JP2015193224A - Method and mechanism for demolding molded product - Google Patents

Method and mechanism for demolding molded product Download PDF

Info

Publication number
JP2015193224A
JP2015193224A JP2015012987A JP2015012987A JP2015193224A JP 2015193224 A JP2015193224 A JP 2015193224A JP 2015012987 A JP2015012987 A JP 2015012987A JP 2015012987 A JP2015012987 A JP 2015012987A JP 2015193224 A JP2015193224 A JP 2015193224A
Authority
JP
Japan
Prior art keywords
pin
hole
mold
molded product
demolding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015012987A
Other languages
Japanese (ja)
Inventor
鈴木 保
Tamotsu Suzuki
保 鈴木
絢太郎 長崎
Kentaro Nagasaki
絢太郎 長崎
裕司 宮川
Yuji Miyagawa
裕司 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015012987A priority Critical patent/JP2015193224A/en
Publication of JP2015193224A publication Critical patent/JP2015193224A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a demolding method for tearing a resin product off from a forming mold, capable of reliable demolding using a simple mechanism, without damaging the molded product.SOLUTION: A columnar hole is provided in the surface of a forming mold. During forming, the columnar hole is closed with a first pin having a tip shape along the cross section of the hole. During demolding, the first pin is retracted in the inward direction of the mold, such that the molded product is communicated with a first gas supply path disposed inside the hole. The first pin is then moved forward, so that the gas present in the columnar hole is compressed to increase the pressure. The compressed gas then enters between the molded product and the forming mold, so that the molded product can be torn off.

Description

本発明は、樹脂成形品にダメージを与えることなく、成形型から効果的に引き剥がす技術に関するものである。   The present invention relates to a technique for effectively peeling from a mold without damaging a resin molded product.

樹脂成形工程においては、液状の樹脂を成形型の形に沿わせて硬化させることで、所望形状の成形品を得るが、硬化した樹脂は成形型と強固に接着してしまうことが多く、成形品を成形型から強制的に引きはがす機構、つまり脱型機構が必要になる。   In the resin molding process, a liquid resin is cured along the shape of the molding die to obtain a molded product with a desired shape, but the cured resin often adheres firmly to the molding die. A mechanism for forcibly peeling the product from the mold, that is, a demolding mechanism is required.

従来から最も一般的に用いられている脱型機構として、細長い円柱形の可動性のピンを成形型の中に仕込んでおき、脱型の際に成形品の方向に向かって型から突出させる構成が知られている(例えば特許文献1)。しかし、ピンの突出を行うとき、成形品が成形型から離されることで発生する空間が真空状態となり、脱型を妨げる方向に力が働く上、ピンの先端の角部分の形状は、成形品に不必要な突起部を設けないために、角の尖った形状になっているため、ピンが成形品にキズをつけたり、ひどい場合には、成形品を折り曲げたり、突き抜けたりするという問題がしばしば発生する。   Conventionally the most commonly used demolding mechanism is a configuration in which an elongated cylindrical movable pin is loaded into a mold and protrudes from the mold in the direction of the molded product when demolding Is known (for example, Patent Document 1). However, when projecting the pin, the space generated when the molded product is separated from the molding die is in a vacuum state, and the force acts in the direction of preventing demolding, and the shape of the corner of the tip of the pin is the molded product In order to prevent unnecessary protrusions from being provided, the pin has a sharp shape, which often causes problems such as scratching the molded product or bending the molded product if it is severe. Occur.

この対策として、ピンを突出させるのではなく、成形型内部の方向に後退させて、成形品と穴の奥に繋がれている空気供給源とを接続し、空気の力で成形品を成形型から引き剥がすことが提案されている(例えば特許文献2)。しかし、一般的な空圧機器を用いてかけることができる空気の圧力は、せいぜい1MPa(10気圧)程度であり、特に成形品の曲げ剛性が高いもの(例えば繊維強化樹脂)の場合や、また成形型への接着力が強い樹脂(例えばエポキシ等の熱硬化樹脂)を用いる場合においては、成形品を押し上げて引き剥がすのに十分な力を得ることができない場合がある。   As a countermeasure against this, rather than projecting the pins, the pins are retracted in the direction of the inside of the mold, the molded product is connected to an air supply source connected to the back of the hole, and the molded product is molded by the force of air. It has been proposed to peel it off (for example, Patent Document 2). However, the pressure of air that can be applied using a general pneumatic device is at most about 1 MPa (10 atm), and particularly when the molded product has high bending rigidity (for example, fiber reinforced resin), or In the case of using a resin having a strong adhesive force to the mold (for example, a thermosetting resin such as epoxy), it may not be possible to obtain a sufficient force to push up and peel off the molded product.

成形品を押し上げる力を大きくする方法として、ピンの径を大きくする方法が考えられるが、この場合、ピンと成形型との接触面積、つまりピンが樹脂によって成形型に接着される面積が大きくなり、その結果ピンを成形型から引き抜くのに多大な力が必要となり、その力に見合った重厚な機構が必要になるため、脱型機構、ひいては成形型全体のコストがアップするという新たな問題が起こることになる。   As a method of increasing the force to push up the molded product, a method of increasing the diameter of the pin can be considered, but in this case, the contact area between the pin and the mold, that is, the area where the pin is bonded to the mold by the resin is increased, As a result, a large amount of force is required to pull the pin out of the mold, and a heavy mechanism corresponding to the force is required, which raises a new problem of increasing the cost of the demolding mechanism and thus the entire mold. It will be.

特開2003−53803号公報JP 2003-53803 A 特開昭59−140019号公報JP 59-140019 A

上記の状況を鑑みて、本発明は簡便な機構を用いていながら、成形品にダメージを与えることなく確実に脱型できる成形品の脱型方法および成形品の脱型機構を提供するものである。   In view of the above situation, the present invention provides a demolding method for a molded product and a demolding mechanism for a molded product that can be reliably demolded without damaging the molded product while using a simple mechanism. .

上述した課題を解決するための手段として、本発明は以下の構成を有する。すなわち、樹脂成形品を成形型から引き剥がす脱型方法であって、成形型表面に柱状の穴を形成し、成形時においては該柱状の穴の断面形状に沿う先端形状を有する第1のピンによって閉止し、脱型を行う際には該第1のピンを該穴に沿って後退させ、該穴と接続する第1の気体供給経路とを連通させて該穴内に気体を流入させ、しかる後に該第1のピンを前進させ、該穴内に充填された気体を圧縮し、成形品と成形型との間に該圧縮した気体を進入させて成型品を引き剥がすことを特徴とする、成形品の脱型方法である。   As means for solving the above-described problems, the present invention has the following configuration. That is, a demolding method in which a resin molded product is peeled off from a molding die, wherein a columnar hole is formed on the surface of the molding die, and at the time of molding, a first pin having a tip shape along the cross-sectional shape of the columnar hole When the mold is removed, the first pin is retracted along the hole, and the first gas supply path connected to the hole is communicated to allow the gas to flow into the hole. The first pin is moved forward, the gas filled in the hole is compressed, the compressed gas is allowed to enter between the molded product and the mold, and the molded product is peeled off. This is a method for demolding products.

また、樹脂成形品を成形型から引き剥がす脱型機構であって、該成形型を構成する少なくとも1つの成形型内に、該成形型表面に繋がる柱状の穴と、該柱状の穴の奥に連通する第1の気体供給経路と、該柱状の穴の断面形状に沿う先端形状を有する第1のピンと、該第1のピンの先端部で該穴と該第1のピンとの隙間をシールするシール機構と、該第1のピンを、該第1のピンの先端部が該柱状の穴を塞ぎつつ、成形型の表面形状の一部をなす第1の位置と、該第1のピンが成形型の表面から後退して、成形型表面が柱状の穴を介して第1の気体供給経路と連通される第2の位置との間を往復動作可能なピン駆動機構とを有し、該第1のピンを第2の位置に後退させて該柱状の穴と第1の気体供給経路とを連通させ、再び該第1のピンを第1の位置に前進させて該柱状の穴に存在する気体を圧縮し、該圧縮した気体により該成型品を該成形型から引き剥がすことを特徴とする、成形品の脱型機構である。   Further, it is a demolding mechanism for peeling off the resin molded product from the mold, and in at least one mold constituting the mold, a columnar hole connected to the surface of the mold and a depth of the columnar hole The first gas supply path that communicates, the first pin having a tip shape that follows the cross-sectional shape of the columnar hole, and the gap between the hole and the first pin are sealed at the tip portion of the first pin. A sealing mechanism, the first pin, a first position where the tip of the first pin closes the columnar hole and forms a part of the surface shape of the mold, and the first pin Retreating from the surface of the mold, and having a pin drive mechanism capable of reciprocating between a second position where the surface of the mold communicates with the first gas supply path through the columnar hole, The first pin is retracted to the second position so that the columnar hole communicates with the first gas supply path, and the first pin is again connected to the first position. Positioned is advanced to compress the gas present in columnar hole, and wherein the peeling from the forming die a molded type product by gas having the compressed, a demolding mechanism of the molded article.

本発明の成形品の脱型方法によれば、簡便な機構を用いていながら、成形品にダメージを与えることなく確実に脱型できる成形品の脱型方法および成形品の脱型機構を提供することができる。具体的には、成形品を空気の圧力で成形型から引き剥がすため、成形品に不要なダメージを与えないだけでなく、成形型に仕込まれた簡素な機構によって空気を効率的に高いレベルの圧力まで圧縮できるため、特に剥がれにくい状態の成形品であっても、成形品と成形型との隙間に空気が確実に進入することで、確実に脱型することができる。   According to the method for demolding a molded product of the present invention, there is provided a demolding method for a molded product and a demolding mechanism for the molded product that can be reliably demolded without damaging the molded product while using a simple mechanism. be able to. Specifically, since the molded product is peeled off from the mold by the pressure of air, not only does it cause unnecessary damage to the molded product, but also a high level of air is efficiently generated by a simple mechanism installed in the mold. Since it can be compressed to a pressure, even a molded product that is particularly difficult to peel off can be surely removed by the air reliably entering the gap between the molded product and the mold.

本発明の第1の実施形態に係る脱型機構の定常状態を示す概略断面図である。It is a schematic sectional drawing which shows the steady state of the mold release mechanism which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る脱型機構の「脱型の第1のステップ」の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state of the "first step of demolding" of the demolding mechanism which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る脱型機構の「脱型の第2のステップ」の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state of "the 2nd step of demolding" of the demolding mechanism which concerns on the 1st Embodiment of this invention. 本発明の脱型のステップを要約した図である。It is the figure which summarized the demolding step of this invention. 本発明の第2の実施形態に係る脱型機構の定常状態を示す概略断面図である。It is a schematic sectional drawing which shows the steady state of the mold release mechanism which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る脱型機構の定常状態を示す概略断面図である。It is a schematic sectional drawing which shows the steady state of the mold release mechanism which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る脱型機構の他の実施形態の定常状態を示す概略断面図である。It is a schematic sectional drawing which shows the steady state of other embodiment of the mold release mechanism which concerns on the 3rd Embodiment of this invention.

次に、本発明の第1の実施形態を、図1〜図4を用いて説明する。図1は本実施形態において脱型機構が特に働いていない定常状態を示しており、この説明においては、上成形型1(以下単に上型1と呼ぶ)と相対する下成形型2(以下単に下型2と呼ぶ)の間の空間に液状の樹脂が供給され、その液状の樹脂が硬化し、成形品3ができあがった状態を示している。下型2には円柱状の穴4が設けられ、穴4の奥には、第1の気体供給経路5a,5bが接続されている。この態様において、第1の気体供給経路5aは穴4に連なる形で、穴4より円柱の径を少し大きくした領域となっており、第1の気体供給経路5bは、第1の気体供給経路5aに接続された細長い穴であり、下型2の成形品側とは反対側に伸び、最終的に下型2の外の空気供給源6に繋がっている。   Next, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a steady state in which the demolding mechanism does not particularly work in this embodiment. In this description, a lower mold 2 (hereinafter simply referred to as an upper mold 1) opposite to an upper mold 1 (hereinafter simply referred to as an upper mold 1). The liquid resin is supplied to the space between the lower mold 2 and the liquid resin is cured, and the molded product 3 is completed. The lower mold 2 is provided with a cylindrical hole 4, and first gas supply paths 5 a and 5 b are connected to the back of the hole 4. In this embodiment, the first gas supply path 5a is connected to the hole 4 and is a region in which the diameter of the cylinder is slightly larger than the hole 4, and the first gas supply path 5b is the first gas supply path. It is an elongate hole connected to 5a, extends to the side opposite to the molded product side of the lower mold 2, and is finally connected to the air supply source 6 outside the lower mold 2.

穴4には第1のピン7が挿入されており、第1のピン7の先端部分は、下型2の製品面形状の一部を形成している。また、第1のピン7の先端部分の外径は、穴4の内径サイズより極僅かに小さい径となっている。具体的には、穴4の内径がφ8mmの場合、第1のピン7の先端部分の外径を穴4の内径に対して5〜30μm程度小さくすることが好ましい。更に外周にはシール機構として、ゴム状の弾性体からできたOリング8が溝9にそれぞれ装着され、穴4を塞ぎ密栓できるようになっている。Oリング8の太さ、本数は、第1のピン7の大きさにもよるが、断面の直径が0.5〜0.8mm、本数は2〜4本設けることが好ましい。また、溝9は、Oリング8の太さに応じ、1本あたりの幅を0.6〜1.2mm、深さを0.4〜0.7mmの範囲で設けることができる。   A first pin 7 is inserted into the hole 4, and a tip portion of the first pin 7 forms a part of the product surface shape of the lower mold 2. The outer diameter of the tip portion of the first pin 7 is slightly smaller than the inner diameter size of the hole 4. Specifically, when the inner diameter of the hole 4 is φ8 mm, the outer diameter of the tip portion of the first pin 7 is preferably made smaller by about 5 to 30 μm than the inner diameter of the hole 4. Further, O-rings 8 made of a rubber-like elastic body are respectively mounted in the grooves 9 as a sealing mechanism on the outer periphery so that the holes 4 can be closed and sealed. Although the thickness and number of O-rings 8 depend on the size of the first pin 7, it is preferable to provide a cross-sectional diameter of 0.5 to 0.8 mm and the number of 2 to 4. Moreover, the groove | channel 9 can provide the width | variety per 0.6-1.2mm and the depth in the range of 0.4-0.7mm according to the thickness of the O-ring 8. FIG.

第1のピン7の後端側は、ピン駆動機構10が連結部材11を介して接続されている。本発明において、図1に示すように、第1のピン7が穴4を塞いでいる位置を、第1のピン7の「第1の位置」と呼ぶ。   A pin driving mechanism 10 is connected to the rear end side of the first pin 7 via a connecting member 11. In the present invention, as shown in FIG. 1, the position where the first pin 7 blocks the hole 4 is referred to as the “first position” of the first pin 7.

図2は、図1の状態に続く、脱型作業の最初のステップ、すなわち「脱型の第1のステップ」を示している。図2において、上型1は図示しない型開閉機構によって上方に持ち上げられ、成形品3との間には空隙15が形成され、成形品3が下型2に張り付いた状態となっている。ここで第1のピン7は、ピン駆動機構10によって下型2の表面から後退させられ、成形型表面が穴4を介して第1の気体供給経路5a、5bと接続される。この第1のピン7が後退した位置を、第1のピン7の「第2の位置」と呼ぶ。   FIG. 2 shows the first step of the demolding operation, that is, the “first step of demolding” following the state of FIG. In FIG. 2, the upper mold 1 is lifted upward by a mold opening / closing mechanism (not shown), and a gap 15 is formed between the upper mold 1 and the molded article 3 sticking to the lower mold 2. Here, the first pin 7 is retracted from the surface of the lower mold 2 by the pin driving mechanism 10, and the surface of the molding die is connected to the first gas supply paths 5 a and 5 b through the holes 4. The position where the first pin 7 is retracted is referred to as the “second position” of the first pin 7.

この結果、穴4には空気供給源6から空気が供給され、穴4は真空状態ではなく、空気供給源6の持つ圧力に応じて、大気圧もしくは大気圧より高い加圧状態となる。空気供給源6の圧力設定を加圧状態とした場合、成形品3を下型2から離反する方向に押し上げることができ、この時点で成形品3が下型2から脱型できるのであれば、脱型の第1のステップ以降は不要となるが、特に成形品3の剛性が高いもの(例えば繊維強化樹脂)の場合や、また成形型への接着力が強い樹脂(例えばエポキシ等の熱硬化樹脂)を用いる場合においては、空気供給源6にかける圧力を一般的な空圧機器から供給されるレベルで最大の空圧(例えば1MPa(10気圧))としても、成形品3を脱型できないことが多い。   As a result, air is supplied to the hole 4 from the air supply source 6, and the hole 4 is not in a vacuum state but is in a pressurized state higher than the atmospheric pressure or the atmospheric pressure according to the pressure of the air supply source 6. When the pressure setting of the air supply source 6 is in a pressurized state, the molded product 3 can be pushed up in a direction away from the lower mold 2, and if the molded product 3 can be removed from the lower mold 2 at this time, After the first step of demolding, it becomes unnecessary, but in the case where the molded article 3 has a particularly high rigidity (for example, fiber reinforced resin) or a resin having a strong adhesive force to the mold (for example, thermosetting such as epoxy) In the case of using (resin), the molded product 3 cannot be removed even if the pressure applied to the air supply source 6 is the maximum pneumatic pressure (for example, 1 MPa (10 atm)) supplied from a general pneumatic device. There are many cases.

そこで次に、図3に示すような、「脱型の第2のステップ」に移行し、ここでピン駆動機構10の動作によって、第1のピン7を、穴4を塞ぐ「第1の位置」に向かって再び前進させる。第1のピン7と穴4との間のシール機構が十分に機能している限り、この第1のピン7の前進の過程において、穴4内部の空気は大きく圧縮させされ、ピン駆動機構10が第1のピン7を前進させる力と釣り合うまでところまで、その圧力を上昇させることができる。例えば、ピン駆動機構10が一般的なエアシリンダー機構からなっており、そのシリンダーのボア径がφ25mmで、ここに1MPa(10気圧)の空圧が付与された場合、内径φ8mmの穴4の内部に発生する最大の圧力は、「1MPa(10気圧)×(25mm/8mm)≒10MPa(100気圧)」となり、極小さく簡単な機構で、一般的な空圧機器では容易に用いられない極めて高い空気圧を発生させ、その力を、成形品3を下型2から引き剥がす力として利用できる。実際には上記計算例のような高い圧力に達する前に、空気が成形品3と下型2の接着を破ってその間に進入し、成形品3は下型2から引き剥がされることとなる。この接着が破られる面積が、求められる脱型の機能としてこの段階で十分であるならば、ここで脱型作業は終了となる。 Therefore, next, the process proceeds to a “second step of demolding” as shown in FIG. 3, where the first pin 7 is closed by the operation of the pin driving mechanism 10 to close the hole 4. Move forward again towards. As long as the sealing mechanism between the first pin 7 and the hole 4 is sufficiently functioning, the air inside the hole 4 is greatly compressed during the advancement process of the first pin 7, and the pin driving mechanism 10. The pressure can be increased up to a point until it balances with the force that advances the first pin 7. For example, when the pin drive mechanism 10 is composed of a general air cylinder mechanism, and the bore diameter of the cylinder is φ25 mm and an air pressure of 1 MPa (10 atm) is applied thereto, the inside of the hole 4 having an inner diameter of φ8 mm The maximum pressure generated in this is “1 MPa (10 atm) × (25 mm / 8 mm) 2 ≈10 MPa (100 atm)”, which is an extremely small and simple mechanism that is not easily used in general pneumatic equipment. A high air pressure is generated, and the force can be used as a force for peeling the molded product 3 from the lower mold 2. Actually, before reaching the high pressure as in the above calculation example, the air breaks the adhesion between the molded product 3 and the lower mold 2 and enters between them, and the molded product 3 is peeled off from the lower mold 2. If the area where this adhesion is broken is sufficient at this stage as the required demolding function, the demolding operation ends here.

しかし、脱型の第2のステップ後でも十分に脱型できない場合は、これに続いて「脱型の第3のステップ」に移行することができる。脱型の第3のステップは、図2の状態と同様に、第1のピン7を「第2の位置」まで再び後退させると、穴4は第1の気体供給経路5a、5bを通して空気供給源6と再び接続される。ここで空気供給源6の圧力を大気圧よりも高い加圧状態、例えば一般的な空圧機器から供給されるレベルの0.5〜1MPa(5〜10気圧)にしておけば、成形品3は空圧で押し上げられる。この時に成形品3を空気が押し上げる作用は、先に示した「脱型の第1のステップ」の状況とは大きく異なる。すなわち、「脱型の第2のステップ」を行うことで、成形品3は下型2からある程度の面積がすでに引き剥がされた状態になっており、この隙間に空気が容易に進入することができるので、「脱型の第1のステップ」よりも遙かに大きな面積に渡って空気圧が等圧で作用し、成形品3を押し上げる総合の力は遙かに大きなものとなり、遂に脱型が完了する。なお、この後に最終的に第1のピン7は「脱型の第4のステップ」として再び「第1の位置」に戻され、樹脂成形が再び開始できる状態、つまり脱型機構として定常の状態となる。   However, if the mold cannot be sufficiently removed even after the second step of demolding, the process can be shifted to the “third step of demolding”. In the third step of demolding, the hole 4 is supplied with air through the first gas supply paths 5a and 5b when the first pin 7 is moved back to the “second position” again, as in the state of FIG. Reconnected to the source 6. If the pressure of the air supply source 6 is set to a pressurized state higher than atmospheric pressure, for example, 0.5 to 1 MPa (5 to 10 atmospheres), which is a level supplied from a general pneumatic device, the molded product 3 Is pushed up by air pressure. At this time, the action of the air pushing up the molded product 3 is greatly different from the above-described “first step of demolding”. That is, by performing the “second step of demolding”, the molded product 3 has already been peeled off from the lower mold 2 to some extent, and air can easily enter this gap. Since the air pressure acts at an equal pressure over a much larger area than the “first step of demolding”, the total force that pushes up the molded product 3 becomes much larger, and finally demolding Complete. After this, the first pin 7 is finally returned to the “first position” again as “the fourth step of demolding”, and the resin molding can be started again, that is, the steady state as the demolding mechanism. It becomes.

以上の脱型のステップを要約すると、図4のようになる。本発明の最大のポイントは、「脱型の第2のステップ」において、穴4の空気を第1のピン7によって圧縮することで、圧縮された空気が成形品3を押し上げる力は、ピン駆動機構10が第1のピン7を前進させる力に等しく、それはあたかも従来の技術でいうところの固い脱型用のピンを成形型表面から突き出す代わりに、これを空気層を介して実施しているとも言える。成形品3は固いピンでなく、流体である空気によって押されるので、脱型の過程で成形品3にキズを付けるリスクを回避できるうえ、単なる空気供給源6から提供される空気でなく、ピン駆動機構10のような機械的機構による高い推力を成形品3に空気を介して直接与えることができるので、高い脱型能力が実現される。そして更に、「脱型の第3のステップ」によって、大面積にわたる空気圧の作用が及び、成形品3全体にわたる脱型をより確実なものにする。このキズを付けない特性と、高い脱型能力という2つの特性から、第1のピン7の径を従来の方式に比べて細く設定することができ、この結果、脱型機構全体を小さく設計できるというメリットも生まれる。脱型機構が小さければ、脱型機構を取り付ける場所の自由度が広がり、ひいては成形品形状設計の自由度も広がる。   The above demolding steps are summarized as shown in FIG. The greatest point of the present invention is that in the “second step of demolding”, the air in the hole 4 is compressed by the first pin 7, and the force by which the compressed air pushes up the molded product 3 is driven by a pin. The mechanism 10 is equivalent to the force that advances the first pin 7, which is implemented through the air layer instead of projecting the hard demolding pin from the mold surface as in the prior art. It can also be said. Since the molded product 3 is not a hard pin but is pressed by air, which is a fluid, the risk of scratching the molded product 3 during the demolding process can be avoided, and not the air provided from the simple air supply source 6 but the pin. Since a high thrust by a mechanical mechanism such as the drive mechanism 10 can be directly applied to the molded product 3 through air, a high demolding capability is realized. Furthermore, the “third step of demolding” allows the action of air pressure over a large area and ensures demolding over the entire molded article 3. From the two characteristics of not scratching and high demolding ability, the diameter of the first pin 7 can be set smaller than that of the conventional method, and as a result, the entire demolding mechanism can be designed to be small. The merits are also born. If the demolding mechanism is small, the degree of freedom of the place where the demolding mechanism is attached is increased, and the degree of freedom of design of the molded product is expanded.

以上、本発明の第1の実施形態を説明したが、本発明はこれに限られるものではない。例えば図5には、本発明の第2の実施形態が開示されている。図5は特に脱型機構の定常状態、すなわち第1の実施形態において第1のピン7が第1の位置にある状態を示しており、ピン駆動機構10’は空圧により第1のピストン12を往復運動させる機構からなり、第1のピストン12には第1のピン7’が一体的に形成され、第1のピストン12を往復運動させるさせるための圧空が、空気供給源6’から切替弁13を介し、第1の気体供給経路5c,5dを経て、それぞれ空気室14a,14bに供給されるようになっている。そして特に重要なポイントが、空気室14aが穴4’に繋がっている点であり、この構成にすることで、「脱型の第1のステップ」において、切替弁13の作用により、空気供給源6’から第1の気体供給経路5cを経て空気室14aに供給された空気は、その圧力によって第1のピストン12を後退させると共に、第1のピン7’の先端部分が穴4’から抜けた時点で穴4’に空気を供給する役割を同時に担うことになる。その後の脱型作業のステップは、第1の実施形態で示したものと同等である。このような構成にすることで、脱型機構全体を小さくまとまった形に設計できる。   The first embodiment of the present invention has been described above, but the present invention is not limited to this. For example, FIG. 5 discloses a second embodiment of the present invention. FIG. 5 particularly shows a steady state of the demolding mechanism, that is, a state in which the first pin 7 is in the first position in the first embodiment, and the pin driving mechanism 10 ′ has the first piston 12 by air pressure. The first piston 7 'is integrally formed with the first piston 12, and the compressed air for reciprocating the first piston 12 is switched from the air supply source 6'. The air is supplied to the air chambers 14a and 14b via the valve 13 via the first gas supply paths 5c and 5d, respectively. A particularly important point is that the air chamber 14a is connected to the hole 4 '. By adopting this configuration, the air supply source is obtained by the action of the switching valve 13 in the "first step of demolding". The air supplied from 6 'to the air chamber 14a through the first gas supply path 5c causes the first piston 12 to retreat by the pressure, and the tip of the first pin 7' comes out of the hole 4 '. At the same time, it plays the role of supplying air to the hole 4 '. The subsequent demolding steps are the same as those shown in the first embodiment. By adopting such a configuration, the entire demolding mechanism can be designed in a compact form.

また、図6には、本発明の第3の実施形態が開示されている。図6は特に脱型機構の定常状態、すなわち第1の実施形態において第1のピン7”が第1の位置にある状態を示しており、第1のピン7”と一体的に形成される第1のピストン12’の内部には、圧力増幅室18を有しており、この圧力増幅室18は第1のピストン12’を後退させるための空気を蓄える空気室14cおよび第1の気体供給経路5eと連通している。その圧力増幅室18に第2のピン16が挿入可能になっている。またこの第2のピン16は、第2のピストン17と一体的に形成されており、空気供給源6”から第2の気体供給経路5fを通じて供給された空気と、それに対向するスプリング19の反発力によって上下に可動する。特に重要なポイントは、第2の気体供給経路5fから空気を入れてこの第2のピン16を圧力増幅室18に挿入することで、第1の気体供給経路5eから供給された空気を大幅に圧縮して、圧力増幅室18および空気室14cの圧力を高め、この圧縮した空気は第1のピストン12’を後退させる大きな力を生み出し、第1のピン7”が穴4”の内壁や成形品3”と強く固着してしまった場合においても、油圧や大型のエアシリンダーを用いること無く、第1のピン7”を固着から引き剥がして、動作可能な状態することができる。ただし、第2のピン16を圧力増幅室18に挿入した状態は、第1のピン7”を穴4”から完全に引き抜くのに不都合な状態なので、ここで次のステップとして、第2の気体供給経路5fの空気を抜いて第2のピン16を図6に示す様な、定常状態にまで後退させる。これで第1のピン7”の固着がなく動作が可能となった状態ができあがるので、以後は第2の実施形態にて開示した方法と同様の手順で、脱型の作業を遂行することができる。上述の実施形態において、空気室14cの容積は極力小さいものとするのが圧力増幅の効果が大きいので好ましく、そのためには、第1のピストン12’の空気室14c側の面と、それと対向して空気室14cを構成する反対側の内面との距離を、第1のピン7”が完全に前進した状態で、極めて小さくなるよう接近させるのが好ましい。ただし、互いを完全に接触させてしまうと空気室14cが形成できず、第1のピストン12’を押す力も発生させられなくなるので、僅かな隙間は残す必要がある。   FIG. 6 discloses a third embodiment of the present invention. FIG. 6 particularly shows a steady state of the demolding mechanism, that is, a state in which the first pin 7 ″ is in the first position in the first embodiment, and is formed integrally with the first pin 7 ″. The first piston 12 'has a pressure amplifying chamber 18, and the pressure amplifying chamber 18 stores an air chamber 14c for retracting the first piston 12' and a first gas supply. It communicates with the path 5e. The second pin 16 can be inserted into the pressure amplification chamber 18. Further, the second pin 16 is formed integrally with the second piston 17, and the air supplied from the air supply source 6 ″ through the second gas supply path 5f and the repulsion of the spring 19 opposed thereto. A particularly important point is that air is introduced from the second gas supply path 5f and the second pin 16 is inserted into the pressure amplifying chamber 18 so that the first gas supply path 5e can be moved. The supplied air is greatly compressed to increase the pressure in the pressure amplifying chamber 18 and the air chamber 14c, and this compressed air creates a large force for retracting the first piston 12 ', and the first pin 7 " Even if the inner wall of the hole 4 ″ or the molded product 3 ″ is strongly fixed, the first pin 7 ″ is peeled off from the fixing without using a hydraulic pressure or a large air cylinder, so that it can be operated. Can However, since the state in which the second pin 16 is inserted into the pressure amplification chamber 18 is inconvenient for completely pulling out the first pin 7 ″ from the hole 4 ″, the second step is the second step. The gas supply path 5f is evacuated and the second pin 16 is retracted to the steady state as shown in FIG. 6. The first pin 7 ″ is not fixed and the operation is possible. As a result, the demolding operation can be performed in the same procedure as the method disclosed in the second embodiment. In the above-described embodiment, it is preferable that the volume of the air chamber 14c be as small as possible because the effect of pressure amplification is large. To that end, the surface of the first piston 12 'facing the air chamber 14c is opposed to the surface. It is preferable that the distance from the inner surface on the opposite side constituting the air chamber 14c is made to be extremely small with the first pin 7 "fully advanced, but they are in complete contact with each other. And the air chamber 14c cannot be formed, and the force pushing the first piston 12 'cannot be generated, so that it is necessary to leave a slight gap.

また、図7には本発明の第3の実施形態の他の形態が開示されている。図7の様に第1のピン7と連結部材11を介して接続されるピン駆動機構10の内部に圧力増幅室18、空気室14c、第2のピン16、第2のピストン17、第1の気体供給経路5d、5eを設けても同様の効果を発揮することができる。   FIG. 7 discloses another embodiment of the third embodiment of the present invention. As shown in FIG. 7, the pressure amplification chamber 18, the air chamber 14 c, the second pin 16, the second piston 17, and the first piston 17 are connected to the inside of the pin driving mechanism 10 connected to the first pin 7 via the coupling member 11. Even if the gas supply paths 5d and 5e are provided, the same effect can be exhibited.

上述の実施形態において、空気供給源6、6’、6”に供給される空気は、自然環境にある大気として説明したが、本発明は空気に限定されず、窒素や酸素、二酸化炭素、アルゴン、メタン等あらゆる気体から適宜選択することができる。しかしその経済性において、通常の大気を用いるのが好ましい。   In the above-described embodiment, the air supplied to the air supply sources 6, 6 ′, 6 ″ has been described as the atmosphere in the natural environment, but the present invention is not limited to air, and nitrogen, oxygen, carbon dioxide, argon It is possible to select from any gas such as methane, etc. However, it is preferable to use ordinary air in terms of economy.

また、上述の実施形態において、脱型機構は常に下型2、2’、2”に組み込まれた形のものを開示したが、これらの脱型機構をひとまとまり独立したユニットとして構成し、成形型に対して着脱自在とすることもできる。こうすることで、脱型機構がトラブルを起こした際にはユニットでその機構を交換することもでき、メンテナンス性の面で都合が良い。   Further, in the above-described embodiment, the demolding mechanism has been disclosed that is always incorporated in the lower molds 2, 2 ′, 2 ″. However, these demolding mechanisms are configured as a single unit and molded. It can be made detachable from the mold, so that when the mold removal mechanism causes trouble, the unit can be replaced by a unit, which is convenient in terms of maintenance.

穴4、4’、4”の形状は、長手方向に等断面形状をもつ柱状の形であれば、上述の実施形態のように丸穴でも良いし、その他四角形や六角形の多角形、長方形、または楕円形等の各断面形状が適用できる。実用上は加工が容易な丸穴が望ましいが、上述の実施形態で示したように、穴4、4’、4”の位置が成形型の製品面の平坦部に存在しない、または平坦部に存在していても、穴4、4’、4”がその法線方向に空けられない場合には、穴4、4’、4”の中に入るピンの周り止めの機能として、穴4、4’、4”を丸でなく、楕円等その他の非円形にすることも有意義である。   The shape of the holes 4, 4 ′, 4 ″ may be a round hole as in the above-described embodiment as long as it is a columnar shape having an equal cross-sectional shape in the longitudinal direction, other squares, hexagonal polygons, rectangles Or a cross-sectional shape such as an ellipse, etc. In practice, a round hole that is easy to process is desirable, but as shown in the above embodiment, the positions of the holes 4, 4 ′, 4 ″ are the positions of the mold. If the hole 4, 4 ', 4 "is not formed in the normal direction even though it is not present in the flat part of the product surface or is present in the flat part, It is also meaningful to make the holes 4, 4 ′, 4 ″ not round but other non-circular, such as an ellipse, as a function of stopping around the pin to enter.

1、1’、1”:上成形型
2、2’、2”:下成形型
3、3’、3”:成形品
4、4’、4”:穴
5a、5b、5c、5d、5e:第1の気体供給経路
5f:第2の気体供給経路
6、6’、6”:空気供給源
7、7’、7”:第1のピン
8:Oリング
9:溝
10、10’、10”:ピン駆動機構
11:連結部材
12、12’:第1のピストン
13:切替弁
14a、14b、14c:空気室
15:空隙
16:第2のピン
17:第2のピストン
18:圧力増幅室
19:スプリング
1, 1 ′, 1 ″: Upper mold 2, 2 ′, 2 ″: Lower mold 3, 3 ′, 3 ″: Molded product 4, 4 ′, 4 ″: Holes 5a, 5b, 5c, 5d, 5e : First gas supply path 5f: second gas supply path 6, 6 ', 6 ": air supply source 7, 7', 7": first pin 8: O-ring 9: groove 10, 10 ' 10 ": Pin drive mechanism 11: Connecting member 12, 12 ': First piston 13: Switching valves 14a, 14b, 14c: Air chamber 15: Gap 16: Second pin 17: Second piston 18: Pressure amplification Chamber 19: Spring

Claims (6)

樹脂成形品を成形型から引き剥がす脱型方法であって、成形型表面に柱状の穴を形成し、成形時においては該柱状の穴の断面形状に沿う先端形状を有する第1のピンによって閉止し、脱型を行う際には該第1のピンを該穴に沿って後退させ、該穴と接続する第1の気体供給経路とを連通させて該穴内に気体を流入させ、しかる後に該第1のピンを前進させ、該穴内に充填された気体を圧縮し、成形品と成形型との間に該圧縮した気体を進入させて成型品を引き剥がすことを特徴とする、成形品の脱型方法。 A demolding method in which a resin molded product is peeled off from a mold, and a columnar hole is formed on the surface of the mold and is closed by a first pin having a tip shape along the cross-sectional shape of the columnar hole at the time of molding. When removing the mold, the first pin is retracted along the hole, and the first gas supply path connected to the hole is communicated to allow the gas to flow into the hole. The first pin is advanced, the gas filled in the hole is compressed, the compressed gas is introduced between the molded product and the mold, and the molded product is peeled off. Demolding method. 該第1のピンを前進させた後、該第1のピンを再び該穴に沿って後退させ、該穴と該第1の気体供給経路とを再び接続させ、気体の圧力で成形品を引き剥がすことを特徴とする、請求項1に記載の成形品の脱型方法。 After the first pin has been advanced, the first pin is again retracted along the hole, the hole and the first gas supply path are connected again, and the molded product is pulled by the gas pressure. The method for demolding a molded product according to claim 1, wherein the molded product is peeled off. 該第1のピンと一体的に形成される第1のピストン内部の内部を貫通する穴の一部に設けられ、かつ、該第1の気体供給経路の一部をなす圧力増幅室に第2のピンを挿入することで、該圧力増幅室に連通する空気室に気体を流入させ、空気を圧縮することで該圧力増幅室および、該空気室内の圧力を高め該第1のピンを後退させ、その後、該第1のピンを前進させ、該穴内に充填された気体を圧縮し、該圧縮した気体によって成形品を引き剥がすことを特徴とする、請求項1または2に記載の成形品の脱型方法。 A pressure amplifying chamber provided in a part of a hole penetrating the inside of the first piston formed integrally with the first pin and forming a part of the first gas supply path has a second By inserting a pin, gas flows into an air chamber communicating with the pressure amplification chamber, and by compressing air, the pressure in the pressure amplification chamber and the air chamber is increased, and the first pin is moved backward, 3. The molded product removal according to claim 1, wherein the first pin is advanced, the gas filled in the hole is compressed, and the molded product is peeled off by the compressed gas. 4. Mold method. 樹脂成形品を成形型から引き剥がす脱型機構であって、該成形型を構成する少なくとも1つの成形型内に、該成形型表面に繋がる柱状の穴と、該柱状の穴の奥に連通する第1の気体供給経路と、該柱状の穴の断面形状に沿う先端形状を有する第1のピンと、該第1のピンの先端部で該穴と該第1のピンとの隙間をシールするシール機構と、該第1のピンを、該第1のピンの先端部が該柱状の穴を塞ぎつつ、成形型の表面形状の一部をなす第1の位置と、該第1のピンが成形型の表面から後退して、成形型表面が柱状の穴を介して該第1の気体供給経路と連通される第2の位置との間を往復動作可能なピン駆動機構とを有し、該第1のピンを第2の位置に後退させて該柱状の穴と該第1の気体供給経路とを連通させ、再び該第1のピンを第1の位置に前進させて該柱状の穴に存在する気体を圧縮し、該圧縮した気体により該成型品を該成形型から引き剥がすことを特徴とする、成形品の脱型機構。 A demolding mechanism for peeling a resin molded product from a mold, and communicating with a columnar hole connected to the surface of the mold and at the back of the columnar hole in at least one mold constituting the mold A first gas supply path, a first pin having a tip shape that follows the cross-sectional shape of the columnar hole, and a seal mechanism that seals a gap between the hole and the first pin at the tip portion of the first pin The first pin, a first position where the tip of the first pin closes the columnar hole and forms a part of the surface shape of the mold, and the first pin is the mold A pin drive mechanism that retreats from the surface of the mold and is capable of reciprocating between a second position where the mold surface communicates with the first gas supply path via a columnar hole, The first pin is retracted to the second position so that the columnar hole communicates with the first gas supply path, and the first pin is again connected to the first position. Compressing the gas present in the allowed columnar hole in advanced location, wherein the peel the molded type products from forming die by a gas obtained by the compression, molded articles demolding mechanism. 該第1のピン駆動機構が気体圧力によりシリンダー内の第1のピストンを往復運動させる機構からなり、該第1のピストンには該第1のピンが一体的に接続され、該第1のピストンを後退させるための気体圧力が、該第1の気体供給経路から供給されることを特徴とする、請求項4に記載の成形品の脱型機構。 The first pin driving mechanism comprises a mechanism for reciprocating the first piston in the cylinder by gas pressure, and the first pin is integrally connected to the first piston, and the first piston The mold release mechanism according to claim 4, wherein the gas pressure for retreating is supplied from the first gas supply path. 該第1のピンの周縁部に設けられた空気室と、該第1のピンと一体的に形成される該第1のピストンと、第2のピンと、該第2のピンと一体的に形成される第2のピストンと第2のピンを内部に挿入することで、該第1のピンからなる該第1のピストンを後退させる空気圧力を増幅する圧力増幅室を有し、該圧力増幅室は該第1のピストン内部を貫通する穴の一部に設けられ、かつ、該圧力増幅室は、該第1の気体供給経路の一部をなすことを特徴とする、請求項4または5に記載の成形品の脱型機構。 An air chamber provided in a peripheral portion of the first pin, the first piston formed integrally with the first pin, a second pin, and formed integrally with the second pin. A pressure amplifying chamber for amplifying an air pressure for retreating the first piston composed of the first pin by inserting a second piston and a second pin into the inside, the pressure amplifying chamber being 6. The method according to claim 4, wherein the pressure amplification chamber is provided in a part of a hole penetrating the inside of the first piston, and forms a part of the first gas supply path. Demolding mechanism for molded products.
JP2015012987A 2014-03-28 2015-01-27 Method and mechanism for demolding molded product Pending JP2015193224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015012987A JP2015193224A (en) 2014-03-28 2015-01-27 Method and mechanism for demolding molded product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014069241 2014-03-28
JP2014069241 2014-03-28
JP2015012987A JP2015193224A (en) 2014-03-28 2015-01-27 Method and mechanism for demolding molded product

Publications (1)

Publication Number Publication Date
JP2015193224A true JP2015193224A (en) 2015-11-05

Family

ID=54432725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015012987A Pending JP2015193224A (en) 2014-03-28 2015-01-27 Method and mechanism for demolding molded product

Country Status (1)

Country Link
JP (1) JP2015193224A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605828A (en) * 2018-06-14 2019-12-24 台山市凯德利盖业有限公司 Plastic cover body mold with demolding mechanism
CN110605829A (en) * 2018-06-14 2019-12-24 台山市凯德利盖业有限公司 Plastic cover body die with guide mechanism
CN110605817A (en) * 2018-06-14 2019-12-24 台山市凯德利盖业有限公司 Plastic cover body die with buffer mechanism
CN112388921A (en) * 2020-10-22 2021-02-23 苏州锦坤模塑有限公司 Demolding device for injection molding production of daily necessities and using method thereof
CN116329396A (en) * 2023-04-24 2023-06-27 昆山亿飞航空智能科技有限公司 Unmanned aerial vehicle mould that can demold fast

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036912U (en) * 1989-06-06 1991-01-23
JPH09262876A (en) * 1996-03-27 1997-10-07 Nippon Motorola Ltd Molding method, molding method of package for semiconductor integrated circuit device and molding device
JP2009202440A (en) * 2008-02-28 2009-09-10 Toray Ind Inc Demolding method and manufacturing process of fiber-reinforced plastic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036912U (en) * 1989-06-06 1991-01-23
JPH09262876A (en) * 1996-03-27 1997-10-07 Nippon Motorola Ltd Molding method, molding method of package for semiconductor integrated circuit device and molding device
JP2009202440A (en) * 2008-02-28 2009-09-10 Toray Ind Inc Demolding method and manufacturing process of fiber-reinforced plastic

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605828A (en) * 2018-06-14 2019-12-24 台山市凯德利盖业有限公司 Plastic cover body mold with demolding mechanism
CN110605829A (en) * 2018-06-14 2019-12-24 台山市凯德利盖业有限公司 Plastic cover body die with guide mechanism
CN110605817A (en) * 2018-06-14 2019-12-24 台山市凯德利盖业有限公司 Plastic cover body die with buffer mechanism
CN112388921A (en) * 2020-10-22 2021-02-23 苏州锦坤模塑有限公司 Demolding device for injection molding production of daily necessities and using method thereof
CN116329396A (en) * 2023-04-24 2023-06-27 昆山亿飞航空智能科技有限公司 Unmanned aerial vehicle mould that can demold fast
CN116329396B (en) * 2023-04-24 2023-12-08 昆山亿飞航空智能科技有限公司 Unmanned aerial vehicle mould that can demold fast

Similar Documents

Publication Publication Date Title
JP2015193224A (en) Method and mechanism for demolding molded product
KR100213527B1 (en) Method for stripping open ended bellows part from injection mold
CN103681406A (en) Die bonding apparatus, die picking up apparatus and die picking up method
ITBS20060071A1 (en) FINGER OUTLET
WO2006109272A3 (en) Syringe plunger jacket with expandable seal
CR8905A (en) JUICE EXTRACTOR INCLUDING PRESSURE OPERATED NOZZLE AND ASSOCIATED METHODS
US10052805B2 (en) Two-stage hydraulic booster device for a mold functional component
NO325468B1 (en) shock device
JPWO2015012089A1 (en) Container deaerator for extrusion press
JP2017081041A (en) Apparatus and method for vulcanizing pneumatic tire
KR100850218B1 (en) Nozzle injection for gresa
WO2005046961A1 (en) Mold clamping device and molding method
JP6861410B2 (en) Cylinder device
KR101568641B1 (en) Cylinder apparatus and hybrid type brow molding machine using this
JP2007290306A (en) Gas injection molding method and apparatus
CN109332688B (en) Dry bag type isostatic press and charging method thereof
JP2012125831A (en) Casting apparatus
EP3148777B1 (en) Connection system for connecting two devices with fluid connection between the two devices
JP2003094496A (en) Apparatus for demolding molding from molding mold
JP5480646B2 (en) Mold for vacuum casting
CN216782549U (en) High pressure RTM evacuation integral type structure of blowing
CN104029360B (en) A kind of pressure device for locking mould
KR200350781Y1 (en) Gas-ejector in the Die
TWM486540U (en) Timing controlling device for in-mold functional component
US20120104304A1 (en) Control valve for ejecting rivet pieces of a rivet gun

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190618