JP2015187910A - Battery pack and electric vehicle including the same and power storage device - Google Patents

Battery pack and electric vehicle including the same and power storage device Download PDF

Info

Publication number
JP2015187910A
JP2015187910A JP2012176711A JP2012176711A JP2015187910A JP 2015187910 A JP2015187910 A JP 2015187910A JP 2012176711 A JP2012176711 A JP 2012176711A JP 2012176711 A JP2012176711 A JP 2012176711A JP 2015187910 A JP2015187910 A JP 2015187910A
Authority
JP
Japan
Prior art keywords
bus bar
electrode terminal
battery
battery pack
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012176711A
Other languages
Japanese (ja)
Inventor
高志 瀬戸
Takashi Seto
高志 瀬戸
敏哉 清水
Toshiya Shimizu
敏哉 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012176711A priority Critical patent/JP2015187910A/en
Priority to PCT/JP2013/004655 priority patent/WO2014024430A1/en
Publication of JP2015187910A publication Critical patent/JP2015187910A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/11End pieces or tapping pieces for wires, supported by the wire and for facilitating electrical connection to some other wire, terminal or conductive member
    • H01R11/28End pieces consisting of a ferrule or sleeve
    • H01R11/281End pieces consisting of a ferrule or sleeve for connections to batteries
    • H01R11/288Interconnections between batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/08Short-circuiting members for bridging contacts in a counterpart
    • H01R31/085Short circuiting bus-strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To electrically connect an electrode terminal of a battery cell with a bus bar reliably and stably, while reducing the manufacturing cost of the bus bar.SOLUTION: In a battery pack, a bus bar 3 of a metal plate is fixed to an electrode terminal 2 of a plurality of battery cells, and this bus bar 3 connects the battery cells in series and/or parallel. The bus bar 3 has a plurality of through holes 38 for inserting the electrode terminals 2 of a plurality of battery cells to be connected. The through hole 38 is larger than the outer shape of the electrode terminal 2, a play gap 39 is provided between the through hole 38 and electrode terminal 2, and a gap through hole 38A into which the electrode terminal 2 can be inserted while being misaligned is provided. A fixing ring is inserted over the electrode terminal 2 inserted into the gap through hole 38A, and connects the electrode terminal 2 electrically with the bus bar 3. Furthermore, the bus bar 3 is a portion of the entire surface, a plating layer 34 is provided on the surface facing the fixing ring, and the fixing ring is connected electrically with the plating layer 34 on the bus bar surface.

Description

本発明は、複数の電池セルをバスバーで直列に接続している電池パックに関し、とくにバスバーを金属メッキしている電池パック及びこれを備える電動車両並びに蓄電装置に関する。   The present invention relates to a battery pack in which a plurality of battery cells are connected in series with a bus bar, and more particularly to a battery pack in which a bus bar is metal-plated, an electric vehicle including the battery pack, and a power storage device.

電池パックは、複数の電池セルを直列に接続して出力電圧を高く、出力を大きくできる。この電池パックは、複数の電池セルの電極端子に金属板のバスバーを溶接等の方法で接続して、バスバーでもって電池セルを直列に接続している。この電池パックは、バスバーの両端に貫通孔を設け、この貫通孔に電池セルの電極端子を挿入し、電極端子と貫通孔との境界にレーザーを照射して溶接して電気接続される。この連結構造は、電極端子とバスバーとを低抵抗な状態で電気接続できる。この連結構造は、バスバーの貫通孔と電極端子との間に隙間があると、安定して溶接できなくなる。このため、貫通孔の内形と電極端子の外形をほぼ等しくして、電極端子を貫通孔に挿入する必要がある。ところで、2個の電池セルを直列に接続するバスバーは、両端部に2個の貫通孔を設けて、各々の貫通孔に隣接する電池セルの電極端子を挿入する必要がある。このバスバーは、互いに隣接する電池セルの対向する電極端子の間隔に等しい間隔で2個の貫通孔を設けているが、隣接する電池セルの電極端子の間隔は常に一定ではなくて誤差がある。バスバーで接続されるふたつの電極端子の間隔が、電池セルの寸法誤差などによって変化して、バスバーのふたつの貫通孔の間隔に等しくないと、各貫通孔にふたつの電極端子を挿入できなくなり、あるいは挿入できても電池セルの電極端子やその取り付け部に無理な応力が作用する。   The battery pack can connect a plurality of battery cells in series to increase the output voltage and increase the output. In this battery pack, metal plate bus bars are connected to electrode terminals of a plurality of battery cells by a method such as welding, and the battery cells are connected in series with the bus bars. In this battery pack, through holes are provided at both ends of the bus bar, electrode terminals of battery cells are inserted into the through holes, and laser is irradiated to the boundary between the electrode terminals and the through holes to be electrically connected. This connection structure can electrically connect the electrode terminal and the bus bar in a low resistance state. In this connection structure, if there is a gap between the through hole of the bus bar and the electrode terminal, stable welding cannot be performed. For this reason, it is necessary to make the inner shape of the through hole and the outer shape of the electrode terminal substantially equal and insert the electrode terminal into the through hole. By the way, the bus bar which connects two battery cells in series needs to provide two through holes at both ends and insert the electrode terminals of the battery cells adjacent to each through hole. This bus bar is provided with two through holes at an interval equal to the interval between the opposing electrode terminals of adjacent battery cells. However, the interval between the electrode terminals of adjacent battery cells is not always constant and there is an error. If the distance between the two electrode terminals connected by the bus bar changes due to the dimensional error of the battery cell and is not equal to the distance between the two through holes of the bus bar, the two electrode terminals cannot be inserted into each through hole, Or even if it can be inserted, an unreasonable stress acts on the electrode terminal of the battery cell and its mounting portion.

この弊害を防止するために、図1に示すように、バスバー203の貫通孔204Aを電極端子202の外形よりも大きくし、電極端子202に挿入される溶接リング206を介して電極端子202をバスバー203に接続する連結構造が開発されている。(特許文献1参照)   In order to prevent this problem, as shown in FIG. 1, the through hole 204A of the bus bar 203 is made larger than the outer shape of the electrode terminal 202, and the electrode terminal 202 is connected to the bus bar via a welding ring 206 inserted into the electrode terminal 202. A connecting structure that connects to 203 has been developed. (See Patent Document 1)

特開2011−60623号公報JP 2011-60623 A

図1の連結構造は、貫通孔204Aの内形を電極端子202の外形よりも大きくしているので、電極端子202とバスバー203の相対位置をずらせながら、バスバー203の両端部の貫通孔204にふたつの電池セル201の電極端子202を挿入できる。ただ、この連結構造は、貫通孔204Aと電極端子202との間に隙間ができるので、この隙間をなくするために、電極端子202に溶接リング206を挿入している。溶接リング206は、内形を電極端子202の外形に等しくし、これをバスバー203の上に載せて、電極端子202とバスバー203との隙間をなくすることができる。溶接リング206は、内周縁を電極端子202にレーザー溶接し、外周縁をバスバー203の表面にレーザー溶接して、電極端子202をバスバー203に電気接続する。この溶接リング206は、電極端子202よりも大きい貫通孔204Aを閉塞するために、外形を貫通孔204Aの内形よりも大きくする必要がある。とくに、電極端子202に挿入されて、電極端子202とバスバー203との相対位置が変化しても、常に貫通孔204Aを閉塞できるように、溶接リング206は貫通孔204Aよりも相当に外形を大きくしている。   In the connection structure of FIG. 1, the inner shape of the through hole 204 </ b> A is larger than the outer shape of the electrode terminal 202, so that the relative positions of the electrode terminal 202 and the bus bar 203 are shifted to the through holes 204 at both ends of the bus bar 203. The electrode terminals 202 of the two battery cells 201 can be inserted. However, since this connection structure has a gap between the through hole 204A and the electrode terminal 202, the welding ring 206 is inserted into the electrode terminal 202 in order to eliminate this gap. The welding ring 206 has an inner shape equal to the outer shape of the electrode terminal 202 and can be placed on the bus bar 203 to eliminate a gap between the electrode terminal 202 and the bus bar 203. The welding ring 206 laser welds the inner periphery to the electrode terminal 202 and laser welds the outer periphery to the surface of the bus bar 203 to electrically connect the electrode terminal 202 to the bus bar 203. The weld ring 206 needs to have an outer shape larger than the inner shape of the through hole 204A in order to close the through hole 204A larger than the electrode terminal 202. In particular, the weld ring 206 has a considerably larger outer shape than the through hole 204A so that the through hole 204A can always be closed even if it is inserted into the electrode terminal 202 and the relative position between the electrode terminal 202 and the bus bar 203 changes. doing.

ところで、電極端子は、必ずしも溶接してバスバーに接続されない。図2は、ナット307を介して電極端子302をバスバー303に固定する連結構造を示している。この連結構造は、電極端子302の表面に雄ネジを設けている。電極端子302はバスバー303の貫通孔304に挿入され、電極端子302の雄ネジにナット307がねじ込まれて、ナット307が電極端子302をバスバー303に固定する。この連結構造は、貫通孔304を大きくして、電極端子302とバスバー303との相対位置を調整しながら、電極端子302をバスバー303に電気接続できる。   By the way, the electrode terminal is not necessarily welded and connected to the bus bar. FIG. 2 shows a connection structure for fixing the electrode terminal 302 to the bus bar 303 via the nut 307. In this connection structure, a male screw is provided on the surface of the electrode terminal 302. The electrode terminal 302 is inserted into the through hole 304 of the bus bar 303, a nut 307 is screwed into the male screw of the electrode terminal 302, and the nut 307 fixes the electrode terminal 302 to the bus bar 303. In this connection structure, the electrode terminal 302 can be electrically connected to the bus bar 303 while the through hole 304 is enlarged and the relative position between the electrode terminal 302 and the bus bar 303 is adjusted.

溶接リングやナットの連結構造は、バスバーの表面にニッケルメッキ等のメッキ層を設けて、溶接特性を改善し、また、電気接続される接触面の腐蝕を防止して、長期間にわたって接触不良を防止することができる。しかしながら、表面全体にメッキ層を設けるバスバーは製造コストが高くなるばかりでなく、電池セルの種類によっては、バスバーの全面にメッキ層を設けると、電池セルの電極端子に安定して溶接できなくなることがある。たとえば、リチウムイオン電池は正極端子をアルミニウム製とするので、バスバーの正極端子に接続される部分をアルミニウム板とするが、アルミニウム板の表面をニッケルメッキすると、アルミニウム製の電極端子に溶接するのが難しくなる。溶接時にニッケルとアルミニウムの合金ができ、この合金が接触状態を悪くするからである。   The weld ring and nut connection structure improves the welding characteristics by providing a plating layer such as nickel plating on the surface of the bus bar, prevents corrosion of the contact surface to be electrically connected, and prevents contact failure over a long period of time. Can be prevented. However, a bus bar having a plating layer on the entire surface not only increases the manufacturing cost, but depending on the type of battery cell, if a plating layer is provided on the entire surface of the bus bar, it may not be possible to stably weld the electrode terminal of the battery cell. There is. For example, since a lithium ion battery has a positive electrode terminal made of aluminum, the portion connected to the positive electrode terminal of the bus bar is made of an aluminum plate, but if the surface of the aluminum plate is nickel-plated, it is welded to the electrode terminal made of aluminum. It becomes difficult. This is because an alloy of nickel and aluminum is formed during welding, and this alloy deteriorates the contact state.

本発明は、さらに以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、バスバーの製造コストを低減しながら、電池セルの電極端子とバスバーとを確実に安定して電気接続できる電池パック及びこれを備える電動車両並びに蓄電装置を提供することにある。   The present invention has been developed for the purpose of solving the above-mentioned drawbacks. An important object of the present invention is to provide a battery pack that can reliably and electrically connect the electrode terminals of the battery cells and the bus bar while reducing the manufacturing cost of the bus bar, an electric vehicle including the battery pack, and a power storage device. is there.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明の電池パックは、複数の電池セル1、51の電極端子2、52に金属板のバスバー3が固定されて、このバスバー3が電池セル1、51を直列及び/又は並列に接続している。バスバー3は、接続される電池セル1、51の電極端子2、52を挿入する複数の貫通孔38を有している。貫通孔38は、電極端子2、52の外形よりも大きく、貫通孔38と電極端子2、52との間に遊び隙間39があって、電極端子2、52を位置ずれして挿入できる隙間貫通孔38Aを有している。隙間貫通孔38Aに挿入される電極端子2、52には固定リング7が挿入されて、固定リング7が電極端子2、52をバスバー3に電気接続している。さらに、バスバー3は、全表面の一部分であって、固定リング7との対向面にメッキ層34を設けており、固定リング7がバスバー表面のメッキ層34に電気接続されている。   In the battery pack of the present invention, a metal plate bus bar 3 is fixed to electrode terminals 2 and 52 of a plurality of battery cells 1 and 51, and the bus bar 3 connects the battery cells 1 and 51 in series and / or in parallel. Yes. The bus bar 3 has a plurality of through holes 38 into which the electrode terminals 2 and 52 of the battery cells 1 and 51 to be connected are inserted. The through hole 38 is larger than the outer shape of the electrode terminals 2 and 52, and there is a play gap 39 between the through hole 38 and the electrode terminals 2 and 52, so that the electrode terminals 2 and 52 can be inserted while being displaced. It has a hole 38A. A fixing ring 7 is inserted into the electrode terminals 2 and 52 inserted into the clearance through hole 38 </ b> A, and the fixing ring 7 electrically connects the electrode terminals 2 and 52 to the bus bar 3. Further, the bus bar 3 is a part of the entire surface, and a plating layer 34 is provided on the surface facing the fixing ring 7, and the fixing ring 7 is electrically connected to the plating layer 34 on the surface of the bus bar.

以上の電池パックは、バスバーの製造コストを低減しながら、電池セルの電極端子とバスバーとを確実に安定して電気接続できる特徴がある。それは、以上の電池パックが、バスバーの全表面にメッキ層を設けることなく、隙間貫通孔に挿通している電極端子に挿入される固定リングとの対向面にメッキ層を設けて、隙間貫通孔に挿通される電極端子に挿入している固定リングをバスバーのメッキ層に接触させるからである。   The battery pack described above has a feature that the electrode terminal of the battery cell and the bus bar can be reliably and stably electrically connected while reducing the manufacturing cost of the bus bar. The above battery pack is provided with a plating layer on the surface facing the fixing ring inserted into the electrode terminal inserted through the gap through hole without providing a plating layer on the entire surface of the bus bar. This is because the fixing ring inserted into the electrode terminal inserted through the electrode is brought into contact with the plating layer of the bus bar.

また、以上の電池パックは、バスバーのメッキ層の面積を小さくして、メッキコストを低減しながら、正負の電極端子の材質が異なる電池セルの電極端子とバスバーとを安定して確実に電気接続できる特徴も実現する。それは、以上の電池パックが、バスバー全面にメッキ層を設けることなく、メッキ層が電極端子とバスバーとの電気接続を阻害する領域にはメッキ層を設けない構造とするからである。   In addition, the above battery pack reduces the plating area of the bus bar and reduces the plating cost, while ensuring stable and reliable electrical connection between the battery cell electrode terminals and bus bars with different positive and negative electrode terminal materials. Features that can be realized. This is because the above battery pack has a structure in which a plating layer is not provided on the entire surface of the bus bar, and a plating layer is not provided in a region where the plating layer obstructs the electrical connection between the electrode terminal and the bus bar.

また、以上の電池セルは、バスバー表面のメッキ層によって、バスバーが固定リングに電気接続される領域の腐蝕を防止できる。このため、長期間にわたって安定して、電極端子は固定リングを介してバスバーに電気接続される。   Moreover, the above battery cell can prevent the corrosion of the area | region where a bus-bar is electrically connected to a fixing ring by the plating layer on the bus-bar surface. For this reason, the electrode terminal is electrically connected to the bus bar via the fixing ring stably for a long period of time.

本発明の電池パックは、固定リング7を溶接リング7Aとして、この溶接リング7Aを、メッキ層34と同じ材質の金属板とし、又はバスバー3と同じ金属板として表面にバスバー3と同じメッキ層を設けることができる。溶接リング7Aである固定リング7は、内周縁を電極端子2にレーザー溶接して、外周縁をバスバー表面のメッキ層34にレーザー溶接して、電極端子2をバスバー3に電気接続することができる。   In the battery pack of the present invention, the fixing ring 7 is a welding ring 7A, the welding ring 7A is a metal plate made of the same material as the plating layer 34, or the same metal plate as the bus bar 3 is provided with the same plating layer as the bus bar 3 on the surface. Can be provided. The fixing ring 7 which is a welding ring 7A can be electrically connected to the bus bar 3 by laser welding the inner peripheral edge to the electrode terminal 2 and laser welding the outer peripheral edge to the plating layer 34 on the bus bar surface. .

以上の電池パックは、電極端子とバスバーとを位置ずれ範囲で連結する状態とし、かつ、溶接リングとバスバーの金属を、電極端子をバスバーに好ましい状態で電気接続できる最適な金属材としながら、溶接リングをバスバーに安定して確実にレーザー溶接できる特徴がある。バスバーと溶接リングは、同じ金属とすることで、電蝕等の弊害を防止して、好ましい状態で電気接続される。ただ、バスバーと溶接リングとを同じ金属として、必ずしも好ましい状態でレーザー溶接できるとは限らない。たとえば、バスバーと溶接リングを銅板として、電蝕を防止して好ましい状態で電気接続できるが、銅板はレーザー光線の反射率が高く、好ましい状態ではレーザー溶接できない。溶接リングとバスバーに同じメッキ層を設け、あるいは、溶接リングをバスバーのメッキ層と同じ金属板として、レーザー光線の反射を防止して、溶接リングとバスバーとを確実に安定してレーザー溶接できる。このため、以上の電池パックは、溶接リングとバスバーとを好ましい状態で電気接続しながら、好ましい状態でレーザー溶接できる。また、溶接リングの材質やメッキ層と、バスバーのメッキ層によって、溶接リングとバスバーの腐蝕も防止できる。とくに、レーザー溶接した近傍であって、溶接リングとバスバーとが電気接続される領域の腐蝕を防止して、長期間にわたって安定して、電極端子をバスバーに電気接続できる。   The battery pack described above is in a state where the electrode terminal and the bus bar are connected in a range of misalignment, and the welding ring and the metal of the bus bar are welded while being an optimal metal material that can be electrically connected to the bus bar in a preferable state. There is a feature that the ring can be stably and reliably laser welded to the bus bar. The bus bar and the weld ring are made of the same metal, thereby preventing adverse effects such as electric corrosion and being electrically connected in a preferable state. However, it is not always possible to perform laser welding in a preferable state using the same metal as the bus bar and the welding ring. For example, although a bus bar and a welding ring are used as a copper plate, electrical connection can be prevented and electrical connection can be made in a preferable state. The same plating layer is provided on the welding ring and the bus bar, or the welding ring is made of the same metal plate as the plating layer of the bus bar to prevent the reflection of the laser beam, so that the welding ring and the bus bar can be reliably and laser welded. For this reason, the above battery pack can be laser-welded in a preferable state while electrically connecting the welding ring and the bus bar in a preferable state. Moreover, corrosion of the weld ring and the bus bar can be prevented by the material and the plated layer of the weld ring and the plated layer of the bus bar. In particular, it is possible to prevent the corrosion of the region where the welding ring and the bus bar are electrically connected in the vicinity of the laser welding, and to stably connect the electrode terminal to the bus bar for a long period of time.

本発明の電池パックは、固定リング7をナット7Bとして、ナット7Bの表面にバスバー3と同じメッキ層を設けると共に、電極端子52に、ナット7Bをねじ込んで固定される雄ネジ54を設けて、ナット7Bを電極端子52の雄ネジ54にねじ込んで、ナット表面のメッキ層をバスバー表面のメッキ層34に接触させて、ナット7Bを介して電極端子52をバスバー3に電気接続することができる。
以上の電池セルは、電極端子とバスバーとを位置ずれ範囲で連結する状態としながら、ナットとバスバーとを長期間にわたって安定して電気接続できる特徴がある。
The battery pack of the present invention has the fixing ring 7 as a nut 7B, the same plating layer as the bus bar 3 is provided on the surface of the nut 7B, and the male screw 54 to which the nut 7B is screwed is fixed to the electrode terminal 52. The nut 7B is screwed into the male screw 54 of the electrode terminal 52, and the plating layer on the surface of the nut is brought into contact with the plating layer 34 on the surface of the bus bar, so that the electrode terminal 52 can be electrically connected to the bus bar 3 via the nut 7B.
The battery cell described above is characterized in that the nut and the bus bar can be electrically connected stably over a long period of time while the electrode terminal and the bus bar are connected in a position shift range.

本発明の電池パックは、電池セル1、51を、正極端子2A、52Aをアルミニウム製として、負極端子2B、52Bを銅製とするリチウムイオン電池とし、バスバー3を、アルミニウム板31と銅板32を接合してなる金属のクラッド材30として、銅板32の表面にメッキ層34を設けることができる。この電池パックは、電池セル1、51の正極端子2A、52Aをバスバー3のアルミニウム板31に、負極端子2B、52Bをバスバー3の銅板32に電気接続すると共に、銅板32の貫通孔38に挿入された負極端子2B、52Bを、固定リング7を介して銅板32に電気接続することができる。
ただし、本明細書において、「アルミニウム板」は、アルミニウム合金板を含む広い意味に使用し、「銅板」は、銅合金板を含む広い意味に使用する。
以上の電池セルは、正極端子をアルミニウム製とし、負極端子を銅製とするリチウムイオン電池を、バスバーでもって好ましい状態に電気接続できる特徴がある。それは、アルミニウム製の正極端子はメッキ層のないバスバーに電気接続され、銅製の電極端子は、メッキ層を設けているバスバーの銅板に固定リングを介して電気接続するからである。
In the battery pack of the present invention, the battery cells 1 and 51 are lithium ion batteries in which the positive terminals 2A and 52A are made of aluminum and the negative terminals 2B and 52B are made of copper, the bus bar 3 is joined to the aluminum plate 31 and the copper plate 32. As a metal clad material 30, a plated layer 34 can be provided on the surface of the copper plate 32. In this battery pack, the positive terminals 2A, 52A of the battery cells 1, 51 are electrically connected to the aluminum plate 31 of the bus bar 3, and the negative terminals 2B, 52B are electrically connected to the copper plate 32 of the bus bar 3, and are inserted into the through holes 38 of the copper plate 32. The negative electrodes 2B and 52B thus made can be electrically connected to the copper plate 32 via the fixing ring 7.
However, in this specification, “aluminum plate” is used in a broad sense including an aluminum alloy plate, and “copper plate” is used in a broad sense including a copper alloy plate.
The battery cell described above is characterized in that a lithium ion battery having a positive electrode terminal made of aluminum and a negative electrode terminal made of copper can be electrically connected to a preferable state with a bus bar. This is because the positive electrode terminal made of aluminum is electrically connected to a bus bar without a plating layer, and the electrode terminal made of copper is electrically connected to a copper plate of the bus bar provided with the plating layer via a fixing ring.

本発明の電池パックは、バスバー3のメッキ層34をニッケルメッキとして、固定リング7をニッケル板の溶接リング7Aとすることができる。
以上の電池パックは、ニッケル板の溶接リングをバスバーの表面のニッケルメッキ層に安定して確実にレーザー溶接できる。それは、固定リングのニッケル板とバスバーのニッケルメッキ層が、レーザー光線の反射を防止して、レーザー溶接できるからである。また、ニッケル板の固定リングとバスバー表面のニッケルメッキによって、固定リングとバスバーの腐蝕を長期間にわたって防止できる特徴がある。
In the battery pack of the present invention, the plating layer 34 of the bus bar 3 can be nickel-plated, and the fixing ring 7 can be a nickel-plated welding ring 7A.
In the above battery pack, the welding ring of the nickel plate can be stably and reliably laser-welded to the nickel plating layer on the surface of the bus bar. This is because the nickel plate of the fixing ring and the nickel plating layer of the bus bar prevent laser beam reflection and can be laser welded. Further, there is a feature that corrosion of the fixing ring and the bus bar can be prevented over a long period of time by nickel plating on the fixing ring of the nickel plate and the surface of the bus bar.

本発明の電池パックは、電池セル1を角形電池として、角形電池を積層状態に固定して電池積層体9を形成しており、電池積層体9の電池セル1の電極端子2をバスバー3を介して直列及び/又は並列に接続することができる。   In the battery pack of the present invention, the battery cell 1 is a square battery, and the square battery is fixed in a laminated state to form a battery laminate 9, and the electrode terminal 2 of the battery cell 1 of the battery laminate 9 is connected to the bus bar 3. Can be connected in series and / or in parallel.

本発明の電池パックは、固定リング7を溶接リング7Aとして、バスバー3が、電極端子2の外周面に接触する密着貫通孔38Bと、電極端子2の内周面との間に遊び隙間39があって、電極端子2を位置ずれさせて挿入できる隙間貫通孔38Aとを備えて、密着貫通孔38Bに挿入される電極端子2は、電極端子2と密着貫通孔38Bとの間をレーザー溶接して電気接続し、隙間貫通孔38Aに挿入される電極端子2は、内周縁を電極端子2にレーザー溶接して、外周縁をバスバー3のメッキ層34にレーザー溶接してなる溶接リング7Aを介してバスバー3に電気接続することができる。
以上の電池パックは、バスバーの密着貫通孔には電極端子を直接に溶接して接続しながら、バスバーの隙間貫通孔には溶接リングを介して電極端子を溶接して接続するので、隙間貫通孔で電池セルの電極端子間の寸法誤差を吸収しながら、電極端子を無理なくバスバーに溶接できる特徴がある。とくに、バスバーの密着貫通孔には溶接リングを介することなく、電極端子を直接に溶接できる。
In the battery pack of the present invention, the fixing ring 7 is a welding ring 7A, and a play gap 39 is formed between the close contact through hole 38B where the bus bar 3 contacts the outer peripheral surface of the electrode terminal 2 and the inner peripheral surface of the electrode terminal 2. The electrode terminal 2 having a gap through-hole 38A that can be inserted by shifting the position of the electrode terminal 2 is laser-welded between the electrode terminal 2 and the close-contact through-hole 38B. The electrode terminal 2 to be electrically connected and inserted into the clearance through hole 38A is welded via a welding ring 7A formed by laser welding the inner peripheral edge to the electrode terminal 2 and laser welding the outer peripheral edge to the plating layer 34 of the bus bar 3. The bus bar 3 can be electrically connected.
Since the above battery pack is connected by welding the electrode terminal directly to the close-through hole of the bus bar while welding the electrode terminal to the gap through-hole of the bus bar via the weld ring, the gap through-hole Thus, the electrode terminal can be easily welded to the bus bar while absorbing the dimensional error between the electrode terminals of the battery cell. In particular, the electrode terminal can be directly welded to the close-through hole of the bus bar without using a welding ring.

本発明の電池パックは、電池セル1の電圧を検出する電圧検出回路21を備え、バスバー3のメッキ層34に電圧検出端子23を接続しており、この電圧検出端子23にリード線22を接続して、リード線22を介して電池セル1の電圧検出端子23を電圧検出回路21に接続することができる。
以上の電池パックは、電極端子を安定にバスバーに電気接続して、電圧検出回路でもって、長期間にわたって電池セルの電圧を正確に検出できる。
The battery pack of the present invention includes a voltage detection circuit 21 that detects the voltage of the battery cell 1, and a voltage detection terminal 23 is connected to the plating layer 34 of the bus bar 3, and a lead wire 22 is connected to the voltage detection terminal 23. Thus, the voltage detection terminal 23 of the battery cell 1 can be connected to the voltage detection circuit 21 via the lead wire 22.
The above battery pack can detect the voltage of a battery cell correctly over a long period of time with a voltage detection circuit by electrically connecting the electrode terminal to the bus bar stably.

本発明の電動車両は、上記のいずれかの電池パック100と、この電池パック100から電力供給される走行用のモータ93と、電池パック100及びモータ93を搭載してなる車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えることを特徴とする。   The electric vehicle of the present invention includes any one of the battery packs 100 described above, a traveling motor 93 supplied with power from the battery pack 100, a vehicle main body 90 on which the battery pack 100 and the motor 93 are mounted, and a motor. And a wheel 97 for driving the vehicle main body 90.

本発明の蓄電装置は、上記のいずれかの電池パック100を備えると共に、電池パック100への充放電を制御する電源コントローラ84を備えている。この電源コントローラ84は、外部からの電力により電池パック100への充電を可能とすると共に、電池パック100に対し充電を行うよう制御することができる。   The power storage device of the present invention includes any one of the battery packs 100 described above and a power supply controller 84 that controls charging / discharging of the battery pack 100. The power supply controller 84 can charge the battery pack 100 with external power and can control the battery pack 100 to be charged.

本発明の一実施の形態にかかる電池パックの斜視図である。It is a perspective view of the battery pack concerning one embodiment of the present invention. 図1に示す電池パックの分解斜視図である。It is a disassembled perspective view of the battery pack shown in FIG. 本発明の一実施の形態にかかる電池パックのブロック図である。It is a block diagram of the battery pack concerning one embodiment of the present invention. 電池セルの内部構造を示す垂直縦断面図である。It is a vertical longitudinal cross-sectional view which shows the internal structure of a battery cell. バスバーの一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of a bus bar. バスバーの他の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another example of a bus bar. バスバーと電圧検出端子を示す平面図である。It is a top view which shows a bus bar and a voltage detection terminal. 隣接する電極端子をバスバーで連結する工程を示す分解斜視図である。It is a disassembled perspective view which shows the process of connecting an adjacent electrode terminal with a bus bar. 図8に示す電極端子とバスバーの連結構造を示す斜視図である。It is a perspective view which shows the connection structure of the electrode terminal shown in FIG. 8, and a bus bar. 隣接する電極端子をバスバーで連結する他の一例を示す拡大断面図である。It is an expanded sectional view showing other examples which connect the electrode terminal which adjoins with a bus bar. 隣接する電極端子をバスバーで連結する他の一例を示す分解斜視図である。It is a disassembled perspective view which shows another example which connects the adjacent electrode terminal with a bus bar. エンジンとモータで走行するハイブリッドカーに電池パックを搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a battery pack in the hybrid car which drive | works with an engine and a motor. モータのみで走行する電気自動車に電池パックを搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a battery pack in the electric vehicle which drive | works only with a motor. 蓄電装置に電池パックを使用する例を示すブロック図である。It is a block diagram which shows the example which uses a battery pack for an electrical storage apparatus.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電池パック及びこれを備える電動車両並びに蓄電装置を例示するものであって、本発明は電池パック及びこれを備える電動車両並びに蓄電装置を以下のものに特定しない。また、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は、特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a battery pack for embodying the technical idea of the present invention, an electric vehicle including the battery pack, and a power storage device, and the present invention includes a battery pack and an electric motor including the battery pack. The vehicle and the power storage device are not specified as follows. Moreover, the member shown by the claim is not what specifies the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.

図3〜図5は、本発明の実施の形態に係る電池パックとして、主としてハイブリッド車や電気自動車などの電動車両に搭載されて、車両の走行モータに電力を供給して、車両を走行させる電源に使用される電池パック100を示している。これらの図に示す電池パック100は、電極端子2を有する電池セル1を複数積層してなる電池積層体9と、隣接する電池セル1の電極端子2に接続されて電池セル1を直列に接続しているバスバー3と、バスバー3の電圧検出端子23に接続しているリード線22と、このリード線22を介して電池セル1に接続している電圧検出回路21とを備える。   FIGS. 3 to 5 are power sources that are mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle as a battery pack according to an embodiment of the present invention to supply electric power to a vehicle running motor and cause the vehicle to run. The battery pack 100 used for is shown. The battery pack 100 shown in these drawings is connected to a battery stack 9 formed by stacking a plurality of battery cells 1 having electrode terminals 2 and the electrode terminals 2 of adjacent battery cells 1 so that the battery cells 1 are connected in series. The bus bar 3 is connected, a lead wire 22 connected to the voltage detection terminal 23 of the bus bar 3, and a voltage detection circuit 21 connected to the battery cell 1 via the lead wire 22.

電池積層体9は、複数の電池セル1を互いに絶縁して積層状態に固定している。電池積層体9は、その両端にエンドプレート4を配置している。一対のエンドプレート4は連結具5で連結されて、電池積層体9を積層状態に固定する。   The battery stacked body 9 insulates a plurality of battery cells 1 from each other and fixes them in a stacked state. The battery laminate 9 has end plates 4 disposed at both ends thereof. The pair of end plates 4 are connected by a connector 5 to fix the battery stack 9 in a stacked state.

電池セル1は角形電池である。さらに、電池セル1は、リチウムイオン電池である。リチウムイオン電池は、正極端子2Aをアルミニウム製、負極端子2Bを銅製とする。ただし、本発明の電池パックは、電池セルを角形電池には特定せず、円筒形の電池セルも利用できる。また、リチウムイオン電池にも特定せず、たとえばニッケル水電池なども使用できる。電池セル1は、図6に示すように、正負の電極板を積層している電極体10を外装缶11に収納して電解液(図示せず)を充填して、開口部を封口板12で気密に密閉したものである。図の外装缶11は、底を閉塞する四角い筒状に成形したもので、上方の開口部を封口板12で気密に閉塞している。また、電池セル1同士の間に、必要に応じて絶縁性のスペーサ6が介在させることで、これらの間を絶縁できる。   The battery cell 1 is a square battery. Furthermore, the battery cell 1 is a lithium ion battery. In the lithium ion battery, the positive electrode terminal 2A is made of aluminum, and the negative electrode terminal 2B is made of copper. However, the battery pack of the present invention can use a cylindrical battery cell without specifying the battery cell as a rectangular battery. Moreover, it is not specified also as a lithium ion battery, For example, a nickel-water battery etc. can be used. As shown in FIG. 6, the battery cell 1 houses an electrode body 10 in which positive and negative electrode plates are stacked in an outer can 11 and is filled with an electrolyte (not shown), and the opening is a sealing plate 12. It is hermetically sealed. The illustrated outer can 11 is formed into a square cylinder that closes the bottom, and the upper opening is airtightly closed by the sealing plate 12. Moreover, between the battery cells 1 can be insulated by interposing an insulating spacer 6 as necessary.

外装缶11は、アルミニウムなどの金属板を深絞り加工したもので、表面が導電性を有する。積層される電池セル1は薄い角形に成形される。封口板12は外装缶11と同じ金属であるアルミニウムなどの金属板で製作される。封口板12は、正負の電極端子2を両端部に、絶縁材13を介して固定している。正負の電極端子2は内蔵する正負の電極板に接続される。リチウムイオン電池は、外装缶11を電極に接続しない。ただ、外装缶11は電解液を介して電極板に接続されることから、正負の電極板の中間電位となる。ただし、電池セルは、一方の電極端子をリード線で外装缶に接続することもできる。この電池セルは、外装缶に接続される電極端子を絶縁することなく封口板に固定できる。   The outer can 11 is obtained by deep drawing a metal plate such as aluminum and has a conductive surface. The battery cells 1 to be stacked are formed into thin squares. The sealing plate 12 is made of a metal plate such as aluminum which is the same metal as the outer can 11. The sealing plate 12 has positive and negative electrode terminals 2 fixed to both ends via an insulating material 13. The positive and negative electrode terminals 2 are connected to built-in positive and negative electrode plates. The lithium ion battery does not connect the outer can 11 to the electrode. However, since the outer can 11 is connected to the electrode plate via the electrolytic solution, it has an intermediate potential between the positive and negative electrode plates. However, a battery cell can also connect one electrode terminal to an armored can with a lead wire. The battery cell can be fixed to the sealing plate without insulating the electrode terminal connected to the outer can.

電池パック100は、複数の電池セル1を積層して直方体のブロック状の電池積層体9としている。電池セル1は、電極端子2を設けている面、図4にあっては封口板12を同一平面となるように積層してブロック状としている。図4の電池パック100は、ブロックの上面に電極端子2を配設している。電池パック100は、封口板12の両端部にある正負の電極端子2が左右逆となる状態で積層している。この電池パック100は、図に示すように、ブロックの両側で隣接する電極端子2をバスバー3で連結して、電池セル1を直列に接続している。バスバー3は、その両端部を正負の電極端子2に接続して、電池セル1を直列に接続する。図の電池パック100は、電池セル1を直列に接続して出力電圧を高くしているが、本発明の電池パックは、電池セルを直列と並列に接続して、出力電圧と出力電流を大きくすることもできる。   In the battery pack 100, a plurality of battery cells 1 are stacked to form a rectangular parallelepiped block-shaped battery stack 9. The battery cell 1 is formed into a block shape by laminating the surface on which the electrode terminal 2 is provided, in FIG. 4, the sealing plate 12 so as to be on the same plane. In the battery pack 100 of FIG. 4, the electrode terminal 2 is disposed on the upper surface of the block. The battery pack 100 is laminated in a state in which the positive and negative electrode terminals 2 at both ends of the sealing plate 12 are reversed left and right. In this battery pack 100, as shown in the figure, the electrode terminals 2 adjacent on both sides of the block are connected by a bus bar 3, and the battery cells 1 are connected in series. Both ends of the bus bar 3 are connected to the positive and negative electrode terminals 2 to connect the battery cells 1 in series. In the illustrated battery pack 100, the battery cells 1 are connected in series to increase the output voltage. However, in the battery pack of the present invention, the battery cells are connected in series and in parallel to increase the output voltage and output current. You can also

電極端子2は、絶縁材13を介して封口板12に固定されて、その先端部を円筒状又は円柱状としている。電極端子は、円柱状とし、あるいは多角柱状とし、あるいは上端面の外側に突出するようにリングを設けた形状として、バスバー3に設けた貫通孔38に挿入されて、バスバー3に連結される。   The electrode terminal 2 is fixed to the sealing plate 12 via an insulating material 13 and has a cylindrical or columnar tip portion. The electrode terminal is connected to the bus bar 3 by being inserted into a through hole 38 provided in the bus bar 3 in a columnar shape, a polygonal column shape, or a shape in which a ring is provided so as to protrude outward from the upper end surface.

バスバー3は、複数の電池セル1の電極端子2に接続する両端部には、電極端子2を挿入する貫通孔38を設けている。図4の電池パックは、隣接して積層しているふたつの電池セル1をバスバー3で直列に接続するので、バスバー3の両端部に2個の貫通孔38を設けている。バスバー3は、必ずしも2個の電池セル1を直列に接続するのではなく、たとえば4個の電池セルを直列と並列に接続することもある。このバスバーは、4個の貫通孔を設ける。図4のバスバー3は、積層している電池積層体9の電池セル1を直列に接続する。ただ、バスバーは、電池ホルダー(図示せず)で所定の位置に配置される電池セルを直列に接続することもできる。このバスバーは、電池セルの電極端子の位置に貫通孔を設けている。   The bus bar 3 is provided with through holes 38 into which the electrode terminals 2 are inserted at both ends connected to the electrode terminals 2 of the plurality of battery cells 1. In the battery pack of FIG. 4, two battery cells 1 that are stacked adjacent to each other are connected in series by a bus bar 3, so that two through holes 38 are provided at both ends of the bus bar 3. The bus bar 3 does not necessarily connect two battery cells 1 in series, but may connect, for example, four battery cells in series and in parallel. This bus bar is provided with four through holes. The bus bar 3 in FIG. 4 connects the battery cells 1 of the stacked battery stack 9 in series. However, the bus bar can be connected in series with battery cells arranged at predetermined positions by a battery holder (not shown). This bus bar has a through hole at the position of the electrode terminal of the battery cell.

バスバー3は、図7と図8に示すように、貫通孔38の間隔を、所定の位置に配置される電池セル1の電極端子2の間隔に等しくしている。各々の電池セル1の電極端子2を貫通孔38に挿入して、電極端子2をバスバー3に電気接続するからである。困ったことに、所定の位置に配置される電池セル1の電極端子2の間隔は、必ずしも常に一定ではない。電池セル1の寸法誤差や電池ホルダーの寸法誤差が原因で、電極端子2の間隔に誤差ができる。間隔が変化する電極端子2を挿入するために、バスバー3は、一方の、あるいは両方の貫通孔38を大きくして、電極端子2との間に遊び隙間39を設けている。このバスバー3は、電極端子2とバスバー3との相対位置をずらせる状態で電極端子2を貫通孔38に挿入できるように、貫通孔38を大きくして、位置ずれ範囲を設けている。   As shown in FIGS. 7 and 8, the bus bar 3 has the interval between the through holes 38 equal to the interval between the electrode terminals 2 of the battery cells 1 arranged at a predetermined position. This is because the electrode terminal 2 of each battery cell 1 is inserted into the through hole 38 and the electrode terminal 2 is electrically connected to the bus bar 3. Unfortunately, the interval between the electrode terminals 2 of the battery cells 1 arranged at a predetermined position is not always constant. Due to the dimensional error of the battery cell 1 and the dimensional error of the battery holder, an error is generated in the distance between the electrode terminals 2. In order to insert the electrode terminal 2 whose interval changes, the bus bar 3 has one or both through-holes 38 enlarged, and a play gap 39 is provided between the bus bar 3 and the electrode terminal 2. The bus bar 3 has a large through hole 38 to provide a position shift range so that the electrode terminal 2 can be inserted into the through hole 38 in a state where the relative positions of the electrode terminal 2 and the bus bar 3 are shifted.

図7と図8のバスバー3は、電池セル1の電極端子2が積層方向にずれても、貫通孔38に挿入できるように、一方の貫通孔38を、電池セル1の積層方向に延びる長孔状として、位置ずれ範囲を設けている。このバスバー3は、電池セル1の寸法誤差で、電池セル1の電極端子2が積層方向にずれても、各電池セル1の電極端子2を貫通孔38にスムーズに無理なく挿入できる。電極端子2の間隔の寸法誤差を吸収して、複数の電極端子2を各貫通孔38に挿入できる位置ずれ範囲は、たとえば、電極端子2とバスバー3との相対位置を0.5mm〜3mmずらせて、電極端子2をバスバー3の貫通孔38に挿入できる範囲に設定される。位置ずれ範囲は、貫通孔38の内形と電極端子2の外形との寸法差で特定する。   The bus bar 3 shown in FIGS. 7 and 8 has one through hole 38 extending in the stacking direction of the battery cell 1 so that the electrode terminal 2 of the battery cell 1 can be inserted into the through hole 38 even when the electrode terminal 2 is shifted in the stacking direction. As the hole shape, a misalignment range is provided. Even when the electrode terminals 2 of the battery cells 1 are displaced in the stacking direction due to a dimensional error of the battery cells 1, the bus bars 3 can be smoothly and easily inserted into the through holes 38. The positional deviation range in which the plurality of electrode terminals 2 can be inserted into the respective through holes 38 by absorbing the dimensional error of the interval between the electrode terminals 2 is, for example, shifted relative position between the electrode terminal 2 and the bus bar 3 by 0.5 mm to 3 mm. Thus, the electrode terminal 2 is set in a range where the electrode terminal 2 can be inserted into the through hole 38 of the bus bar 3. The position shift range is specified by a dimensional difference between the inner shape of the through hole 38 and the outer shape of the electrode terminal 2.

バスバー3は、寸法誤差のある複数の電極端子2を貫通孔38に挿入するので、貫通孔38を電極端子2よりも大きくして、遊び隙間39を設けている。バスバーは、全ての貫通孔に、電極端子との間に遊び隙間を設けることができる。ただ、バスバー3は、電極端子2との間に遊び隙間39のない密着貫通孔38Bと、電極端子2との間に遊び隙間39のある隙間貫通孔38Aを設けることもできる。このバスバー3は、少なくともひとつの貫通孔38を密着貫通孔38Bとして、他の貫通孔38を隙間貫通孔38Aとする。   In the bus bar 3, a plurality of electrode terminals 2 having dimensional errors are inserted into the through holes 38, so that the play holes 39 are provided by making the through holes 38 larger than the electrode terminals 2. The bus bar can be provided with play gaps between all the through holes and the electrode terminals. However, the bus bar 3 can also be provided with a close-contact through hole 38 </ b> B having no play gap 39 between the electrode terminal 2 and a gap through hole 38 </ b> A with a play gap 39 between the electrode terminal 2. The bus bar 3 has at least one through hole 38 as a close-contact through hole 38B and the other through hole 38 as a clearance through hole 38A.

図7と図8のバスバー3は、互いに積層している電池セル1の電極端子2に接続されるので、ひとつの貫通孔38を密着貫通孔38Bとして、他の貫通孔38を電池セル1の積層方向に延びる長孔状の隙間貫通孔38Aとしている。このバスバー3は、電極端子2の間隔が、電池セル1の積層方向にずれても、電極端子2を隙間貫通孔38Aにスムーズに無理なく挿入できる。   7 and 8 are connected to the electrode terminals 2 of the battery cells 1 stacked on each other. Therefore, one through hole 38 is used as a close contact hole 38B, and the other through hole 38 is used as the battery cell 1. A long-hole-shaped gap through hole 38A extending in the stacking direction is used. The bus bar 3 can smoothly and easily insert the electrode terminal 2 into the clearance through hole 38 </ b> A even if the interval between the electrode terminals 2 is shifted in the stacking direction of the battery cells 1.

貫通孔38と電極端子2との間の遊び隙間39は、図9に示すように、電極端子2に挿入される固定リング7で塞がれる。固定リング7は、内形を電極端子2の外形に等しくし、外形を貫通孔38の内形よりも大きくしている。とくに、固定リング7の外形は、電極端子2を隙間貫通孔38Aのいかなる位置に挿入しても、隙間貫通孔38Aを閉塞できる外形に設計される。レーザー溶接してバスバー3に接続される固定リング7は、溶接リング7Aである。溶接リング7Aは、後述するバスバー3のメッキ層34と同じ金属板で製作され、あるいは、バスバー3と同じ又は異なる金属板であって、表面にバスバー3のメッキ層34と同じメッキ層を設けた金属板が使用される。メッキ層34をニッケルメッキ層とするバスバー3に溶接される溶接リング7Aは、ニッケル板で製作され、あるいは、表面をニッケルメッキしている金属板とする。表面にバスバー3に設けたメッキ層34と同じメッキ層を設けている溶接リング7Aは、好ましくは、バスバー3と同じ金属板で製作されるが、必ずしもバスバー3と同じ金属板とする必要はなく、他の金属板で製作することもできる。   As shown in FIG. 9, the play gap 39 between the through hole 38 and the electrode terminal 2 is closed by the fixing ring 7 inserted into the electrode terminal 2. The fixing ring 7 has an inner shape equal to the outer shape of the electrode terminal 2, and the outer shape is larger than the inner shape of the through hole 38. In particular, the outer shape of the fixing ring 7 is designed such that the gap through hole 38A can be closed regardless of the position of the electrode terminal 2 inserted into the gap through hole 38A. The fixing ring 7 connected to the bus bar 3 by laser welding is a welding ring 7A. The weld ring 7A is made of the same metal plate as the plated layer 34 of the bus bar 3 to be described later, or is the same or different metal plate as the bus bar 3, and the same plated layer as the plated layer 34 of the bus bar 3 is provided on the surface. A metal plate is used. The welding ring 7A welded to the bus bar 3 having the plating layer 34 as a nickel plating layer is made of a nickel plate or a metal plate whose surface is nickel-plated. The welding ring 7A provided with the same plating layer as the plating layer 34 provided on the bus bar 3 on the surface is preferably manufactured from the same metal plate as the bus bar 3, but is not necessarily required to be the same metal plate as the bus bar 3. It can also be made of other metal plates.

バスバー3は、固定リング7を確実に電気接続し、かつ長期間にわたって安定に電気接続するために、表面にメッキ層34を設けている。メッキ層34は、バスバー3の全面には設けられない。バスバー3は、固定リング7との対向面にメッキ層34を設けている。固定リング7は、隙間貫通孔38Aに挿通される電極端子2に挿通される。隙間貫通孔38Aに挿通される電極端子2は、隙間貫通孔38Aの定位置には挿通されない。隙間貫通孔38Aは、電極端子2を位置ずれする状態で挿通できるように、遊び隙間39を設けているからである。したがって、固定リング7は、電極端子2が隙間貫通孔38Aに挿通される位置によって、バスバー表面との対向面の位置が変化する。バスバー3は、電極端子2が隙間貫通孔38Aのどの位置に挿通される状態においても、電極端子2に挿通される固定リング7と対向する全ての領域にメッキ層34を設けている。図7のバスバー3は、固定リング7の外形よりも大きい領域にメッキ層34を設けている。さらに、この図のバスバー3は、電圧検出端子23をハンダ付けする領域にもメッキ層34を拡大している。   The bus bar 3 is provided with a plating layer 34 on the surface in order to reliably connect the fixing ring 7 and to stably connect the fixing ring 7 over a long period of time. The plated layer 34 is not provided on the entire surface of the bus bar 3. The bus bar 3 is provided with a plating layer 34 on the surface facing the fixing ring 7. The fixing ring 7 is inserted into the electrode terminal 2 that is inserted into the clearance through hole 38A. The electrode terminal 2 inserted through the clearance through hole 38A is not inserted into the fixed position of the clearance through hole 38A. This is because the clearance through hole 38A is provided with a play gap 39 so that the electrode terminal 2 can be inserted in a state of being displaced. Accordingly, the position of the fixing ring 7 facing the bus bar surface changes depending on the position where the electrode terminal 2 is inserted into the clearance through hole 38A. The bus bar 3 is provided with a plating layer 34 in all regions facing the fixing ring 7 inserted through the electrode terminal 2 in any state where the electrode terminal 2 is inserted through the gap through hole 38A. The bus bar 3 in FIG. 7 is provided with a plating layer 34 in a region larger than the outer shape of the fixing ring 7. Further, in the bus bar 3 in this figure, the plating layer 34 is also expanded to the area where the voltage detection terminal 23 is soldered.

図7のバスバー3は、リチウムイオン電池の正極端子2Aと負極端子2Bとに接続されるもので、アルミニウム板31と銅板32と圧接するクラッド材30である。リチウムイオン電池は、正極端子2Aをアルミニウム製、負極端子2Bを銅製とするので、バスバー3は、アルミニウム板31を正極端子2Aに、銅板32を負極端子2Bに電気接続する。このバスバー3は、アルミニウム板31の貫通孔38を密着貫通孔38Bとして、銅板32の貫通孔38を隙間貫通孔38Aとして、銅板表面の固定リング7との対向面にメッキ層34を設けている。アルミニウム板31に設けた密着貫通孔38Bは、電極端子2の外周に密着するので、固定リング7を介することなく、アルミニウム製の正極端子2Aとバスバー3のアルミニウム板31とをレーザー溶接して直接に電気接続される。バスバー3の銅板32は、固定リング7を介して電極端子2に電気接続される。固定リング7である溶接リング7Aは、隙間貫通孔38Aに挿通された電極端子2に挿通されて、内周縁を電極端子2に、外周縁をバスバー表面のメッキ層34にレーザー溶接されて、電極端子2とバスバー3とに電気接続される。   The bus bar 3 in FIG. 7 is connected to the positive electrode terminal 2A and the negative electrode terminal 2B of the lithium ion battery, and is a clad material 30 that press-contacts the aluminum plate 31 and the copper plate 32. Since the lithium ion battery has the positive electrode terminal 2A made of aluminum and the negative electrode terminal 2B made of copper, the bus bar 3 electrically connects the aluminum plate 31 to the positive electrode terminal 2A and the copper plate 32 to the negative electrode terminal 2B. In this bus bar 3, a plated layer 34 is provided on the surface facing the fixing ring 7 on the surface of the copper plate, with the through hole 38 of the aluminum plate 31 as a close-contact through hole 38B and the through hole 38 of the copper plate 32 as a gap through hole 38A. . Since the close contact through hole 38B provided in the aluminum plate 31 is in close contact with the outer periphery of the electrode terminal 2, the positive electrode terminal 2A made of aluminum and the aluminum plate 31 of the bus bar 3 are directly welded without using the fixing ring 7. Electrically connected to The copper plate 32 of the bus bar 3 is electrically connected to the electrode terminal 2 through the fixing ring 7. The welding ring 7A, which is the fixing ring 7, is inserted into the electrode terminal 2 inserted through the clearance through hole 38A, the inner peripheral edge is laser-welded to the electrode terminal 2, and the outer peripheral edge is laser-welded to the plating layer 34 on the bus bar surface. Electrical connection is made to the terminal 2 and the bus bar 3.

バスバー3の銅板32は、固定リング7との対向面にメッキ層34を設けて、メッキ層34でレーザー光線の吸収率を高くすることができる。ニッケルメッキは、レーザー光線の反射を少なくできるので、レーザー光線を効率よく吸収して、固定リング7をバスバー3のメッキ層34に効率よくレーザー溶接できる。したがって、バスバー3は、銅板表面の固定リング7との対向面にメッキ層34を設けて、固定リング7を効率よく銅板32にレーザー溶接できる。このバスバー3は、銅板表面であって、固定リング7との対向面にのみメッキ層34を設け、あるいは銅板32のほぼ全面にメッキ層34を設けることができる。さらに、電池セル1は、図10に示すように、電極端子2にバスバー3の載せ部18を設け、この載せ部18を金属製として電極端子2に電気接続し、この載せ部18と固定リング7とでバスバー3を挟んで固定することができる。このバスバー3は、裏面の載せ部18との接触面にもメッキ層34を設け、メッキ層34で腐蝕を防止して、電極端子2の載せ部18との電気接続をより安定にできる。   The copper plate 32 of the bus bar 3 can be provided with a plating layer 34 on the surface facing the fixing ring 7, and the plating layer 34 can increase the absorption rate of the laser beam. Since the nickel plating can reduce the reflection of the laser beam, the laser beam can be efficiently absorbed and the fixing ring 7 can be efficiently laser-welded to the plating layer 34 of the bus bar 3. Therefore, the bus bar 3 can be laser-welded to the copper plate 32 efficiently by providing the plating layer 34 on the surface of the copper plate facing the fixing ring 7. The bus bar 3 can be provided with a plated layer 34 only on the surface of the copper plate facing the fixing ring 7, or the plated layer 34 can be provided on almost the entire surface of the copper plate 32. Further, as shown in FIG. 10, the battery cell 1 is provided with a mounting portion 18 of the bus bar 3 on the electrode terminal 2, and the mounting portion 18 is made of metal and is electrically connected to the electrode terminal 2. 7 can be fixed with the bus bar 3 interposed therebetween. The bus bar 3 is provided with a plating layer 34 on the contact surface with the mounting portion 18 on the back surface, and prevents corrosion by the plating layer 34, so that the electrical connection with the mounting portion 18 of the electrode terminal 2 can be made more stable.

さらに、固定リング7は、図11に示すように、溶接リング7Aに代わってナット7Bも使用できる。固定リング7をナット7Bとする電池パックは、電池セル51の電極端子52に雄ネジ54を設け、これをバスバー3の貫通孔38に挿入し、その先端にナット7Bをねじ込んで電極端子52をバスバー3に接続している。この固定リング7は、正極端子52Aにねじ込まれるナット7Baを、バスバー3のアルミニウム板31と同じ金属、すなわちアルミニウムで製作し、負極端子52Bにねじ込まれるナット7Bbを、銅板32に設けたメッキ層34と同じ金属で製作し、あるいは、表面に銅板32に設けたメッキ層34と同じメッキ層を設けた金属製とすることができる。例えば、バスバー3の銅板32に設けたニッケルメッキ層34に接続されるナット7Bbは、ニッケルで製作され、あるいは、表面をニッケルメッキしている金属製とすることができる。表面に銅板32に設けたメッキ層34と同じメッキ層を設けているナット7Bbは、好ましくは、銅製とするが、必ずしも銅板32と同じ金属とする必要はなく、他の金属で製作することもできる。   Furthermore, as shown in FIG. 11, the fixing ring 7 can also use a nut 7B instead of the welding ring 7A. In the battery pack in which the fixing ring 7 is the nut 7B, the male terminal 54 is provided in the electrode terminal 52 of the battery cell 51, inserted into the through hole 38 of the bus bar 3, and the nut 7B is screwed into the tip of the electrode terminal 52. Connected to bus bar 3. In this fixing ring 7, a nut 7 </ b> Ba screwed into the positive electrode terminal 52 </ b> A is made of the same metal as the aluminum plate 31 of the bus bar 3, that is, aluminum, and a plated layer 34 provided with a nut 7 </ b> Bb screwed into the negative electrode terminal 52 </ b> B on the copper plate 32. Can be made of the same metal, or can be made of a metal having the same plating layer as the plating layer 34 provided on the copper plate 32 on the surface. For example, the nut 7Bb connected to the nickel plating layer 34 provided on the copper plate 32 of the bus bar 3 can be made of nickel or made of metal whose surface is nickel-plated. The nut 7Bb provided with the same plating layer as the plating layer 34 provided on the copper plate 32 on the surface is preferably made of copper, but is not necessarily made of the same metal as the copper plate 32, and may be made of other metals. it can.

以上のバスバー3は、メッキしない領域をマスキングする状態で、メッキ液に浸漬されて、必要な領域にのみにニッケルメッキなどのメッキ層34が設けられる。   The above-mentioned bus bar 3 is immersed in a plating solution in a state in which a region not to be plated is masked, and a plating layer 34 such as nickel plating is provided only in a necessary region.

さらに、図6に示す電池セル1は、開口部が封口板12で閉塞された外装缶12の内部に電流遮断機構15(Current Interrupt Device)を内蔵している。図に示す電池セル1は、電流遮断機構15を正極端子2Aに接続している。図の電池セル1は、電極体10に接続している集電体14と、封口板12に固定している正極端子2Aとの間に電流遮断機構15を接続している。オン状態の電流遮断機構15は、集電体14を正極端子2Aに接続する。電流遮断機構15がオフ状態になると、集電体14が正極端子2Aに接続されない状態となって、電池セル1の電流は遮断される。この電流遮断機構15は、電池セル1の内圧で変形する変形金属板16と、変形金属板16の局部を溶接して電気接続してなる接続金属17とを備えている。この電流遮断機構15は、電池セル1の内圧が設定圧力よりも高くなると、変形金属板16を圧力で変形させて、変形金属板16を接続金属17から分離して電流を遮断する。この電池セル1は、電池セル1の内圧が設定圧力よりも高くなると、電流遮断機構15が電流を遮断して安全性を向上できる。ただし、電池パックは、必ずしも電池セルに電流遮断機構を内蔵する必要はない。それは、設定圧力で開弁する安全弁を封口板に設けて内圧が異常に上昇するのを防止できるからである。   Further, the battery cell 1 shown in FIG. 6 has a current interrupt device 15 (Current Interrupt Device) built in the outer can 12 whose opening is closed by the sealing plate 12. The battery cell 1 shown in the figure has a current interruption mechanism 15 connected to the positive electrode terminal 2A. In the illustrated battery cell 1, a current interruption mechanism 15 is connected between a current collector 14 connected to an electrode body 10 and a positive electrode terminal 2 </ b> A fixed to a sealing plate 12. The on-state current interruption mechanism 15 connects the current collector 14 to the positive electrode terminal 2A. When the current interrupting mechanism 15 is turned off, the current collector 14 is not connected to the positive electrode terminal 2A, and the current of the battery cell 1 is interrupted. The current interrupting mechanism 15 includes a deformed metal plate 16 that is deformed by the internal pressure of the battery cell 1 and a connecting metal 17 that is formed by welding and locally connecting local portions of the deformed metal plate 16. When the internal pressure of the battery cell 1 becomes higher than the set pressure, the current interruption mechanism 15 deforms the deformed metal plate 16 with the pressure and separates the deformed metal plate 16 from the connection metal 17 to interrupt the current. In the battery cell 1, when the internal pressure of the battery cell 1 becomes higher than the set pressure, the current interruption mechanism 15 cuts off the current and can improve safety. However, the battery pack does not necessarily need to incorporate a current interruption mechanism in the battery cell. This is because a safety valve that opens at a set pressure can be provided on the sealing plate to prevent the internal pressure from rising abnormally.

さらに、図6の電池セル1は、外装缶11の開口部を閉塞する封口板12に、安全弁19を設けている。安全弁19は、電池の内圧が設定値よりも高くなると開弁して、外装缶11が破損し、あるいは外装缶11と封口板12との連結部分が破損するのを防止する。安全弁19と電流遮断機構15の両方を備える電池セル1は、電池の内圧が上昇して安全弁19が開弁する開弁圧を、電流遮断機構15が電流を遮断する電流遮断圧よりも高くしている。すなわち、電池セル1の内圧が上昇して、電流遮断圧よりも大きくなると、電流遮断機構15の変形金属板16が電池の内圧で変形して接続金属17から分離されて、電池セル1の電流を遮断する。この状態で、電池セル1は、電流が遮断されて安全性が確保される。さらに、電流遮断機構15が電流を遮断する状態から電池の内圧が上昇して、安全弁19の開弁圧よりも大きくなると、安全弁19が開弁されて、内部のガスを外部に排出して電池の内圧が異常に上昇するのを阻止する。   Furthermore, the battery cell 1 of FIG. 6 is provided with a safety valve 19 on the sealing plate 12 that closes the opening of the outer can 11. The safety valve 19 opens when the internal pressure of the battery becomes higher than a set value, and prevents the outer can 11 from being damaged or the connecting portion between the outer can 11 and the sealing plate 12 from being damaged. In the battery cell 1 including both the safety valve 19 and the current cutoff mechanism 15, the valve opening pressure at which the safety valve 19 opens due to the increase in the internal pressure of the battery is set higher than the current cutoff pressure at which the current cutoff mechanism 15 cuts off the current. ing. That is, when the internal pressure of the battery cell 1 rises and becomes larger than the current interruption pressure, the deformed metal plate 16 of the current interruption mechanism 15 is deformed by the internal pressure of the battery and separated from the connection metal 17, and the current of the battery cell 1 is increased. Shut off. In this state, the battery cell 1 is secured with safety by cutting off the current. Further, when the internal pressure of the battery rises from the state where the current interrupting mechanism 15 interrupts the current and becomes greater than the opening pressure of the safety valve 19, the safety valve 19 is opened and the internal gas is discharged to the outside. This prevents the internal pressure of the air from rising abnormally.

さらに、図3と図4に示す電池パック100は、電池積層体9の上面に表面プレート8を配置しており、この表面プレート8で、互いに積層される電池セル1の封口板12側の端面(図において上面)をカバーしている。この表面プレート8は、電池積層体9の上面に沿う外形に成形している。この表面プレート8は、ナイロン樹脂、エポキシ樹脂などの絶縁性のプラスチックで成形している。さらに、表面プレート8は、図3と図4に示すように、電池セル1の電極端子2を表出させてバスバー3に接続するための開口窓29を開口して設けている。図の表面プレート8は、電池積層体9の両側部に沿って、複数の開口窓29を設けている。開口窓29は、バスバー3を定位置に案内しながら電極端子2に接続できるように、バスバー3の外形に沿う大きさと形状している。表面プレート8の開口窓29に配置されるバスバー3は、電池セル1の電極端子2にレーザー溶接等の溶着によって固定されて、複数の電池セル1を所定の接続状態に接続する。ただ、電池パックは、必ずしも電池積層体の上面に表面プレートを配置する必要はない。   Further, the battery pack 100 shown in FIGS. 3 and 4 has a surface plate 8 disposed on the upper surface of the battery stack 9, and the end surface of the battery cell 1 stacked on the surface plate 8 on the sealing plate 12 side. (Upper surface in the figure) is covered. The surface plate 8 is formed in an outer shape along the upper surface of the battery stack 9. The surface plate 8 is formed of an insulating plastic such as nylon resin or epoxy resin. Further, as shown in FIGS. 3 and 4, the surface plate 8 is provided with an opening window 29 for exposing the electrode terminal 2 of the battery cell 1 and connecting it to the bus bar 3. The illustrated surface plate 8 is provided with a plurality of opening windows 29 along both side portions of the battery stack 9. The opening window 29 is sized and shaped along the outer shape of the bus bar 3 so that it can be connected to the electrode terminal 2 while guiding the bus bar 3 to a fixed position. The bus bar 3 disposed in the opening window 29 of the surface plate 8 is fixed to the electrode terminal 2 of the battery cell 1 by welding such as laser welding, and connects the plurality of battery cells 1 to a predetermined connection state. However, it is not always necessary for the battery pack to dispose a surface plate on the upper surface of the battery stack.

さらに、電池パック100は、図5に示すように、各電池セル1の電圧を検出する電圧検出回路21を備えている。図3と図4の電池パック100は、表面プレート8の上方に回路基板20を固定しており、この回路基板20に電圧検出回路21を実現する電子部品(図示せず)を実装している。電圧検出回路21は、各々の電池セル1の電圧を検出し、各電池セル1の過充電や過放電を防止するように、充放電の電流をコントロールする。電圧検出回路21は、電圧検出ラインであるリード線22を介して、電池セル1の電極端子2を連結しているバスバー3に接続されている。電圧検出回路21は、入力側に接続しているリード線22をバスバー3に接続して、リード線22とバスバー3を介して、各電池セル1の電圧を検出する。リード線22を確実にバスバー3に接続するために、バスバー3は電圧検出端子23を固定している。この電圧検出端子23は、図7〜図9に示すようにバスバー3の銅板32に設けたメッキ層34の表面に、溶接やハンダ付け等の方法で固定される。このメッキ層34は、金属製の電圧検出端子23を確実に安定して固定できる。リード線22は、ハンダ付けして電圧検出端子23に接続される。   Furthermore, as shown in FIG. 5, the battery pack 100 includes a voltage detection circuit 21 that detects the voltage of each battery cell 1. 3 and FIG. 4, the circuit board 20 is fixed above the surface plate 8, and an electronic component (not shown) for realizing the voltage detection circuit 21 is mounted on the circuit board 20. . The voltage detection circuit 21 detects the voltage of each battery cell 1 and controls the charge / discharge current so as to prevent overcharge and overdischarge of each battery cell 1. The voltage detection circuit 21 is connected to the bus bar 3 that connects the electrode terminals 2 of the battery cells 1 through lead wires 22 that are voltage detection lines. The voltage detection circuit 21 connects the lead wire 22 connected to the input side to the bus bar 3, and detects the voltage of each battery cell 1 via the lead wire 22 and the bus bar 3. In order to securely connect the lead wire 22 to the bus bar 3, the bus bar 3 has a voltage detection terminal 23 fixed thereto. The voltage detection terminal 23 is fixed to the surface of the plating layer 34 provided on the copper plate 32 of the bus bar 3 by a method such as welding or soldering as shown in FIGS. The plated layer 34 can reliably and stably fix the metal voltage detection terminal 23. The lead wire 22 is soldered and connected to the voltage detection terminal 23.

以上の電池パックは、以下の工程で組み立てられる。
(1)所定の個数の電池セル1を、間にスペーサ6を介在させる状態で、電池セル1の厚さ方向に積層して電池積層体9とする。このとき、互いに積層される複数の電池セル1は、封口板12の両端部にある正負の電極端子2が交互に逆向きとなるように積層する。
(2)電池積層体9の両端にエンドプレート4を積層し、一対のエンドプレート4を両側から押圧して、電池積層体9を電池セル1の積層方向に加圧する。
(3)電池積層体9の両側面の下端において、電池積層体9の両端面に配置される一対のエンドプレート4の下側コーナー部を連結具5で連結する。
(4)さらに、電池積層体9を電池セル1の積層方向に加圧する状態で、電池積層体9の上面の定位置に表面プレート8を配置する。
(5)電池積層体9の両側面の上端において、電池積層体9の両端面に配置される一対のエンドプレート4の上側コーナー部を連結具5で連結する。この状態で、連結具5を介して、積層状態の電池セル1を積層方向に加圧状態で固定すると共に、表面プレート8の両側縁部を連結具5で電池積層体9に固定する。
The above battery pack is assembled in the following steps.
(1) A predetermined number of battery cells 1 are stacked in the thickness direction of the battery cell 1 with a spacer 6 interposed therebetween to form a battery stack 9. At this time, the plurality of battery cells 1 stacked on each other are stacked such that the positive and negative electrode terminals 2 at both ends of the sealing plate 12 are alternately reversed.
(2) The end plates 4 are stacked on both ends of the battery stack 9, the pair of end plates 4 are pressed from both sides, and the battery stack 9 is pressed in the stacking direction of the battery cells 1.
(3) At the lower ends of the both side surfaces of the battery stack 9, the lower corners of the pair of end plates 4 arranged on both end surfaces of the battery stack 9 are connected by the connector 5.
(4) Furthermore, the surface plate 8 is disposed at a fixed position on the upper surface of the battery stack 9 in a state where the battery stack 9 is pressed in the stacking direction of the battery cells 1.
(5) At the upper ends of both side surfaces of the battery stack 9, the upper corners of the pair of end plates 4 arranged on both end surfaces of the battery stack 9 are connected by the connector 5. In this state, the battery cells 1 in the stacked state are fixed in the stacking direction in a pressurized state via the connector 5, and both side edges of the surface plate 8 are fixed to the battery stack 9 with the connector 5.

(6)電池積層体9の両側において、互いに隣接する電池セル1の対向する電極端子2、52同士をバスバー3で連結する。バスバー3は、表面プレート8の開口窓29に配置されて、この開口窓29から表出する正極端子2A、52Aと負極端子2B、52Bを連結する。互いに隣接する電池セル1がバスバー3で直列に接続されて、電池積層体9を構成する電池セル1が直列に接続される。
このとき、図8〜図10に示す電極端子2は、次のようにしてバスバー3に接続される。
[1]図8と図10に示すように、バスバー3の両端部に設けている貫通孔38に、隣接する電池セル1の電極端子2を挿入する。このとき、アルミニウム板31に設けた円形の密着貫通孔38Bに正極端子2Aを挿入し、銅板32に設けた長孔状の隙間貫通孔38Aに負極端子2Bを挿入する。この状態で、密着貫通孔38Bと正極端子2Aとの間に隙間はできないが、長孔の隙間貫通孔38Aと負極端子2Bとの間には隙間ができる。
[2]バスバー3の上に溶接リング7Aである固定リング7を載せて、この溶接リング7Aの中心孔に、隙間貫通孔38Aに挿入している負極端子2Bを挿入する。溶接リング7Aは外形が隙間貫通孔38Aよりも大きいので、隙間貫通孔38Aと負極端子2Bとの隙間が閉塞される。
[3]図9と図10に示すように、円形の密着貫通孔38Bは、その円周に沿ってレーザー光線を照射して、正極端子2Aをバスバー3にレーザー溶接する。また、長孔状の隙間貫通孔38Aは、溶接リング7Aである固定リング7の内周縁と外周縁に沿ってレーザー光線を照射して、溶接リング7Aの中心孔の内周縁を負極端子2Bに、外周縁をバスバー3にレーザー溶接する。
また、図11に示す電極端子52は、次のようにしてバスバー3に接続される。
[1]図11に示すように、バスバー3の両端部に設けている貫通孔38に、隣接する電池セル51の電極端子52を挿入する。このとき、アルミニウム板31に設けた円形の密着貫通孔38Bに正極端子52Aを挿入し、銅板32に設けた長孔状の隙間貫通孔38Aに負極端子52Bを挿入する。
[2]正極端子52Aの先端にナット7Baをねじ込むと共に、負極端子52Bの先端にナット7Bbをねじ込んで各電極端子52をバスバー3に接続する。
(6) The opposite electrode terminals 2 and 52 of the battery cells 1 adjacent to each other are connected by the bus bar 3 on both sides of the battery stack 9. The bus bar 3 is disposed in the opening window 29 of the surface plate 8 and connects the positive terminals 2A and 52A and the negative terminals 2B and 52B exposed from the opening window 29. The battery cells 1 adjacent to each other are connected in series by the bus bar 3, and the battery cells 1 constituting the battery stack 9 are connected in series.
At this time, the electrode terminal 2 shown in FIGS. 8 to 10 is connected to the bus bar 3 as follows.
[1] As shown in FIGS. 8 and 10, the electrode terminals 2 of the adjacent battery cells 1 are inserted into the through holes 38 provided at both ends of the bus bar 3. At this time, the positive electrode terminal 2 </ b> A is inserted into the circular close-contact hole 38 </ b> B provided in the aluminum plate 31, and the negative electrode terminal 2 </ b> B is inserted into the long-hole-shaped gap through hole 38 </ b> A provided in the copper plate 32. In this state, there is no gap between the close contact through hole 38B and the positive electrode terminal 2A, but there is a gap between the long gap through hole 38A and the negative electrode terminal 2B.
[2] The fixing ring 7 as the welding ring 7A is placed on the bus bar 3, and the negative electrode terminal 2B inserted in the clearance through hole 38A is inserted into the center hole of the welding ring 7A. Since the outer shape of the weld ring 7A is larger than the gap through hole 38A, the gap between the gap through hole 38A and the negative electrode terminal 2B is closed.
[3] As shown in FIGS. 9 and 10, the circular contact through hole 38 </ b> B irradiates a laser beam along the circumference thereof, and laser-welds the positive electrode terminal 2 </ b> A to the bus bar 3. The long hole-shaped gap through-hole 38A irradiates a laser beam along the inner and outer peripheral edges of the fixing ring 7 which is the welding ring 7A, and the inner peripheral edge of the center hole of the welding ring 7A is applied to the negative electrode terminal 2B. The outer peripheral edge is laser welded to the bus bar 3.
Moreover, the electrode terminal 52 shown in FIG. 11 is connected to the bus bar 3 as follows.
[1] As shown in FIG. 11, the electrode terminals 52 of the adjacent battery cells 51 are inserted into the through holes 38 provided at both ends of the bus bar 3. At this time, the positive electrode terminal 52 </ b> A is inserted into the circular close-contact hole 38 </ b> B provided in the aluminum plate 31, and the negative electrode terminal 52 </ b> B is inserted into the long-hole-shaped gap through hole 38 </ b> A provided in the copper plate 32.
[2] The nut 7Ba is screwed into the tip of the positive electrode terminal 52A, and the nut 7Bb is screwed into the tip of the negative electrode terminal 52B to connect each electrode terminal 52 to the bus bar 3.

(7)表面プレート8の上方の定位置に回路基板20を固定する。さらに、回路基板20に実装される電圧検出回路21から引き出されたリード線22を各バスバー3に接続する。各リード線22は、先端に電圧検出端子23を接続しており、この電圧検出端子23をバスバー3のメッキ層34の表面に、溶接やハンダ付け等の方法で固定する。
ここで、(6)と(7)の工程は、順番を逆にすることもできる。
(7) The circuit board 20 is fixed at a fixed position above the surface plate 8. Furthermore, the lead wires 22 drawn out from the voltage detection circuit 21 mounted on the circuit board 20 are connected to each bus bar 3. Each lead wire 22 has a voltage detection terminal 23 connected to the tip, and the voltage detection terminal 23 is fixed to the surface of the plating layer 34 of the bus bar 3 by a method such as welding or soldering.
Here, the order of the steps (6) and (7) can be reversed.

以上の電池パックは、車載用の電源として利用できる。電池パックを搭載する車両としては、エンジンとモータの両方で走行するハイブリッド自動車やプラグインハイブリッド自動車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。   The above battery pack can be used as an in-vehicle power source. As a vehicle equipped with a battery pack, an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and it is used as a power source for these vehicles. .

(ハイブリッド自動車用電池パック)
図12は、エンジンとモータの両方で走行するハイブリッド自動車に電池パックを搭載する例を示す。この図に示す電池パックを搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電池パック100と、電池パック100の電池を充電する発電機94と、エンジン96、モータ93、電池パック100、及び発電機94を搭載してなる車両本体90と、エンジン96又はモータ93で駆動されて車両本体90を走行させる車輪97とを備えている。電池パック100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電池パック100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両HVを走行させる。モータ93は、電池パック100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両HVにブレーキをかけるときの回生制動で駆動されて、電池パック100の電池を充電する。
(Battery pack for hybrid vehicles)
FIG. 12 shows an example in which a battery pack is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with the battery pack shown in this figure includes an engine 96 and a running motor 93 that run the vehicle HV, a battery pack 100 that supplies power to the motor 93, and a generator that charges the batteries of the battery pack 100. 94, a vehicle main body 90 on which an engine 96, a motor 93, a battery pack 100, and a generator 94 are mounted, and wheels 97 that are driven by the engine 96 or the motor 93 to run the vehicle main body 90. The battery pack 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the battery pack 100. The motor 93 is driven in a region where the engine efficiency is poor, for example, during acceleration or during low-speed traveling, and causes the vehicle HV to travel. The motor 93 is driven by power supplied from the battery pack 100. The generator 94 is driven by the engine 96 or is driven by regenerative braking when braking the vehicle HV, and charges the battery of the battery pack 100.

(電気自動車用電池パック)
また、図13は、モータのみで走行する電気自動車に電池パックを搭載する例を示す。この図に示す電池パックを搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電池パック100と、この電池パック100の電池を充電する発電機94と、モータ93、電池パック100、及び発電機94を搭載してなる車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えている。電池パック100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電池パック100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電池パック100の電池を充電する。
(Electric vehicle battery pack)
FIG. 13 shows an example in which a battery pack is mounted on an electric vehicle that runs only by a motor. A vehicle EV equipped with the battery pack shown in this figure has a traveling motor 93 for traveling the vehicle EV, a battery pack 100 for supplying electric power to the motor 93, and a generator 94 for charging a battery of the battery pack 100. And a vehicle body 90 on which the motor 93, the battery pack 100, and the generator 94 are mounted, and a wheel 97 that is driven by the motor 93 and causes the vehicle body 90 to travel. The battery pack 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The motor 93 is driven by power supplied from the battery pack 100. The generator 94 is driven by energy when regenerative braking of the vehicle EV and charges the battery of the battery pack 100.

(蓄電装置用電池パック)
さらに、この電池パックは、移動体用の動力源としてのみならず、定置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図14に示す。この図に示す電池パック100は、複数の電池ブロック81をユニット状に接続して電池ユニット82を構成している。各電池ブロック81は、複数の電池が直列及び/又は並列に接続されている。各電池ブロック81は、電源コントローラ84により制御される。この電池パック100は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電池パック100は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電池パック100と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電池パック100の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電池パック100への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電池パック100から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電池パック100への充電を同時に行うこともできる。
(Battery pack for power storage device)
Furthermore, this battery pack can be used not only as a power source for a mobile body but also as a stationary power storage facility. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. In the battery pack 100 shown in this figure, a plurality of battery blocks 81 are connected in a unit form to constitute a battery unit 82. Each battery block 81 has a plurality of batteries connected in series and / or in parallel. Each battery block 81 is controlled by a power supply controller 84. The battery pack 100 drives the load LD after charging the battery unit 82 with the charging power source CP. For this reason, the battery pack 100 has a charge mode and a discharge mode. The load LD and the charging power source CP are connected to the battery pack 100 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the battery pack 100. In the charging mode, the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging of the battery pack 100 from the charging power source CP. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged, the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge. The mode is switched and discharging from the battery pack 100 to the load LD is permitted. Further, if necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the battery pack 100 simultaneously.

電池パック100で駆動される負荷LDは、放電スイッチDSを介して電池パック100と接続されている。電池パック100の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、電池パック100からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、電池パック100の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図14の例では、UARTやRS−232c等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。   A load LD driven by the battery pack 100 is connected to the battery pack 100 via a discharge switch DS. In the discharge mode of the battery pack 100, the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the battery pack 100. As the discharge switch DS, a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the battery pack 100. The power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 14, the host device HT is connected in accordance with an existing communication protocol such as UART or RS-232c. Further, if necessary, a user interface for the user to operate the power supply system can be provided.

各電池ブロック81は、信号端子と電源端子を備える。信号端子は、入出力端子DIと、異常出力端子DAと、接続端子DOとを含む。入出力端子DIは、他の電池ブロック81や電源コントローラ84からの信号を入出力するための端子であり、接続端子DOは他の電池ブロック81に対して信号を入出力するための端子である。また異常出力端子DAは、電池ブロック81の異常を外部に出力するための端子である。さらに電源端子は、電池ブロック81同士を直列、並列に接続するための端子である。また電池ユニット82は並列接続スイッチ85を介して出力ラインOLに接続されて互いに並列に接続されている。   Each battery block 81 includes a signal terminal and a power supply terminal. The signal terminals include an input / output terminal DI, an abnormal output terminal DA, and a connection terminal DO. The input / output terminal DI is a terminal for inputting / outputting a signal from the other battery block 81 or the power supply controller 84, and the connection terminal DO is a terminal for inputting / outputting a signal to / from the other battery block 81. . The abnormality output terminal DA is a terminal for outputting abnormality of the battery block 81 to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery blocks 81 in series and in parallel. The battery units 82 are connected to the output line OL via the parallel connection switch 85 and are connected in parallel to each other.

本発明に係る電池パックは、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電池パックとして好適に利用できる。また、コンピュータサーバのラックに搭載可能なバックアップ電池パック、携帯電話等の無線基地局用のバックアップ電池パック、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。   The battery pack according to the present invention can be suitably used as a battery pack for a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle or the like that can switch between the EV traveling mode and the HEV traveling mode. In addition, backup battery packs that can be mounted on computer server racks, backup battery packs for wireless base stations such as mobile phones, power storage power sources for home use and factories, power sources for street lights, etc. It can also be used as appropriate for applications such as backup power supplies for devices and traffic lights.

100…電池パック
1…電池セル
2…電極端子 2A…正極端子
2B…負極端子
3…バスバー
4…エンドプレート
5…連結具
6…スペーサ
7…固定リング 7A…溶接リング
7B…ナット
7Ba…ナット
7Bb…ナット
8…表面プレート
9…電池積層体
10…電極体
11…外装缶
12…封口板
13…絶縁材
14…集電体
15…電流遮断機構
16…変形金属板
17…接続金属
18…載せ部
19…安全弁
20…回路基板
21…電圧検出回路
22…リード線
23…電圧検出端子
29…開口窓
30…クラッド材
31…アルミニウム板
32…銅板
34…メッキ層
38…貫通孔 38A…隙間貫通孔
38B…密着貫通孔
39…遊び隙間
51…電池セル
52…電極端子 52A…正極端子
52B…負極端子
54…雄ネジ
81…電池ブロック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
90…車両本体
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
97…車輪
201…電池セル
202…電極端子
203…バスバー
204…貫通孔 204A…貫通孔
206…溶接リング
301…電池セル
302…電極端子
303…バスバー
304…貫通孔
307…ナット
EV…車両
HV…車両
LD…負荷
CP…充電用電源
DS…放電スイッチ
CS…充電スイッチ
OL…出力ライン
HT…ホスト機器
DI…入出力端子
DA…異常出力端子
DO…接続端子
DESCRIPTION OF SYMBOLS 100 ... Battery pack 1 ... Battery cell 2 ... Electrode terminal 2A ... Positive electrode terminal
2B ... Negative electrode terminal 3 ... Bus bar 4 ... End plate 5 ... Connector 6 ... Spacer 7 ... Fixing ring 7A ... Welding ring
7B ... Nut
7Ba ... Nut
7Bb ... Nut 8 ... Surface plate 9 ... Battery laminate 10 ... Electrode body 11 ... Exterior can 12 ... Sealing plate 13 ... Insulating material 14 ... Current collector 15 ... Current blocking mechanism 16 ... Deformed metal plate 17 ... Connecting metal 18 ... Mounted Part 19 ... Safety valve 20 ... Circuit board 21 ... Voltage detection circuit 22 ... Lead wire 23 ... Voltage detection terminal 29 ... Opening window 30 ... Cladding material 31 ... Aluminum plate 32 ... Copper plate 34 ... Plating layer 38 ... Through hole 38A ... Gap through hole
38B ... Close contact through hole 39 ... Play gap 51 ... Battery cell 52 ... Electrode terminal 52A ... Positive electrode terminal
52B ... Negative electrode terminal 54 ... Male screw 81 ... Battery block 82 ... Battery unit 84 ... Power supply controller 85 ... Parallel connection switch 90 ... Vehicle body 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine 97 ... Wheel 201 ... Battery cell 202 ... electrode terminal 203 ... bus bar 204 ... through hole 204A ... through hole 206 ... welding ring 301 ... battery cell 302 ... electrode terminal 303 ... bus bar 304 ... through hole 307 ... nut EV ... vehicle HV ... vehicle LD ... load CP ... Power supply for charging DS ... Discharge switch CS ... Charge switch OL ... Output line HT ... Host equipment DI ... Input / output terminal DA ... Abnormal output terminal DO ... Connection terminal

Claims (10)

複数の電池セルの電極端子に金属板のバスバーが固定され、このバスバーが電池セルを直列及び/又は並列に接続してなる電池パックであって、
前記バスバーが、接続される電池セルの電極端子を挿入する複数の貫通孔を有し、
前記貫通孔は、電極端子の外形よりも大きく、貫通孔と電極端子との間に遊び隙間があって、電極端子を位置ずれして挿入できる隙間貫通孔を有し、
前記隙間貫通孔に挿入される電極端子には固定リングが挿入されて、固定リングが電極端子をバスバーに電気接続しており、
さらに、前記バスバーが、全表面の一部分であって、前記固定リングとの対向面にメッキ層を設けており、前記固定リングがバスバー表面のメッキ層に電気接続してなる電池パック。
A metal plate bus bar is fixed to electrode terminals of a plurality of battery cells, and the bus bar is a battery pack formed by connecting battery cells in series and / or in parallel.
The bus bar has a plurality of through holes for inserting electrode terminals of battery cells to be connected;
The through hole is larger than the outer shape of the electrode terminal, and there is a clearance gap between the through hole and the electrode terminal, and a gap through hole into which the electrode terminal can be displaced and inserted,
A fixing ring is inserted into the electrode terminal inserted into the gap through hole, and the fixing ring electrically connects the electrode terminal to the bus bar,
Further, the bus bar is a part of the entire surface, a plating layer is provided on a surface facing the fixing ring, and the fixing ring is electrically connected to the plating layer on the surface of the bus bar.
前記固定リングが溶接リングであって、この溶接リングは、メッキ層と同じ材質の金属板又はバスバーと同じ金属板で表面をバスバーと同じメッキ層を設けており、
溶接リングである固定リングは、内周縁を電極端子にレーザー溶接して、外周縁をバスバー表面のメッキ層にレーザー溶接して、電極端子をバスバーに電気接続してなる請求項1に記載される電池パック。
The fixing ring is a weld ring, and the weld ring is provided with the same metal plate as the plating layer or the same metal plate as the bus bar and the same plating layer as the bus bar on the surface.
The fixing ring which is a welding ring is described in claim 1, wherein the inner peripheral edge is laser welded to the electrode terminal, the outer peripheral edge is laser welded to the plating layer on the bus bar surface, and the electrode terminal is electrically connected to the bus bar. Battery pack.
前記固定リングがナットで、ナットは表面にバスバーと同じメッキ層を設けており、
前記電極端子が、ナットをねじ込んで固定される雄ネジを有し、前記ナットが電極端子の雄ネジにねじ込まれて、ナット表面のメッキ層がバスバー表面のメッキ層に接触して、ナットを介して電極端子がバスバーに電気接続されてなる請求項1に記載される電池パック。
The fixing ring is a nut, and the nut is provided with the same plating layer as the bus bar on the surface,
The electrode terminal has a male screw fixed by screwing a nut, the nut is screwed into the male screw of the electrode terminal, and the plating layer on the surface of the nut contacts the plating layer on the surface of the bus bar. The battery pack according to claim 1, wherein the electrode terminal is electrically connected to the bus bar.
前記電池セルが、正極端子をアルミニウム製として、負極端子を銅製とするリチウムイオン電池で、
前記バスバーが、アルミニウム板と銅板を接合してなる金属のクラッド材であって、銅板の表面にメッキ層を設けており、
前記電池セルの正極端子がバスバーのアルミニウム板に、負極端子がバスバーの銅板に電気接続されると共に、銅板の貫通孔に挿入された負極端子が、固定リングを介して銅板に電気接続されてなる請求項1ないし3のいずれかに記載される電池パック。
The battery cell is a lithium ion battery in which the positive electrode terminal is made of aluminum and the negative electrode terminal is made of copper.
The bus bar is a metal clad material formed by joining an aluminum plate and a copper plate, and a plating layer is provided on the surface of the copper plate,
The positive electrode terminal of the battery cell is electrically connected to the aluminum plate of the bus bar, the negative electrode terminal is electrically connected to the copper plate of the bus bar, and the negative electrode terminal inserted into the through hole of the copper plate is electrically connected to the copper plate via the fixing ring. The battery pack according to any one of claims 1 to 3.
前記バスバーのメッキ層がニッケルメッキで、前記固定リングがニッケル板の溶接リングである請求項1ないし4のいずれかに記載される電池パック。   5. The battery pack according to claim 1, wherein the plating layer of the bus bar is nickel plating, and the fixing ring is a weld ring of a nickel plate. 前記電池セルが角形電池で、角形電池が積層状態に固定されて電池積層体を形成しており、電池積層体の電池セルの電極端子がバスバーを介して直列及び/又は並列に接続されてなる請求項1ないし5のいずれかに記載される電池パック。   The battery cell is a square battery, the square battery is fixed in a stacked state to form a battery stack, and the battery cell electrode terminals of the battery stack are connected in series and / or in parallel via a bus bar. The battery pack according to any one of claims 1 to 5. 前記固定リングが溶接リングで、
前記バスバーが、電極端子の外周面に接触する密着貫通孔と、電極端子の内周面との間に遊び隙間があって、電極端子を位置ずれさせて挿入できる隙間貫通孔とを設けており、
前記密着貫通孔に挿入される電極端子は、電極端子と密着貫通孔との間がレーザー溶接して電気接続され、
前記隙間貫通孔に挿入してなる電極端子は、内周縁を電極端子にレーザー溶接して、外周縁をバスバーのメッキ層にレーザー溶接してなる溶接リングを介してバスバーに電気接続されてなる請求項1ないし6のいずれかに記載される電池パック。
The fixing ring is a weld ring;
The bus bar has a close contact hole that contacts the outer peripheral surface of the electrode terminal, and a clearance through hole that has a play gap between the inner peripheral surface of the electrode terminal and allows the electrode terminal to be displaced and inserted. ,
The electrode terminal inserted into the close contact through hole is electrically connected by laser welding between the electrode terminal and the close contact through hole,
The electrode terminal formed in the gap through hole is electrically connected to the bus bar via a welding ring formed by laser welding the inner periphery to the electrode terminal and laser welding the outer periphery to the plating layer of the bus bar. Item 7. The battery pack according to any one of Items 1 to 6.
前記電池セルの電圧を検出する電圧検出回路を備え、前記バスバーのメッキ層に電圧検出端子を接続しており、この電圧検出端子にリード線が接続されて、リード線を介して電池セルの電圧検出端子を電圧検出回路に接続してなる請求項1ないし7のいずれかに記載される電池パック。   A voltage detection circuit for detecting the voltage of the battery cell is provided, a voltage detection terminal is connected to the plating layer of the bus bar, a lead wire is connected to the voltage detection terminal, and the voltage of the battery cell is connected via the lead wire. The battery pack according to claim 1, wherein the detection terminal is connected to a voltage detection circuit. 請求項1から8のいずれかに記載の電池パックを備えてなる電動車両であって、
前記電池パックと、該電池パックから電力供給される走行用のモータと、前記電池パック及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備えることを特徴とする電池パックを備える電動車両。
An electric vehicle comprising the battery pack according to any one of claims 1 to 8,
The battery pack, a traveling motor powered by the battery pack, a vehicle body on which the battery pack and the motor are mounted, and a wheel that is driven by the motor and causes the vehicle body to travel. An electric vehicle comprising a battery pack characterized by the above.
請求項1から8のいずれかに記載の電池パックを備えてなる蓄電装置であって、
前記電池パックへの充放電を制御する電源コントローラを備えており、
前記電源コントローラでもって、外部からの電力により前記電池パックへの充電を可能とすると共に、前記電池パックに対し充電を行うよう制御することを特徴とする蓄電装置。
A power storage device comprising the battery pack according to any one of claims 1 to 8,
A power controller for controlling charging and discharging of the battery pack;
A power storage device, wherein the power supply controller controls the battery pack to charge the battery pack with external power and charges the battery pack.
JP2012176711A 2012-08-09 2012-08-09 Battery pack and electric vehicle including the same and power storage device Pending JP2015187910A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012176711A JP2015187910A (en) 2012-08-09 2012-08-09 Battery pack and electric vehicle including the same and power storage device
PCT/JP2013/004655 WO2014024430A1 (en) 2012-08-09 2013-08-01 Battery pack, electric vehicle provided with same, and power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176711A JP2015187910A (en) 2012-08-09 2012-08-09 Battery pack and electric vehicle including the same and power storage device

Publications (1)

Publication Number Publication Date
JP2015187910A true JP2015187910A (en) 2015-10-29

Family

ID=50067685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176711A Pending JP2015187910A (en) 2012-08-09 2012-08-09 Battery pack and electric vehicle including the same and power storage device

Country Status (2)

Country Link
JP (1) JP2015187910A (en)
WO (1) WO2014024430A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229564A (en) * 2013-05-24 2014-12-08 株式会社豊田自動織機 Power storage device module
JP2018017138A (en) * 2016-07-26 2018-02-01 株式会社ケーヒン Fuel injection valve with cylinder pressure sensor, and its manufacturing method
US9917291B2 (en) 2015-05-05 2018-03-13 Johnson Controls Technology Company Welding process for a battery module
JP2018110083A (en) * 2017-01-05 2018-07-12 株式会社Gsユアサ Power storage device
CN109103401A (en) * 2017-06-20 2018-12-28 矢崎总业株式会社 welding structure
JP2019139926A (en) * 2018-02-08 2019-08-22 株式会社デンソー Battery pack
US10637021B2 (en) 2015-10-23 2020-04-28 Autonetworks Technologies, Ltd. Wiring module, detection terminal, and method for manufacturing detection terminal
US10741887B2 (en) 2016-10-17 2020-08-11 Yazaki Corporation Fixing structure of voltage detection terminal
JP2020191230A (en) * 2019-05-22 2020-11-26 本田技研工業株式会社 Battery pack
WO2021256673A1 (en) * 2020-06-17 2021-12-23 주식회사 엘지에너지솔루션 Battery module comprising solder pin for connection to busbar and battery pack including same
JP7393396B2 (en) 2021-08-06 2023-12-06 矢崎総業株式会社 Bus bar
JP7393395B2 (en) 2021-08-06 2023-12-06 矢崎総業株式会社 Bus bar

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287776B2 (en) * 2014-11-21 2018-03-07 株式会社オートネットワーク技術研究所 Power storage module
CN107251270B (en) * 2015-03-31 2021-01-26 三洋电机株式会社 Battery system
KR101623717B1 (en) * 2015-08-21 2016-05-24 대산전자(주) Method of manufacturing electronical connection means
US10711029B2 (en) 2016-07-14 2020-07-14 Atea Pharmaceuticals, Inc. Beta-d-2′-deoxy-2′-alpha-fluoro-2′-beta-c-substituted-4′fluoro-n6-substituted-6-amino-2-substituted purine nucleotides for the treatment of hepatitis c virus infection
CN109037533A (en) * 2018-08-24 2018-12-18 德朗能(张家港)动力电池有限公司 A kind of lithium battery group of anti-overheat
CN112350012A (en) * 2020-11-05 2021-02-09 武汉力神动力电池系统科技有限公司 Power battery pack with multi-pole output

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187691A (en) * 2008-02-04 2009-08-20 Panasonic Corp Battery pack
JP2010257750A (en) * 2009-04-24 2010-11-11 Sanyo Electric Co Ltd Battery module, battery system, and electric vehicle
JP5528746B2 (en) * 2009-09-11 2014-06-25 三洋電機株式会社 Assembled battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229564A (en) * 2013-05-24 2014-12-08 株式会社豊田自動織機 Power storage device module
US9917291B2 (en) 2015-05-05 2018-03-13 Johnson Controls Technology Company Welding process for a battery module
US11404751B2 (en) 2015-05-05 2022-08-02 Cps Technology Holdings Llc Battery module
US10714730B2 (en) 2015-05-05 2020-07-14 Cps Technology Holdings, Llc Welding process for a battery module
US10637021B2 (en) 2015-10-23 2020-04-28 Autonetworks Technologies, Ltd. Wiring module, detection terminal, and method for manufacturing detection terminal
JP2018017138A (en) * 2016-07-26 2018-02-01 株式会社ケーヒン Fuel injection valve with cylinder pressure sensor, and its manufacturing method
US10741887B2 (en) 2016-10-17 2020-08-11 Yazaki Corporation Fixing structure of voltage detection terminal
JP7005897B2 (en) 2017-01-05 2022-01-24 株式会社Gsユアサ Power storage device
JP2018110083A (en) * 2017-01-05 2018-07-12 株式会社Gsユアサ Power storage device
CN109103401A (en) * 2017-06-20 2018-12-28 矢崎总业株式会社 welding structure
CN109103401B (en) * 2017-06-20 2021-12-21 矢崎总业株式会社 Welding structure
US10819049B2 (en) 2017-06-20 2020-10-27 Yazaki Corporation Welded structure
JP2019139926A (en) * 2018-02-08 2019-08-22 株式会社デンソー Battery pack
JP7155528B2 (en) 2018-02-08 2022-10-19 株式会社デンソー battery pack
JP2020191230A (en) * 2019-05-22 2020-11-26 本田技研工業株式会社 Battery pack
JP7028825B2 (en) 2019-05-22 2022-03-02 本田技研工業株式会社 Batteries assembled
WO2021256673A1 (en) * 2020-06-17 2021-12-23 주식회사 엘지에너지솔루션 Battery module comprising solder pin for connection to busbar and battery pack including same
JP7393396B2 (en) 2021-08-06 2023-12-06 矢崎総業株式会社 Bus bar
JP7393395B2 (en) 2021-08-06 2023-12-06 矢崎総業株式会社 Bus bar

Also Published As

Publication number Publication date
WO2014024430A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
WO2014024430A1 (en) Battery pack, electric vehicle provided with same, and power storage device
JP6239523B2 (en) Power supply device, electric vehicle including power supply device, power storage device, and method of manufacturing power supply device
WO2014024448A1 (en) Battery pack, electric vehicle provided with same, and power storage device
KR101271567B1 (en) Battery Module of Structure Having Fixing Member Inserted into Through-Hole of Plates and Battery Pack Employed with the Same
US11289773B2 (en) Power supply device, vehicle using same, bus bar, and electrical connection method for battery cell using same bus bar
JP6234929B2 (en) Power supply device, vehicle equipped with power supply device, power storage device, and method of manufacturing power supply device
WO2014034106A1 (en) Power source device and electric vehicle equipped with power source device, electricity storage device and method for manufacturing power source device
WO2014024434A1 (en) Power supply device, and electric vehicle and power storage device using same
KR20150062743A (en) Battery module and battery pack including the same
US11777178B2 (en) Battery module, vehicle provided with same, and bus bar
WO2014024450A1 (en) Power source device, electric vehicle provided with same, and electricity storage device
CN113614996B (en) Power supply device, electric vehicle provided with power supply device, and power storage device
EP3101714A1 (en) Battery module having voltage sensing member having receptacle structure
JP2015187914A (en) Power supply device, and electrically driven vehicle and power storage device having the same
KR20200004187A (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
JP2015187912A (en) Method for manufacturing power supply device, power supply device, and electrically driven vehicle and power storage device having the same
WO2019150706A1 (en) Method for interrupting short circuit current in battery system, battery system, and electric vehicle and power storage device which are equipped with battery system
CN110504390A (en) A kind of rectangular cell, battery modules and electric vehicle
US20220384916A1 (en) Battery cell, battery, electrical device, and battery cell manufacturing method and device
KR20150025207A (en) Lithium Secondary Battery and Battery Pack Comprising The Same
KR100649205B1 (en) Secondary battery and cap assembly
KR20180012568A (en) Connector for connecting lead and battery module using the same
EP3996181A1 (en) Cell assembly method, storage unit and relative vehicular battery pack
WO2013108786A1 (en) Power supply device, vehicle provided with same, electrical storage device, and circuit board for power supply device
CN217444461U (en) Battery monomer, battery package, vehicle