JP2015189602A - Method of modifying steel slag and steel slag - Google Patents

Method of modifying steel slag and steel slag Download PDF

Info

Publication number
JP2015189602A
JP2015189602A JP2014066431A JP2014066431A JP2015189602A JP 2015189602 A JP2015189602 A JP 2015189602A JP 2014066431 A JP2014066431 A JP 2014066431A JP 2014066431 A JP2014066431 A JP 2014066431A JP 2015189602 A JP2015189602 A JP 2015189602A
Authority
JP
Japan
Prior art keywords
slag
water
steelmaking slag
reforming
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014066431A
Other languages
Japanese (ja)
Inventor
加藤 裕介
Yusuke Kato
裕介 加藤
宮田 康人
Yasuto Miyata
康人 宮田
久宏 松永
Hisahiro Matsunaga
久宏 松永
明夫 林
Akio Hayashi
明夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014066431A priority Critical patent/JP2015189602A/en
Publication of JP2015189602A publication Critical patent/JP2015189602A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)
  • Furnace Details (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To modify steel slag at low costs in a short time, without transfer, as it is at high temperatures.SOLUTION: Steel slag in a molten state is kept in high-temperature water of 50°C or higher for a specified time to modify it, and the steel slag of grain sizes of 30 mm or smaller is recovered. Preferably, the steel slag in a molten state is reduced in grain sizes, poured into the high-temperature water and kept in the high-temperature water for a specified time to modify it. The grain sizes may be reduced to 10 mm or smaller by causing water to collide with the steel slag in a molten state, or the grain sizes may be reduced to 5 mm or smaller by causing a gas to collide with the steel slag in a molten state. The procedure allows modification of the steel slag at low costs in a short time, without transfer, as it is at high temperatures.

Description

本発明は、水中での製鋼スラグの改質方法および製鋼スラグに関する。   The present invention relates to a steelmaking slag reforming method and steelmaking slag in water.

製鋼工程では副原料として石灰が使用されるため、製鋼スラグ中には石灰の一部が残留した遊離石灰(以下、f−CaO)が存在する。このf−CaOは、水と反応すると膨張するため、製鋼スラグの体積安定性を低くして路盤材などとしての利用を妨げている。   Since lime is used as an auxiliary material in the steelmaking process, free lime (hereinafter referred to as f-CaO) in which part of the lime remains is present in the steelmaking slag. Since this f-CaO expands when it reacts with water, the volume stability of the steelmaking slag is lowered to prevent its use as a roadbed material.

このような製鋼スラグの膨張を抑制するために、エージングを行って事前にf−CaOを水分と反応させて消石灰に変えて製鋼スラグを改質する技術が知られている。エージングには、ヤードに山積みして大気により行う大気エージングと、蒸気を用いる蒸気エージングとがある。また、特許文献1には、高温の製鋼スラグに散水して得られる蒸気を使用する蒸気エージングの技術が記載されている。   In order to suppress the expansion of such steelmaking slag, a technique is known in which faging is performed by aging and reacting f-CaO with moisture in advance to convert it into slaked lime, thereby modifying the steelmaking slag. There are two types of aging: atmospheric aging that is piled up in a yard and performed by the atmosphere, and vapor aging that uses steam. Patent Document 1 describes a technique of steam aging that uses steam obtained by watering high-temperature steelmaking slag.

特開2009−227490号公報JP 2009-227490 A

しかしながら、大気エージングは、製鋼スラグ中のf−CaOが安定化するまでに長期間を要する。また、蒸気エージングは、大量の蒸気を使用するため処理コストが増加する。また、特許文献1に記載の技術には、散水により蒸気を得る工程Aと蒸気によりエージングする工程Bとが含まれる。工程Aと工程Bとは異なる場所で行われるため、工程Aと工程Bとの間に製鋼スラグを運搬しなければならない。しかも、工程Bでは、製鋼スラグを高温のうちに蒸気と接触させるために、高温の製鋼スラグを運搬しなければならない。   However, atmospheric aging requires a long period of time for f-CaO in steelmaking slag to stabilize. Steam aging uses a large amount of steam and increases processing costs. The technique described in Patent Document 1 includes a process A for obtaining steam by water spraying and a process B for aging by steam. Since the process A and the process B are performed at different places, the steelmaking slag must be transported between the process A and the process B. And in process B, in order to make steelmaking slag contact with a steam in high temperature, you have to convey high temperature steelmaking slag.

本発明は、上記に鑑みてなされたものであって、製鋼スラグを高温のまま運搬することなく低コストで短時間に改質することができる製鋼スラグの改質方法および製鋼スラグを提供することを目的とする。   The present invention has been made in view of the above, and provides a steelmaking slag reforming method and a steelmaking slag that can be reformed in a short time at a low cost without transporting the steelmaking slag at a high temperature. With the goal.

上述した課題を解決し、目的を達成するために、本発明に係る製鋼スラグの改質方法は
、溶融状態の製鋼スラグを50℃以上の高温水中に所定時間保持して改質する改質ステップと、粒径が30mm以下の製鋼スラグを回収する回収ステップと、を含むことを特徴とする。
In order to solve the above-described problems and achieve the object, the steelmaking slag reforming method according to the present invention includes a reforming step in which molten steelmaking slag is reformed by holding it in high-temperature water at 50 ° C. or higher for a predetermined time. And a recovery step of recovering steelmaking slag having a particle size of 30 mm or less.

また、本発明に係る製鋼スラグの改質方法は、上記発明において、溶融状態の製鋼スラグの粒径を小さくする細粒化ステップを含み、前記改質ステップは、前記細粒化ステップで粒径を小さくされた製鋼スラグを50℃以上の高温水中に流し込み、50℃以上の高温水中に所定時間保持して改質することを特徴とする。   Further, the steelmaking slag reforming method according to the present invention includes, in the above invention, a refinement step for reducing the particle size of the molten steelmaking slag, wherein the reforming step is performed by the refinement step. Steelmaking slag having a reduced size is poured into high-temperature water at 50 ° C. or higher, and is reformed by holding it in high-temperature water at 50 ° C. or higher for a predetermined time.

また、本発明に係る製鋼スラグの改質方法は、上記発明において、前記細粒化ステップは、溶融状態の製鋼スラグに水を衝突させることにより粒径を10mm以下にすることを特徴とする。   Moreover, the steelmaking slag reforming method according to the present invention is characterized in that, in the above-mentioned invention, the finely pulverizing step makes the particle diameter 10 mm or less by causing water to collide with the molten steelmaking slag.

また、本発明に係る製鋼スラグの改質方法は、上記発明において、前記細粒化ステップは、溶融状態の製鋼スラグに気体を衝突させることにより粒径を5mm以下にすることを特徴とする。   Moreover, the steelmaking slag reforming method according to the present invention is characterized in that, in the above-mentioned invention, the fine graining step makes the particle size 5 mm or less by causing a gas to collide with the molten steelmaking slag.

また、本発明に係る製鋼スラグは、上記発明によって改質された製鋼スラグであることを特徴とする。   The steelmaking slag according to the present invention is a steelmaking slag modified by the above invention.

本発明によれば、製鋼スラグを高温のまま運搬することなく低コストで短時間に改質することができる。   According to the present invention, steelmaking slag can be reformed in a short time at a low cost without being transported at a high temperature.

以下、本発明の一実施形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。   Hereinafter, an embodiment of the present invention will be described in detail. In addition, this invention is not limited by this embodiment.

本発明者らは、溶融状態のスラグを高温水中に放流しそのまま改質することにより、f−CaOによる製鋼スラグの膨張を抑制できるという知見を得た。   The present inventors have found that the expansion of steelmaking slag by f-CaO can be suppressed by discharging the molten slag into high-temperature water and modifying it as it is.

そこで、本実施形態では、まず、転炉から排滓されスラグ鍋に入れられた溶融スラグをスラグ鍋から放流し、下方に設置された水槽内へ落下させる。スラグ投入時の水槽内の水量はスラグの質量に対して100倍以上となるようにする。スラグを投入した後、50℃以上の高温水中に一定時間保持してスラグを改質する。   Therefore, in the present embodiment, first, the molten slag discharged from the converter and put in the slag pan is discharged from the slag pan and dropped into a water tank installed below. The amount of water in the water tank when the slag is charged should be at least 100 times the mass of the slag. After introducing the slag, the slag is reformed by holding it in high temperature water at 50 ° C. or higher for a certain period of time.

また、粒径が大きな状態のまま50℃以上の高温水中で保持をしても改質の進行が遅い。そこで、50℃以上の高温水中で放流し保持した後、粒径30mm以下のものだけを篩い分けて回収する。あるいは、溶融状態の製鋼スラグの粒径を小さくする細粒化ステップを行う。例えば、溶融状態で高速の水と衝突させることにより粒径10mm以下のスラグを得る。あるいは、溶融状態で高速の気体と衝突させることにより粒径5mm以下のスラグを得る。   Further, even if the particles are kept in a high temperature water of 50 ° C. or higher with a large particle size, the progress of reforming is slow. Therefore, after being discharged and held in high-temperature water at 50 ° C. or higher, only those having a particle size of 30 mm or less are sieved and collected. Alternatively, a refinement step is performed to reduce the particle size of the molten steelmaking slag. For example, a slag having a particle size of 10 mm or less is obtained by colliding with high-speed water in a molten state. Alternatively, a slag having a particle size of 5 mm or less is obtained by colliding with a high-speed gas in a molten state.

具体的には、以下の[1]〜[3]のいずれかの方法によりスラグを改質する。   Specifically, the slag is reformed by any one of the following methods [1] to [3].

[1]溶融スラグをスラグ鍋から水槽に放流し、50℃以上で所定時間保持する。その後、スラグを水槽より取り出して乾燥した後、網目30mmの篩を使用し、粒径30mm以下のスラグを分別回収する。 [1] Discharge molten slag from a slag pan to a water tank and hold at 50 ° C. or higher for a predetermined time. Thereafter, the slag is taken out from the water tank and dried, and then a slag having a particle size of 30 mm or less is separated and collected using a sieve having a mesh size of 30 mm.

[2]放流中の溶融スラグ(スラグ流)に、後方より高速の水を衝突させて粒径を10mm以下とし、そのまま水槽に落下させる。その後、スラグを50℃以上の高温水中に所定時間保持する。なお、スラグ流に衝突させる水は、ノズルより噴射させても、樋から流してもよい。 [2] The molten slag being discharged (slag flow) is collided with high-speed water from the rear so that the particle size is 10 mm or less, and is dropped into the water tank as it is. Thereafter, the slag is held in high-temperature water at 50 ° C. or higher for a predetermined time. In addition, the water made to collide with the slag flow may be ejected from the nozzle or may be made to flow from the ridge.

[3]放流中の溶融スラグに、後方より高速の気体を衝突させて粒径を5mm以下とし、そのまま水槽に落下させる。その後、スラグを50℃以上の高温水中に所定時間保持する。 [3] A high-speed gas is collided with the molten slag being discharged from the rear to make the particle size 5 mm or less, and is dropped into the water tank as it is. Thereafter, the slag is held in high-temperature water at 50 ° C. or higher for a predetermined time.

以上のように、溶融状態の製鋼スラグを高温のまま水中に放流し、所定時間後に粒径30mm以下となった物だけを回収すること、放流中の溶融スラグを高速の水との衝突により粒径を10mm以下とし、水槽に落下させ所定時間保持すること、気体との衝突により粒径を5mm以下とし、水槽に落下させ所定時間保持することにより、製鋼スラグを高温のまま運搬することなく短時間に低コストで製鋼スラグの改質処理が可能となる。また、改質後の製鋼スラグについて、f−CaO量や膨張率を低位にできる。   As described above, molten steelmaking slag is discharged into water at a high temperature, and only those having a particle size of 30 mm or less are recovered after a predetermined time, and the molten slag being discharged is crushed by collision with high-speed water. The diameter is set to 10 mm or less, dropped into the water tank and held for a predetermined time, the particle diameter is set to 5 mm or less by collision with gas, and dropped into the water tank and held for a predetermined time, so that the steelmaking slag can be shortened without being transported at high temperature Steelmaking slag can be reformed at low cost in time. Moreover, about the steelmaking slag after modification | reformation, the amount of f-CaO and an expansion coefficient can be made low.

なお、改質時間は、粒径と水温によって適宜選択すればよい。例えば、粒径30mm以下、水温50℃以上の場合には、改質時間を8時間以上とすればよく、粒径10mm以下、水温50℃以上の場合には改質時間を4時間以上とすればよい。粒径を小さくするほど改質時間は短縮でき、水温を高くするほど改質時間は短縮でき、改質時の水槽中の水の温度は80℃以上とすることが好ましい。また、改質後のf−CaO量や膨張率の観点から、スラグの粒径は20mm以下が好ましい。   The modification time may be appropriately selected depending on the particle size and water temperature. For example, when the particle size is 30 mm or less and the water temperature is 50 ° C. or more, the modification time may be 8 hours or more. When the particle size is 10 mm or less and the water temperature is 50 ° C. or more, the modification time is 4 hours or more. That's fine. The reforming time can be shortened as the particle size is reduced, the reforming time can be shortened as the water temperature is increased, and the temperature of water in the water tank during reforming is preferably 80 ° C. or higher. Moreover, the particle diameter of slag is preferably 20 mm or less from the viewpoint of the amount of f-CaO after modification and the expansion coefficient.

高温水中で一定時間保持した後、粒径30mm以下となったものだけを篩い分ける場合には、改質に必要な時間は8時間以上である。また、高速の水または気体を衝突させる場合には粒径をさらに小さくできるので、改質に必要な時間は4時間以上とすればよい。改質時の水中温度と製鋼スラグの粒径とにより、改質に必要な最適時間は異なる。   In the case of screening only those having a particle size of 30 mm or less after being kept in high temperature water for a certain time, the time required for reforming is 8 hours or more. In addition, when colliding with high-speed water or gas, the particle size can be further reduced, so the time required for reforming may be 4 hours or more. The optimum time required for reforming differs depending on the underwater temperature at the time of reforming and the particle size of the steelmaking slag.

上記実施の形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、仕様などに応じて種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited to these embodiments. Various modifications according to specifications and the like are within the scope of the present invention. It is obvious from the above description that various other embodiments are possible within the scope of the above.

[実施例]
以下に説明する実施例および比較例では、製鋼スラグとして、転炉での脱炭処理により発生したスラグ(転炉脱炭スラグ)を使用した。表1に、本実施例および比較例に使用した転炉脱炭スラグの組成を示す。表1に示すように、スラグ中のf−CaO量は4〜5質量%程度で、塩基度(CaO質量%/SiO質量%)は3.4程度である。なお、表1において、スラグ中の全Fe濃度をT.Feと記載した。また、スラグ中の全CaO濃度をT−CaOと記載した。
[Example]
In Examples and Comparative Examples described below, slag (converter decarburization slag) generated by decarburization processing in a converter was used as the steelmaking slag. Table 1 shows the composition of the converter decarburization slag used in the examples and comparative examples. As shown in Table 1, f-CaO content in the slag is about 4 to 5 wt%, basicity (CaO mass% / SiO 2 mass%) is about 3.4. In Table 1, the total Fe concentration in the slag is expressed as T.P. It was described as Fe. Moreover, the total CaO density | concentration in slag was described as T-CaO.

Figure 2015189602
Figure 2015189602

[1]表2に、溶融状態のスラグを水槽内へ直接放流し水槽内で一定温度、時間で保持したのち篩い分けにより分別した場合の条件と結果とを示す。転炉から排滓されスラグ鍋に入れられた表1に示す組成の溶融状態のスラグをスラグ鍋から放流し、そのまま下方に設置された水槽内へ落下させた。スラグ投入時の水槽内の水量をスラグの質量に対して100倍以上とし、スラグを投入した後、表2に示す温度、時間の条件で保持し改質した。表2の条件で保持されたスラグを乾燥した後、篩い分けにより30mm以下とそれ以外とに分別し、30mm以下のスラグだけを改質されたものとみなして回収した。改質前のスラグ中のf−CaO量は4〜5質量%程度であったところ、改質後のスラグ中のf−CaO量は、表2に示すように1.8質量%以下となっており、低減していることが確認された。また、改質後のスラグを用いてJISの水浸膨張試験を実施した。水浸膨張試験の結果、膨張率は1.1%以下であった。 [1] Table 2 shows the conditions and results when the molten slag is discharged directly into the water tank and kept at a constant temperature and time in the water tank and then sorted by sieving. The molten slag having the composition shown in Table 1 discharged from the converter and placed in the slag pan was discharged from the slag pan and dropped as it was into a water tank installed below. The amount of water in the water tank when the slag was charged was 100 times or more the mass of the slag, and after the slag was charged, the temperature and time conditions shown in Table 2 were maintained and reformed. The slag retained under the conditions in Table 2 was dried and then separated by sieving into 30 mm or less and other than that, and only the slag of 30 mm or less was regarded as modified and recovered. When the amount of f-CaO in the slag before reforming was about 4 to 5% by mass, the amount of f-CaO in the slag after reforming was 1.8% by mass or less as shown in Table 2. It was confirmed that it was reduced. Moreover, the water immersion expansion test of JIS was implemented using the modified slag. As a result of the water immersion expansion test, the expansion rate was 1.1% or less.

比較例として、転炉から排滓されスラグ鍋に入れられた表1に示す組成の溶融状態のスラグをスラグ鍋から放流し、そのまま下方に設置された水槽内へ落下させた。比較例1−1、1−2では、最大粒径が50mmまたは40mmのスラグを80℃の水槽内で10時間以上保持し改質した。また、比較例1−3では最大粒径が20mmのスラグを40℃の水槽内で8時間保持し改質した。比較例1−4では、最大粒径が20mmのスラグを80℃の水槽内の高温水中に5時間保持し改質した。これらの比較例のスラグを評価した結果、f−CaO量は3質量%以上あり、膨張率も3.2%以上と高位であった。   As a comparative example, the molten slag having the composition shown in Table 1 discharged from the converter and placed in the slag pot was discharged from the slag pot and dropped into a water tank installed below. In Comparative Examples 1-1 and 1-2, the slag having a maximum particle size of 50 mm or 40 mm was retained in a water bath at 80 ° C. for 10 hours or more for modification. In Comparative Example 1-3, the slag having a maximum particle size of 20 mm was modified by being held in a water bath at 40 ° C. for 8 hours. In Comparative Example 1-4, the slag having a maximum particle size of 20 mm was modified by holding it in high-temperature water in a water bath at 80 ° C. for 5 hours. As a result of evaluating the slag of these comparative examples, the amount of f-CaO was 3% by mass or more, and the expansion coefficient was 3.2% or more.

Figure 2015189602
Figure 2015189602

[2]表3に、高速の水を衝突させることによりスラグの粒径を10mm以下にして改質した場合の条件と結果とを示す。転炉から排滓されスラグ鍋に入れられた表1に示す組成の溶融スラグをスラグ鍋から放流し、放流中のスラグ流に後方より5〜30m/秒の速度で水を衝突させて前方にスラグを飛散させ、そのまま下方に設置された水槽内へ落下させた。その際、溶融スラグと水との衝突により粒径を10mm以下となるように、溶融スラグに衝突させる水の速度や量を調整した。スラグ投入時の水槽内の水量をスラグの質量に対して100倍以上とし、スラグを投入した後、表3に示す温度、時間の条件で保持し改質した。改質前のスラグ中のf−CaO量は4〜5質量%程度であったところ、改質後のスラグ中のf−CaO量は表3に示すように1.5質量%以下となっており、低減していることが確認された。また、改質後のスラグを用いてJISの水浸膨張試験を実施した。水浸膨張試験の結果、膨張率は1.0%以下であった。 [2] Table 3 shows conditions and results when the particle size of the slag was modified to 10 mm or less by colliding with high-speed water. The molten slag having the composition shown in Table 1 discharged from the converter and placed in the slag pan is discharged from the slag pan, and water is collided with the slag flow at a rate of 5 to 30 m / sec from the rear to the front. The slag was scattered and dropped into the water tank installed below. In that case, the speed | rate and quantity of the water made to collide with molten slag were adjusted so that a particle size might be 10 mm or less by collision with molten slag and water. The amount of water in the water tank when the slag was charged was set to 100 times or more of the mass of the slag, and after the slag was charged, the temperature and time conditions shown in Table 3 were maintained and reformed. When the amount of f-CaO in the slag before reforming was about 4 to 5% by mass, the amount of f-CaO in the slag after reforming was 1.5% by mass or less as shown in Table 3. It was confirmed that it was reduced. Moreover, the water immersion expansion test of JIS was implemented using the modified slag. As a result of the water immersion expansion test, the expansion rate was 1.0% or less.

比較例として、転炉から排滓されスラグ鍋に入れられた状態の表1に示す組成の溶融スラグをスラグ鍋から放流し、放流中のスラグ流に後方より高速で水を衝突させて前方にスラグを飛散させ、そのまま下方に設置された水槽内へ落下させた。比較例2−1、2−2では、放流中のスラグ流に後方より水を3m/秒以下の速度で衝突させ、最大粒径を20mmまたは15mmとし、スラグ投入後、水槽内は80℃に保持し改質した。また、比較例2−3では、粒径を7mmとし、スラグ投入後に水槽内は40℃に保持し改質した。比較例2−4では、粒径を7mmとし、スラグ投入後、80℃の水槽内の高温水中で2時間保持し改質した。これらの比較例のスラグを評価した結果、f−CaO量は3質量%以上あり、膨張率も4.8%以上と高位であった。   As a comparative example, the molten slag having the composition shown in Table 1 in a state of being discharged from the converter and placed in the slag pot is discharged from the slag pot, and water is collided with the slag flow at a high speed from the rear to the front. The slag was scattered and dropped into the water tank installed below. In Comparative Examples 2-1 and 2-2, water is collided with the slag flow that is being discharged from the rear at a speed of 3 m / second or less, the maximum particle size is 20 mm or 15 mm, and after the slag is charged, the water tank is kept at 80 ° C. Retained and modified. Moreover, in Comparative Example 2-3, the particle diameter was 7 mm, and after the slag was charged, the inside of the water tank was maintained at 40 ° C. for modification. In Comparative Example 2-4, the particle size was set to 7 mm, and after the slag was charged, it was modified by being held in high-temperature water at 80 ° C. for 2 hours. As a result of evaluating the slags of these comparative examples, the amount of f-CaO was 3% by mass or more, and the expansion coefficient was 4.8% or more.

Figure 2015189602
Figure 2015189602

[3]表4に、高速の気体(空気)を衝突させることによりスラグの粒径を5mm以下にして改質した場合の条件と結果とを示す。転炉から排滓されスラグ鍋に入れられた表1に示す組成の溶融スラグをスラグ鍋から放流し、放流中のスラグ流に後方より60〜100m/秒の速度で空気を衝突させて前方にスラグを飛散させ、そのまま下に設置された水槽内へ落下させた。その際、溶融スラグと空気との衝突により粒径が5mm以下となるように、溶融スラグに衝突させる気体の速度や量を調整した。スラグ投入時の水槽内の水量をスラグの質量に対して100倍以上とし、スラグを投入した後、表4に示す温度、時間の条件で保持し改質した。改質前のスラグ中のf−CaO量は4〜5質量%程度あったところ、改質後のスラグ中のf−CaO量は表4に示すように0.6質量%以下となっており、低減していることが確認された。また、改質後のスラグを用いてJISの水浸膨張試験を実施した。水浸膨張試験の結果、膨張率は1.0%以下であった。 [3] Table 4 shows the conditions and results when the particle size of the slag was modified to 5 mm or less by colliding with high-speed gas (air). The molten slag having the composition shown in Table 1 discharged from the converter and placed in the slag pan is discharged from the slag pan, and air is collided with the slag flow at a rate of 60 to 100 m / sec from the rear to the front. The slag was scattered and dropped into the water tank installed below. At that time, the velocity and amount of the gas colliding with the molten slag were adjusted so that the particle size became 5 mm or less due to the collision between the molten slag and air. The amount of water in the water tank when the slag was charged was 100 times or more the mass of the slag, and after the slag was charged, it was maintained and reformed under the conditions of temperature and time shown in Table 4. When the amount of f-CaO in the slag before reforming was about 4 to 5% by mass, the amount of f-CaO in the slag after reforming was 0.6% by mass or less as shown in Table 4. It was confirmed that it was reduced. Moreover, the water immersion expansion test of JIS was implemented using the modified slag. As a result of the water immersion expansion test, the expansion rate was 1.0% or less.

比較例として、転炉から排滓されスラグ鍋に入れられた状態の表1に示す組成の溶融スラグをスラグ鍋から放流し、放流中のスラグ流に後方より高速で空気を衝突させて前方にスラグを飛散させ、そのまま下方に設置された水槽内へ落下させた。比較例3−1、3−2では、後方より空気を60m/秒の速度で衝突させ最大粒径を7mmとし、80℃の水槽内に6時間以上保持し改質した。また、比較例3−3では粒径を3mmとし、40℃の水槽内に6時間保持し改質した。これらの比較例のスラグを評価した結果、f−CaO量は2.7質量%以上あり、膨張率も3.1%以上と高位であった。   As a comparative example, the molten slag having the composition shown in Table 1 in a state of being discharged from the converter and placed in the slag pan is discharged from the slag pan, and air is collided with the slag flow at a high speed from the rear to the front. The slag was scattered and dropped into the water tank installed below. In Comparative Examples 3-1 and 3-2, air was collided from the rear at a speed of 60 m / sec to set the maximum particle size to 7 mm, and kept in an 80 ° C. water tank for 6 hours or more for reforming. In Comparative Example 3-3, the particle size was 3 mm, and the sample was modified by being held in a water bath at 40 ° C. for 6 hours. As a result of evaluating the slag of these comparative examples, the amount of f-CaO was 2.7% by mass or more, and the expansion coefficient was 3.1% or more.

Figure 2015189602
Figure 2015189602

Claims (5)

溶融状態の製鋼スラグを50℃以上の高温水中に所定時間保持して改質する改質ステップと、
粒径が30mm以下の製鋼スラグを回収する回収ステップと、
を含むことを特徴とする製鋼スラグの改質方法。
A reforming step of reforming the molten steelmaking slag by holding it in high-temperature water at 50 ° C. or higher for a predetermined time;
A recovery step of recovering steelmaking slag having a particle size of 30 mm or less;
A method for reforming steelmaking slag, comprising:
溶融状態の製鋼スラグの粒径を小さくする細粒化ステップを含み、
前記改質ステップは、前記細粒化ステップで粒径を小さくされた製鋼スラグを50℃以上の高温水中に流し込み、50℃以上の高温水中に所定時間保持して改質することを特徴とする請求項1に記載の製鋼スラグの改質方法。
Including a refinement step to reduce the particle size of the molten steelmaking slag,
The reforming step is characterized in that the steelmaking slag whose particle size has been reduced in the fine graining step is poured into high-temperature water at 50 ° C. or higher, and is reformed by holding it in high-temperature water at 50 ° C. or higher for a predetermined time. The method for reforming steelmaking slag according to claim 1.
前記細粒化ステップは、溶融状態の製鋼スラグに水を衝突させることにより粒径を10mm以下にすることを特徴とする請求項2に記載の製鋼スラグの改質方法。   The method for reforming steelmaking slag according to claim 2, wherein in the fine graining step, the particle diameter is reduced to 10 mm or less by causing water to collide with molten steelmaking slag. 前記細粒化ステップは、溶融状態の製鋼スラグに気体を衝突させることにより粒径を5mm以下にすることを特徴とする請求項2に記載の製鋼スラグの改質方法。   The method for reforming steelmaking slag according to claim 2, wherein the particle size is reduced to 5 mm or less by causing gas to collide with the molten steelmaking slag in the fine graining step. 請求項1〜4のいずれか1項に記載の製鋼スラグの改質方法によって改質された製鋼スラグ。   A steelmaking slag modified by the steelmaking slag reforming method according to any one of claims 1 to 4.
JP2014066431A 2014-03-27 2014-03-27 Method of modifying steel slag and steel slag Pending JP2015189602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014066431A JP2015189602A (en) 2014-03-27 2014-03-27 Method of modifying steel slag and steel slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014066431A JP2015189602A (en) 2014-03-27 2014-03-27 Method of modifying steel slag and steel slag

Publications (1)

Publication Number Publication Date
JP2015189602A true JP2015189602A (en) 2015-11-02

Family

ID=54424434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014066431A Pending JP2015189602A (en) 2014-03-27 2014-03-27 Method of modifying steel slag and steel slag

Country Status (1)

Country Link
JP (1) JP2015189602A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021059469A (en) * 2019-10-04 2021-04-15 株式会社神戸製鋼所 Method for processing steel slag
CN114471109A (en) * 2022-02-16 2022-05-13 江苏省沙钢钢铁研究院有限公司 Method for co-processing steel slag and lime kiln smoke
WO2023092801A1 (en) * 2021-11-24 2023-06-01 江苏科技大学 Method for reducing free calcium oxide in steel slag by using ferronickel slag, and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021059469A (en) * 2019-10-04 2021-04-15 株式会社神戸製鋼所 Method for processing steel slag
WO2023092801A1 (en) * 2021-11-24 2023-06-01 江苏科技大学 Method for reducing free calcium oxide in steel slag by using ferronickel slag, and application thereof
CN114471109A (en) * 2022-02-16 2022-05-13 江苏省沙钢钢铁研究院有限公司 Method for co-processing steel slag and lime kiln smoke

Similar Documents

Publication Publication Date Title
RU2618004C1 (en) Method for phosphorus and calcium recovery, and mixture obtained by this method
JP2015189602A (en) Method of modifying steel slag and steel slag
RU2013140479A (en) REFINING PLATINUM METAL CONCENTRATES
JP5876168B2 (en) Low cost clean steel manufacturing method
CN108642220A (en) A method of discharge blast furnace harmful element simultaneously clears up blast furnace design
JP5515638B2 (en) Sulfur / Ca-containing slag treatment method
JP2007314854A (en) Method for treating high temperature slag
WO2018135347A1 (en) Method for suppressing foaming of slag, and converter refining method
JP2013028520A (en) Method for extracting sulfur from sulfur-containing slag and method for recycling hot metal desulfurization slag
JP2016529402A5 (en)
TWI664294B (en) Dephosphorization method of molten iron
CN104975138A (en) Method of preparing ultralow-sulfur molten iron through injection of molten iron pre-treatment composite desulfurizer
JP2007239034A (en) Method for recovering and recycling iron-content in steelmaking slag
SK286015B6 (en) Method for reprocessing dust or dust mixtures
JP5058768B2 (en) Utilization of iron source recovered from steelmaking slag
JP5434205B2 (en) How to reuse converter slag
JP2007009240A (en) Method for reusing converter dust
CN102206726A (en) Method for removing desulfurizing slag from molten iron
JP2011093760A (en) Method for treating sulfur-containing slag
JP6402062B2 (en) Dust recycling method
TW201643265A (en) Iron-containing wet agglomerate, method for producing the same and application thereof
JP2008308754A (en) Sulfer removal method for used slag
JP7147550B2 (en) Slag foaming suppression method and converter refining method
JP6422809B2 (en) Dust collection method
JP2019108566A (en) Method of suppressing slag foaming and converter refining