に示す。
Next, 0.11 g of a chloroplatinic acid aqueous solution having a concentration of 6.65% by weight was added as an aqueous metal salt solution.
The metal salt / metal complexing agent molar ratio (M MS ) / (M MC ) at this time was 0.06.
Next, 0.26 sodium borohydride aqueous solution having a concentration of 0.1% by weight as a reducing agent was added in 30 seconds, and then the stirring was continued at 50 ° C. for 1 hour. At this time, the color changed to black.
The reducing agent / metal salt molar ratio at this time was 0.4.
Next, it is washed with sufficient ion exchange water by an ultrafiltration membrane method and concentrated to a total solid concentration of 20% by weight to prepare a metal oxide particle (3) dispersion for polishing which is a metal-coated silica particle. did.
Thereafter, the average particle diameter was measured and the coating state was observed in the same manner as in Example 1. The results are shown in the table.

研磨用スラリー(3)の調製
全固形分濃度20重量%の研磨用金属酸化物粒子(3)分散液を使用した以外は実施例1と同様に研磨用スラリー(3)を調製した。
研磨試験
研磨用スラリー(3)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
Preparation of polishing slurry (3) A polishing slurry (3) was prepared in the same manner as in Example 1 except that a dispersion of polishing metal oxide particles (3) having a total solid concentration of 20% by weight was used.
Polishing test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (3) was used. The results are shown in the table.

[実施例4]
研磨用金属酸化物粒子(4)の調製
金属酸化物微粒子として金平糖状シリカゾル(日揮触媒化成(株)製:カタロイドCO45A、平均粒子径45nm、固形分濃度40重量%、比表面積67m/g)0.084gを水400gに分散させ、固形分濃度0.0084重量%のシリカ微粒子分散液400.08gを調製した。
別途、金属錯化剤としてポリビニルピロリドン(ARDRICH(株)製:MW55000)0.032gを水42.45gに溶解して、濃度0.075重量%のポリビニルピロリドン水溶液42.77gを調製した。
ついで、固形分濃度0.0084重量%のシリカ微粒子分散液に金属錯化剤(ポリビニルピロリドン)水溶液42.77gを添加し、20℃で 1時間撹拌してシリカ微粒子に金属錯化剤を吸着させた。
この時の金属錯化剤/金属酸化物微粒子重量割合は0.95であった。
[Example 4]
Preparation of metal oxide particles (4) for polishing
As a metal oxide fine particle, 0.084 g of gold flat sugar-like silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid CO45A, average particle diameter 45 nm, solid content concentration 40 wt%, specific surface area 67 m 2 / g) is dispersed in 400 g of water and solid. 400.08 g of a silica fine particle dispersion having a partial concentration of 0.0084% by weight was prepared.
Separately, 0.032 g of polyvinylpyrrolidone (made by ARDRICH: MW55000) as a metal complexing agent was dissolved in 42.45 g of water to prepare 42.77 g of a polyvinylpyrrolidone aqueous solution having a concentration of 0.075% by weight.
Next, 42.77 g of a metal complexing agent (polyvinylpyrrolidone) aqueous solution was added to a dispersion of silica fine particles having a solid content concentration of 0.0084% by weight and stirred at 20 ° C. for 1 hour to adsorb the metal complexing agent to the silica fine particles. It was.
The metal complexing agent / metal oxide fine particle weight ratio at this time was 0.95.

つぎに、金属塩水溶液として濃度6.65重量%の塩化白金酸水溶液8.50gを添加した。
この時の金属塩/金属錯化剤モル比(MMS)/(MMC)は4.8であった。
つぎに、還元剤として濃度0.1重量%の水素化ホウ素ナトリウム水溶液20.9gを30秒で添加し、その後、50℃で1時間撹拌を継続した。この時、黒色に変色した。
この時の還元剤/金属塩モル比は0.4であった。
ついで、限外濾過膜法により充分なイオン交換水を用いて洗浄して、全固形分濃度20重量%まで濃縮して金属被覆シリカ粒子である研磨用金属酸化物粒子(4)分散液を調製した。
以下実施例1と同様に平均粒子径の測定、被覆状態の観察を行った。結果を表に示す。
Next, 8.50 g of an aqueous chloroplatinic acid solution having a concentration of 6.65% by weight was added as an aqueous metal salt solution.
The metal salt / metal complexing agent molar ratio (M MS ) / (M MC ) at this time was 4.8.
Next, 20.9 g of a sodium borohydride aqueous solution having a concentration of 0.1% by weight as a reducing agent was added in 30 seconds, and then stirring was continued at 50 ° C. for 1 hour. At this time, the color changed to black.
The reducing agent / metal salt molar ratio at this time was 0.4.
Next, it is washed with sufficient ion-exchanged water by an ultrafiltration membrane method and concentrated to a total solid content of 20% by weight to prepare a metal oxide particle (4) dispersion for polishing which is a metal-coated silica particle. did.
Thereafter, the average particle diameter was measured and the coating state was observed in the same manner as in Example 1. The results are shown in the table.

研磨用スラリー(4)の調製
全固形分濃度20重量%の研磨用金属酸化物粒子(4)分散液を使用した以外は実施例1と同様に研磨用スラリー(4)を調製した。
研磨試験
研磨用スラリー(4)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
Preparation of polishing slurry (4) A polishing slurry (4) was prepared in the same manner as in Example 1 except that a dispersion of polishing metal oxide particles (4) having a total solid concentration of 20% by weight was used.
Polishing Test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (4) was used. The results are shown in the table.

[実施例5]
研磨用金属酸化物粒子(5)の調製
シリカゾル(日揮触媒化成(株)製:カタロイドSI−80P、平均粒子径80nm、表面電位−60mV、SiO濃度20重量%、pH10.2)750gに陽イオン交換樹脂(ROHMHARS(株)製:デュオライト)150gを混合し、0.5時間撹拌した。
ついで、陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SUNNUP−C)135gを混合し、0.5時間撹拌し、ついで、陰イオン交換樹脂を分離して、SiO濃度20重量%の精製シリカゾル750gを調製した。
ついで、精製シリカゾル750gにポリ塩化アルミニウム(多木化学(株)製:タキバイン#1000、Al濃度23.55重量%)5.1gを添加し、常温で0.5時間撹拌した。ついで、純水2903gを添加して希釈してSiO濃度4.1重量%のシリカからなる基体用金属酸化物粒子(A-1)分散液3659gを調製した。基体用金属酸化物粒子(A-1)分散液のpHは3.7であった。
[Example 5]
Preparation of metal oxide particles (5) for polishing Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-80P, average particle diameter 80 nm, surface potential -60 mV, SiO 2 concentration 20 wt%, pH 10.2) positive to 750 g 150 g of an ion exchange resin (ROHMHARS Co., Ltd .: Duolite) was mixed and stirred for 0.5 hour.
Next, after separating the cation exchange resin, 135 g of an anion exchange resin (Mitsubishi Chemical Co., Ltd .: SUNUP-C) was mixed and stirred for 0.5 hour, and then the anion exchange resin was separated, 750 g of purified silica sol having a SiO 2 concentration of 20% by weight was prepared.
Next, 5.1 g of polyaluminum chloride (manufactured by Taki Chemical Co., Ltd .: Takibaine # 1000, Al 2 O 3 concentration 23.55 wt%) was added to 750 g of purified silica sol, and the mixture was stirred at room temperature for 0.5 hour. Subsequently, 2903 g of pure water was added and diluted to prepare 3659 g of a dispersion of metal oxide particles for substrate (A-1) made of silica having a SiO 2 concentration of 4.1 wt%. The pH of the metal oxide particle (A-1) dispersion for the substrate was 3.7.

ついで、SiO濃度4.1重量%のシリカからなる基体用金属酸化物粒子(A-1)分散液
3659gに、被覆用金属酸化物粒子(B-1)としてシリカゾル(日揮触媒化成(株)製:カタロイドSN−350、平均粒子径7nm、表面電位−23mV、SiO濃度16.6重量%、pH3.7)367gを混合した。このとき、混合分散液のSiO濃度4.8重量%、pHは3.5であった。ついで、混合分散液に陰イオン交換樹脂(三菱化学(株)製:SUNNUP−C)135gを混合し、0.5時間撹拌し、ついで、陰イオン交換樹脂を分離し、ロータリーエバポレーターによりSiO濃度10重量%のシリカからなる分散液を調製した。その分散液のpHは9.0であった。(工程(b))
ついで、93℃で3時間熟成して、ついで、ロータリーエバポレーターで濃縮してSiO濃度10重量%の分散液を調製した。分散液のpHは9.0であった。(工程(c))
ついで、濃度3重量%の酢酸水溶液を添加して分散液のpHを5.5に調整し、ついで、ロータリーエバポレーターで濃縮してSiO濃度10重量%のシリカからなる分散液を調製した。(工程(d))
得られた分散液を120℃で15時間乾燥し、その後、1000℃で2時間焼成してシリカからなる金属酸化物粒子を調製した。(工程(f))
ついで、金属酸化物粒子を純水に分散させ、SiO濃度10重量%の分散液とし、サンドミル(シンマルエンタープライゼス(株)製:ガラスビーズ0.5mmφ1100g)にて2160rpmで180分間解砕して金属酸化物粒子分散液を調製した。(工程(g))
ついで、ビーズを分離した分散液を遠心分離機(日立製作所(株)製:高速冷却遠心機)により、2000rpmで3分間分離して、ロータリーエバポレーターにて濃縮しSiO濃度40重量%の金属酸化物粒子(5)分散液を製造した。
Next, 3659 g of the substrate metal oxide particle (A-1) dispersion composed of silica having a SiO 2 concentration of 4.1% by weight was added to the silica sol (JGC Catalysts & Chemicals Co., Ltd.) as the coating metal oxide particle (B-1). Manufactured by Cataloid SN-350, average particle diameter 7 nm, surface potential -23 mV, SiO 2 concentration 16.6 wt%, pH 3.7) 367 g. At this time, the SiO 2 concentration of the mixed dispersion was 4.8% by weight and the pH was 3.5. Next, 135 g of an anion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: SUNUP-C) was mixed in the mixed dispersion, and the mixture was stirred for 0.5 hour. Then, the anion exchange resin was separated, and the SiO 2 concentration was separated by a rotary evaporator. A dispersion composed of 10% by weight of silica was prepared. The pH of the dispersion was 9.0. (Process (b))
Next, the mixture was aged at 93 ° C. for 3 hours, and then concentrated by a rotary evaporator to prepare a dispersion having a SiO 2 concentration of 10% by weight. The pH of the dispersion was 9.0. (Process (c))
Next, an aqueous acetic acid solution having a concentration of 3% by weight was added to adjust the pH of the dispersion to 5.5, and then concentrated by a rotary evaporator to prepare a dispersion composed of silica having a SiO 2 concentration of 10% by weight. (Process (d))
The obtained dispersion was dried at 120 ° C. for 15 hours, and then fired at 1000 ° C. for 2 hours to prepare metal oxide particles made of silica. (Process (f))
Next, the metal oxide particles are dispersed in pure water to obtain a dispersion having a SiO 2 concentration of 10% by weight, and pulverized for 180 minutes at 2160 rpm in a sand mill (manufactured by Shinmaru Enterprises Co., Ltd .: glass beads 0.5 mmφ1100 g). Thus, a metal oxide particle dispersion was prepared. (Process (g))
Next, the dispersion from which the beads have been separated is separated at 2000 rpm for 3 minutes by a centrifuge (manufactured by Hitachi, Ltd .: high-speed cooling centrifuge), concentrated on a rotary evaporator, and oxidized with a SiO 2 concentration of 40% by weight. A product particle (5) dispersion was produced.

得られた金属酸化物粒子(5)について平均粒子径、比表面積を表に、SEM写真を図1に示す。
ついで金属酸化物粒子(5)分散液を用いた以外は実施例2と同様にして 、全固形分濃度20重量%の金属被覆シリカ粒子である研磨用金属酸化物粒子(5)分散液を調製した。
以下実施例1と同様に平均粒子径の測定、被覆状態の観察を行った。結果を表に示す。
The average particle diameter and specific surface area of the obtained metal oxide particles (5) are shown in the table, and the SEM photograph is shown in FIG.
Next, a metal oxide particle (5) dispersion for polishing, which is metal-coated silica particles having a total solid content of 20% by weight, was prepared in the same manner as in Example 2 except that the metal oxide particle (5) dispersion was used. did.
Thereafter, the average particle diameter was measured and the coating state was observed in the same manner as in Example 1. The results are shown in the table.

研磨用スラリー(5)の調製
全固形分濃度20重量%の研磨用金属酸化物粒子(5)分散液を使用した以外は実施例1と同様に研磨用スラリー(5)を調製した。
研磨試験
研磨用スラリー(5)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
Preparation of polishing slurry (5) A polishing slurry (5) was prepared in the same manner as in Example 1 except that a polishing metal oxide particle (5) dispersion having a total solid content of 20% by weight was used.
Polishing Test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (5) was used. The results are shown in the table.

[実施例6]
研磨用金属酸化物粒子(6)の調製
硫酸セリウム(III)八水和物37.5gおよび蒸留水1765.8gを5L容器に入れ、攪拌して溶解した。引き続き攪拌しながら温度を93℃に昇温し、1.0%水酸化ナトリウム水溶液1255gの全量を一度に加え、攪拌しながら温度93℃で6時間維持した。次に30℃以下に冷却したところ、白色沈殿が得られた。この溶液のpHは10.0であった。この溶液を遠心分離装置を用いて、14000rpmで10分間処理した後、上澄み液を除去した。白色沈殿に蒸留水2884.5gを加え、更に遠心分離装置で、14000rpmで10分間処理した。この操作を合計3回行って、沈殿物を洗浄してセリア微粒子分散液(CeO濃度2.1重量%、pH10.0)を調製した。得られたセリア微粒子は単分散で平均粒子径は13nmであった。
ついで、セリア微粒子分散液3571.4gに陽イオン交換樹脂(ROHMHARS(株)製:デュオライト)75.0gを混合し、0.5時間撹拌し、被覆用金属酸化物粒子(B-2)分散液を調製した。
被覆用金属酸化物粒子(B-2)分散液のpHは3.0であった。
[Example 6]
Preparation of metal oxide particles (6) for polishing 37.5 g of cerium (III) sulfate octahydrate and 1765.8 g of distilled water were placed in a 5 L container and dissolved by stirring. Subsequently, the temperature was raised to 93 ° C. while stirring, and 1255 g of a 1.0% aqueous sodium hydroxide solution was added all at once, and the temperature was maintained at 93 ° C. for 6 hours with stirring. Next, when it cooled to 30 degrees C or less, white precipitate was obtained. The pH of this solution was 10.0. This solution was treated at 14000 rpm for 10 minutes using a centrifugal separator, and then the supernatant was removed. Distilled water (2884.5 g) was added to the white precipitate, and the mixture was further treated with a centrifugal separator at 14000 rpm for 10 minutes. This operation was performed three times in total, and the precipitate was washed to prepare a ceria fine particle dispersion (CeO 2 concentration 2.1 wt%, pH 10.0). The obtained ceria fine particles were monodispersed and the average particle size was 13 nm.
Next, 75.0 g of cation exchange resin (ROHMHARS Co., Ltd .: Duolite) was mixed with 3571.4 g of ceria fine particle dispersion, and stirred for 0.5 hour to disperse the metal oxide particles (B-2) for coating. A liquid was prepared.
The pH of the coating metal oxide particle (B-2) dispersion was 3.0.

ついで、実施例5と同様にして調製したSiO濃度4.1重量%のシリカからなる基体用金属酸化物粒子(A-1)分散液3659gに、被覆用金属酸化物粒子(B-2)分散液3571.4gを混合した。このとき、混合分散液のpHは3.2であった。(工程(a))
以下、実施例5と同様に工程(b)〜工程(g)を実施してSiO濃度40重量%の金属酸化物粒子(6)分散液を製造した。
ついで金属酸化物粒子粒子(6)分散液を用いた以外は実施例2と同様にして 、全固形分濃度20重量%の金属被覆シリカ粒子である研磨用金属酸化物粒子(6)分散液を調製した。
以下実施例1と同様に平均粒子径の測定、被覆状態の観察を行った。結果を表に示す。
Subsequently, the metal oxide particles for coating (B-2) were added to 3659 g of the substrate metal oxide particles (A-1) dispersion made of silica having a SiO 2 concentration of 4.1 wt% prepared in the same manner as in Example 5. 3571.4 g of the dispersion was mixed. At this time, the pH of the mixed dispersion was 3.2. (Process (a))
Thereafter, steps (b) to (g) were carried out in the same manner as in Example 5 to produce a dispersion of metal oxide particles (6) having a SiO 2 concentration of 40% by weight.
Next, a polishing metal oxide particle (6) dispersion, which is a metal-coated silica particle having a total solid concentration of 20% by weight, was prepared in the same manner as in Example 2 except that the metal oxide particle (6) dispersion was used. Prepared.
Thereafter, the average particle diameter was measured and the coating state was observed in the same manner as in Example 1. The results are shown in the table.

研磨用スラリー(6)の調製
全固形分濃度20重量%の研磨用金属酸化物粒子(6)分散液を使用した以外は実施例1と同様に研磨用スラリー(6)を調製した。
研磨試験
研磨用スラリー(6)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
Preparation of polishing slurry (6) A polishing slurry (6) was prepared in the same manner as in Example 1 except that a dispersion of polishing metal oxide particles (6) having a total solid concentration of 20% by weight was used.
Polishing Test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (6) was used. The results are shown in the table.

[実施例7]
研磨用金属酸化物粒子(7)の調製
純水100gに、繊維状アルミナ微粒子(平均長さが50nm、断面の平均径が10nm)と硝酸銀水溶液および硝酸パラジウム水溶液を、全固形分が1.0重量%となり、Ag:Pd:Al=60:20:20となるように混合して繊維状アルミナ微粒子分散金属塩水溶液を調製した。
この水溶液に、Ag・Pd金属1重量部あたり、0.01重量部となるような量でクエン酸3ナトリウム(有機安定化剤および還元剤)を含む水溶液に、硝酸銀および硝酸パラジウムの合計モル数と等モル数の硫酸第一鉄(還元剤)水溶液を加え、窒素雰囲気下で1時間攪拌して複合金属微粒子の分散液を得た。
得られた分散液は遠心分離機により分離した後、濃度1重量%のHCl水溶液で酸洗浄し、ついで、純水に分散させ、ついで、ポリアクリル酸を複合金属1重量部当たり0.0128重量部となるように加え、ついで、ロータリーエバポレーターで濃縮して全固形分濃度が20重量%の分散液を調製した。ついで、得られた分散液をナノマイザーシステム(ナノマイザー(株):LA-33-S)にて処理して、研磨用金属酸化物粒子(7)分散液を得た。
[Example 7]
Preparation of Polishing Metal Oxide Particles (7) 100 g of pure water, fibrous alumina fine particles (average length of 50 nm, average diameter of cross section of 10 nm), silver nitrate aqueous solution and palladium nitrate aqueous solution, with a total solid content of 1.0 It becomes wt%, Ag: Pd: Al 2 O 3 = 60: 20: mixed to prepare a fibrous alumina fine particles dispersed metal salt aqueous solution such that 20.
The total number of moles of silver nitrate and palladium nitrate in this aqueous solution containing trisodium citrate (an organic stabilizer and a reducing agent) in an amount of 0.01 parts by weight per 1 part by weight of Ag · Pd metal. An equimolar number of ferrous sulfate (reducing agent) aqueous solution was added and stirred for 1 hour under a nitrogen atmosphere to obtain a dispersion of composite metal fine particles.
The obtained dispersion is separated by a centrifuge, then acid washed with a 1% by weight HCl aqueous solution, then dispersed in pure water, and then polyacrylic acid is 0.0128 weight per 1 part by weight of the composite metal. And then concentrated by a rotary evaporator to prepare a dispersion having a total solid concentration of 20% by weight. Subsequently, the obtained dispersion was treated with a nanomizer system (Nanomizer Co., Ltd .: LA-33-S) to obtain a metal oxide particle (7) dispersion for polishing.

研磨用スラリー(7)の調製
全固形分濃度20重量%の研磨用金属酸化物粒子(7)分散液を使用した以外は実施例1と同様に研磨用スラリー(7)を調製した。
研磨試験
研磨用スラリー(7)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
Preparation of polishing slurry (7) A polishing slurry (7) was prepared in the same manner as in Example 1 except that a dispersion of polishing metal oxide particles (7) having a total solid concentration of 20% by weight was used.
Polishing Test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (7) was used. The results are shown in the table.

[実施例8]
研磨用金属酸化物粒子(8)の調製
金属酸化物微粒子としてシリカゾル(日揮触媒化成(株)製:カタロイドSI-45P、平均粒子径45nm、固形分濃度40重量%、比表面積61m/g)0.084gを水400gに分散させ、固形分濃度0.0084重量%のシリカ微粒子分散液400.08gを調製した。
別途、金属錯化剤としてポリビニルピロリドン(ARDRICH(株)製:MW55000)0.032gを水42.45gに溶解して、濃度0.075重量%のポリビニルピロリドン水溶液42.77gを調製した。
ついで、固形分濃度0.0084重量%のシリカ微粒子分散液に金属錯化剤(ポリビニルピロリドン)水溶液42.77gを添加し、20℃で 1時間撹拌してシリカ微粒子に金属錯化剤を吸着させた。
この時の金属錯化剤/金属酸化物微粒子重量割合は0.95であった。
[Example 8]
Preparation of metal oxide particles for polishing (8)
As a metal oxide fine particle, 0.084 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-45P, average particle diameter 45 nm, solid content concentration 40 wt%, specific surface area 61 m 2 / g) is dispersed in 400 g of water and solid. 400.08 g of a silica fine particle dispersion having a partial concentration of 0.0084% by weight was prepared.
Separately, 0.032 g of polyvinylpyrrolidone (made by ARDRICH: MW55000) as a metal complexing agent was dissolved in 42.45 g of water to prepare 42.77 g of a polyvinylpyrrolidone aqueous solution having a concentration of 0.075% by weight.
Next, 42.77 g of a metal complexing agent (polyvinylpyrrolidone) aqueous solution was added to a dispersion of silica fine particles having a solid content concentration of 0.0084% by weight and stirred at 20 ° C. for 1 hour to adsorb the metal complexing agent to the silica fine particles. It was.
The metal complexing agent / metal oxide fine particle weight ratio at this time was 0.95.

つぎに、金属塩水溶液として濃度6.65重量%の塩化白金酸水溶液12.75gを添加した。
この時の金属塩/金属錯化剤モル比(MMS)/(MMC)は7.18であった。
つぎに、還元剤として濃度0.1重量%の水素化ホウ素ナトリウム水溶液31.23gを30秒で添加し、その後、50℃で1時間撹拌を継続した。この時、黒色に変色した。
この時の還元剤/金属塩モル比は0.4であった。
ついで、限外濾過膜法により充分なイオン交換水を用いて洗浄して、全固形分濃度20重量%まで濃縮して金属被覆シリカ粒子である研磨用金属酸化物粒子(8)分散液を調製した。
以下実施例1と同様に平均粒子径の測定、被覆状態の観察を行った。結果を表に示す。
Next, 12.75 g of a chloroplatinic acid aqueous solution having a concentration of 6.65% by weight was added as an aqueous metal salt solution.
The metal salt / metal complexing agent molar ratio (M MS ) / (M MC ) at this time was 7.18.
Next, 31.23 g of an aqueous solution of sodium borohydride having a concentration of 0.1% by weight as a reducing agent was added in 30 seconds, and then stirring was continued at 50 ° C. for 1 hour. At this time, the color changed to black.
The reducing agent / metal salt molar ratio at this time was 0.4.
Next, it is washed with sufficient ion-exchanged water by an ultrafiltration membrane method, and concentrated to a total solid concentration of 20% by weight to prepare a metal oxide particle (8) dispersion for polishing which is a metal-coated silica particle. did.
Thereafter, the average particle diameter was measured and the coating state was observed in the same manner as in Example 1. The results are shown in the table.

研磨用スラリー(8)の調製
全固形分濃度20重量%の研磨用金属酸化物粒子(8)分散液を使用した以外は実施例1と同様に研磨用スラリー(8)を調製した。
研磨試験
研磨用スラリー(8)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
Preparation of polishing slurry (8) A polishing slurry (8) was prepared in the same manner as in Example 1 except that a dispersion of polishing metal oxide particles (8) having a total solid concentration of 20% by weight was used.
Polishing Test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (8) was used. The results are shown in the table.

[実施例9]
研磨用金属酸化物粒子(9)の調製
金属酸化物微粒子としてシリカゾル(日揮触媒化成(株)製:カタロイドSI-45P、平均粒子径45nm、固形分濃度40重量%、比表面積61m/g)0.084gを水400gに分散させ、固形分濃度0.0084重量%のシリカ微粒子分散液400.08gを調製した。
別途、金属錯化剤としてポリビニルピロリドン(ARDRICH(株)製:MW55000)0.032gを水42.45gに溶解して、濃度0.075重量%のポリビニルピロリドン水溶液42.77gを調製した。
ついで、固形分濃度0.0084重量%のシリカ微粒子分散液に金属錯化剤(ポリビニルピロリドン)水溶液42.77gを添加し、20℃で 1時間撹拌してシリカ微粒子に金属錯化剤を吸着させた。
この時の金属錯化剤/金属酸化物微粒子重量割合は0.95であった。
[Example 9]
Preparation of metal oxide particles for polishing (9) Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-45P, average particle size 45 nm, solid content concentration 40 wt%, specific surface area 61 m 2 / g) as metal oxide fine particles 0.084 g was dispersed in 400 g of water to prepare 4000.08 g of a silica fine particle dispersion having a solid content concentration of 0.0084 wt%.
Separately, 0.032 g of polyvinylpyrrolidone (made by ARDRICH: MW55000) as a metal complexing agent was dissolved in 42.45 g of water to prepare 42.77 g of a polyvinylpyrrolidone aqueous solution having a concentration of 0.075% by weight.
Next, 42.77 g of a metal complexing agent (polyvinylpyrrolidone) aqueous solution was added to a dispersion of silica fine particles having a solid content concentration of 0.0084% by weight and stirred at 20 ° C. for 1 hour to adsorb the metal complexing agent to the silica fine particles. It was.
The metal complexing agent / metal oxide fine particle weight ratio at this time was 0.95.

つぎに、金属塩水溶液として濃度6.65重量%の塩化白金酸水溶液1.06gを添加した。
この時の金属塩/金属錯化剤モル比(MMS)/(MMC)は0.6であった。
つぎに、還元剤として濃度0.1重量%の水素化ホウ素ナトリウム水溶液2.61を30秒で添加し、その後、50℃で1時間撹拌を継続した。この時、黒色に変色した。
この時の還元剤/金属塩モル比は0.4であった。
ついで、限外濾過膜法により充分なイオン交換水を用いて洗浄して、全固形分濃度20重量%まで濃縮して金属被覆シリカ粒子である研磨用金属酸化物粒子(9)分散液を調製した。
以下実施例1と同様に平均粒子径の測定、被覆状態の観察を行った。結果を表に示す。
Next, 1.06 g of a chloroplatinic acid aqueous solution having a concentration of 6.65% by weight was added as an aqueous metal salt solution.
The metal salt / metal complexing agent molar ratio (M MS ) / (M MC ) at this time was 0.6.
Next, a sodium borohydride aqueous solution 2.61 having a concentration of 0.1% by weight as a reducing agent was added in 30 seconds, and then stirring was continued at 50 ° C. for 1 hour. At this time, the color changed to black.
The reducing agent / metal salt molar ratio at this time was 0.4.
Next, it is washed with sufficient ion-exchanged water by an ultrafiltration membrane method and concentrated to a total solid content concentration of 20% by weight to prepare a metal oxide particle (9) dispersion for polishing which is a metal-coated silica particle. did.
Thereafter, the average particle diameter was measured and the coating state was observed in the same manner as in Example 1. The results are shown in the table.

研磨用スラリー(9)の調製
全固形分濃度20重量%の研磨用金属酸化物粒子(9)分散液を使用した以外は実施例1と同様に研磨用スラリー(9)を調製した。
研磨試験
研磨用スラリー(9)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
Preparation of polishing slurry (9) A polishing slurry (9) was prepared in the same manner as in Example 1 except that a dispersion of polishing metal oxide particles (9) having a total solid content of 20% by weight was used.
Polishing Test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (9) was used. The results are shown in the table.

[実施例10]
研磨用スラリー(10)の調製
実施例2と同様にして調製した研磨用スラリー(2)に、HF濃度が0.5重量%となるようにHF水溶液を混合して研磨用スラリー(10)を調製した。
研磨試験
研磨用スラリー(10)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
[Example 10]
Preparation of the polishing slurry (10) The polishing slurry (2) prepared in the same manner as in Example 2 was mixed with an HF aqueous solution so that the HF concentration was 0.5% by weight to prepare the polishing slurry (10). Prepared.
Polishing Test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (10) was used. The results are shown in the table.

[実施例11]
研磨用金属酸化物粒子(11)の調製
金属酸化物微粒子として金平糖状シリカゾル(日揮触媒化成(株)製:カタロイドCO45A、平均粒子径45nm、固形分濃度40重量%、比表面積67m/g)0.084gを水400gに分散させ、固形分濃度0.0084重量%のシリカ微粒子分散液400.08gを調製した。
別途、金属錯化剤としてポリビニルピロリドン(ARDRICH(株)製:MW55000)0.032gを水42.45gに溶解して、濃度0.075重量%のポリビニルピロリドン水溶液42.77gを調製した。
ついで、固形分濃度0.0084重量%のシリカ微粒子分散液に金属錯化剤(ポリビニルピロリドン)水溶液42.77gを添加し、20℃で 1時間撹拌してシリカ微粒子に金属錯化剤を吸着させた。
[Example 11]
Preparation of Metal Oxide Particles for Polishing (11) As a metal oxide fine particle, Kompei sugar silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid CO45A, average particle diameter 45 nm, solid content concentration 40% by weight, specific surface area 67 m 2 / g) 0.084 g was dispersed in 400 g of water to prepare 4000.08 g of a silica fine particle dispersion having a solid content concentration of 0.0084 wt%.
Separately, 0.032 g of polyvinylpyrrolidone (made by ARDRICH: MW55000) as a metal complexing agent was dissolved in 42.45 g of water to prepare 42.77 g of a polyvinylpyrrolidone aqueous solution having a concentration of 0.075% by weight.
Next, 42.77 g of a metal complexing agent (polyvinylpyrrolidone) aqueous solution was added to a dispersion of silica fine particles having a solid content concentration of 0.0084% by weight and stirred at 20 ° C. for 1 hour to adsorb the metal complexing agent to the silica fine particles. It was.

つぎに、金属塩水溶液として濃度10重量%の硝酸銀水溶液1.58gを添加した。つぎに、還元剤として濃度0.1重量%の水素化ホウ素ナトリウム水溶液9.0gを30秒で添加し、その後、50℃で1時間撹拌を継続した。この時、黒色に変色した。
ついで、限外濾過膜法により充分なイオン交換水を用いて洗浄して、全固形分濃度20重量%まで濃縮して金属被覆シリカ粒子である研磨用金属酸化物粒子(11)分散液を調製した。
以下実施例1と同様に平均粒子径の測定、被覆状態の観察を行った。結果を表に示す。
Next, 1.58 g of an aqueous silver nitrate solution having a concentration of 10% by weight was added as an aqueous metal salt solution. Next, 9.0 g of a sodium borohydride aqueous solution having a concentration of 0.1% by weight as a reducing agent was added in 30 seconds, and then stirring was continued at 50 ° C. for 1 hour. At this time, the color changed to black.
Next, it is washed with sufficient ion-exchanged water by the ultrafiltration membrane method, and concentrated to a total solid concentration of 20% by weight to prepare a metal oxide particle (11) dispersion for polishing which is a metal-coated silica particle. did.
Thereafter, the average particle diameter was measured and the coating state was observed in the same manner as in Example 1. The results are shown in the table.

研磨用スラリー(11)の調製
全固形分濃度20重量%の研磨用金属酸化物粒子(11)分散液に、濃度1重量%の酢酸および超純水を加え、SiO濃度10.0重量%になるように調整したpH5.0の研磨用スラリー(11)を調製した。
研磨試験
実施例1で用いたSiC被研磨基板を、研磨装置(日本エギンス株式会社製:EJ−380IN)にセットし、研磨パッドとして、ニッタ・ハース社製「Suba800」を使用し、基板荷重26KPa、テーブル回転速度60rpmで研磨用スラリー(1)を10g/分の速度で、濃度5重量%の過酸化水素水を10g/分の速度で、濃度3重量%のHF水溶液を10g/分の速度で別々に4時間供給して研磨を行った。研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。また、表面の平滑性を原子間力顕微鏡(AFM)((株)日立ハイテクサイエンス社製)でRaを測定した。結果を表に示す。
Preparation of polishing slurry (11) To a dispersion of polishing metal oxide particles (11) having a total solid concentration of 20% by weight, acetic acid and ultrapure water having a concentration of 1% by weight were added, and the SiO 2 concentration was 10.0% by weight. A polishing slurry (11) having a pH of 5.0 adjusted to be prepared was prepared.
The SiC substrate to be used in the polishing test example 1 was set in a polishing apparatus (manufactured by Japan Eggins Co., Ltd .: EJ-380IN), and “Suba800” manufactured by Nitta Haas was used as a polishing pad, and the substrate load was 26 KPa. The polishing slurry (1) is 10 g / min at a table rotation speed of 60 rpm, the hydrogen peroxide solution having a concentration of 5% by weight is 10 g / min, and the aqueous HF solution having a concentration of 3% by weight is 10 g / min. Were separately supplied for 4 hours for polishing. The polishing rate was calculated by determining the weight change of the substrate to be polished before and after polishing. Further, Ra was measured for surface smoothness with an atomic force microscope (AFM) (manufactured by Hitachi High-Tech Science Co., Ltd.). The results are shown in the table.

[実施例12]
研磨用金属酸化物粒子(12)の調製
金属酸化物微粒子として金平糖状シリカゾル(日揮触媒化成(株)製:カタロイドCO45A、平均粒子径45nm、固形分濃度40重量%、比表面積67m/g)0.084gを水400gに分散させ、固形分濃度0.0084重量%のシリカ微粒子分散液400.08gを調製した。
別途、金属錯化剤としてポリビニルピロリドン(ARDRICH(株)製:MW55000)0.032gを水42.45gに溶解して、濃度0.075重量%のポリビニルピロリドン水溶液42.77gを調製した。
ついで、固形分濃度0.0084重量%のシリカ微粒子分散液に金属錯化剤(ポリビニルピロリドン)水溶液42.77gを添加し、20℃で 1時間撹拌してシリカ微粒子に金属錯化剤を吸着させた。
[Example 12]
Preparation of metal oxide particles for polishing (12)
As a metal oxide fine particle, 0.084 g of gold flat sugar-like silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid CO45A, average particle diameter 45 nm, solid content concentration 40 wt%, specific surface area 67 m 2 / g) is dispersed in 400 g of water and solid. 400.08 g of a silica fine particle dispersion having a partial concentration of 0.0084% by weight was prepared.
Separately, 0.032 g of polyvinylpyrrolidone (made by ARDRICH: MW55000) as a metal complexing agent was dissolved in 42.45 g of water to prepare 42.77 g of a polyvinylpyrrolidone aqueous solution having a concentration of 0.075% by weight.
Next, 42.77 g of a metal complexing agent (polyvinylpyrrolidone) aqueous solution was added to a dispersion of silica fine particles having a solid content concentration of 0.0084% by weight and stirred at 20 ° C. for 1 hour to adsorb the metal complexing agent to the silica fine particles. It was.

つぎに、金属塩水溶液として濃度10重量%の硝酸銀水溶液0.79gと10重量%の硝酸パラジウム水溶液を0.80g添加した。この時のAg:Pd=1:1であった。つぎに、還元剤として濃度0.1重量%の水素化ホウ素ナトリウム水溶液9.0gを30秒で添加し、その後、50℃で1時間撹拌を継続した。この時、黒色に変色した。
ついで、限外濾過膜法により充分なイオン交換水を用いて洗浄して、全固形分濃度20重量%まで濃縮して金属被覆シリカ粒子である研磨用金属酸化物粒子(12)分散液を調製した。
以下実施例1と同様に平均粒子径の測定、被覆状態の観察を行った。結果を表に示す。
Next, 0.79 g of 10 wt% silver nitrate aqueous solution and 0.80 g of 10 wt% palladium nitrate aqueous solution were added as the metal salt aqueous solution. At this time, Ag: Pd = 1: 1. Next, 9.0 g of a sodium borohydride aqueous solution having a concentration of 0.1% by weight as a reducing agent was added in 30 seconds, and then stirring was continued at 50 ° C. for 1 hour. At this time, the color changed to black.
Next, it is washed with sufficient ion-exchanged water by an ultrafiltration membrane method and concentrated to a total solid content concentration of 20% by weight to prepare a metal oxide particle (12) dispersion for polishing which is a metal-coated silica particle. did.
Thereafter, the average particle diameter was measured and the coating state was observed in the same manner as in Example 1. The results are shown in the table.

研磨用スラリー(12)の調製
全固形分濃度20重量%の研磨用金属酸化物粒子(12)分散液を使用した以外は実施例11と同様に研磨用スラリー(12)を調製した。
研磨試験
研磨用スラリー(12)を用いた以外は実施例11と同様に研磨試験を行った。結果を表に示す。
Preparation of polishing slurry (12) A polishing slurry (12) was prepared in the same manner as in Example 11 except that a polishing metal oxide particle (12) dispersion having a total solid content of 20% by weight was used.
Polishing Test A polishing test was conducted in the same manner as in Example 11 except that the polishing slurry (12) was used. The results are shown in the table.

[実施例13]
研磨用スラリー(13)の調製
実施例2と同様にして調製した全固形分濃度20重量%の研磨用金属酸化物粒子(2)分散液を使用した以外は実施例12と同様に研磨用スラリー(13)を調製した。
[Example 13]
Preparation of polishing slurry (13) Polishing slurry in the same manner as in Example 12 except that the dispersion of polishing metal oxide particles (2) having a total solid concentration of 20% by weight prepared in the same manner as in Example 2 was used. (13) was prepared.

被研磨基板(Si)
直径4インチの4 H-Siウェハ表面の仕上げ研磨を実施した。ウェハ表面の凹凸は、AFMで測定した結果、Ra=1.2nmあった。
研磨試験
研磨用スラリー(13)を用い、上記被研磨基板(Siウエハー)を用いた以外は実施例12と同様に研磨試験を行った。結果を表に示す。
Polished substrate (Si)
Final polishing of the surface of a 4 H-Si wafer having a diameter of 4 inches was performed. The surface roughness of the wafer was Ra = 1.2 nm as a result of measurement by AFM.
Polishing Test A polishing test was conducted in the same manner as in Example 12 except that the polishing slurry (13) was used and the substrate to be polished (Si wafer) was used. The results are shown in the table.

[実施例14]
研磨試験
実施例11と同様にして調製した研磨用スラリー(11)を用い、被研磨基板(Si)を用いた以外は実施例11と同様に研磨試験を行った。結果を表に示す。
[Example 14]
Polishing Test A polishing test was conducted in the same manner as in Example 11 except that the polishing slurry (11) prepared in the same manner as in Example 11 was used and the substrate to be polished (Si) was used. The results are shown in the table.

[比較例1]
研磨用金属酸化物粒子(R1)の調製
研磨用金属酸化物粒子(R1)としてシリカゾル(日揮触媒化成(株)製:カタロイドSI-45P、平均粒子径45nm、固形分濃度48重量%)をSiO濃度20重量%に純水で希釈し研磨用金属酸化物粒子(R1)分散液を得た。
研磨用スラリー(R1)の調製
SiO濃度20重量%の研磨用金属酸化物粒子(R1)分散液を使用した以外は実施例1と同様に研磨用スラリー(R1)を調製した。
研磨試験
研磨用スラリー(R1)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
[Comparative Example 1]
Preparation of polishing metal oxide particles (R1) As a polishing metal oxide particles (R1), silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid SI-45P, average particle size 45 nm, solid content concentration 48% by weight) is SiO. Dilution with pure water to a concentration of 2 % by weight was performed to obtain a polishing metal oxide particle (R1) dispersion.
Preparation of polishing slurry (R1) A polishing slurry (R1) was prepared in the same manner as in Example 1 except that a dispersion of polishing metal oxide particles (R1) having a SiO 2 concentration of 20% by weight was used.
Polishing Test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (R1) was used. The results are shown in the table.

[比較例2]
研磨用金属酸化物粒子(R2)の調製
金平糖状シリカゾル(日揮触媒化成(株)製:カタロイドCO45A、平均粒子径45nm、固形分濃度40重量%、比表面積67m/g)をSiO濃度20重量%に純水で希釈して研磨用金属酸化物粒子(R2)分散液を得た。
研磨用スラリー(R2)の調製
SiO濃度20重量%の研磨用金属酸化物粒子(R2)分散液を使用した以外は実施例1と同様に研磨用スラリー(R2)を調製した。
研磨試験
研磨用スラリー(R2)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
[Comparative Example 2]
Preparation of Metal Oxide Particles (R2) for Polishing Gold Flat Sugar Silica Sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Cataloid CO45A, average particle size 45 nm, solid content concentration 40% by weight, specific surface area 67 m 2 / g) with SiO 2 concentration 20 A metal oxide particle (R2) dispersion for polishing was obtained by diluting with pure water to a weight percent.
Preparation of polishing slurry (R2) A polishing slurry (R2) was prepared in the same manner as in Example 1 except that a dispersion of polishing metal oxide particles (R2) having a SiO 2 concentration of 20% by weight was used.
Polishing Test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (R2) was used. The results are shown in the table.

[比較例3]
研磨用金属酸化物粒子(R3)の調製
実施例5と同様にしてヒマワリ状粒子であるSiO濃度40重量%の金属酸化物粒子(5)分散液をSiO濃度20重量%になるように純水で希釈し研磨用金属酸化物粒子(R3)分散液を得た。
研磨用スラリー(R3)の調製
SiO濃度20重量%の研磨用金属酸化物粒子(R3)分散液を使用した以外は実施例1と同様に研磨用スラリー(R3)を調製した。
研磨試験
研磨用スラリー(R3)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
[Comparative Example 3]
Preparation of metal oxide particles (R3) for polishing In the same manner as in Example 5, the dispersion of metal oxide particles (5) having a SiO 2 concentration of 40% by weight as sunflower particles was adjusted to a SiO 2 concentration of 20% by weight. Dilution with pure water gave a metal oxide particle (R3) dispersion for polishing.
Preparation of polishing slurry (R3) A polishing slurry (R3) was prepared in the same manner as in Example 1 except that a dispersion of polishing metal oxide particles (R3) having a SiO 2 concentration of 20% by weight was used.
Polishing Test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (R3) was used. The results are shown in the table.

[比較例4]
研磨用金属酸化物粒子(R4)の調製
実施例6と同様にしてヒマワリ状粒子であるSiO濃度40重量%の金属酸化物粒子(6)分散液をSiO濃度20重量%になるように純水で希釈し研磨用金属酸化物粒子(R4)分散液を得た。
研磨用スラリー(R4)の調製
SiO濃度20重量%の研磨用金属酸化物粒子(R4)分散液を使用した以外は実施例1と同様に研磨用スラリー(R4)を調製した。
研磨試験
研磨用スラリー(R4)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
[Comparative Example 4]
Preparation of metal oxide particles (R4) for polishing In the same manner as in Example 6, the dispersion of metal oxide particles (6) having a SiO 2 concentration of 40% by weight as sunflower particles was adjusted to a SiO 2 concentration of 20% by weight. Dilution with pure water gave a metal oxide particle (R4) dispersion for polishing.
Preparation of polishing slurry (R4) A polishing slurry (R4) was prepared in the same manner as in Example 1 except that a dispersion of polishing metal oxide particles (R4) having a SiO 2 concentration of 20% by weight was used.
Polishing Test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (R4) was used. The results are shown in the table.

[比較例5]
研磨用金属酸化物粒子(R5)の調製
繊維状アルミナ微粒子(平均長さが50nm、断面の平均径が10nmの繊維状アルミナ微粒子)を純水に分散させてアルミナ濃度20重量%の研磨用金属酸化物粒子(R5)分散液を得た。
研磨用スラリー(R5)の調製
アルミナ濃度20重量%の研磨用金属酸化物粒子(R5)分散液を使用した以外は実施例1と同様に研磨用スラリー(R5)を調製した。
研磨試験
研磨用スラリー(R5)を用いた以外は実施例1と同様に研磨試験を行った。結果を表に示す。
[Comparative Example 5]
Preparation of polishing metal oxide particles (R5) Fibrous alumina fine particles (fibrous alumina fine particles having an average length of 50 nm and a cross-sectional average diameter of 10 nm) dispersed in pure water to obtain an abrasive concentration of 20 wt% alumina An oxide particle (R5) dispersion was obtained.
Preparation of polishing slurry (R5) A polishing slurry (R5) was prepared in the same manner as in Example 1 except that a dispersion of polishing metal oxide particles (R5) having an alumina concentration of 20% by weight was used.
Polishing Test A polishing test was conducted in the same manner as in Example 1 except that the polishing slurry (R5) was used. The results are shown in the table.

[比較例6]
研磨用金属酸化物粒子(R6)の調製
金属微粒子分散液の調製
塩化白金酸6水和物25g(白金金属換算で9g)を純水16,000gに溶解して得た金属塩水溶液に、錯化安定剤として濃度5.0重量%のクエン酸3ナトリウム水溶液1,660gと還元剤として濃度0.1重量%の水素化ホウ素ナトリウム水溶液140gとを加え、窒素雰囲気下、20℃で攪拌混合して、水に白金微粒子が分散してなる白金コロイド溶液を得た。ついで、白金コロイド溶液を限外濾過器(ADVANTEC社製:ウルトラフィルターQ0500)を用いて洗浄脱塩し、濃縮し、白金金属換算で濃度20.0重量%の白金コロイド溶液(R6-1)とした。得られた白金コロイドの粒子径を走査型電子顕微鏡(株式会社日立製作所製:S−5500)で測定したところ平均粒子径は2nmであった。
研磨用スラリー(R6)の調製
比較例1と同様にして調製したSiO濃度20重量%の金属酸化物粒子(R1)分散液100gと白金コロイド溶液(R6-1)300gを混合した。ついで濃度1重量%の酢酸および超純水を加え、全固形分濃度10.0重量% 、pH5.0の研磨用スラリー(R6)を調製した。
研磨試験
研磨用スラリー(R6)を用いた以外は実施例11と同様に研磨試験を行った。結果を表に示す。
[Comparative Example 6]
Preparation of metal oxide particles (R6) for polishing
Preparation of metal fine particle dispersion A metal salt aqueous solution obtained by dissolving 25 g of chloroplatinic acid hexahydrate (9 g in terms of platinum metal) in 16,000 g of pure water has a concentration of 5.0% by weight as a complexing stabilizer. 1.660 g of trisodium citrate aqueous solution and 140 g of sodium borohydride aqueous solution having a concentration of 0.1% by weight as a reducing agent are added and stirred and mixed at 20 ° C. in a nitrogen atmosphere to disperse platinum fine particles in water. A platinum colloid solution was obtained. Next, the platinum colloid solution was washed and desalted using an ultrafilter (manufactured by ADVANTEC: Ultrafilter Q0500), concentrated, and a platinum colloid solution (R6-1) having a concentration of 20.0% by weight in terms of platinum metal. did. When the particle diameter of the obtained platinum colloid was measured with a scanning electron microscope (manufactured by Hitachi, Ltd .: S-5500), the average particle diameter was 2 nm.
Preparation of Polishing Slurry (R6) 100 g of a metal oxide particle (R1) dispersion having a SiO 2 concentration of 20% by weight prepared in the same manner as in Comparative Example 1 and 300 g of a platinum colloid solution (R6-1) were mixed. Next, acetic acid having a concentration of 1% by weight and ultrapure water were added to prepare a polishing slurry (R6) having a total solid concentration of 10.0% by weight and a pH of 5.0.
Polishing test A polishing test was conducted in the same manner as in Example 11 except that the polishing slurry (R6) was used. The results are shown in the table.

[比較例7]
研磨用スラリー(R7)の調製
比較例1と同様にして調製したSiO濃度20重量%の金属酸化物粒子(R1)分散液100gとAgナノ粒子(日揮触媒化成((株)製:ELCOM MK−5001SIV、濃度10重量%、平均粒子径10nm、pH4.0)600gを混合し、ロータリーエバポレーターで20重量%まで濃縮した。ついで濃度1重量%の酢酸および超純水を加え、全固形分濃度10.0重量%、pH5.0の研磨用スラリー(R7)を調製した。
研磨試験
研磨用スラリー(R7)を用いた以外は実施例11と同様に研磨試験を行った。結果を表に示す。
[Comparative Example 7]
Preparation of Polishing Slurry (R7) 100 g of a metal oxide particle (R1) dispersion having a SiO 2 concentration of 20% by weight prepared in the same manner as in Comparative Example 1 and Ag nanoparticles (JGC Catalysts & Chemicals, Inc .: ELCOM MK) -5001 SIV, concentration 10 wt%, average particle size 10 nm, pH 4.0) 600 g was mixed and concentrated to 20 wt% with a rotary evaporator, then 1 wt% acetic acid and ultrapure water were added to give a total solids concentration A polishing slurry (R7) of 10.0% by weight and pH 5.0 was prepared.
Polishing Test A polishing test was conducted in the same manner as in Example 11 except that the polishing slurry (R7) was used. The results are shown in the table.

[比較例8]
研磨試験
比較例1と同様にして調製した研磨用スラリー(R1)を用いた以外は実施例13と同様にSi基板の研磨試験を行った。結果を表に示す。
[Comparative Example 8]
Polishing Test A polishing test of the Si substrate was conducted in the same manner as in Example 13 except that the polishing slurry (R1) prepared in the same manner as in Comparative Example 1 was used. The results are shown in the table.

実施例5で得られた金属酸化物粒子(5)について撮影したSEM写真である。6 is a SEM photograph taken of the metal oxide particles (5) obtained in Example 5.

Claims (10)

金属酸化物粒子に金属が担持されてなることを特徴とする研磨用金属担持金属酸化物粒子。   A metal-supported metal oxide particle for polishing, wherein a metal is supported on the metal oxide particle. 平均粒子径(D)が7〜600nmの範囲にあることを特徴とする請求項1に記載の研磨用金属担持金属酸化物粒子。 The metal-supported metal oxide particles for polishing according to claim 1, wherein the average particle diameter (D A ) is in the range of 7 to 600 nm. 前記金属がAg、Pd、Au、Pt、Cu、Feから選ばれる少なくとも一種であり、該金属の担持量が金属酸化物粒子100重量部に対し金属として0.01〜1200重量部の範囲にあることを特徴とする請求項1または2に記載の研磨用金属担持金属酸化物粒子。   The metal is at least one selected from Ag, Pd, Au, Pt, Cu, and Fe, and the amount of the metal supported is in the range of 0.01 to 1200 parts by weight as a metal with respect to 100 parts by weight of the metal oxide particles. The metal-supported metal oxide particle for polishing according to claim 1 or 2, 前記金属酸化物粒子の形状が非球状であることを特徴とする請求項1〜3のいずれかに記載の研磨用金属担持金属酸化物粒子。   The metal-supported metal oxide particles for polishing according to any one of claims 1 to 3, wherein the metal oxide particles have a non-spherical shape. 前記金属の少なくとも一部が金属酸化物粒子の外部表面に担持されていることを特徴とする請求項1〜4のいずれかに記載の研磨用金属担持金属酸化物粒子。   The metal-supported metal oxide particles for polishing according to any one of claims 1 to 4, wherein at least a part of the metal is supported on an outer surface of the metal oxide particles. 前記金属酸化物粒子がSiO、Al、Sb、ZrO、TiO、Fe、CeOおよびこれらの複合酸化物から選ばれる少なくとも1種あるいはこれらの混合物であることを特徴とする請求項1〜5のいずれかに記載の研磨用金属担持金属酸化物粒子。 The metal oxide particles are at least one selected from SiO 2 , Al 2 O 3 , Sb 2 O 5 , ZrO 2 , TiO 2 , Fe 2 O 3 , CeO 2 and complex oxides thereof, or a mixture thereof. The metal-supported metal oxide particles for polishing according to any one of claims 1 to 5. 前記金属酸化物粒子がSiO、Al、CeOおよびこれらの複合酸化物から選ばれる少なくとも1種あるいはこれらの混合物であり、前記金属がAg、Pd、Ptから選ばれる少なくとも一種である請求項1または2に記載の研磨用金属担持金属酸化物粒子。
The metal oxide particles are at least one selected from SiO 2 , Al 2 O 3 , CeO 2 and a composite oxide thereof, or a mixture thereof, and the metal is at least one selected from Ag, Pd, and Pt. The metal-supported metal oxide particles for polishing according to claim 1 or 2.
請求項1〜7のいずれかに記載の研磨用金属担持金属酸化物粒子を含んでなる研磨剤。   An abrasive comprising the metal-supported metal oxide particles for polishing according to any one of claims 1 to 7. さらに酸化剤を含むことを特徴とする請求項8に記載の研磨剤。   The abrasive according to claim 8, further comprising an oxidizing agent. 研磨対象がSi、SiC、GaN、Al、AlN、Cu、TiN、SiNのいずれかから選ばれる少なくとも1種以上であることを特徴とする請求項8または9に記載の研磨剤。   The polishing agent according to claim 8 or 9, wherein the polishing target is at least one selected from any of Si, SiC, GaN, Al, AlN, Cu, TiN, and SiN.
JP2014071087A 2014-03-31 2014-03-31 Metal-supported metal oxide particles for polishing and abrasives Active JP6285775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071087A JP6285775B2 (en) 2014-03-31 2014-03-31 Metal-supported metal oxide particles for polishing and abrasives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071087A JP6285775B2 (en) 2014-03-31 2014-03-31 Metal-supported metal oxide particles for polishing and abrasives

Publications (2)

Publication Number Publication Date
JP2015193486A true JP2015193486A (en) 2015-11-05
JP6285775B2 JP6285775B2 (en) 2018-02-28

Family

ID=54432911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071087A Active JP6285775B2 (en) 2014-03-31 2014-03-31 Metal-supported metal oxide particles for polishing and abrasives

Country Status (1)

Country Link
JP (1) JP6285775B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11549034B2 (en) 2018-08-09 2023-01-10 Versum Materials Us, Llc Oxide chemical mechanical planarization (CMP) polishing compositions

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265766A (en) * 1996-11-26 1998-10-06 Cabot Corp Composition and slurry useful for metal chemical mechanical polishing(cmp)
JP2001047367A (en) * 1999-08-10 2001-02-20 Mitsubishi Materials Corp Metal-coated abrasive grain, its manufacture, resin-bond grinding wheel, and manufacture of it
US20040006924A1 (en) * 2002-02-11 2004-01-15 Scott Brandon Shane Free radical-forming activator attached to solid and used to enhance CMP formulations
JP2004055615A (en) * 2002-07-16 2004-02-19 Toshiba Corp Polishing member and method of manufacturing semiconductor device
US20050044801A1 (en) * 2003-09-01 2005-03-03 John Grunwald Abrasives for CMP applications
US20060138087A1 (en) * 2004-12-29 2006-06-29 Simka Harsono S Copper containing abrasive particles to modify reactivity and performance of copper CMP slurries
JP2007273910A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Polishing composition liquid
JP2009137791A (en) * 2007-12-05 2009-06-25 Jgc Catalysts & Chemicals Ltd Non-spherical combined silica sol and method for producing the same
JP2010188487A (en) * 2009-02-19 2010-09-02 Kumamoto Univ Catalyst support type chemical machining method, and machining apparatus using the same
JP2010222151A (en) * 2009-03-19 2010-10-07 Asahi Kasei Chemicals Corp Silica-based material and method for producing the same and metal supporting material
JP2012500113A (en) * 2008-08-19 2012-01-05 イエフペ エネルジ ヌヴェル Method for preparing a core-layer material having good mechanical strength

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265766A (en) * 1996-11-26 1998-10-06 Cabot Corp Composition and slurry useful for metal chemical mechanical polishing(cmp)
JP2001047367A (en) * 1999-08-10 2001-02-20 Mitsubishi Materials Corp Metal-coated abrasive grain, its manufacture, resin-bond grinding wheel, and manufacture of it
US20040006924A1 (en) * 2002-02-11 2004-01-15 Scott Brandon Shane Free radical-forming activator attached to solid and used to enhance CMP formulations
JP2005518090A (en) * 2002-02-11 2005-06-16 イーケーシー テクノロジー,インコーポレイティド Free radical formation activator that is bound to a solid and used to improve CMP formulations
JP2004055615A (en) * 2002-07-16 2004-02-19 Toshiba Corp Polishing member and method of manufacturing semiconductor device
US20050044801A1 (en) * 2003-09-01 2005-03-03 John Grunwald Abrasives for CMP applications
US20060138087A1 (en) * 2004-12-29 2006-06-29 Simka Harsono S Copper containing abrasive particles to modify reactivity and performance of copper CMP slurries
JP2007273910A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Polishing composition liquid
JP2009137791A (en) * 2007-12-05 2009-06-25 Jgc Catalysts & Chemicals Ltd Non-spherical combined silica sol and method for producing the same
JP2012500113A (en) * 2008-08-19 2012-01-05 イエフペ エネルジ ヌヴェル Method for preparing a core-layer material having good mechanical strength
JP2010188487A (en) * 2009-02-19 2010-09-02 Kumamoto Univ Catalyst support type chemical machining method, and machining apparatus using the same
JP2010222151A (en) * 2009-03-19 2010-10-07 Asahi Kasei Chemicals Corp Silica-based material and method for producing the same and metal supporting material

Also Published As

Publication number Publication date
JP6285775B2 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
TW524836B (en) Composition and method for planarizing surfaces
JP5275595B2 (en) Semiconductor wafer polishing composition and polishing method
JP4963825B2 (en) Polishing silica sol and polishing composition containing the same
JP4827963B2 (en) Silicon carbide polishing liquid and polishing method thereof
WO2012147605A1 (en) Method for polishing non-oxide single crystal substrate
JP5495508B2 (en) Abrasive particle dispersion and method for producing the same
KR20120025585A (en) Raspberry-type metal oxide nanostructures coated with ceo2 nanoparticles for chemical mechanical planarization (cmp)
WO2013035539A1 (en) Polishing agent and polishing method
JP2001507739A (en) Composition for oxide CMP
JP6358899B2 (en) Metal oxide particles and method for producing the same
JPWO2012165376A1 (en) Abrasive and polishing method
TW201441419A (en) Metal compound coated colloidal particles process for making and use therefor
JPWO2007020939A1 (en) Polishing slurry
JP6207345B2 (en) Method for producing silica particles
JP6407503B2 (en) Polishing composition
TWI757349B (en) Silica-based particles for polishing and abrasives
KR20160008597A (en) Chemical-mechanical polishing compositions comprising n,n,n',n'-tetrakis-(2-hydroxypropyl)-ethylenediamine or methanesulfonic acid
JP6285775B2 (en) Metal-supported metal oxide particles for polishing and abrasives
JP5574702B2 (en) Polishing particle dispersion comprising aggregates of organic particles and silica particles, and method for producing the same
WO2017081835A1 (en) Polishing agent for synthetic quarts glass substrate, process for producing same, and method for polishing synthetic quarts glass substrate
JP2006080406A (en) Composition for polishing
WO2017085904A1 (en) Polishing composition and polishing method
WO2019207926A1 (en) Polishing agent for synthetic quartz glass substrates, method for producing same, and method for polishing synthetic quartz glass substrate
Sivanandini et al. Chemical mechanical polishing by colloidal silica slurry
WO2019043890A1 (en) Method for manufacturing semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180202

R150 Certificate of patent or registration of utility model

Ref document number: 6285775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250