JP2015192102A - Reactive ion etching device - Google Patents

Reactive ion etching device Download PDF

Info

Publication number
JP2015192102A
JP2015192102A JP2014069893A JP2014069893A JP2015192102A JP 2015192102 A JP2015192102 A JP 2015192102A JP 2014069893 A JP2014069893 A JP 2014069893A JP 2014069893 A JP2014069893 A JP 2014069893A JP 2015192102 A JP2015192102 A JP 2015192102A
Authority
JP
Japan
Prior art keywords
stage
shielding plate
processing chamber
vacuum processing
reactive ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014069893A
Other languages
Japanese (ja)
Other versions
JP6342195B2 (en
Inventor
中村 敏幸
Toshiyuki Nakamura
敏幸 中村
隆一郎 上村
Ryuichiro Kamimura
隆一郎 上村
大和 長田
Yamato Osada
大和 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014069893A priority Critical patent/JP6342195B2/en
Publication of JP2015192102A publication Critical patent/JP2015192102A/en
Application granted granted Critical
Publication of JP6342195B2 publication Critical patent/JP6342195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactive ion etching device that is able to inhibit a significant decrease in etching rate even if power supplied to a stage is small, while inhibiting radiation of vacuum ultraviolet light with respect to an object to be processed.SOLUTION: A reactive ion etching device comprises: a vacuum processing chamber 1a; a stage 2 provided in the vacuum processing chamber and holding an object W to be processed; gas introduction means 4 for introducing etching gas into the vacuum processing chamber; plasma generating means 5, E2 for generating, in the vacuum processing chamber, plasma for ionizing the etching gas; and a power source E1 for supplying bias power to the stage. A shield plate 6 having an outside shape equal to or larger than the outside shape of the stage in the vacuum processing chamber and having a plurality of through holes 61 is arranged opposite to the stage. A space above the shield plate within the vacuum processing chamber is used as a plasma generation space SP. The proportion of the total of the areas of the through-holes in an underside 60 of the shield plate facing the plasma generation space from the stage side, to the area of the surface projected on the shield plate of the stage, is set within 10 to 80%.

Description

本発明は、反応性イオンエッチング装置に関し、より詳しくは、窒化ガリウム膜のエッチングに適したものに関する。   The present invention relates to a reactive ion etching apparatus, and more particularly to an apparatus suitable for etching a gallium nitride film.

窒化ガリウム膜は、大きなバンドギャップを有するため、例えば、パワーデバイスの材料として用いられている。パワーデバイスの製造工程において、窒化ガリウム膜は例えば反応性イオンエッチング装置を用いてエッチングされる。反応性イオンエッチング装置としては、真空処理室に設けられて処理対象物を保持するステージと、真空処理室にエッチングガスを導入するガス導入手段と、エッチングガスを電離するプラズマを真空処理室内に発生させるプラズマ発生手段と、ステージにバイアス電力を投入する電源とを備えるものが知られている。ここで、窒化ガリウム膜はプラズマによるダメージを受けやすいため、バイアス電力を小さく(例えば5W以下)設定することが一般であるが、プラズマからの真空紫外光が窒化ガリウム膜に照射されると、窒化ガリウム膜がダメージを受けることが知られている。   Since the gallium nitride film has a large band gap, it is used as a power device material, for example. In the power device manufacturing process, the gallium nitride film is etched using, for example, a reactive ion etching apparatus. As a reactive ion etching apparatus, a stage provided in a vacuum processing chamber for holding an object to be processed, a gas introduction means for introducing an etching gas into the vacuum processing chamber, and a plasma for ionizing the etching gas are generated in the vacuum processing chamber. It is known to have a plasma generating means to be applied and a power source for supplying bias power to the stage. Here, since the gallium nitride film is easily damaged by the plasma, the bias power is generally set to be small (for example, 5 W or less). However, when the vacuum ultraviolet light from the plasma is irradiated to the gallium nitride film, the nitridation is performed. It is known that gallium films are damaged.

処理対象物への真空紫外光の照射を抑制できるものとして、真空処理室内でステージに対向配置した遮蔽板を備えるマイクロ波プラズマエッチング装置が例えば特許文献1で知られている。このものでは、遮蔽板を真空紫外光を透過しない材料で作製し、この遮蔽板にステージ側から遮蔽板上方のプラズマ発生空間が見えないように斜めにのびる透孔を複数開設することで、プラズマからの真空紫外光が処理対象物に照射されないようにしている。   For example, Patent Document 1 discloses a microwave plasma etching apparatus that includes a shielding plate that is disposed to face a stage in a vacuum processing chamber, so that irradiation of vacuum ultraviolet light onto a processing target can be suppressed. In this case, the shielding plate is made of a material that does not transmit vacuum ultraviolet light, and a plurality of through holes extending obliquely from the stage side so that the plasma generation space above the shielding plate is not visible from the stage side are formed. Therefore, the processing object is not irradiated with the vacuum ultraviolet light from.

そこで、上記遮蔽板を反応性イオンエッチング装置に適用し、窒化ガリウム膜をエッチングすることが考えられるが、窒化ガリウム膜のエッチングレートが著しく低下することが判明した。これは、上記遮蔽板の透孔はステージ側からプラズマ発生空間を臨まないように形成されているため、透孔を介して窒化ガリウム膜に対してイオンが殆ど供給されず、窒化ガリウム膜に印加される自己バイアス電圧が著しく低くなるためであると考えられる。   Therefore, it is conceivable to apply the shielding plate to a reactive ion etching apparatus to etch the gallium nitride film, but it has been found that the etching rate of the gallium nitride film is significantly reduced. This is because the shielding plate is formed so that the through hole of the shielding plate does not face the plasma generation space from the stage side, so that almost no ions are supplied to the gallium nitride film through the through hole and applied to the gallium nitride film. This is thought to be because the self-bias voltage applied is significantly reduced.

特開2006−12962号公報JP 2006-12962 A

本発明は、上記点に鑑み、処理対象物に対する真空紫外光の照射を抑制しつつ、ステージへの投入電力が小さくてもエッチングレートの著しい低下を抑制することができる反応性イオンエッチング装置を提供することをその課題とするものである。   In view of the above points, the present invention provides a reactive ion etching apparatus capable of suppressing a significant decrease in the etching rate even when the input power to the stage is small while suppressing the irradiation of the vacuum ultraviolet light onto the object to be processed. The task is to do.

上記課題を解決するために、真空処理室と、真空処理室に設けられて処理対象物を保持するステージと、真空処理室にエッチングガスを導入するガス導入手段と、エッチングガスを電離するプラズマを真空処理室内に発生させるプラズマ発生手段と、ステージにバイアス電力を投入する電源とを備える本発明の反応性イオンエッチング装置は、真空処理室内にステージの外形と同等以上の外形を持ち、複数の透孔が開設された遮蔽板をステージに対向配置し、ステージから遮蔽板に向かう方向を上として、真空処理室内の遮蔽板の上方空間をプラズマ発生空間とし、ステージの遮蔽板への投影面の面積に対する、ステージ側からプラズマ発生空間を臨む遮蔽板下面における各透孔の部分の面積の総和の比率を10〜80%の範囲内に設定することを特徴とする。   In order to solve the above problems, a vacuum processing chamber, a stage provided in the vacuum processing chamber for holding a processing object, a gas introduction means for introducing an etching gas into the vacuum processing chamber, and a plasma for ionizing the etching gas are provided. The reactive ion etching apparatus of the present invention comprising plasma generating means for generating in a vacuum processing chamber and a power source for supplying bias power to the stage has an outer shape equal to or greater than the outer shape of the stage in the vacuum processing chamber, and has a plurality of transparent materials. The shield plate with holes is placed facing the stage, the direction from the stage toward the shield plate is the top, the space above the shield plate in the vacuum processing chamber is the plasma generation space, and the area of the projection surface onto the shield plate of the stage The ratio of the sum of the areas of the through holes on the lower surface of the shielding plate facing the plasma generation space from the stage side is set within a range of 10 to 80%. And wherein the door.

本発明によれば、遮蔽板にステージ側からプラズマ発生空間を臨むように複数の透孔を開設し、このプラズマ発生空間を臨む遮蔽板下面における各透孔の部分の面積の総和を、ステージの遮蔽板への投影面の面積に対して10〜80%の範囲内に設定することで、各透孔を介して処理対象物に対してイオンを効率よく供給できる。このため、バイアス電力が小さくても、処理対象物に印加される自己バイアス電圧が低下せず、エッチングレートの著しい低下を抑制することができる。これと併せて、遮蔽板の透孔以外の部分でプラズマからの真空紫外光を効率よく遮蔽することができる。従って、処理対象物に対する真空紫外光の照射を抑制しつつ、ステージへの投入電力が小さくてもエッチングレートの著しい低下を抑制することができる反応性イオンエッチング装置を得ることができる。尚、透孔を遮蔽板下面に対して斜めにのびるように開設した場合、「ステージ側からプラズマ発生空間を臨む遮蔽板下面における各透孔の部分」とは、遮蔽板下面における各透孔を遮蔽板上面に投影したときに遮蔽板上面における各透孔と互いに重複する部分をいうものとする。   According to the present invention, a plurality of through holes are formed in the shielding plate so as to face the plasma generation space from the stage side, and the total area of the portions of the respective through holes on the lower surface of the shielding plate facing the plasma generation space is determined as follows. By setting within a range of 10 to 80% with respect to the area of the projection surface on the shielding plate, ions can be efficiently supplied to the object to be processed through each through hole. For this reason, even if the bias power is small, the self-bias voltage applied to the object to be processed does not decrease, and a significant decrease in the etching rate can be suppressed. In addition to this, vacuum ultraviolet light from the plasma can be efficiently shielded at portions other than the through holes of the shielding plate. Therefore, it is possible to obtain a reactive ion etching apparatus capable of suppressing a significant decrease in the etching rate even if the input power to the stage is small while suppressing the irradiation of the vacuum ultraviolet light to the processing object. In addition, when the through holes are opened so as to extend obliquely with respect to the lower surface of the shielding plate, “the portion of each through hole on the lower surface of the shielding plate facing the plasma generation space from the stage side” means each through hole on the lower surface of the shielding plate. When projected on the upper surface of the shielding plate, it means a portion overlapping with each through hole on the upper surface of the shielding plate.

本発明において、前記透孔の各々を、前記遮蔽板の中心を中心とする同心円上に周方向の長さが同等となるように開設することができる。また、本発明において、前記透孔の各々を、平面視円形または矩形とすることができる。   In the present invention, each of the through holes can be opened on a concentric circle centered on the center of the shielding plate so as to have the same circumferential length. In the present invention, each of the through holes can be circular or rectangular in plan view.

本発明において、前記遮蔽板から処理対象物までの距離を30mm〜100mmの範囲内に設定することが好ましい。30mmよりも短いと、遮蔽板の透孔直下に位置する処理対象物のエッチングレートと遮蔽板の透孔を除く部分の直下に位置する処理対象物のエッチングレートとの差が大きくなり、エッチングレートの面内均一性が悪くなるという問題がある。一方、100mmよりも長いと、遮蔽板のステージ側に漏れ出るプラズマが多くなり、処理対象物への真空紫外光の照射を効果的に抑制できないという問題がある。   In this invention, it is preferable to set the distance from the said shielding board to a process target object in the range of 30 mm-100 mm. If it is shorter than 30 mm, the difference between the etching rate of the processing object located immediately below the through hole of the shielding plate and the etching rate of the processing object located directly below the portion excluding the through hole of the shielding plate becomes large. There is a problem that the in-plane uniformity is worsened. On the other hand, when the length is longer than 100 mm, there is a problem that plasma leaks to the stage side of the shielding plate, and the irradiation of the vacuum ultraviolet light onto the object to be processed cannot be effectively suppressed.

本発明の実施形態の反応性イオンエッチング装置を模式的に示す図。The figure which shows typically the reactive ion etching apparatus of embodiment of this invention. (a)〜(c)は、遮蔽板の例を夫々示す平面図。(A)-(c) is a top view which shows the example of a shielding board, respectively. 本発明の効果を確認する実験結果を示すグラフ。The graph which shows the experimental result which confirms the effect of this invention. 本発明の効果を確認する実験結果を示すグラフ。The graph which shows the experimental result which confirms the effect of this invention. 本発明の効果を確認する実験結果を示すグラフ。The graph which shows the experimental result which confirms the effect of this invention.

以下、図面を参照して、本発明の実施形態の反応性イオンエッチング装置(以下「エッチング装置」という)を説明する。図1を参照して、EMは、エッチング装置であり、エッチング装置EMは、真空処理室を画成する真空チャンバ1を備える。真空チャンバ1の上部開口は、石英等の誘電体で形成される天板11で塞がれている。真空チャンバ1の側壁上部にはフランジ1aが設けられ、フランジ上面に形成された凹溝1bに嵌め込まれたOリング12により、フランジ1aと天板11との間がシールされている。   A reactive ion etching apparatus (hereinafter referred to as “etching apparatus”) according to an embodiment of the present invention will be described below with reference to the drawings. Referring to FIG. 1, EM is an etching apparatus, and the etching apparatus EM includes a vacuum chamber 1 that defines a vacuum processing chamber. The upper opening of the vacuum chamber 1 is closed with a top plate 11 formed of a dielectric material such as quartz. A flange 1a is provided on the upper side wall of the vacuum chamber 1, and a gap between the flange 1a and the top plate 11 is sealed by an O-ring 12 fitted in a groove 1b formed on the upper surface of the flange.

真空チャンバ1内の底部には、絶縁体Iを介して基板ステージ2が設けられ、図示省略の公知の静電チャック等により、処理対象物Wをその処理面を上側にして位置決め保持できるようになっている。基板ステージ2には、真空チャンバ1の下部開口を介して高周波電源E1からの出力が接続されており、処理対象物Wにバイアス電位を印加できるようになっている。尚、基板ステージ2には図示省略の温媒流路が形成され、温媒流路に温度制御された温媒を流すことで、処理対象物Wを所定温度に加熱できるようになっている。   A substrate stage 2 is provided at the bottom of the vacuum chamber 1 via an insulator I so that the processing object W can be positioned and held by a known electrostatic chuck (not shown) with its processing surface facing upward. It has become. The substrate stage 2 is connected to the output from the high-frequency power source E1 through the lower opening of the vacuum chamber 1 so that a bias potential can be applied to the processing object W. Note that a heating medium flow path (not shown) is formed in the substrate stage 2, and the processing object W can be heated to a predetermined temperature by flowing a temperature controlled temperature medium through the heating medium flow path.

真空チャンバ1の底部には、図示省略の真空ポンプなどの真空排気手段に通じる排気管3が接続され、真空チャンバ1内を真空引きできるようになっている。また、真空チャンバ1の側壁には、図示省略の流量制御手段(マスフローコントローラ)を介してガス源に通じるガス管4が接続され、真空チャンバ1内にエッチングガスを所定流量で導入できるようになっている。   An exhaust pipe 3 leading to vacuum exhaust means such as a vacuum pump (not shown) is connected to the bottom of the vacuum chamber 1 so that the inside of the vacuum chamber 1 can be evacuated. Further, a gas pipe 4 communicating with a gas source is connected to the side wall of the vacuum chamber 1 via a flow rate control means (mass flow controller) (not shown) so that an etching gas can be introduced into the vacuum chamber 1 at a predetermined flow rate. ing.

天板11の外側には、複数段(本実施形態では2段)のループ状のアンテナコイル5が設けられ、このアンテナコイル5には高周波電源E2からの出力が接続され、プラズマ発生用の高周波電力を投入できるようになっている。これらのアンテナコイル5及び高周波電源E2は、本発明の「プラズマ発生手段」を構成し、後述する遮蔽板6の上方空間(以下「プラズマ発生空間」という)SPにプラズマを発生させることができる。   A loop antenna coil 5 having a plurality of stages (two stages in the present embodiment) is provided outside the top plate 11, and an output from a high frequency power source E2 is connected to the antenna coil 5 to generate a high frequency for plasma generation. Power can be turned on. The antenna coil 5 and the high-frequency power source E2 constitute “plasma generating means” of the present invention, and can generate plasma in a space SP (hereinafter referred to as “plasma generating space”) above a shielding plate 6 described later.

ここで、プラズマからの真空紫外光が処理対象物Wに照射されると、処理対象物Wがダメージを受ける。このような真空紫外光の照射を抑制するために、上記エッチング装置EMは、ステージ2の外形と同等以上の外形を持つ遮蔽板6をステージ2に対向配置した。遮蔽板6は、ステージ2の外側で真空チャンバ1底部に立設した支持部7の上部で支持されている。遮蔽板6及び支持部7の材料としては、石英、アルミナ、アルミニウム、チタンのような、真空紫外光を遮蔽する材料を用いることができる。また、遮蔽板6として、アルミニウムやチタンなどの金属製の母材表面をアルミナ膜で覆ってなるものを用いることができる。   Here, when the processing object W is irradiated with the vacuum ultraviolet light from the plasma, the processing object W is damaged. In order to suppress such irradiation of vacuum ultraviolet light, the etching apparatus EM has the shielding plate 6 having an outer shape equal to or greater than the outer shape of the stage 2 disposed opposite to the stage 2. The shielding plate 6 is supported on an upper portion of a support portion 7 that stands on the bottom of the vacuum chamber 1 outside the stage 2. As the material of the shielding plate 6 and the support portion 7, a material that shields vacuum ultraviolet light, such as quartz, alumina, aluminum, and titanium, can be used. Further, as the shielding plate 6, a material obtained by covering the surface of a metal base material such as aluminum or titanium with an alumina film can be used.

図2(a)も参照して、遮蔽板6には、平面視円形の透孔61が複数開設されている。これらの透孔61は、ステージ2からプラズマ発生空間SPを臨むように、即ち、遮蔽板60下面に対して直交する方向にのびるように形成されている。ステージ2の遮蔽板6への投影面の面積に対する、ステージ2側からプラズマ発生空間SPを臨む遮蔽板下面60における各透孔61の部分の面積の総和の比率(以下「開口率」という)が10〜80%の範囲内、好ましくは20〜50%の範囲内に設定されている。開口率が10%未満だと、遮蔽板6のステージ側に漏れ出るプラズマが少なくなり、エッチング処理が困難になるという問題がある。生産効率(生産性)を鑑みると、開口率を20%以上に設定することが好ましい。一方で、開口率が80%よりも高いと、処理対象物Wへの真空紫外光の照射を効果的に抑制できないという問題がある。尚、処理対象物Wのダメージの指標である後述のPLシフト量は1.0に近い数値であることが好ましいため、開口率を50%以下に設定することが好ましい。透孔61の直径は、3〜40mmの範囲内に設定することができる。また、遮蔽板6の厚さは、その材質に応じて例えば、2〜15mmの範囲内で適宜設定することができる。遮蔽板6から処理対象物Wまでの距離は30mm〜100mmの範囲内に設定することが好ましい。30mmよりも短いと、遮蔽板6の透孔61直下に位置する処理対象物Wのエッチングレートと遮蔽板6の透孔61を除く部分の直下に位置する処理対象物Wのエッチングレートとの差が大きくなり、エッチングレートの面内均一性が悪くなるという問題がある。一方、100mmよりも長いと、遮蔽板6のステージ側に漏れ出るプラズマが多くなり、処理対象物Wへの真空紫外光の照射を効果的に抑制できないという問題がある。   Referring also to FIG. 2A, the shielding plate 6 has a plurality of circular through holes 61 that are circular in plan view. These through holes 61 are formed so as to face the plasma generation space SP from the stage 2, that is, to extend in a direction orthogonal to the lower surface of the shielding plate 60. The ratio (hereinafter referred to as “aperture ratio”) of the total area of the portions of the through holes 61 on the lower surface 60 of the shielding plate facing the plasma generation space SP from the stage 2 side with respect to the area of the projection surface onto the shielding plate 6 of the stage 2 It is set within a range of 10 to 80%, preferably within a range of 20 to 50%. When the aperture ratio is less than 10%, there is a problem that the plasma leaking to the stage side of the shielding plate 6 is reduced and the etching process becomes difficult. In view of production efficiency (productivity), it is preferable to set the aperture ratio to 20% or more. On the other hand, when the aperture ratio is higher than 80%, there is a problem that the irradiation of the processing object W with vacuum ultraviolet light cannot be effectively suppressed. Since the PL shift amount, which will be described later, which is an index of damage to the processing object W is preferably a value close to 1.0, it is preferable to set the aperture ratio to 50% or less. The diameter of the through hole 61 can be set within a range of 3 to 40 mm. Moreover, the thickness of the shielding board 6 can be suitably set within the range of 2-15 mm according to the material, for example. The distance from the shielding plate 6 to the processing object W is preferably set within a range of 30 mm to 100 mm. If shorter than 30 mm, the difference between the etching rate of the processing object W located immediately below the through hole 61 of the shielding plate 6 and the etching rate of the processing object W located directly below the portion excluding the through hole 61 of the shielding plate 6. There is a problem that the in-plane uniformity of the etching rate is deteriorated. On the other hand, when it is longer than 100 mm, there is a problem that plasma leaks to the stage side of the shielding plate 6 and the irradiation of the vacuum ultraviolet light to the processing object W cannot be effectively suppressed.

また、天板11とアンテナコイル5との間には、天板11に沿って電極7が配置されている。電極7には、高周波電源E2からの出力が可変容量コンデンサ(例えば、100pF〜200pF)8を介して接続されており、真空チャンバ1内にプラズマが発生した状態で電極7に電圧印加すると、電極7に対向する天板11の下面11aにイオンが引き込まれて、下面11aに付着した反応副生成物を除去できるようになっている。   An electrode 7 is disposed along the top plate 11 between the top plate 11 and the antenna coil 5. An output from the high-frequency power source E2 is connected to the electrode 7 via a variable capacitor (for example, 100 pF to 200 pF) 8. When a voltage is applied to the electrode 7 in a state where plasma is generated in the vacuum chamber 1, The ions are attracted to the lower surface 11a of the top plate 11 facing 7 so that reaction by-products attached to the lower surface 11a can be removed.

上記エッチング装置EMは、特に図示しないが、マイクロコンピュータやシーケンサ等を備えた公知の制御手段を有し、制御手段により上記各電源E1,E2の稼働、マスフローコントローラの稼働や真空排気手段の稼働等を統括管理するようになっている。以下、処理対象物Wを窒化ガリウム膜が形成されたサファイア基板とし、上記エッチング装置EMを用いて窒化ガリウム膜をエッチングするエッチング方法について説明する。   Although not particularly shown, the etching apparatus EM has known control means including a microcomputer, a sequencer, etc., and the control means operates the power supplies E1, E2, the mass flow controller, the vacuum exhaust means, and the like. It is supposed to manage and manage. Hereinafter, an etching method in which the processing object W is a sapphire substrate on which a gallium nitride film is formed and the gallium nitride film is etched using the etching apparatus EM will be described.

先ず、真空排気手段を作動させて真空チャンバ1内を所望の真空度まで真空引きした状態で、図外の搬送ロボットを用いて処理対象物Wを搬送して基板ステージ2上に載置する。そして、ガス管4から真空チャンバ1内に、塩素含有ガスを20〜50sccmの流量で導入し、この状態で、高周波電源E2からアンテナコイル5に例えば13.56MHzの高周波電力を100W〜500W投入することで、真空チャンバ1内にプラズマPが発生する。これと併せて、ステージ2に例えば400kHzの高周波電力を1〜5W投入する。ここで、図2(a)に示すように直径30mmの透孔61が複数個(開口率50%)形成された遮蔽板6をステージ2に対向配置したため、プラズマPが透孔61を介してステージ2側に適度に漏れ出す。このため、塩素イオンが処理対象物Wに引き込まれて窒化ガリウム膜がエッチングされる。   First, in a state where the vacuum evacuation unit is operated and the vacuum chamber 1 is evacuated to a desired degree of vacuum, the processing object W is transferred using the transfer robot (not shown) and placed on the substrate stage 2. Then, a chlorine-containing gas is introduced into the vacuum chamber 1 from the gas pipe 4 at a flow rate of 20 to 50 sccm, and in this state, for example, high frequency power of 13.56 MHz is input to the antenna coil 5 from 100 W to 500 W from the high frequency power source E2. As a result, plasma P is generated in the vacuum chamber 1. In addition, 1 to 5 W of high frequency power of 400 kHz, for example, is input to the stage 2. Here, as shown in FIG. 2A, the shielding plate 6 in which a plurality of through holes 61 having a diameter of 30 mm (aperture ratio 50%) is formed is disposed opposite to the stage 2, so that the plasma P passes through the through holes 61. Leak moderately to the stage 2 side. For this reason, chlorine ions are drawn into the processing object W and the gallium nitride film is etched.

以上説明したように、遮蔽板6の透孔61を介して処理対象物WがプラズマPを臨むため、透孔61を介して遮蔽板6のステージ2側に適度にプラズマを漏れ出させることができる。このため、処理対象物Wに印加するバイアス電位が低くても(例えば、2W)、処理対象物Wに塩素イオンを効率よく引き込むことができる。また、遮蔽板6の透孔61以外の部分により、プラズマPからの真空紫外光を遮蔽することができる。従って、処理対象物Wに対する真空紫外光の照射を抑制しつつ、窒化ガリウム膜を確実にエッチングすることができる反応性イオンエッチング装置を得ることができる。   As described above, since the processing object W faces the plasma P through the through hole 61 of the shielding plate 6, the plasma can be appropriately leaked to the stage 2 side of the shielding plate 6 through the through hole 61. it can. For this reason, even if the bias potential applied to the processing object W is low (for example, 2 W), chlorine ions can be efficiently drawn into the processing object W. Further, the vacuum ultraviolet light from the plasma P can be shielded by the portions other than the through holes 61 of the shielding plate 6. Therefore, it is possible to obtain a reactive ion etching apparatus that can surely etch the gallium nitride film while suppressing the irradiation of the processing object W with vacuum ultraviolet light.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態では、平面視円形の透孔60が開設された遮蔽板6を例に説明したが、透孔の形状はこれに限定されず、例えば、図2(b)に示す遮蔽板6aのように、平面視矩形の透孔61aを開設してもよい。この場合、遮蔽板6aを格子状にパターニングすることにより、複数の透孔61aを開設することができる。また、図2(c)に示す遮蔽板6bのように、透孔61b(透孔61c,61d)の各々を、遮蔽板6bの中心を中心とする同心円上に周方向の長さが同等となるように開設されてもよい。この場合、径方向に等間隔で透孔61b,61c,61dが開設されてもよい。この場合、遮蔽板6bは、円形の基部63aと、この基部63aから径方向にのびる複数本(本実施形態では8本)の主枝部63bと、互いに隣接する主枝部63bで区画される空間を複数個の透孔に分割する円弧状の従枝部63cとで構成することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited above. In the above-described embodiment, the shielding plate 6 having the through hole 60 having a circular shape in plan view has been described as an example. However, the shape of the through hole is not limited thereto, and for example, the shielding plate 6a illustrated in FIG. In this way, a through hole 61a having a rectangular shape in plan view may be opened. In this case, the plurality of through holes 61a can be opened by patterning the shielding plate 6a in a lattice shape. Further, like the shielding plate 6b shown in FIG. 2 (c), each of the through holes 61b (the through holes 61c and 61d) has the same circumferential length on a concentric circle centered on the center of the shielding plate 6b. It may be established as follows. In this case, the through holes 61b, 61c, 61d may be opened at equal intervals in the radial direction. In this case, the shielding plate 6b is partitioned by a circular base portion 63a, a plurality of (eight in the present embodiment) main branch portions 63b extending in the radial direction from the base portion 63a, and main branch portions 63b adjacent to each other. It can be configured by an arc-shaped follower 63c that divides the space into a plurality of through holes.

また、上記実施形態では、遮蔽板表面に対して直交方向にのびる透孔を開設する場合について説明したが、遮蔽板表面に対して斜めにのびる透孔を開設してもよい。この場合、ステージ側からプラズマ発生空間を臨む遮蔽板下面における各透孔の部分」とは、遮蔽板下面における各透孔を遮蔽板上面に投影したときに遮蔽板上面における各透孔と互いに重複する部分をいうものとする。上記従来例のものでは、このような部分はない。   Moreover, although the said embodiment demonstrated the case where the through-hole extended in the orthogonal direction with respect to the shielding board surface was demonstrated, you may open the through-hole extended diagonally with respect to the shielding board surface. In this case, the portion of each through-hole in the lower surface of the shielding plate facing the plasma generation space from the stage side is mutually overlapped with each through-hole in the upper surface of the shielding plate when each through-hole in the lower surface of the shielding plate is projected onto the upper surface of the shielding plate. The part to do. In the above conventional example, there is no such part.

また、上記実施形態では、支持部7により遮蔽板6を支持しているが、真空チャンバ1の側壁に遮蔽板6を固定するようにしてもよい。また、プラズマを発生させる方法は、アンテナコイルに高周波電力を投入する方法に限らず、他の公知の方法を用いることができる。   In the above embodiment, the shielding plate 6 is supported by the support portion 7, but the shielding plate 6 may be fixed to the side wall of the vacuum chamber 1. Further, the method for generating plasma is not limited to the method of applying high-frequency power to the antenna coil, and other known methods can be used.

次に、上記効果を確認するために、上記エッチング装置EMを用いて次の実験を行った。本実験では、処理対象物Wとしてサファイア基板上に窒化ガリウム膜をスパッタ法により約30nmの厚さで成膜したものとし、この窒化ガリウム膜をエッチングした。エッチング条件は以下の通りである。即ち、遮蔽板6としてアルミナに開口率50%でφ30mmの透孔を複数開設したものを用い、遮蔽板6と処理対象物Wとの間の距離を60mmに設定し、塩素含有ガスの流量を30sccmとした(このときの真空チャンバ1内の圧力は約0.5Pa)、ステージ2への投入電力を400kHz、2Wに設定すると共に、アンテナコイル5への投入電力を13.56MHz、150Wに設定した。エッチング前後の窒化ガリウム膜のバンド端強度及びバンド内強度を夫々測定した結果、エッチング前(イニシャル)のバンド端強度は43(a.u)、バンド内強度が3797(a.u)であったのに対し、エッチング後のバンド端強度は41(a.u)、バンド内強度が3765(a.u)であった。これより、エッチング前後のバンド端強度に対するバンド内強度の比(バンド内強度/バンド端強度)を求めたところ、エッチング前の88.3からエッチング後の91.8へと1.04倍に変化することが確認された。以下、エッチング前後の上記比(バンド内強度/バンド端強度)の変化を「PLシフト量」といい、ダメージの指標として用いる。尚、本実験でのエッチングレートを求めたところ、8nm/minであった。   Next, in order to confirm the above effect, the following experiment was performed using the etching apparatus EM. In this experiment, it is assumed that a gallium nitride film is formed as a processing object W on a sapphire substrate with a thickness of about 30 nm by sputtering, and this gallium nitride film is etched. Etching conditions are as follows. That is, the shielding plate 6 is made of alumina having a plurality of apertures of φ30 mm with an aperture ratio of 50%, the distance between the shielding plate 6 and the object to be processed W is set to 60 mm, and the flow rate of the chlorine-containing gas is set. 30 sccm (the pressure in the vacuum chamber 1 at this time is about 0.5 Pa), and the input power to the stage 2 is set to 400 kHz and 2 W, and the input power to the antenna coil 5 is set to 13.56 MHz and 150 W. did. As a result of measuring the band edge strength and in-band strength of the gallium nitride film before and after etching, the band edge strength before etching (initial) was 43 (au) and the in-band strength was 3797 (au). On the other hand, the band edge strength after etching was 41 (au) and the in-band strength was 3765 (au). From this, the ratio of in-band strength to in-band strength before and after etching (in-band strength / band-end strength) was found to change 1.08 times from 88.3 before etching to 91.8 after etching. Confirmed to do. Hereinafter, the change in the ratio before and after etching (in-band intensity / band edge intensity) is referred to as “PL shift amount” and is used as an index of damage. The etching rate in this experiment was 8 nm / min.

Figure 2015192102
Figure 2015192102

さらに、透孔61の開口率を10%,20%,40%,70%,80%,90%,100%(遮蔽板無し)と変化させた点を除き、上記と同様にエッチングを夫々行い、PLシフト量を求めた結果を図3に示す。この開口率が10%,20%,80%,100%のときのエッチングレートを併せて測定し、その測定結果を図4に示す。図3及び図4に示す結果から、透孔61の開口率を10%〜80%の範囲内に設定すれば、PLシフト量を抑制しつつ、窒化ガリウム膜をエッチングできることが判った。さらに、開口率を20〜50%の範囲内に設定すれば、生産効率を高めることができると共にPLシフト量をより一層抑制できることが判った。   Further, etching is performed in the same manner as described above except that the aperture ratio of the through holes 61 is changed to 10%, 20%, 40%, 70%, 80%, 90%, 100% (no shielding plate). FIG. 3 shows the result of obtaining the PL shift amount. The etching rates when the aperture ratio is 10%, 20%, 80%, and 100% were also measured, and the measurement results are shown in FIG. From the results shown in FIG. 3 and FIG. 4, it was found that the gallium nitride film can be etched while suppressing the PL shift amount if the aperture ratio of the through holes 61 is set in the range of 10% to 80%. Furthermore, it was found that if the aperture ratio is set within a range of 20 to 50%, the production efficiency can be increased and the PL shift amount can be further suppressed.

また、遮蔽板6の材料を石英、アルミニウムに変えた点を除き、上記と同様にエッチングを行い(開口率50%)、PLシフト量を求めた結果を図5に示す。これによれば、遮蔽板6の材料はアルミナが好ましい。但し、アルミナ製の遮蔽板に透孔を開設するには加工性が難しいため、アルミニウムやチタンなどの金属製の遮蔽板の少なくともプラズマ側の面にアルミナ膜を形成することが好ましく、アルミナ膜の形成方法としては溶射法を用いることができる。   Moreover, except that the material of the shielding plate 6 is changed to quartz and aluminum, etching is performed in the same manner as described above (opening ratio 50%), and the result of obtaining the PL shift amount is shown in FIG. According to this, the material of the shielding plate 6 is preferably alumina. However, since it is difficult to form a through-hole in an alumina shielding plate, it is preferable to form an alumina film on at least the plasma side surface of a metallic shielding plate such as aluminum or titanium. As a forming method, a thermal spraying method can be used.

EM…反応性イオンエッチング装置、W…基板(処理対象物)、1a…真空処理室、2…ステージ、4…ガス管(ガス導入手段)、5…アンテナコイル(プラズマ発生手段)、E1…電源、E2…高周波電源(プラズマ発生手段)、6…遮蔽板、60…遮蔽板下面、61…透孔。   EM ... Reactive ion etching apparatus, W ... Substrate (object to be processed), 1a ... Vacuum processing chamber, 2 ... Stage, 4 ... Gas pipe (gas introducing means), 5 ... Antenna coil (plasma generating means), E1 ... Power supply , E2 ... high frequency power source (plasma generating means), 6 ... shielding plate, 60 ... bottom surface of shielding plate, 61 ... through hole.

Claims (4)

真空処理室と、真空処理室に設けられて処理対象物を保持するステージと、真空処理室にエッチングガスを導入するガス導入手段と、エッチングガスを電離するプラズマを真空処理室内に発生させるプラズマ発生手段と、ステージにバイアス電力を投入する電源とを備える反応性イオンエッチング装置において、
真空処理室内にステージの外形と同等以上の外形を持ち、複数の透孔が開設された遮蔽板をステージに対向配置し、ステージから遮蔽板に向かう方向を上として、真空処理室内の遮蔽板の上方空間をプラズマ発生空間とし、
ステージの遮蔽板への投影面の面積に対する、ステージ側からプラズマ発生空間を臨む遮蔽板下面における各透孔の部分の面積の総和の比率を10〜80%の範囲内に設定することを特徴とする反応性イオンエッチング装置。
A vacuum processing chamber, a stage provided in the vacuum processing chamber for holding an object to be processed, a gas introducing means for introducing an etching gas into the vacuum processing chamber, and plasma generation for generating plasma for ionizing the etching gas in the vacuum processing chamber In a reactive ion etching apparatus comprising means and a power source for supplying bias power to the stage,
A shielding plate having an outer shape equal to or larger than the outer shape of the stage in the vacuum processing chamber is arranged opposite to the stage, and the direction from the stage toward the shielding plate is upward, and the shielding plate in the vacuum processing chamber is The upper space is the plasma generation space,
The ratio of the total area of the portions of the through holes on the lower surface of the shielding plate facing the plasma generation space from the stage side to the area of the projection surface on the shielding plate of the stage is set within a range of 10 to 80%. Reactive ion etching equipment.
前記透孔の各々は、前記遮蔽板の中心を中心とする同心円上に周方向の長さが同等となるように開設されていることを特徴とする請求項1記載の反応性イオンエッチング装置。   2. The reactive ion etching apparatus according to claim 1, wherein each of the through holes is provided on a concentric circle centered on the center of the shielding plate so that the circumferential lengths are equal. 前記透孔の各々は、平面視円形または矩形であることを特徴とする請求項1記載の反応性イオンエッチング装置。   The reactive ion etching apparatus according to claim 1, wherein each of the through holes is circular or rectangular in a plan view. 前記遮蔽板から処理対象物までの距離を30mm〜100mmの範囲内に設定することを特徴とする請求項1〜3のいずれか1項記載の反応性イオンエッチング装置。   The reactive ion etching apparatus according to claim 1, wherein a distance from the shielding plate to the object to be processed is set in a range of 30 mm to 100 mm.
JP2014069893A 2014-03-28 2014-03-28 Etching method of gallium nitride film Active JP6342195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069893A JP6342195B2 (en) 2014-03-28 2014-03-28 Etching method of gallium nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069893A JP6342195B2 (en) 2014-03-28 2014-03-28 Etching method of gallium nitride film

Publications (2)

Publication Number Publication Date
JP2015192102A true JP2015192102A (en) 2015-11-02
JP6342195B2 JP6342195B2 (en) 2018-06-13

Family

ID=54426347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069893A Active JP6342195B2 (en) 2014-03-28 2014-03-28 Etching method of gallium nitride film

Country Status (1)

Country Link
JP (1) JP6342195B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150184A (en) * 2020-03-19 2021-09-27 住友重機械工業株式会社 Negative ion generation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289193A (en) * 1996-04-23 1997-11-04 Matsushita Electric Ind Co Ltd Plasma generating equipment and its method, and plasma treatment equipment and its method
JP2003338491A (en) * 2002-05-21 2003-11-28 Mitsubishi Electric Corp Plasma processing system and method for fabricating semiconductor device
JP2006019719A (en) * 2004-06-30 2006-01-19 Applied Materials Inc Method and apparatus for photomask plasma etching
JP2008047915A (en) * 2006-08-14 2008-02-28 Oxford Instruments Plasma Technology Ltd Surface processing apparatus
JP2011503844A (en) * 2007-11-01 2011-01-27 ユージン テクノロジー カンパニー リミテッド Wafer surface treatment equipment using high frequency drive inductively coupled plasma

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289193A (en) * 1996-04-23 1997-11-04 Matsushita Electric Ind Co Ltd Plasma generating equipment and its method, and plasma treatment equipment and its method
JP2003338491A (en) * 2002-05-21 2003-11-28 Mitsubishi Electric Corp Plasma processing system and method for fabricating semiconductor device
JP2006019719A (en) * 2004-06-30 2006-01-19 Applied Materials Inc Method and apparatus for photomask plasma etching
JP2008047915A (en) * 2006-08-14 2008-02-28 Oxford Instruments Plasma Technology Ltd Surface processing apparatus
JP2011503844A (en) * 2007-11-01 2011-01-27 ユージン テクノロジー カンパニー リミテッド Wafer surface treatment equipment using high frequency drive inductively coupled plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021150184A (en) * 2020-03-19 2021-09-27 住友重機械工業株式会社 Negative ion generation device
JP7404119B2 (en) 2020-03-19 2023-12-25 住友重機械工業株式会社 Negative ion generator

Also Published As

Publication number Publication date
JP6342195B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
TWI671850B (en) Multiple electrode substrate support assembly and phase control system
TWI610360B (en) Particle generation suppresor by dc bias modulation
KR102266368B1 (en) Plasma processing apparatus
TWI570802B (en) Electrolytic etching device
TWI689966B (en) Method for atomic precision etching
TWI656557B (en) Edge hump reduction faceplate by plasma modulation
US20210398775A1 (en) Plasma Strip Tool with Multiple Gas Injection
TWI502619B (en) Electrode for plasma processing apparatus, plasma processing apparatus, and method for generating plasma using plasma processing apparatus
KR101839414B1 (en) Plasma processing apparatus and plasma control method
TW201929090A (en) Etching method
TWI753970B (en) Placing unit and plasma processing apparatus
JP7154119B2 (en) Control method and plasma processing apparatus
JP7000521B2 (en) Plasma processing equipment and control method
JP2016522539A (en) Capacitively coupled plasma device with uniform plasma density
JP7374362B2 (en) Plasma treatment method and plasma treatment device
CN105702572A (en) Plasma etching method
JP6277055B2 (en) Plasma processing equipment
JP6342195B2 (en) Etching method of gallium nitride film
TWM469617U (en) Faraday shielding apparatus
KR20200051505A (en) Placing table and substrate processing apparatus
TW202025287A (en) Target object processing method and plasma processing apparatus
JP2000031121A (en) Plasma discharger and plasma treating device
JP2017120847A (en) Plasma processing device
JP2006324691A (en) Machining method and apparatus thereof
JP3948295B2 (en) Processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180516

R150 Certificate of patent or registration of utility model

Ref document number: 6342195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250