WO2014034106A1 - Power source device and electric vehicle equipped with power source device, electricity storage device and method for manufacturing power source device - Google Patents

Power source device and electric vehicle equipped with power source device, electricity storage device and method for manufacturing power source device Download PDF

Info

Publication number
WO2014034106A1
WO2014034106A1 PCT/JP2013/005077 JP2013005077W WO2014034106A1 WO 2014034106 A1 WO2014034106 A1 WO 2014034106A1 JP 2013005077 W JP2013005077 W JP 2013005077W WO 2014034106 A1 WO2014034106 A1 WO 2014034106A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
power supply
supply device
holder
electrode
Prior art date
Application number
PCT/JP2013/005077
Other languages
French (fr)
Japanese (ja)
Inventor
小村 哲司
高志 瀬戸
敏哉 清水
一広 藤井
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2014034106A1 publication Critical patent/WO2014034106A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/71Arrangement of fuel cells within vehicles specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/276Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a power supply device in which a plurality of secondary battery cells are stacked, an electric vehicle including the power supply device, a power storage device, and a method for manufacturing the power supply device, and more particularly to an electric vehicle such as a hybrid vehicle, a fuel cell vehicle, an electric vehicle, and an electric motorcycle.
  • a power supply device for driving to drive a vehicle mounted on a vehicle and a stationary power supply device for storing electricity for home use and factory use have been developed.
  • a large number of rechargeable secondary battery cells are connected in series to form a battery stack, and a plurality of battery stacks are connected in series as necessary. Or they are connected in parallel.
  • a battery stack for example, a plurality of rectangular battery cells are stacked with a spacer interposed therebetween, and fastened with a bind bar.
  • the electrode terminals of adjacent battery cells are connected by a bus bar.
  • the bus bar is welded to the electrode terminal by laser welding (see Patent Document 1).
  • an insulating bus bar holder is provided in order to prevent insulation between the bus bars or an unnecessary short circuit between the battery cell and the bus bar.
  • the bus bar holder is fixed to the upper surface of the battery stack.
  • An example of the bus bar holder 1508 is shown in the perspective view of FIG.
  • the bus bar holder 1508 forms a wall shape 1516 that surrounds the periphery of the bus bar 1514.
  • the bus bar holder 1508 is provided between the upper surface of the battery cell 1501 and the bus bar 1517. A structure is adopted so as to be sandwiched.
  • the bus bar and the electrode terminal 1513 are fixed by laser welding as described above, there is a problem in that the spark adheres to a part of the bus bar holder 1508 and the resin burns and is damaged.
  • the bus bar holder 1508 is fixed so as to be sandwiched between the upper surface of the battery cell 1501 by the bus bar 1514, so that the bus bar holder 1508 is in close proximity during laser welding.
  • the metal particles melted at a high temperature may be scattered from the welding position to the periphery (sputtering) by laser welding, and may adhere to the bus bar holder 1508 and melt the resin.
  • the wall shape 1516 is easily affected by spatter adhesion and has a great influence. If the resin bus bar holder 1508 is damaged or deformed by heat, the desired insulation cannot be achieved.
  • a main object of the present invention is to provide a power supply device, a vehicle including the power supply device, a power storage device, and a method for manufacturing the power supply device that can prevent the resin busbar holder from being damaged during welding.
  • a plurality of battery cells having a pair of electrode terminals, a conductive bus bar connecting electrode terminals of adjacent battery cells, and the plurality of battery cells
  • a power supply device including an insulating bus bar holder for positioning the bus bar, wherein the bus bar is formed between the bus bar and the upper surface of the battery stack.
  • the bus bar holder is fixed to the electrode terminal by laser welding with the bus bar holder sandwiched therebetween, and the bus bar holder has a holder protrusion for positioning the bus bar in a posture to fix the bus bar to the electrode terminal.
  • the height of the holder protrusion is lower than the angle at which the sputters fly by laser welding from the laser welded position of the bus bar.
  • the bus bar has a plurality of electrode holes into which the electrode terminals are inserted, and at least one of the electrodes with the electrode terminals inserted into the electrode holes.
  • the part where the hole and the electrode terminal are in contact can be welded.
  • At least one of the electrode holes is opened in the shape of an elongated hole, and the power supply device further opens a ring hole in the center, and the electrode terminal in the electrode hole of the bus bar.
  • a welding ring for inserting the electrode terminal into the ring hole, and a contact portion between the outer periphery of the welding ring and the bus bar, and a contact between the ring hole of the welding ring and the electrode terminal.
  • the part can be fixed by laser welding.
  • a laser welding position between the bus bar and the electrode terminal or a laser welding position between the bus bar and the welding ring is set as a reference position, and is separated from the reference position by ⁇ in the horizontal direction.
  • the holder protrusion can be formed so as to fall within a range that forms a predetermined angle ⁇ with respect to the horizontal direction from a specific position.
  • the holder protruding portion can be a positioning guide formed so as to surround the bus bar.
  • the holder protruding portion is formed in a protruding shape penetrating the bus bar, and a guide hole for inserting the holder protruding portion can be opened in the bus bar.
  • a traveling motor that is supplied with power from the power supply device, a vehicle main body including the power supply device and the motor, And a wheel driven by a motor to cause the vehicle body to travel.
  • the power supply device includes a power supply controller that controls charging / discharging of the power supply device, and the power supply controller enables charging of the power supply device with external power, and It can be controlled to charge the power supply device.
  • a method of manufacturing a power supply device comprising: an insulating bus bar holder provided with an opening window for projecting the electrode terminal, which is fixed to the upper surface of a battery stack in which battery cells are stacked, The bus bar holder is disposed at a position where the electrode terminal protrudes from the opening window, and the bus bar is disposed on the upper surface of the bus bar holder so that each electrode terminal protrudes from the electrode hole.
  • a method of manufacturing a power supply device comprising: an insulating bus bar holder provided with an opening window for projecting the electrode terminal, which is fixed to the upper surface of a battery stack in which a plurality of battery cells are stacked, and at least the electrode holes 1 is opened in the shape of an elongated hole, the power supply device further includes a weld ring having a ring hole opened in the center, and the method of manufacturing the power supply device further includes an elongated hole shape in the ring hole of the weld ring.
  • a step of inserting the electrode terminal in a state of being inserted into the electrode hole opened in a hole, a contact portion between the outer periphery of the weld ring and the bus bar, and a contact portion between the ring hole of the weld ring and the electrode terminal The holder projecting portion so as to be included in a range that forms a predetermined angle ⁇ with respect to the horizontal direction from a position that is separated by ⁇ in the horizontal direction from the welding position of the bus bar and the welding ring.
  • the laser welding can be performed by pulse oscillation.
  • the laser welding can be performed by a solid laser processing machine.
  • FIG. 1 It is a perspective view which shows the power supply device which concerns on Embodiment 1 of this invention. It is a disassembled perspective view of the power supply device of FIG. It is a principal part enlarged view which shows the site
  • FIG. 1 is a schematic cross-sectional view showing a range of sputtering flying from the position of laser welding.
  • 4 is a graph showing a spatter flying range in the welding ring according to Example 1; 4 is a graph showing a spatter flying range in the weld ring according to Example 2.
  • FIG. 6 is an enlarged exploded view showing a connection portion of a power supply device according to Embodiment 3.
  • FIG. 9 is an enlarged exploded view showing a connection portion of a power supply device according to a fourth embodiment. It is a block diagram which shows the example which mounts a power supply device in the hybrid vehicle which drive
  • FIG. 15 It is a block diagram which shows the example which mounts a power supply device in the electric vehicle which drive
  • the embodiment described below exemplifies a power supply device, an electric vehicle including the power supply device, a power storage device, and a method of manufacturing the power supply device for embodying the technical idea of the present invention.
  • the manufacturing method of the power supply device, the electric vehicle including the power supply device, the power storage device, and the power supply device is not specified as follows.
  • the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the contents described in some examples and embodiments may be used in other examples and embodiments.
  • an object having heat generated in laser welding and flying around is called sputter. (Embodiment 1)
  • FIG. 1 shows an exploded perspective view of the power supply apparatus 100 according to Embodiment 1 of the present invention with the top cover 20 removed
  • FIG. 2 shows an exploded perspective view of the power supply apparatus 100 of FIG.
  • the power supply device 100 shown in these drawings includes a plurality of battery cells 1, spacers 50 interposed between the battery cells 1, and battery stacks 2 in which the battery cells 1 and the spacers 50 are alternately stacked. End plates 3 respectively disposed on the end surfaces and fastening means 4 for fastening the end plates 3 to each other are provided. (Battery cell 1)
  • the battery cell 1 is a square battery that is wider than the thickness, in other words, is thinner than the width.
  • a plurality of the battery cells 1 are stacked in the thickness direction to form a battery stack 2.
  • Each battery cell 1 is a lithium ion secondary battery.
  • the battery cell may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery.
  • the battery cell 1 of FIG. 2 is a battery having a rectangular shape with both wide surfaces, and the battery stack 2 is formed by laminating both surfaces so as to face each other.
  • Each battery cell 1 is provided with positive and negative electrode terminals 13 projecting from both ends of a sealing plate 10 on the upper surface, and a gas exhaust port 12 of a gas exhaust valve 11 is provided at the center.
  • the rectangular battery cell 1 has a sealing plate 10 that closes an opening of an outer can 1a in which a metal plate is pressed into a cylindrical shape that closes the bottom.
  • the sealing plate 10 is a flat metal plate, and its outer shape is the shape of the opening of the outer can 1a.
  • the sealing plate 10 is laser-welded and fixed to the outer peripheral edge of the outer can 1a to airtightly close the opening of the outer can 1a.
  • the sealing plate 10 fixed to the outer can 1a has positive and negative electrode terminals 13 fixed to both ends thereof, and a gas discharge port 12 is provided between the positive and negative electrode terminals 13.
  • a gas discharge valve 11 is provided inside the gas discharge port 12.
  • the spacer 50 is made of an insulating member in order to insulate the outer cans of the battery cells 1 from each other.
  • the end plate 3 is made of a highly rigid member such as a metal.
  • the fastening means 4 is similarly composed of a highly rigid metal plate or the like.
  • the metal plate is bent in a U shape in a sectional view, and the end portion is fixed to the end plate 3 by screwing or the like.
  • the fastening means can be used not only for fastening the battery stack 2 but also as a member for fixing the gas duct 6 to the upper surface of the battery stack 2.
  • the second fastening means 5 is provided on the upper surface of the battery stack 2. (Top cover 20)
  • the power supply device shown in FIGS. 1 and 2 has a top cover 20 disposed on the upper surface.
  • the top cover 20 covers the upper surface of the bus bar holder 8 and covers and protects the bus bar 14 and the circuit board 9 connected to the battery stack 2. Therefore, the top cover 20 has an outer shape that can cover the upper surface of the bus bar holder 8 and is molded of plastic into a shape having a space in which the circuit board 9 can be accommodated.
  • the top cover 20 shown in FIG. 2 is formed into a shallow container shape having a lower opening, and the central portion is formed one step deeper than the surroundings to provide a storage recess for storing the circuit board 9. (Bus bar 14)
  • Each battery cell 1 includes a pair of positive and negative electrode terminals 13.
  • the electrode terminals 13 of the adjacent battery cells 1 are connected to each other by a conductive bus bar 14.
  • the bus bar 14 is preferably made of a metal plate that has excellent conductivity and is suitable for laser welding.
  • the outer shape of the bus bar 14 is rectangular in a plan view, and the end edge is formed in a track shape with a semicircular chamfer. (Electrode hole 15)
  • each bus bar 14 has a plurality of electrode holes 15 into which the electrode terminals 13 are inserted.
  • the electrode hole 15 is formed approximately equal to the outer diameter of the electrode terminal 13 so that the electrode terminal 13 can be inserted and the contact portion can be welded.
  • the electrode hole 15 is circular.
  • the electrode hole 15B can be formed in a long hole shape extending in the thickness direction of the battery cell.
  • the welding ring 52 is further overlapped on the upper surface of the bus bar 14, and laser welding is performed with the welding ring 52 interposed. (Welding ring 52)
  • the weld ring 52 is formed in a ring shape with a ring hole 53 opened at the center.
  • the welding ring 52 is also preferably made of a metal plate that is excellent in conductivity and suitable for laser welding.
  • the ring-shaped weld ring 52 further includes a ring hole 53 of the weld ring 52 in a state where the electrode terminal 13 is inserted into the electrode hole 15 ⁇ / b> B of the bus bar 14.
  • the contact portions between the ring hole 53 and the electrode terminal 13 and between the ring hole 53 and the bus bar 14 are fixed by laser welding.
  • the protruding amount of the electrode terminal 13 and the thickness of the bus bar 14 and the welding ring 52 are set so that the tip of the electrode terminal 13 can be further inserted into the ring hole 53 while the electrode terminal 13 is inserted into the electrode hole 15B. Is done.
  • the electrode terminal 13 becomes higher than necessary, the height of the power supply device becomes high. Therefore, preferably, as shown in the cross-sectional view of FIG. 5, the welding ring 52 is inserted through the tip of the electrode terminal 13. It is preferable that the tip surface of the electrode terminal 13 is substantially the same surface as the welding ring 52 or slightly protrudes therefrom.
  • two electrode holes 15 and 15 ⁇ / b> B are opened to connect the positive electrode terminal and the negative electrode terminal of the adjacent battery cell 1 with the shortest distance.
  • one electrode hole 15 (left side in FIG. 4) is formed into a circular shape and directly welded to the electrode terminal 13 while the other electrode hole 15B (right side in FIG. 4) is formed into a long hole shape, and a welding ring 52 is interposed. Laser welding.
  • the circular electrode holes 15 are first laser welded to the electrode terminals 13, and then the electrode terminals 13 are laser welded to the elongated electrode holes 15B.
  • the variation in the distance can be absorbed by adjusting the welding position in the thickness direction of the battery cell by the elongated hole, and the electrode terminal 13 can be fixed with high reliability regardless of manufacturing tolerances. (Bus bar holder 8)
  • the bus bar holder 8 is fixed to the upper surface of the battery stack 2.
  • the bus bar holder 8 is made of an insulating member, and covers the upper surface of the battery cell 1 in order to avoid unintentional conduction between the bus bar 14 and the battery cell 1.
  • the bus bar holder 8 has an opening window 24 for exposing the electrode terminal 13 in the state of being fixed to the upper surface of the battery stack 2 in order to electrically connect each electrode terminal 13. Accordingly, the electrode terminal 13 is exposed from the opening window 24 while insulating the upper surface of the battery cell 1 except for a portion necessary for electrical connection, thereby maintaining the electrical connection between the electrode terminals 13.
  • the bus bar holder 8 is fixed by the second fastening means 5 as shown in the exploded perspective view of FIG.
  • the second fastening means 5 is pressed from the upper surface of the bus bar holder 8, and the end of the second fastening means 5 is screwed to the upper surface of the end plate 3.
  • the bus bar holder 8 is fixed to the upper surface of the battery stack 2 via the second fastening means 5.
  • the bus bar holder fixing structure is not limited to this configuration.For example, the bus bar holder is directly screwed to the end plate, or a fitting structure such as a claw is provided on the bus bar holder to be fitted to the bus bar or the fastening means. Other known fixing structures can be used as appropriate. (Gas duct 6)
  • the gas duct 6 is a hollow cylindrical body that extends in the stacking direction of the battery cells 1 and opens a duct discharge portion 6x at an end portion.
  • a connection opening is opened at a position corresponding to the gas discharge valve 11 of each battery cell 1.
  • Each of the connection openings communicates with the gas discharge port 12 in a state where the gas discharge valve 11 is opened, and the high-pressure gas discharged from the battery cell 1 is guided into the gas duct 6. Further, the inside of the gas duct 6 is closed at one end, and the duct discharge portion 6x is opened at the other end.
  • the duct discharge part 6x is connected with a gas discharge path, and discharges gas safely to the outside.
  • the gas duct 6 is positioned on the upper surface of the battery stack 2 so that each connection opening communicates with the gas discharge valve.
  • the cross section in the extending direction of the gas duct 6 is formed in a horizontally long rectangular shape.
  • the internal shape of the gas duct can be any shape such as a tubular shape or an inverted U shape or U shape.
  • the second fastening means 5 also serves as a fixing structure for the gas duct 6. That is, a flange 6a is formed around the gas duct 6, an opening is provided in the second fastening means 5, and the second fastening means 5 is covered from above the gas duct 6 so that the gas duct 6 is passed through the opening.
  • the gas duct 6 is fixed to the upper surface of the bus bar holder 8 by pressing the peripheral flange 6 a around the opening 6.
  • a circuit board 9 on which an electronic circuit is mounted is fixed on the upper surface of the gas duct 6.
  • the electronic circuit mounted on the circuit board 9 can be a protection circuit or a control circuit for monitoring the voltage of the battery cell 1 or the like.
  • the circuit board 9 is shorter than the length of the gas duct 6 in the longitudinal direction, and is wider than the gas duct 6 in the width direction of the gas duct 6 intersecting the longitudinal direction. Further, as shown in FIG. 2, the circuit board 9 is fixed at a distance d from the upper surface of the gas duct 6. (Voltage detection line)
  • a voltage detection line for detecting the voltage is fixed to each bus bar 14.
  • the voltage detection line is composed of a conductive lead, a harness, a flexible printed circuit board (FPC), or the like, and has one end connected to the circuit board.
  • FPC flexible printed circuit board
  • a voltage detection line made of FPC is fixed to the upper surface of the bus bar 14.
  • the bus bar holder 8 includes a guide for positioning the bus bar 14 in order to connect the electrode terminal 13 with the bus bar 14.
  • the bus bar holder 8 includes a holder protruding portion as a guide for positioning the bus bar 14 at a portion where each bus bar 14 is fixed.
  • the details of the holder protrusion are shown in the enlarged perspective view of FIG. 3 and the exploded perspective view of FIG.
  • the bus bar holder 8 forms a holder protrusion at a position where each bus bar 14 is fixed while being fixed to the upper surface of the battery stack 2.
  • the holder protrusion is a positioning guide 16 formed so as to surround the bus bar 14.
  • the surface of the bus bar holder 8 is recessed along the outer shape of the bus bar 14 to form the positioning guide 16, and an insulating portion 17 that supports the bottom surface of the bus bar 14 inserted therein is provided at the center of the positioning guide 16. ing. As shown in the enlarged exploded perspective view of FIG. 4, an opening window 24 is formed in the positioning guide 16 in order to connect the bus bar 14 inserted into the positioning guide 16 to the electrode terminal 13 of the battery cell 1. On the other hand, if all the positioning guides 16 are opened, the bottom surface of the bus bar 14 may come into contact with the sealing plate on the top surface of the outer can of the battery cell 1 and unintentional conduction may occur.
  • the positioning guide 16 and the insulating portion 17 are appropriately designed according to the shape of the bus bar 14 used, the position of the electrode terminal 13, and the like.
  • the bus bar 14 has a symmetrical shape with the outer shape being a track shape in plan view. Accordingly, the positioning guide 16 forms a step that can guide the track-shaped bus bar 14 accordingly, and the positioning guide 16. Both ends of the window are made into an opening window 24, and an insulating portion 17 is formed between the opening windows 24.
  • Such positioning guide 16 and insulating portion 17 are preferably formed integrally with the bus bar holder 8. By using a resin bus bar holder, a bus bar holder having such a shape can be easily configured. (Holder protrusion)
  • a step is formed on the surface of the bus bar holder 8, and a high portion of the surface is used as a holder protrusion. That is, the holder protruding portion refers to the highest portion of the bus bar holder 8 formed on the upper surface of the bus bar holder 8. In the example shown in FIG. 4, the edge of the stepped portion constituting the positioning guide 16 corresponds to the holder protruding portion. (Laser welding)
  • the bus bar 14 and the electrode terminal 13 are fixed by scanning with laser light and welding by laser welding.
  • a solid-state laser processing machine such as a laser processing machine using a solid laser medium such as YAG or YVO 4 or a fiber laser using an optical fiber is preferably used.
  • the laser beam is preferably irradiated at a slight inclination, not directly above the laser welding position. This is for avoiding a situation in which the reflected laser beam is applied to the laser processing machine. (Laser welding position)
  • the bus bar holder 8 is disposed on the upper surface of the battery stack 2, and the bus bar holder 8 is fixed in a state where the electrode terminals 13 are respectively exposed from the opening windows 24 opened in the bus bar holder 8.
  • the bus bars 14 are respectively arranged on the positioning guides 16 of the bus bar holder 8.
  • the electrode terminal 13 is inserted into the electrode holes 15 and 15B of the bus bar 14.
  • the welding ring 52 is further inserted in the front-end
  • laser welding is performed to fix the electrode terminal 13 and the lead plate.
  • Laser welding is performed around the position indicated by the dashed-dotted arrow in the cross-sectional view of FIG.
  • laser welding of the circular electrode hole 15 and the electrode terminal 13 (left side in FIG. 5) is performed.
  • welding is performed by moving the laser welding position in a circular shape along the interface between the electrode terminal 13 and the electrode hole 15.
  • laser welding of the long hole electrode hole 15B and the electrode terminal 13 (right side in FIG. 5) is performed.
  • welding is performed by scanning the laser welding position of the interface between the periphery of the electrode terminal 13 and the ring hole 53 of the welding ring 52 and the contact portion between the outer periphery of the welding ring 52 and the bus bar 14. In this manner, the laser bar is scanned from the upper surface side of the battery stack 2 to fix the bus bar 14 and the electrode terminal 13.
  • the bus bar holder 8 can be fixed to the upper surface of the battery stack 2 by welding of the bus bar 14. For this reason, the bus bar holder 8 is close to the bus bar 14.
  • the bus bar holder 8 is made of a resin excellent in insulation, but the resin is vulnerable to heat. For this reason, at the time of laser welding, if spatter scattered from the laser welding position to the periphery adheres to the resin bus bar holder, it may be melted and deformed or damaged. As a result of experiments conducted by the inventor, it has been found that the range in which spatter is scattered is generally determined. In the cross-sectional view of FIG. 6, the appearance of sputtering is indicated by broken-line bold arrows. As shown in this figure, the holder protrusion 60 formed on the upper surface of the bus bar holder 608 is particularly easily exposed to sputtering.
  • the welding position in the contact portion between the periphery of the welding ring 52 and the bus bar 14 in laser welding using the welding ring 52 is closest to the peripheral portion of the bus bar, Since it is close to the holder protrusion, it is important to protect the bus bar holder 8 against spatter scattered from the welding position.
  • the outer diameter of the welding ring 52 increases, the holder protrusion is relatively closer to the holder, and thus the height of the holder protrusion needs to be further reduced.
  • FIG. 8 shows the result of measuring the flying range of the sputter using a welding ring having an outer diameter of 8 mm as Example 1 and FIG. 9 using a welding ring having an outer diameter of 10 mm as Example 2.
  • FIG. 8 shows the result of measuring the flying range of the sputter using a welding ring having an outer diameter of 8 mm as Example 1 and FIG. 9 using a welding ring having an outer diameter of 10 mm as Example 2.
  • both of the sputters fly from the horizontal plane within a range of predetermined angles ⁇ 1 and ⁇ 2 starting from specific positions ⁇ 1 and ⁇ 2 .
  • the specific positions ⁇ 1 and ⁇ 2 that are the starting points from which deposition of spatter can be avoided are not the welding positions of the welding ring 52 and the bus bar 14, and both are shifted outward by 1 mm or more.
  • the specific position ⁇ 1 is 1.29 mm from the laser welding position
  • the specific position ⁇ 2 is 1.36 mm from the laser welding position, respectively.
  • the spatter flies directly to the region in the vicinity of the laser welding position. From the above, starting from a position about 1.3 mm away from the laser welding position, the height of the holder protrusion is suppressed so that it falls within a range of about 35 ° from the horizontal plane, so that melting due to spatter adhesion can be prevented. By avoiding this, the bus bar holder 8 can be protected.
  • the above numerical values are examples, and these predetermined angles and specific positions vary depending on the type and power of the laser used for welding, the material of the bus bar, and the like.
  • the specific position can be adjusted between 0 and 3 mm from the laser welding position.
  • the predetermined angle can also be adjusted in the range of 30 ° to 60 °, preferably 30 ° to 50 °. More specifically, ⁇ is preferably set to about 60 ° when a YAG laser is used in a laser processing machine, and ⁇ is preferably set to about 60 °. On the other hand, when a fiber laser is used, ⁇ is relatively small. Is preferably about 30 °.
  • the laser welding position between the bus bar and the welding ring, or the laser welding position between the bus bar and the electrode terminal when the welding ring is not used is set as the reference position, and is spaced apart from this reference position by ⁇ in the horizontal direction.
  • Sputtering flight can be avoided if it is within a range that forms a predetermined angle ⁇ with respect to the horizontal direction from a specific position, and therefore, the holder protruding portion is formed so as to be included in this safe range.
  • the example in which the electrode holes are opened in two places so as to fix the two electrode terminals to the bus bar has been described, but it goes without saying that it is possible to open three or more electrode holes.
  • three or more electrode holes are opened, one of them is circular and laser welded without a welding ring, and electrode holes are formed in the shape of a long hole at two or more other locations, Laser welding is performed.
  • the shape of the bus bar can be appropriately selected from arbitrary shapes such as a straight line shape in plan view according to the number and position of the electrode terminals, a bent shape in an L shape, and a cross shape. (Example 3)
  • the holder protrusion is the edge of the positioning guide 16 that defines the periphery of the bus bar 14
  • the present invention does not limit the holder protrusion to the end edge of the positioning guide, but may have other shapes.
  • the positioning guide may be formed in a wall shape surrounding the bus bar instead of being recessed from the surface of the bus bar holder.
  • a holder protrusion part can also be formed in the protrusion shape which penetrates a bus-bar.
  • Such an example is shown as an embodiment 4 in an enlarged perspective view of FIG.
  • a guide hole 18 is opened in the vicinity of the center in addition to the electrode hole 15, and a protruding holder protrusion 19 formed in the bus bar holder 8B is penetrated.
  • the bus bar 14B can be easily positioned by inserting the guide hole 18 into the holder protrusion.
  • the tip of the protrusion-shaped holder protrusion 19 protrudes easily and is easily affected by sputtering, the height thereof depends on the distance from the laser welding position in order to avoid spatter adhesion as described above. Limit. (Guide protrusion 19B)
  • a guide protrusion 19B is formed in the vicinity of the protrusion-shaped holder protrusion 19 formed on the bus bar holder 8B so as to cover the side surface of the bus bar 14B.
  • the guide protrusion 19B is also provided so as to protrude from the upper surface of the bus bar holder 8B, and constitutes a holder protrusion.
  • the guide protrusions 19B shown in FIG. 11 are formed as a pair, and the bus bar 14B can be temporarily fixed by holding the bus bar 14B between the guide protrusions 19B.
  • the bus bar 14B can be positioned more reliably between the guide protrusion 19B and the holder protrusion. Furthermore, the front end of the guide protrusion 19B can easily guide the bus bar 14B between the guide protrusions 19B by inclining the opposing surfaces of the guide protrusions 19B downward. In addition, by providing a detent structure by providing a step at the lower end of the inclined surface, it is possible to prevent the bus bar 14B guided once between the guide protrusions 19B from coming off.
  • the protrusion-shaped holder protrusion 19 and the pair of guide protrusions 19B are preferably formed integrally with the bus bar holder 8B. As a result, the positioning and temporary fixing of the bus bar 14B and dropout during temporary fixing can be avoided at low cost, and the workability of assembling the power supply device can be improved.
  • the above power supply apparatus can be used as a vehicle-mounted power supply.
  • a vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles. . (Power supply for hybrid vehicles)
  • FIG. 12 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor.
  • a vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 1000 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 1000.
  • 94 a vehicle main body 90 on which the power supply device 1000 and the motor 93 are mounted, and wheels 97 that are driven by the motor 93 and run the vehicle main body.
  • the power supply apparatus 1000 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply apparatus 1000.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the power supply apparatus 1000.
  • the generator 94 is driven by the engine 96, or is driven by regenerative braking when the vehicle is braked, and charges the battery of the power supply apparatus 1000. (Power supply for electric vehicles)
  • FIG. 13 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor.
  • a vehicle EV equipped with the power supply device shown in FIG. 1 is a motor 93 for running the vehicle EV, a power supply device 1000 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 1000.
  • the power supply apparatus 1000 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the motor 93 is driven by power supplied from the power supply apparatus 1000.
  • the generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply apparatus 1000. (Power storage device for power storage)
  • this power supply device can be used not only as a power source for moving bodies but also as a stationary power storage facility.
  • a power source for home and factory use a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals.
  • FIG. The power supply apparatus 1000 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of battery cells connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84.
  • the power supply apparatus 1000 drives the load LD after charging the battery unit 82 with the charging power supply CP. Therefore, the power supply apparatus 1000 has a charge mode and a discharge mode.
  • the load LD and the charging power source CP are connected to the power supply apparatus 1000 via the discharging switch DS and the charging switch CS, respectively.
  • ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 1000.
  • the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 1000.
  • the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge.
  • the mode is switched to permit discharge from the power supply apparatus 1000 to the load LD.
  • the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply apparatus 1000 at the same time.
  • the load LD driven by the power supply apparatus 1000 is connected to the power supply apparatus 1000 via the discharge switch DS.
  • the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 1000.
  • the discharge switch DS a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 1000.
  • the power controller 84 also includes a communication interface for communicating with external devices.
  • the host device HT is connected in accordance with an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
  • Each battery pack 81 includes a signal terminal and a power supply terminal.
  • the signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO.
  • the pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84
  • the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs.
  • the pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside.
  • the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
  • a power supply device, an electric vehicle including the power supply device, a power storage device, and a method for manufacturing the power supply device according to the present invention include a plug-in hybrid electric vehicle, a hybrid electric vehicle, and an electric vehicle that can switch between an EV traveling mode and an HEV traveling mode. It can utilize suitably as power supplies, such as. Also, a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

The purpose of the present invention is to avoid damages to a resin made bus bar holder during welding. A power source device comprises: a plurality of battery cells (1) equipped with a pair of electrode terminals (13); a conductive bus bar (14) for connecting the electrode terminals (13) of the adjacent battery cells (1); and an insulating bus bar holder (8) which is fixed on the upper surface of a cell laminate in which the plurality of battery cells (1) is laminated while positioning the bus bar (14). The bus bar (14) is fixed to the electrode terminals (13) by laser welding so that the bus bar holder (8) is interposed between the bus bar and the upper surface of the cell laminate. The bus bar holder (8) has a holder projection for positioning the bus bar (14) in a position that allows the bus bar to be fixed to the electrode terminals (13). The holder projection is formed so that the height thereof is lower than a height forming an angle at which the metal particles generated by laser welding fly from the position where the bus bar (14) is welded with the laser.

Description

電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法Power supply device, electric vehicle including power supply device, power storage device, and method of manufacturing power supply device
 本発明は、二次電池セルを複数積層した電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法に関し、特にハイブリッド車、燃料電池自動車、電気自動車、電動オートバイ等の電動車両に搭載されて車両を走行させるモータの電源装置、あるいは家庭用、工場用の蓄電用途等に使用される大電流用の電源に電力を供給する電源装置及び電源装置を備える車両並びに蓄電装置、電源装置の製造方法に関する。 The present invention relates to a power supply device in which a plurality of secondary battery cells are stacked, an electric vehicle including the power supply device, a power storage device, and a method for manufacturing the power supply device, and more particularly to an electric vehicle such as a hybrid vehicle, a fuel cell vehicle, an electric vehicle, and an electric motorcycle. Power supply device for a motor that is mounted and travels the vehicle, or a power supply device that supplies power to a power source for large currents used for household or factory power storage applications, a vehicle including the power supply device, a power storage device, and a power supply device It relates to the manufacturing method.
 車両に搭載されて、車両を走行させる駆動用の電源装置や、家庭用、工場用に蓄電するための定置型の電源装置が開発されている。このような電源装置は、供給する電力を大きくするために、充電可能な二次電池セルを多数、直列に接続して電池積層体を構成し、また必要に応じて複数の電池積層体を直列又は並列に接続している。このような電池積層体は、例えば角形の電池セルを複数、間にスペーサを介在させて積層し、バインドバーで締結する。さらに隣接する電池セルの電極端子同士を、バスバーで接続する。バスバーは、電極端子とレーザ溶接によって溶接される(特許文献1参照)。 A power supply device for driving to drive a vehicle mounted on a vehicle and a stationary power supply device for storing electricity for home use and factory use have been developed. In such a power supply device, in order to increase the power to be supplied, a large number of rechargeable secondary battery cells are connected in series to form a battery stack, and a plurality of battery stacks are connected in series as necessary. Or they are connected in parallel. In such a battery stack, for example, a plurality of rectangular battery cells are stacked with a spacer interposed therebetween, and fastened with a bind bar. Furthermore, the electrode terminals of adjacent battery cells are connected by a bus bar. The bus bar is welded to the electrode terminal by laser welding (see Patent Document 1).
 さらに、バスバー同士の絶縁、あるいは電池セルとバスバーとの無用な短絡を防止するため、絶縁性のバスバーホルダが設けられている。バスバーホルダは、電池積層体の上面に固定される。バスバーホルダ1508の一例を図15の斜視図に示す。このバスバーホルダ1508は、バスバー1514の周囲を囲む壁状1516を形成している。 Furthermore, an insulating bus bar holder is provided in order to prevent insulation between the bus bars or an unnecessary short circuit between the battery cell and the bus bar. The bus bar holder is fixed to the upper surface of the battery stack. An example of the bus bar holder 1508 is shown in the perspective view of FIG. The bus bar holder 1508 forms a wall shape 1516 that surrounds the periphery of the bus bar 1514.
 さらに樹脂製のバスバーホルダ1508を電池セル1501の積層体の上面に強固に固定するため、図16の断面図に示すように、電池セル1501の上面とバスバー1517との間に、バスバーホルダ1508を挟み込むようにする構造が採用されている。 Further, in order to firmly fix the resin bus bar holder 1508 to the upper surface of the battery cell 1501 stack, as shown in the cross-sectional view of FIG. 16, the bus bar holder 1508 is provided between the upper surface of the battery cell 1501 and the bus bar 1517. A structure is adopted so as to be sandwiched.
 しかしながら、上述の通りバスバーと電極端子1513とはレーザ溶接で固定するため、この際の火花がバスバーホルダ1508の一部に付着して、樹脂が燃焼して破損するという問題があった。特に、図16の断面図に示したように、バスバー1514でバスバーホルダ1508を、電池セル1501の上面との間で挟み込むように固定することから、レーザ溶接時にはバスバーホルダ1508が近接している状態となって、レーザ溶接の影響を受けてしまう。具体的には、レーザ溶接によって、高温に溶融された金属粒子が溶接位置から周囲に飛散し(スパッタ)、これがバスバーホルダ1508に付着して、樹脂を溶融させることがある。特に壁状1516は、スパッタの付着を受けやすくなり、影響が大きい。樹脂製のバスバーホルダ1508が熱によって破損、変形すると、所期の絶縁を図ることができなくなる。 However, since the bus bar and the electrode terminal 1513 are fixed by laser welding as described above, there is a problem in that the spark adheres to a part of the bus bar holder 1508 and the resin burns and is damaged. In particular, as shown in the cross-sectional view of FIG. 16, the bus bar holder 1508 is fixed so as to be sandwiched between the upper surface of the battery cell 1501 by the bus bar 1514, so that the bus bar holder 1508 is in close proximity during laser welding. Thus, it is affected by laser welding. Specifically, the metal particles melted at a high temperature may be scattered from the welding position to the periphery (sputtering) by laser welding, and may adhere to the bus bar holder 1508 and melt the resin. In particular, the wall shape 1516 is easily affected by spatter adhesion and has a great influence. If the resin bus bar holder 1508 is damaged or deformed by heat, the desired insulation cannot be achieved.
 これを避けるためには、レーザ溶接を行った後に、バスバーホルダなどの樹脂部品を電池積層体に固定することが考えられる。しかしながらこの方法では作業性が悪くなる上、バスバーホルダの固定強度も低下し、さらにバスバーと電池積層体との絶縁を図ることが困難になる。 To avoid this, it is conceivable to fix resin parts such as a bus bar holder to the battery stack after laser welding. However, this method deteriorates workability and also reduces the fixing strength of the bus bar holder, and further makes it difficult to insulate the bus bar from the battery stack.
特開2000-149909号公報JP 2000-149909 A
 本発明は、従来のこのような問題点に鑑みてなされたものである。本発明の主な目的は、溶接時に樹脂製のバスバーホルダが破損することを回避できるようにした電源装置及び電源装置を備える車両並びに蓄電装置、電源装置の製造方法を提供することにある。 The present invention has been made in view of such conventional problems. A main object of the present invention is to provide a power supply device, a vehicle including the power supply device, a power storage device, and a method for manufacturing the power supply device that can prevent the resin busbar holder from being damaged during welding.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 上記目的を達成するために、本発明の電源装置によれば、一対の電極端子を備える複数の電池セルと、隣接する電池セルの電極端子を接続する導電性のバスバーと、前記複数の電池セルを積層した電池積層体の上面に固定されると共に、前記バスバーを位置決めするための絶縁性のバスバーホルダとを備える電源装置であって、前記バスバーは、該バスバーと前記電池積層体の上面との間に前記バスバーホルダを挟んだ状態で、前記電極端子とレーザ溶接により固定されており、前記バスバーホルダは、前記バスバーを前記電極端子と固定する姿勢に位置決めするためのホルダ突出部を備えており、前記ホルダ突出部の高さが、前記バスバーのレーザ溶接された位置から、レーザ溶接によって飛翔するスパッタの飛翔する角度よりも低くなるように形成することができる。上記構成により、バスバーをレーザ溶接する際に発生するスパッタの熱で、バスバーホルダが溶融される事態を回避できる。またレーザ溶接前に絶縁用の樹脂部品を電池積層体に配置することが可能となり、組み立て作業の作業効率が向上される。 To achieve the above object, according to the power supply device of the present invention, a plurality of battery cells having a pair of electrode terminals, a conductive bus bar connecting electrode terminals of adjacent battery cells, and the plurality of battery cells And a power supply device including an insulating bus bar holder for positioning the bus bar, wherein the bus bar is formed between the bus bar and the upper surface of the battery stack. The bus bar holder is fixed to the electrode terminal by laser welding with the bus bar holder sandwiched therebetween, and the bus bar holder has a holder protrusion for positioning the bus bar in a posture to fix the bus bar to the electrode terminal. The height of the holder protrusion is lower than the angle at which the sputters fly by laser welding from the laser welded position of the bus bar. It can be formed as. With the above configuration, it is possible to avoid a situation where the bus bar holder is melted by the heat of sputtering generated when laser welding the bus bar. Moreover, it becomes possible to arrange the resin parts for insulation on the battery laminate before laser welding, and the work efficiency of the assembly work is improved.
 また、他の電源装置によれば、前記バスバーは、前記電極端子をそれぞれ挿入するための電極穴を複数開口しており、前記電極端子を前記電極穴に挿入した状態で、少なくとも一の前記電極穴と電極端子とが接触する部分を溶接することができる。 According to another power supply apparatus, the bus bar has a plurality of electrode holes into which the electrode terminals are inserted, and at least one of the electrodes with the electrode terminals inserted into the electrode holes. The part where the hole and the electrode terminal are in contact can be welded.
 さらにまた、他の電源装置によれば、前記電極穴の少なくとも一が長穴状に開口されており、電源装置はさらに、中心にリング穴を開口させると共に、前記バスバーの電極穴に前記電極端子を挿通した状態で、さらに該電極端子をリング穴に挿通させる溶接リングを備えており、前記溶接リングの外周と前記バスバーとの接触部分、及び前記溶接リングのリング穴と前記電極端子との接触部分をレーザ溶接にて固定することができる。 Furthermore, according to another power supply device, at least one of the electrode holes is opened in the shape of an elongated hole, and the power supply device further opens a ring hole in the center, and the electrode terminal in the electrode hole of the bus bar. And a welding ring for inserting the electrode terminal into the ring hole, and a contact portion between the outer periphery of the welding ring and the bus bar, and a contact between the ring hole of the welding ring and the electrode terminal. The part can be fixed by laser welding.
 さらにまた、他の電源装置によれば、前記バスバーと前記電極端子とのレーザ溶接位置、又は前記バスバーと溶接リングとのレーザ溶接位置を基準位置とし、該基準位置から水平方向にβだけ離れた特定の位置から、水平方向に対し所定の角度αをなす範囲内に含まれるように、前記ホルダ突出部を形成することができる。各数値は、例えばβ=0~3mm、α=30°~60°の範囲とすることができる。 Furthermore, according to another power supply apparatus, a laser welding position between the bus bar and the electrode terminal or a laser welding position between the bus bar and the welding ring is set as a reference position, and is separated from the reference position by β in the horizontal direction. The holder protrusion can be formed so as to fall within a range that forms a predetermined angle α with respect to the horizontal direction from a specific position. Each numerical value can be in a range of β = 0 to 3 mm and α = 30 ° to 60 °, for example.
 さらにまた、他の電源装置によれば、前記ホルダ突出部を、前記バスバーを囲むように形成された位置決めガイドとすることができる。 Furthermore, according to another power supply device, the holder protruding portion can be a positioning guide formed so as to surround the bus bar.
 さらにまた、他の電源装置によれば、前記ホルダ突出部が、前記バスバーを貫通する突起状に形成され、前記バスバーには、前記ホルダ突出部を挿入するガイド穴を開口させることができる。 Still further, according to another power supply apparatus, the holder protruding portion is formed in a protruding shape penetrating the bus bar, and a guide hole for inserting the holder protruding portion can be opened in the bus bar.
 さらにまた、電源装置を備える電動車両によれば、上記の電源装置に加え、前記電源装置から電力供給される走行用のモータと、前記電源装置及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備えることができる。 Furthermore, according to the electric vehicle including the power supply device, in addition to the power supply device described above, a traveling motor that is supplied with power from the power supply device, a vehicle main body including the power supply device and the motor, And a wheel driven by a motor to cause the vehicle body to travel.
 さらにまた、蓄電装置によれば、前記電源装置への充放電を制御する電源コントローラを備えており、前記電源コントローラでもって、外部からの電力により前記電源装置への充電を可能とすると共に、前記電源装置に対し充電を行うよう制御可能とできる。 Furthermore, according to the power storage device, the power supply device includes a power supply controller that controls charging / discharging of the power supply device, and the power supply controller enables charging of the power supply device with external power, and It can be controlled to charge the power supply device.
 さらにまた、電源装置の製造方法によれば、電極端子を備える複数の電池セルと、各電池セルの電極端子同士を接続するための、電極穴を複数開口した導電性のバスバーと、前記複数の電池セルを積層した電池積層体の上面に固定される、前記電極端子を突出させる開口窓を設けた絶縁性のバスバーホルダとを備える電源装置の製造方法であって、前記電池セルの上面に前記バスバーホルダを、前記電極端子が前記開口窓から突出させる位置にて配置すると共に、前記バスバーホルダの上面に、前記バスバーを、各電極端子が電極穴からそれぞれ突出されるように、前記電池セルの上面と前記バスバーとの間に、前記バスバーホルダを挟み込む工程と、電極穴と電極端子とが接触する部分の少なくとも一部を、レーザ溶接して固定する工程とを含み、前記バスバーと電極端子の溶接位置から水平方向にβだけ離れた位置から、水平方向に対し所定の角度αをなす範囲内に含まれるように、前記ホルダ突出部が形成されており、β=0~3mm、α=30°~60°の範囲とすることができる。これにより、レーザ溶接によって生じるスパッタの飛翔によりホルダ突出部が破損する事態を回避できる。 Furthermore, according to the method for manufacturing a power supply device, a plurality of battery cells including electrode terminals, a conductive bus bar having a plurality of electrode holes for connecting the electrode terminals of each battery cell, A method of manufacturing a power supply device comprising: an insulating bus bar holder provided with an opening window for projecting the electrode terminal, which is fixed to the upper surface of a battery stack in which battery cells are stacked, The bus bar holder is disposed at a position where the electrode terminal protrudes from the opening window, and the bus bar is disposed on the upper surface of the bus bar holder so that each electrode terminal protrudes from the electrode hole. A step of sandwiching the bus bar holder between the upper surface and the bus bar, and a step of laser welding and fixing at least a part of a portion where the electrode hole and the electrode terminal are in contact with each other And the holder protrusion is formed so as to be included in a range that forms a predetermined angle α with respect to the horizontal direction from a position that is separated by β in the horizontal direction from the welding position of the bus bar and the electrode terminal, β = 0 to 3 mm and α = 30 ° to 60 °. Thereby, the situation where a holder protrusion part is damaged by the flight of the sputter | spatter which arises by laser welding can be avoided.
 さらにまた、他の電源装置の製造方法によれば、電極端子を備える複数の電池セルと、各電池セルの電極端子同士を接続するための、電極穴を複数開口した導電性のバスバーと、前記複数の電池セルを積層した電池積層体の上面に固定される、前記電極端子を突出させる開口窓を設けた絶縁性のバスバーホルダとを備える電源装置の製造方法であって、前記電極穴の少なくとも一が長穴状に開口されており、電源装置はさらに、中心にリング穴が開口される溶接リングを備えており、電源装置の製造方法はさらに、前記溶接リングのリング穴に、長穴状に開口された前記電極穴に挿通された状態の電極端子を挿通させる工程と、前記溶接リングの外周と前記バスバーとの接触部分、及び前記溶接リングのリング穴と前記電極端子との接触部分を溶接する工程とを含み、前記バスバーと前記溶接リングの溶接位置から水平方向にβだけ離れた位置から、水平方向に対し所定の角度αをなす範囲内に含まれるように、前記ホルダ突出部が形成されており、β=0~3mm、α=30°~60°の範囲とすることができる。これにより、レーザ溶接によって生じるスパッタの飛翔によりホルダ突出部が破損する事態を回避できる。 Furthermore, according to another method for manufacturing a power supply device, a plurality of battery cells having electrode terminals, a conductive bus bar having a plurality of electrode holes for connecting the electrode terminals of each battery cell, A method of manufacturing a power supply device comprising: an insulating bus bar holder provided with an opening window for projecting the electrode terminal, which is fixed to the upper surface of a battery stack in which a plurality of battery cells are stacked, and at least the electrode holes 1 is opened in the shape of an elongated hole, the power supply device further includes a weld ring having a ring hole opened in the center, and the method of manufacturing the power supply device further includes an elongated hole shape in the ring hole of the weld ring. A step of inserting the electrode terminal in a state of being inserted into the electrode hole opened in a hole, a contact portion between the outer periphery of the weld ring and the bus bar, and a contact portion between the ring hole of the weld ring and the electrode terminal The holder projecting portion so as to be included in a range that forms a predetermined angle α with respect to the horizontal direction from a position that is separated by β in the horizontal direction from the welding position of the bus bar and the welding ring. Are formed, and β = 0 to 3 mm and α = 30 ° to 60 °. Thereby, the situation where a holder protrusion part is damaged by the flight of the sputter | spatter which arises by laser welding can be avoided.
 さらにまた、他の電源装置の製造方法によれば、前記レーザ溶接を、パルス発振により行うことができる。 Furthermore, according to another method of manufacturing a power supply device, the laser welding can be performed by pulse oscillation.
 さらにまた、他の電源装置の製造方法によれば、前記レーザ溶接を、固体レーザ加工機により行うことができる。 Furthermore, according to another method for manufacturing a power supply device, the laser welding can be performed by a solid laser processing machine.
本発明の実施の形態1に係る電源装置を示す斜視図である。It is a perspective view which shows the power supply device which concerns on Embodiment 1 of this invention. 図1の電源装置の分解斜視図である。It is a disassembled perspective view of the power supply device of FIG. 図1の電源装置の、バスバーと電極端子とのレーザ溶接を行う部位を示す要部拡大図である。It is a principal part enlarged view which shows the site | part which performs the laser welding of a bus-bar and an electrode terminal of the power supply device of FIG. 図3のバスバー及びカバーを外した状態を示す分解斜視図である。It is a disassembled perspective view which shows the state which removed the bus-bar and cover of FIG. 図3のバスバーの溶接位置を示す断面図である。It is sectional drawing which shows the welding position of the bus bar of FIG. 従来の電源装置において、レーザ溶接の位置から飛翔するスパッタの範囲を示す模式断面図である。In the conventional power supply device, it is a schematic cross section which shows the range of the sputtering which flies from the position of laser welding. 実施の形態1に係る電源装置において、レーザ溶接の位置から飛翔するスパッタの範囲を示す模式断面図である。In the power supply device according to Embodiment 1, it is a schematic cross-sectional view showing a range of sputtering flying from the position of laser welding. 実施例1に係る溶接リングにおいて、スパッタの飛翔範囲を示すグラフである。4 is a graph showing a spatter flying range in the welding ring according to Example 1; 実施例2に係る溶接リングにおいて、スパッタの飛翔範囲を示すグラフである。4 is a graph showing a spatter flying range in the weld ring according to Example 2. 実施例3に係る電源装置の接続部分を示す拡大分解図である。FIG. 6 is an enlarged exploded view showing a connection portion of a power supply device according to Embodiment 3. 実施例4に係る電源装置の接続部分を示す拡大分解図である。FIG. 9 is an enlarged exploded view showing a connection portion of a power supply device according to a fourth embodiment. エンジンとモータで走行するハイブリッド車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the hybrid vehicle which drive | works with an engine and a motor. モータのみで走行する電気自動車に電源装置を搭載する例を示すブロック図である。It is a block diagram which shows the example which mounts a power supply device in the electric vehicle which drive | works only with a motor. 蓄電用の電源装置に適用する例を示すブロック図である。It is a block diagram which shows the example applied to the power supply device for electrical storage. 従来の電池積層体を示す分解斜視図である。It is a disassembled perspective view which shows the conventional battery laminated body. 図15のバスバーホルダを固定する様子を示す断面図である。It is sectional drawing which shows a mode that the bus-bar holder of FIG. 15 is fixed.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法を例示するものであって、本発明は電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法を以下のものに特定しない。また実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は、特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。なお本明細書においては、レーザ溶接において発生し周囲に飛翔する熱を持つ物体をスパッタと呼ぶ。
(実施の形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a power supply device, an electric vehicle including the power supply device, a power storage device, and a method of manufacturing the power supply device for embodying the technical idea of the present invention. The manufacturing method of the power supply device, the electric vehicle including the power supply device, the power storage device, and the power supply device is not specified as follows. Further, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments. In the present specification, an object having heat generated in laser welding and flying around is called sputter.
(Embodiment 1)
 本発明の実施の形態1に係る電源装置100からトップカバー20を外した分解斜視図を図1に、図1の電源装置100の分解斜視図を図2に、それぞれ示す。これらの図に示す電源装置100は、複数枚の電池セル1と、電池セル1同士の間に介在されるスペーサ50と、電池セル1とスペーサ50とを交互に積層した電池積層体2の各端面にそれぞれ配置されるエンドプレート3と、エンドプレート3同士を締結する締結手段4とを備えている。
(電池セル1)
FIG. 1 shows an exploded perspective view of the power supply apparatus 100 according to Embodiment 1 of the present invention with the top cover 20 removed, and FIG. 2 shows an exploded perspective view of the power supply apparatus 100 of FIG. The power supply device 100 shown in these drawings includes a plurality of battery cells 1, spacers 50 interposed between the battery cells 1, and battery stacks 2 in which the battery cells 1 and the spacers 50 are alternately stacked. End plates 3 respectively disposed on the end surfaces and fastening means 4 for fastening the end plates 3 to each other are provided.
(Battery cell 1)
 電池セル1は、図1及び図2に示すように、厚さに比べて幅が広い、言い換えると幅よりも薄い角形の電池としている。この電池セル1を複数枚、厚さ方向に積層して電池積層体2とする。各電池セル1は、リチウムイオン二次電池である。ただし、電池セルは、ニッケル水素電池やニッケルカドミウム電池等の二次電池とすることもできる。図2の電池セル1は、幅の広い両表面を四角形とする電池で、両表面を対向するように積層して電池積層体2としている。各電池セル1は、上面である封口板10の両端部に正負の電極端子13を突出して設けて、中央部にはガス排出弁11のガス排出口12を設けている。角形の電池セル1は、底を閉塞する筒状に金属板をプレス加工している外装缶1aの開口部を、封口板10で閉塞して密閉している。封口板10は平面状の金属板で、その外形を外装缶1aの開口部の形状としている。この封口板10はレーザ溶接して外装缶1aの外周縁に固定されて外装缶1aの開口部を気密に閉塞している。外装缶1aに固定される封口板10は、その両端部に正負の電極端子13を固定しており、さらに正負の電極端子13の中間にはガス排出口12を設けている。ガス排出口12の内部にはガス排出弁11を設けている。 As shown in FIGS. 1 and 2, the battery cell 1 is a square battery that is wider than the thickness, in other words, is thinner than the width. A plurality of the battery cells 1 are stacked in the thickness direction to form a battery stack 2. Each battery cell 1 is a lithium ion secondary battery. However, the battery cell may be a secondary battery such as a nickel metal hydride battery or a nickel cadmium battery. The battery cell 1 of FIG. 2 is a battery having a rectangular shape with both wide surfaces, and the battery stack 2 is formed by laminating both surfaces so as to face each other. Each battery cell 1 is provided with positive and negative electrode terminals 13 projecting from both ends of a sealing plate 10 on the upper surface, and a gas exhaust port 12 of a gas exhaust valve 11 is provided at the center. The rectangular battery cell 1 has a sealing plate 10 that closes an opening of an outer can 1a in which a metal plate is pressed into a cylindrical shape that closes the bottom. The sealing plate 10 is a flat metal plate, and its outer shape is the shape of the opening of the outer can 1a. The sealing plate 10 is laser-welded and fixed to the outer peripheral edge of the outer can 1a to airtightly close the opening of the outer can 1a. The sealing plate 10 fixed to the outer can 1a has positive and negative electrode terminals 13 fixed to both ends thereof, and a gas discharge port 12 is provided between the positive and negative electrode terminals 13. A gas discharge valve 11 is provided inside the gas discharge port 12.
 スペーサ50は、電池セル1の外装缶同士を絶縁するため、絶縁性の部材で構成される。またエンドプレート3は、電池積層体2を積層した状態で締結するため、金属製等の剛性の高い部材で構成される。さらに締結手段4は、同様に剛性の高い金属板等で構成される。ここでは、金属板を断面視コ字状に折曲して、端部をエンドプレート3にねじ止め等により固定している。また締結手段は、電池積層体2の締結のみならず、電池積層体2の上面にガスダクト6を固定する部材として兼用することもできる。ここでは、電池積層体2を側面で締結する締結手段4に加えて、電池積層体2の上面に第二締結手段5を設けている。
(トップカバー20)
The spacer 50 is made of an insulating member in order to insulate the outer cans of the battery cells 1 from each other. Moreover, since the end plate 3 is fastened in a state where the battery stack 2 is stacked, the end plate 3 is made of a highly rigid member such as a metal. Furthermore, the fastening means 4 is similarly composed of a highly rigid metal plate or the like. Here, the metal plate is bent in a U shape in a sectional view, and the end portion is fixed to the end plate 3 by screwing or the like. The fastening means can be used not only for fastening the battery stack 2 but also as a member for fixing the gas duct 6 to the upper surface of the battery stack 2. Here, in addition to the fastening means 4 for fastening the battery stack 2 on the side surface, the second fastening means 5 is provided on the upper surface of the battery stack 2.
(Top cover 20)
 さらに、図1及び図2に示す電源装置は、上面にトップカバー20を配置している。このトップカバー20は、バスバーホルダ8の上面をカバーして、電池積層体2に接続されたバスバー14や回路基板9をカバーして保護する。したがって、トップカバー20は、バスバーホルダ8の上面をカバーできる外形であって、内部に回路基板9を収納できる空間を有する形状にプラスチックで成形している。図2のトップカバー20は、全体を下側開口の浅い容器形状に成形しており、中央部を周囲よりも一段深く成形して、回路基板9を収納するための収納凹部を設けている。
(バスバー14)
Further, the power supply device shown in FIGS. 1 and 2 has a top cover 20 disposed on the upper surface. The top cover 20 covers the upper surface of the bus bar holder 8 and covers and protects the bus bar 14 and the circuit board 9 connected to the battery stack 2. Therefore, the top cover 20 has an outer shape that can cover the upper surface of the bus bar holder 8 and is molded of plastic into a shape having a space in which the circuit board 9 can be accommodated. The top cover 20 shown in FIG. 2 is formed into a shallow container shape having a lower opening, and the central portion is formed one step deeper than the surroundings to provide a storage recess for storing the circuit board 9.
(Bus bar 14)
 各電池セル1は、正負の一対の電極端子13を備えている。この電池セル1を積層した状態で、隣接する電池セル1の、電極端子13同士を導電性のバスバー14で接続している。バスバー14の接続形態によって、電池セル1同士を直列や並列に接続できる。図2の例では、隣接する電池セル1の正極端子と負極端子をそれぞれバスバー14で接続することで、12枚の電池セルを直列に接続している。バスバー14は、好ましくは導電性に優れ、かつレーザ溶接に適した金属板で構成される。ここでは、バスバー14の外形を平面視において長方形状としつつ、端縁を半円状に面取りしたトラック状に形成している。
(電極穴15)
Each battery cell 1 includes a pair of positive and negative electrode terminals 13. In a state where the battery cells 1 are stacked, the electrode terminals 13 of the adjacent battery cells 1 are connected to each other by a conductive bus bar 14. Depending on the connection form of the bus bar 14, the battery cells 1 can be connected in series or in parallel. In the example of FIG. 2, 12 battery cells are connected in series by connecting the positive electrode terminal and the negative electrode terminal of the adjacent battery cell 1 with the bus bar 14. The bus bar 14 is preferably made of a metal plate that has excellent conductivity and is suitable for laser welding. Here, the outer shape of the bus bar 14 is rectangular in a plan view, and the end edge is formed in a track shape with a semicircular chamfer.
(Electrode hole 15)
 また各バスバー14は、電極端子13をそれぞれ挿入するための電極穴15を複数開口している。電極穴15は、電極端子13を挿入でき、かつ接触部分を溶接できるよう、電極端子13の外径とほぼ等しく形成される。電極端子13が円柱状の場合は、電極穴15は円形状とする。 Further, each bus bar 14 has a plurality of electrode holes 15 into which the electrode terminals 13 are inserted. The electrode hole 15 is formed approximately equal to the outer diameter of the electrode terminal 13 so that the electrode terminal 13 can be inserted and the contact portion can be welded. When the electrode terminal 13 is cylindrical, the electrode hole 15 is circular.
 また一方で、製造公差や電池セルの厚さのばらつき等を吸収するため、電極穴15Bを電池セルの厚さ方向に延長した長穴状に形成することもできる。電極穴15Bを長穴状とする場合は、溶接リング52をさらにバスバー14の上面に重ねて、溶接リング52を介在させてレーザ溶接する。
(溶接リング52)
On the other hand, in order to absorb manufacturing tolerances, battery cell thickness variations, and the like, the electrode hole 15B can be formed in a long hole shape extending in the thickness direction of the battery cell. When the electrode hole 15B has a long hole shape, the welding ring 52 is further overlapped on the upper surface of the bus bar 14, and laser welding is performed with the welding ring 52 interposed.
(Welding ring 52)
 溶接リング52は、中心にリング穴53を開口させたリング状に形成される。溶接リング52も、導電性に優れ、かつレーザ溶接に適した金属板で構成することが好ましい。リング状の溶接リング52は、図4の分解斜視図及び図5の断面図に示すように、バスバー14の電極穴15Bに電極端子13を挿通した状態で、さらに溶接リング52のリング穴53を通し、リング穴53と電極端子13、及びリング穴53とバスバー14との接触部分をレーザ溶接して固定する。このため、電極端子13を電極穴15Bに挿通させた状態で、さらに電極端子13の先端をリング穴53に挿通できるよう、電極端子13の突出量やバスバー14、溶接リング52の厚さが設定される。その一方で、電極端子13が必要以上に高くなると、電源装置の高さが高くなるため、好ましくは図5の断面図に示すように、電極端子13の先端に溶接リング52を挿通した状態で、電極端子13の先端面が溶接リング52とほぼ同一面か、これよりも若干突出する程度とすることが好ましい。 The weld ring 52 is formed in a ring shape with a ring hole 53 opened at the center. The welding ring 52 is also preferably made of a metal plate that is excellent in conductivity and suitable for laser welding. As shown in the exploded perspective view of FIG. 4 and the cross-sectional view of FIG. 5, the ring-shaped weld ring 52 further includes a ring hole 53 of the weld ring 52 in a state where the electrode terminal 13 is inserted into the electrode hole 15 </ b> B of the bus bar 14. The contact portions between the ring hole 53 and the electrode terminal 13 and between the ring hole 53 and the bus bar 14 are fixed by laser welding. For this reason, the protruding amount of the electrode terminal 13 and the thickness of the bus bar 14 and the welding ring 52 are set so that the tip of the electrode terminal 13 can be further inserted into the ring hole 53 while the electrode terminal 13 is inserted into the electrode hole 15B. Is done. On the other hand, when the electrode terminal 13 becomes higher than necessary, the height of the power supply device becomes high. Therefore, preferably, as shown in the cross-sectional view of FIG. 5, the welding ring 52 is inserted through the tip of the electrode terminal 13. It is preferable that the tip surface of the electrode terminal 13 is substantially the same surface as the welding ring 52 or slightly protrudes therefrom.
 図2、図4の例では、2個の電極穴15、15Bを開口して、隣接する電池セル1の正極端子と負極端子とを最短距離で接続している。また一方の電極穴15(図4において左側)を円形状として、電極端子13と直接レーザ溶接する一方、他方の電極穴15B(図4において右側)を長穴状として、溶接リング52を介在させてレーザ溶接している。この場合、先に円形状の電極穴15を電極端子13とレーザ溶接し、その後長穴状の電極穴15Bに電極端子13をレーザ溶接することで、積層した電池セル1の各電極端子13間の距離のばらつきを、長穴によって電池セルの厚さ方向に溶接位置を調整して吸収でき、製造公差によらず高い信頼性でもって電極端子13を固定できる。
(バスバーホルダ8)
In the example of FIGS. 2 and 4, two electrode holes 15 and 15 </ b> B are opened to connect the positive electrode terminal and the negative electrode terminal of the adjacent battery cell 1 with the shortest distance. In addition, one electrode hole 15 (left side in FIG. 4) is formed into a circular shape and directly welded to the electrode terminal 13 while the other electrode hole 15B (right side in FIG. 4) is formed into a long hole shape, and a welding ring 52 is interposed. Laser welding. In this case, the circular electrode holes 15 are first laser welded to the electrode terminals 13, and then the electrode terminals 13 are laser welded to the elongated electrode holes 15B. The variation in the distance can be absorbed by adjusting the welding position in the thickness direction of the battery cell by the elongated hole, and the electrode terminal 13 can be fixed with high reliability regardless of manufacturing tolerances.
(Bus bar holder 8)
 また電池積層体2の上面には、バスバーホルダ8が固定される。バスバーホルダ8は絶縁性の部材で構成され、バスバー14と電池セル1との意図しない導通を避けるため、電池セル1の上面を被覆する。さらにバスバーホルダ8は、各電極端子13を電気接続させるために、電池積層体2の上面に固定した状態で、電極端子13を表出させるための開口窓24を開口させている。これによって、電気接続に必要な部位を除いて電池セル1の上面を絶縁しつつ、開口窓24から電極端子13を表出させることで、電極端子13同士の電気接続を維持している。 The bus bar holder 8 is fixed to the upper surface of the battery stack 2. The bus bar holder 8 is made of an insulating member, and covers the upper surface of the battery cell 1 in order to avoid unintentional conduction between the bus bar 14 and the battery cell 1. Further, the bus bar holder 8 has an opening window 24 for exposing the electrode terminal 13 in the state of being fixed to the upper surface of the battery stack 2 in order to electrically connect each electrode terminal 13. Accordingly, the electrode terminal 13 is exposed from the opening window 24 while insulating the upper surface of the battery cell 1 except for a portion necessary for electrical connection, thereby maintaining the electrical connection between the electrode terminals 13.
 バスバーホルダ8は、図2の分解斜視図に示すように、第二締結手段5でもって固定される。ここでは、第二締結手段5をバスバーホルダ8の上面から押圧し、第二締結手段5の端部をエンドプレート3の上面に螺合している。これにより第二締結手段5を介してバスバーホルダ8が電池積層体2の上面に固定される。なお、バスバーホルダの固定構造は、この構成に限られず、例えばバスバーホルダをエンドプレートに直接螺合したり、バスバーホルダに爪などの嵌合構造を設けてバスバーや締結手段に嵌合させるなど、他の既知の固定構造を適宜利用することもできる。
(ガスダクト6)
The bus bar holder 8 is fixed by the second fastening means 5 as shown in the exploded perspective view of FIG. Here, the second fastening means 5 is pressed from the upper surface of the bus bar holder 8, and the end of the second fastening means 5 is screwed to the upper surface of the end plate 3. Thereby, the bus bar holder 8 is fixed to the upper surface of the battery stack 2 via the second fastening means 5. The bus bar holder fixing structure is not limited to this configuration.For example, the bus bar holder is directly screwed to the end plate, or a fitting structure such as a claw is provided on the bus bar holder to be fitted to the bus bar or the fastening means. Other known fixing structures can be used as appropriate.
(Gas duct 6)
 さらに図2に示す電源装置100は、バスバーホルダ8の上面に、ガスダクト6を固定し、さらにガスダクト6の上面に回路基板9を配置している。ガスダクト6は、電池セル1の積層方向に延長された中空状の筒体であり、端部にダクト排出部6xを開口している。ガスダクト6の底面側には、各電池セル1のガス排出弁11と対応する位置に、連結開口が開口されている。連結開口はそれぞれ、ガス排出弁11が開弁された状態でガス排出口12と連通され、電池セル1から排出される高圧のガスが、ガスダクト6内に案内されるよう構成されている。さらにガスダクト6の内部は、一方の端部を閉塞し、他方の端部にダクト排出部6xを開口させている。ダクト排出部6xは、ガス排出路と連結されて、ガスを安全に外部に排出する。このガスダクト6は、各連結開口がガス排出弁と連通するように位置決めして、電池積層体2の上面に固定されている。図2の例では、ガスダクト6の延長方向における断面を、横長の矩形状に形成している。ただガスダクトの内部形状は、管状、あるいは逆U字状やU字状等、任意の形状とできる。 2 further includes a gas duct 6 fixed to the upper surface of the bus bar holder 8 and a circuit board 9 disposed on the upper surface of the gas duct 6. The gas duct 6 is a hollow cylindrical body that extends in the stacking direction of the battery cells 1 and opens a duct discharge portion 6x at an end portion. On the bottom surface side of the gas duct 6, a connection opening is opened at a position corresponding to the gas discharge valve 11 of each battery cell 1. Each of the connection openings communicates with the gas discharge port 12 in a state where the gas discharge valve 11 is opened, and the high-pressure gas discharged from the battery cell 1 is guided into the gas duct 6. Further, the inside of the gas duct 6 is closed at one end, and the duct discharge portion 6x is opened at the other end. The duct discharge part 6x is connected with a gas discharge path, and discharges gas safely to the outside. The gas duct 6 is positioned on the upper surface of the battery stack 2 so that each connection opening communicates with the gas discharge valve. In the example of FIG. 2, the cross section in the extending direction of the gas duct 6 is formed in a horizontally long rectangular shape. However, the internal shape of the gas duct can be any shape such as a tubular shape or an inverted U shape or U shape.
 なお図2の例では、第二締結手段5は、ガスダクト6の固定構造も兼用している。すなわち、ガスダクト6の周囲に鍔部6aを形成すると共に、第二締結手段5に開口を設け、ガスダクト6の上方から第二締結手段5を、開口部分にガスダクト6を通すように被せると共に、ガスダクト6周囲の鍔部6aを開口の周縁で押圧して、ガスダクト6をバスバーホルダ8の上面に固定する。
(回路基板9)
In the example of FIG. 2, the second fastening means 5 also serves as a fixing structure for the gas duct 6. That is, a flange 6a is formed around the gas duct 6, an opening is provided in the second fastening means 5, and the second fastening means 5 is covered from above the gas duct 6 so that the gas duct 6 is passed through the opening. The gas duct 6 is fixed to the upper surface of the bus bar holder 8 by pressing the peripheral flange 6 a around the opening 6.
(Circuit board 9)
 さらにガスダクト6の上面には、電子回路を実装した回路基板9が固定されている。回路基板9に実装される電子回路は、電池セル1の電圧等を監視するための保護回路や制御回路等とできる。回路基板9は、ガスダクト6の長手方向の長さよりも短く、かつ長手方向と交差するガスダクト6の幅方向においては、ガスダクト6よりも幅広に形成されている。また回路基板9は、図2に示すようにガスダクト6の上面から距離dを隔てて離間して固定されている。
(電圧検出線)
Further, a circuit board 9 on which an electronic circuit is mounted is fixed on the upper surface of the gas duct 6. The electronic circuit mounted on the circuit board 9 can be a protection circuit or a control circuit for monitoring the voltage of the battery cell 1 or the like. The circuit board 9 is shorter than the length of the gas duct 6 in the longitudinal direction, and is wider than the gas duct 6 in the width direction of the gas duct 6 intersecting the longitudinal direction. Further, as shown in FIG. 2, the circuit board 9 is fixed at a distance d from the upper surface of the gas duct 6.
(Voltage detection line)
 また、各電池セル1のセル電圧を測定するために、各バスバー14には、電圧を検出するための電圧検出線が固定されている。電圧検出線は、導電リードやハーネス、あるいはフレキシブルプリント基板(FPC)等で構成され、一端を回路基板に接続している。図2、図3に示す例では、FPCで構成された電圧検出線を、バスバー14の上面に固定している。
(位置決めガイド16)
Further, in order to measure the cell voltage of each battery cell 1, a voltage detection line for detecting the voltage is fixed to each bus bar 14. The voltage detection line is composed of a conductive lead, a harness, a flexible printed circuit board (FPC), or the like, and has one end connected to the circuit board. In the example shown in FIGS. 2 and 3, a voltage detection line made of FPC is fixed to the upper surface of the bus bar 14.
(Positioning guide 16)
 さらにバスバーホルダ8は、バスバー14で電極端子13を接続させるために、バスバー14の位置決めのためのガイドを備えている。図2の例では、バスバーホルダ8は、各バスバー14を固定する部位に、このバスバー14を位置決めするためのガイドとして、ホルダ突出部を備えている。図3の拡大斜視図及び図4の分解斜視図に、ホルダ突出部の詳細を示している。これらの図に示すように、バスバーホルダ8は、電池積層体2の上面に固定した状態で、各バスバー14を固定する位置に、ホルダ突出部を形成する。ここではホルダ突出部は、バスバー14を囲むように形成された位置決めガイド16としている。すなわち、バスバー14の外形に沿ってバスバーホルダ8の表面を窪ませて位置決めガイド16とすると共に、ここに挿入されるバスバー14の底面を支持する絶縁部17を、位置決めガイド16の中央部に設けている。図4の拡大分解斜視図に示すように、位置決めガイド16に挿入されたバスバー14を、電池セル1の電極端子13と接続するために、位置決めガイド16には開口窓24が形成されている。その一方で、位置決めガイド16をすべて開口させると、バスバー14の底面が電池セル1の外装缶上面の封口板と接触して、意図しない導通を生じる可能性がある。そこで、電極端子13のみを導通させ、他の部位、例えば封口板などは必要以上に露出させず、ホルダーカバーで被覆することで、バスバー14と電池セル1とを絶縁して、信頼性を高めることができる。このように位置決めガイド16と絶縁部17は、使用されるバスバー14の形状や電極端子13の位置などに応じて、適宜設計される。図2の例では、バスバー14は外形を平面視トラック形状として左右対称の形状としているため、位置決めガイド16はこれに応じて、トラック状のバスバー14を案内できる段差を形成すると共に、位置決めガイド16の両端を貫通させて開口窓24とし、開口窓24同士の間に絶縁部17を形成する。このような位置決めガイド16と絶縁部17は、好ましくはバスバーホルダ8に一体成型で形成される。樹脂製のバスバーホルダとすることで、このような形状のバスバーホルダを容易に構成できる。
(ホルダ突出部)
Further, the bus bar holder 8 includes a guide for positioning the bus bar 14 in order to connect the electrode terminal 13 with the bus bar 14. In the example of FIG. 2, the bus bar holder 8 includes a holder protruding portion as a guide for positioning the bus bar 14 at a portion where each bus bar 14 is fixed. The details of the holder protrusion are shown in the enlarged perspective view of FIG. 3 and the exploded perspective view of FIG. As shown in these drawings, the bus bar holder 8 forms a holder protrusion at a position where each bus bar 14 is fixed while being fixed to the upper surface of the battery stack 2. Here, the holder protrusion is a positioning guide 16 formed so as to surround the bus bar 14. In other words, the surface of the bus bar holder 8 is recessed along the outer shape of the bus bar 14 to form the positioning guide 16, and an insulating portion 17 that supports the bottom surface of the bus bar 14 inserted therein is provided at the center of the positioning guide 16. ing. As shown in the enlarged exploded perspective view of FIG. 4, an opening window 24 is formed in the positioning guide 16 in order to connect the bus bar 14 inserted into the positioning guide 16 to the electrode terminal 13 of the battery cell 1. On the other hand, if all the positioning guides 16 are opened, the bottom surface of the bus bar 14 may come into contact with the sealing plate on the top surface of the outer can of the battery cell 1 and unintentional conduction may occur. Therefore, only the electrode terminal 13 is conducted, and other parts such as a sealing plate are not exposed more than necessary, and are covered with a holder cover to insulate the bus bar 14 from the battery cell 1 and improve reliability. be able to. As described above, the positioning guide 16 and the insulating portion 17 are appropriately designed according to the shape of the bus bar 14 used, the position of the electrode terminal 13, and the like. In the example of FIG. 2, the bus bar 14 has a symmetrical shape with the outer shape being a track shape in plan view. Accordingly, the positioning guide 16 forms a step that can guide the track-shaped bus bar 14 accordingly, and the positioning guide 16. Both ends of the window are made into an opening window 24, and an insulating portion 17 is formed between the opening windows 24. Such positioning guide 16 and insulating portion 17 are preferably formed integrally with the bus bar holder 8. By using a resin bus bar holder, a bus bar holder having such a shape can be easily configured.
(Holder protrusion)
 さらに位置決めガイド16を構成するため、バスバーホルダ8の表面には段差を形成し、その表面の高い部分をホルダ突出部とする。すなわちホルダ突出部は、バスバーホルダ8の上面に形成された、バスバーホルダ8の最も高さの高い部位を指す。図4に示す例では、位置決めガイド16を構成する段差部のエッジがホルダ突出部に該当する。
(レーザ溶接)
Further, in order to constitute the positioning guide 16, a step is formed on the surface of the bus bar holder 8, and a high portion of the surface is used as a holder protrusion. That is, the holder protruding portion refers to the highest portion of the bus bar holder 8 formed on the upper surface of the bus bar holder 8. In the example shown in FIG. 4, the edge of the stepped portion constituting the positioning guide 16 corresponds to the holder protruding portion.
(Laser welding)
 バスバー14と電極端子13とは、レーザ光を走査させて、レーザ溶接によって溶接して固定される。このようなレーザ溶接には、YAGやYVO4等の固体レーザ媒質を用いたレーザ加工機や、光ファイバを用いたファイバレーザといった固体レーザ加工機が好適に用いられる。またレーザ光は、好ましくはレーザ溶接位置の真上でなく、若干傾斜させて照射する。反射されたレーザ光がレーザ加工機に照射される事態を回避するためのである。
(レーザ溶接位置)
The bus bar 14 and the electrode terminal 13 are fixed by scanning with laser light and welding by laser welding. For such laser welding, a solid-state laser processing machine such as a laser processing machine using a solid laser medium such as YAG or YVO 4 or a fiber laser using an optical fiber is preferably used. The laser beam is preferably irradiated at a slight inclination, not directly above the laser welding position. This is for avoiding a situation in which the reflected laser beam is applied to the laser processing machine.
(Laser welding position)
 バスバー14を電極端子13と溶接する様子を、図4~図5に基づいて説明する。まず電池積層体2の上面に、バスバーホルダ8を配置し、バスバーホルダ8に開口された開口窓24から電極端子13をそれぞれ表出させた状態でバスバーホルダ8を固定する。次にバスバーホルダ8の位置決めガイド16に、バスバー14をそれぞれ配置する。このようにバスバー14と電池積層体2との間にバスバーホルダ8を介在させ、絶縁部17によって物理的に絶縁することで、バスバー14によって電池セル同士が意図せず導通することを回避できる。また、バスバー14でもってバスバー14ホルダ8を挟み込むことで、バスバーホルダ8を一層確実に電池積層体2の上面に固定できる。 The manner in which the bus bar 14 is welded to the electrode terminal 13 will be described with reference to FIGS. First, the bus bar holder 8 is disposed on the upper surface of the battery stack 2, and the bus bar holder 8 is fixed in a state where the electrode terminals 13 are respectively exposed from the opening windows 24 opened in the bus bar holder 8. Next, the bus bars 14 are respectively arranged on the positioning guides 16 of the bus bar holder 8. Thus, by interposing the bus bar holder 8 between the bus bar 14 and the battery stack 2 and physically insulating it by the insulating portion 17, it is possible to avoid unintentional conduction between the battery cells by the bus bar 14. Further, the bus bar holder 8 can be fixed to the upper surface of the battery stack 2 more reliably by sandwiching the bus bar 14 holder 8 with the bus bar 14.
 そしてバスバー14の電極穴15、15Bに電極端子13を挿通する。ここで、電極穴15Bを長穴状とする場合は、さらに電極穴15Bから突出された電極端子13の先端に、さらに溶接リング52を挿入する(図4において右側の電極穴15B)。 Then, the electrode terminal 13 is inserted into the electrode holes 15 and 15B of the bus bar 14. Here, when making the electrode hole 15B into a long hole shape, the welding ring 52 is further inserted in the front-end | tip of the electrode terminal 13 protruded from the electrode hole 15B (right electrode hole 15B in FIG. 4).
 この状態で、レーザ溶接を行い、電極端子13とリード板とを固定する。レーザ溶接は、図5の断面図において一点鎖線の矢印で示す位置を中心に行う。まず円形状の電極穴15と電極端子13(図5において左側)のレーザ溶接を行う。ここでは、電極端子13の周囲と電極穴15との界面に沿って、円形状にレーザ溶接位置を移動させて溶接する。次に、長穴状の電極穴15Bと電極端子13(図5において右側)のレーザ溶接を行う。ここでは、電極端子13の周囲と溶接リング52のリング穴53との界面、及び溶接リング52の外周とバスバー14との接触部分について、レーザ溶接位置を走査させて溶接を行う。このようにして、電池積層体2の上面側からレーザ光を走査して、バスバー14と電極端子13との固定を行える。 In this state, laser welding is performed to fix the electrode terminal 13 and the lead plate. Laser welding is performed around the position indicated by the dashed-dotted arrow in the cross-sectional view of FIG. First, laser welding of the circular electrode hole 15 and the electrode terminal 13 (left side in FIG. 5) is performed. Here, welding is performed by moving the laser welding position in a circular shape along the interface between the electrode terminal 13 and the electrode hole 15. Next, laser welding of the long hole electrode hole 15B and the electrode terminal 13 (right side in FIG. 5) is performed. Here, welding is performed by scanning the laser welding position of the interface between the periphery of the electrode terminal 13 and the ring hole 53 of the welding ring 52 and the contact portion between the outer periphery of the welding ring 52 and the bus bar 14. In this manner, the laser bar is scanned from the upper surface side of the battery stack 2 to fix the bus bar 14 and the electrode terminal 13.
 以上の構造では、バスバー14の溶接によって、バスバーホルダ8を電池積層体2の上面に固定できるが、このためバスバーホルダ8がバスバー14に近接する構造となる。バスバーホルダ8は上述の通り、絶縁性に優れた樹脂製としているが、樹脂は熱に弱い。このためレーザ溶接時に、レーザ溶接位置から周囲に飛散するスパッタが樹脂製のバスバーホルダに付着すると、溶融されて変形、破損する可能性があった。本発明者が実験により確認したところ、スパッタの飛散する範囲は概ね決まっていることが判明した。図6の断面図に、スパッタの飛翔する様子を破線の太字矢印で示す。この図に示すように、バスバーホルダ608の上面に形成されたホルダ突出部60が、特にスパッタに晒されやすくなる。 In the above structure, the bus bar holder 8 can be fixed to the upper surface of the battery stack 2 by welding of the bus bar 14. For this reason, the bus bar holder 8 is close to the bus bar 14. As described above, the bus bar holder 8 is made of a resin excellent in insulation, but the resin is vulnerable to heat. For this reason, at the time of laser welding, if spatter scattered from the laser welding position to the periphery adheres to the resin bus bar holder, it may be melted and deformed or damaged. As a result of experiments conducted by the inventor, it has been found that the range in which spatter is scattered is generally determined. In the cross-sectional view of FIG. 6, the appearance of sputtering is indicated by broken-line bold arrows. As shown in this figure, the holder protrusion 60 formed on the upper surface of the bus bar holder 608 is particularly easily exposed to sputtering.
 そこで、図7に示すように、ホルダ突出部の突出高さを抑えることで、このようなスパッタの付着を回避し、バスバーホルダ8の破損を低減できることを見出した。具体的なホルダ突出部の突出量は、レーザ溶接位置からの距離に依存する。すなわち、レーザ溶接位置から遠い程、突出量を大きくできるが、逆にレーザ溶接位置に近付く程、突出量を抑える必要がある。一般にホルダ突出部は、バスバー14の周囲に設けられている。このため、複数ある溶接位置の中では、溶接リング52を用いたレーザ溶接における、溶接リング52の周囲とバスバー14との接触部分における溶接位置が、最もバスバーの周辺部に近付くこととなり、相対的にホルダ突出部に近いことから、この溶接位置から飛散するスパッタに対して、バスバーホルダ8を保護することが肝要となる。また、溶接リング52の外径が大きくなる程、相対的にホルダ突出部に近付くため、ホルダ突出部の高さをより低くする必要が生じる。
(実施例1、2)
Therefore, as shown in FIG. 7, it has been found that by suppressing the protrusion height of the holder protrusion, such spatter adhesion can be avoided and damage to the bus bar holder 8 can be reduced. The specific protrusion amount of the holder protrusion depends on the distance from the laser welding position. That is, as the distance from the laser welding position increases, the amount of protrusion can be increased. In general, the holder protrusion is provided around the bus bar 14. For this reason, among a plurality of welding positions, the welding position in the contact portion between the periphery of the welding ring 52 and the bus bar 14 in laser welding using the welding ring 52 is closest to the peripheral portion of the bus bar, Since it is close to the holder protrusion, it is important to protect the bus bar holder 8 against spatter scattered from the welding position. In addition, as the outer diameter of the welding ring 52 increases, the holder protrusion is relatively closer to the holder, and thus the height of the holder protrusion needs to be further reduced.
(Examples 1 and 2)
 このことを確認するため、異なる大きさの溶接リングを用いてスパッタの飛翔する範囲を測定した。この結果を、図8、図9のグラフに示す。これらの図では、横軸を溶接リングの中心からの距離とし、縦軸をスパッタの飛翔する高さとして、スパッタの及ぶ範囲をハッチングで示している。言い換えると、白地の領域であればスパッタが飛翔しない。各図において、図8は実施例1として外径8mmの溶接リング、図9は実施例2として外径10mmの溶接リングを用いて、スパッタの飛翔範囲をそれぞれ測定した結果を示している。これらのグラフに示すように、いずれもスパッタは特定の位置β1、β2を起点として、水平面から所定の角度α1、α2以上の範囲で飛翔していることが判る。ここでは、α1=α2=約35°であった。いいかえると、特定の位置を起点として水平面から35°までの範囲であれば、スパッタの被着を回避あるいは抑制できることが判明した。また、スパッタの被着を回避できる起点となる特定の位置β1、β2は、溶接リング52とバスバー14との溶接位置でなく、いずれも1mm以上外側にシフトしている。ここでは、特定の位置β1はレーザ溶接位置から1.29mm、特定の位置β2はレーザ溶接位置から1.36mm、それぞれ外側に位置していた。いいかえると、レーザ溶接位置の極近傍の領域では、スパッタが真横にも飛翔していることが判る。以上から、レーザ溶接位置から外側に約1.3mm離れた位置を起点として、水平面から約35°の範囲内に収まるように、ホルダ突出部の高さを抑えることで、スパッタの付着による溶融を避けて、バスバーホルダ8の保護を図ることができる。なお、上記数値は一例であって、これらの所定の角度や特定の位置は、溶接に用いるレーザの種別やパワー、バスバーの材質などによっても変化する。例えば特定の位置は、レーザ溶接位置から0~3mmの間で調整できる。また所定の角度も、30°~60°、好ましくは30°~50°の範囲で調整できる。より詳細には、レーザ加工機にYAGレーザを用いた場合はスパッタが飛翔し易いため、αを60°程度とすることが好ましく、一方ファイバレーザを用いた場合はスパッタが比較的少ないため、αを30°程度とすることが好ましい。 In order to confirm this, the spatter flying range was measured using welding rings of different sizes. The results are shown in the graphs of FIGS. In these figures, the horizontal axis is the distance from the center of the welding ring, the vertical axis is the height at which the spatters fly, and the spattering range is hatched. In other words, spatter does not fly in the white area. In each figure, FIG. 8 shows the result of measuring the flying range of the sputter using a welding ring having an outer diameter of 8 mm as Example 1 and FIG. 9 using a welding ring having an outer diameter of 10 mm as Example 2. FIG. As shown in these graphs, it can be seen that both of the sputters fly from the horizontal plane within a range of predetermined angles α 1 and α 2 starting from specific positions β 1 and β 2 . Here, α 1 = α 2 = about 35 °. In other words, it was found that the deposition of spatter can be avoided or suppressed within a range of 35 ° from the horizontal plane starting from a specific position. In addition, the specific positions β 1 and β 2 that are the starting points from which deposition of spatter can be avoided are not the welding positions of the welding ring 52 and the bus bar 14, and both are shifted outward by 1 mm or more. Here, the specific position β 1 is 1.29 mm from the laser welding position, and the specific position β 2 is 1.36 mm from the laser welding position, respectively. In other words, it can be seen that the spatter flies directly to the region in the vicinity of the laser welding position. From the above, starting from a position about 1.3 mm away from the laser welding position, the height of the holder protrusion is suppressed so that it falls within a range of about 35 ° from the horizontal plane, so that melting due to spatter adhesion can be prevented. By avoiding this, the bus bar holder 8 can be protected. The above numerical values are examples, and these predetermined angles and specific positions vary depending on the type and power of the laser used for welding, the material of the bus bar, and the like. For example, the specific position can be adjusted between 0 and 3 mm from the laser welding position. The predetermined angle can also be adjusted in the range of 30 ° to 60 °, preferably 30 ° to 50 °. More specifically, α is preferably set to about 60 ° when a YAG laser is used in a laser processing machine, and α is preferably set to about 60 °. On the other hand, when a fiber laser is used, α is relatively small. Is preferably about 30 °.
 このように、バスバーと溶接リングとのレーザ溶接位置を、また溶接リングを使用しない場合はバスバーと電極端子とのレーザ溶接位置を、それぞれ基準位置として、この基準位置から水平方向にβだけ離れた特定の位置から、水平方向に対し所定の角度αをなす範囲内であれば、スパッタの飛翔を回避できるので、ホルダ突出部がこの安全範囲内に含まれるように形成する。本発明者らが行った試験によれば、β=0~3mm、α=30°~60°の範囲が好ましいことが判明した。 In this way, the laser welding position between the bus bar and the welding ring, or the laser welding position between the bus bar and the electrode terminal when the welding ring is not used, is set as the reference position, and is spaced apart from this reference position by β in the horizontal direction. Sputtering flight can be avoided if it is within a range that forms a predetermined angle α with respect to the horizontal direction from a specific position, and therefore, the holder protruding portion is formed so as to be included in this safe range. According to tests conducted by the present inventors, it has been found that β = 0 to 3 mm and α = 30 ° to 60 ° are preferable.
 以上の例では、バスバーに2個の電極端子を固定するよう、電極穴を2箇所に開口させた例を説明したが、3箇所以上の電極穴を開口させることも可能であることはいうまでもない。電極穴を3箇所以上開口させる場合は、その内の1箇所を円形として溶接リング無しでレーザ溶接し、他の2箇所以上で電極穴を長穴状に形成して、溶接リング52を介してレーザ溶接させる。またバスバーの形状も、電極端子の数や位置に応じて平面視直線状とする他、L字状に折曲させたり、十字状とするなど、任意の形状が適宜利用できる。
(実施例3)
In the above example, the example in which the electrode holes are opened in two places so as to fix the two electrode terminals to the bus bar has been described, but it goes without saying that it is possible to open three or more electrode holes. Nor. When three or more electrode holes are opened, one of them is circular and laser welded without a welding ring, and electrode holes are formed in the shape of a long hole at two or more other locations, Laser welding is performed. Also, the shape of the bus bar can be appropriately selected from arbitrary shapes such as a straight line shape in plan view according to the number and position of the electrode terminals, a bent shape in an L shape, and a cross shape.
(Example 3)
 以上の例では、バスバー14と電極端子13との固定に溶接リング52を用いた例を説明したが、溶接リングの使用は必須でなく、溶接のための十分な領域が確保できている場合は、溶接リングを用いないで直接バスバーと電極端子をレーザ溶接することも可能である。このような例を実施例3として図10に示す。この図に示す例では、バスバー14Cに開口した電極穴15にそれぞれ電極端子13を挿通して、レーザ溶接する。このような場合も上記と同様に、スパッタの飛散を回避できるようにホルダ突出部の高さを設計する。
(実施例4)
(ガイド穴18)
In the above example, the example in which the weld ring 52 is used to fix the bus bar 14 and the electrode terminal 13 has been described. However, the use of the weld ring is not essential, and a sufficient area for welding can be secured. It is also possible to laser weld the bus bar and the electrode terminal directly without using a welding ring. Such an example is shown in FIG. In the example shown in this figure, the electrode terminals 13 are respectively inserted into the electrode holes 15 opened in the bus bar 14C, and laser welding is performed. In such a case as well, the height of the holder protrusion is designed so as to avoid spatter scattering as described above.
(Example 4)
(Guide hole 18)
 以上の例では、ホルダ突出部がバスバー14の周囲を画定する位置決めガイド16の端縁である場合について説明した。ただ本発明は、ホルダ突出部を位置決めガイドの端縁に限定するものでなく、他の形状とすることも可能である。例えば、位置決めガイドをバスバーホルダの表面から窪ませるのでなく、バスバーを取り囲む壁状に形成することもできる。あるいは、バスバーを貫通させる突起状にホルダ突出部を形成することもできる。このような例を実施例4として、図11の拡大斜視図に示す。この図に示すバスバー14Bは、その中央近傍に、電極穴15とは別にガイド穴18を開口しており、バスバーホルダ8Bに形成された突起状のホルダ突出部19を貫通させている。この構成により、ホルダ突出部にガイド穴18を挿入することで容易にバスバー14Bを位置決めできる。また、突起状のホルダ突出部19は、先端が突出されるため、スパッタの影響を受けやすいことから、上述の通りスパッタの付着を回避するため、その高さをレーザ溶接位置からの距離に応じて制限する。
(ガイド突起19B)
In the above example, the case where the holder protrusion is the edge of the positioning guide 16 that defines the periphery of the bus bar 14 has been described. However, the present invention does not limit the holder protrusion to the end edge of the positioning guide, but may have other shapes. For example, the positioning guide may be formed in a wall shape surrounding the bus bar instead of being recessed from the surface of the bus bar holder. Or a holder protrusion part can also be formed in the protrusion shape which penetrates a bus-bar. Such an example is shown as an embodiment 4 in an enlarged perspective view of FIG. In the bus bar 14B shown in this figure, a guide hole 18 is opened in the vicinity of the center in addition to the electrode hole 15, and a protruding holder protrusion 19 formed in the bus bar holder 8B is penetrated. With this configuration, the bus bar 14B can be easily positioned by inserting the guide hole 18 into the holder protrusion. Further, since the tip of the protrusion-shaped holder protrusion 19 protrudes easily and is easily affected by sputtering, the height thereof depends on the distance from the laser welding position in order to avoid spatter adhesion as described above. Limit.
(Guide protrusion 19B)
 また図11の例では、バスバーホルダ8Bに形成した突起状のホルダ突出部19の近傍に、バスバー14Bの側面を覆うようにガイド突起19Bを形成している。このガイド突起19Bも、バスバーホルダ8Bの上面から突出して設けられており、ホルダ突出部を構成する。図11に示すガイド突起19Bは一対に形成されており、ガイド突起19B同士の間にバスバー14Bを挟み込むように保持して、バスバー14Bを仮止めできる。また一対のガイド突起19B同士の間に突起状のホルダ突出部19を設けることで、ガイド突起19Bとホルダ突出部とで一層確実にバスバー14Bの位置決めを図ることができる。さらにガイド突起19Bの先端は、ガイド突起19B同士の対向面を下り勾配に傾斜させることで、バスバー14Bをガイド突起19B同士の間に誘い込みし易くできる。加えて、傾斜面の下端に段差を設けて戻り止め構造とすることで、一旦ガイド突起19B同士の間に案内されたバスバー14Bが外れることを阻止できる。これら突起状のホルダ突出部19や一対のガイド突起19Bは、好ましくはバスバーホルダ8Bと一体に形成される。これにより、安価にバスバー14Bの位置決めと仮止め、及び仮止め時の脱落を回避でき、電源装置の組み立ての作業性を向上できる。 In the example of FIG. 11, a guide protrusion 19B is formed in the vicinity of the protrusion-shaped holder protrusion 19 formed on the bus bar holder 8B so as to cover the side surface of the bus bar 14B. The guide protrusion 19B is also provided so as to protrude from the upper surface of the bus bar holder 8B, and constitutes a holder protrusion. The guide protrusions 19B shown in FIG. 11 are formed as a pair, and the bus bar 14B can be temporarily fixed by holding the bus bar 14B between the guide protrusions 19B. Further, by providing the protruding holder protrusion 19 between the pair of guide protrusions 19B, the bus bar 14B can be positioned more reliably between the guide protrusion 19B and the holder protrusion. Furthermore, the front end of the guide protrusion 19B can easily guide the bus bar 14B between the guide protrusions 19B by inclining the opposing surfaces of the guide protrusions 19B downward. In addition, by providing a detent structure by providing a step at the lower end of the inclined surface, it is possible to prevent the bus bar 14B guided once between the guide protrusions 19B from coming off. The protrusion-shaped holder protrusion 19 and the pair of guide protrusions 19B are preferably formed integrally with the bus bar holder 8B. As a result, the positioning and temporary fixing of the bus bar 14B and dropout during temporary fixing can be avoided at low cost, and the workability of assembling the power supply device can be improved.
 以上の電源装置は、車載用の電源として利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッド自動車やプラグインハイブリッド自動車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。
(ハイブリッド車用電源装置)
The above power supply apparatus can be used as a vehicle-mounted power supply. As a vehicle equipped with a power supply device, an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and is used as a power source for these vehicles. .
(Power supply for hybrid vehicles)
 図12に、エンジンとモータの両方で走行するハイブリッド自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置1000と、電源装置1000の電池を充電する発電機94と、電源装置1000とモータ93を搭載する車両本体90と、モータ93で駆動されて車両本体を走行させる車輪97とを備えている。電源装置1000は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置1000の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置1000から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置1000の電池を充電する。
(電気自動車用電源装置)
FIG. 12 shows an example in which a power supply device is mounted on a hybrid vehicle that runs with both an engine and a motor. A vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 1000 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 1000. 94, a vehicle main body 90 on which the power supply device 1000 and the motor 93 are mounted, and wheels 97 that are driven by the motor 93 and run the vehicle main body. The power supply apparatus 1000 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply apparatus 1000. The motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving. The motor 93 is driven by power supplied from the power supply apparatus 1000. The generator 94 is driven by the engine 96, or is driven by regenerative braking when the vehicle is braked, and charges the battery of the power supply apparatus 1000.
(Power supply for electric vehicles)
 また、図13に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置1000と、この電源装置1000の電池を充電する発電機94と、電源装置1000とモータ93を搭載する車両本体90と、モータ93で駆動されて車両本体を走行させる車輪97とを備えている。電源装置1000は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電源装置1000から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置1000の電池を充電する。
(蓄電用電源装置)
FIG. 13 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor. A vehicle EV equipped with the power supply device shown in FIG. 1 is a motor 93 for running the vehicle EV, a power supply device 1000 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 1000. And a vehicle main body 90 on which the power supply device 1000 and the motor 93 are mounted, and wheels 97 that are driven by the motor 93 and run the vehicle main body. The power supply apparatus 1000 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95. The motor 93 is driven by power supplied from the power supply apparatus 1000. The generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply apparatus 1000.
(Power storage device for power storage)
 さらに、この電源装置は、移動体用の動力源としてのみならず、定置型の蓄電用設備としても利用できる。例えば家庭用、工場用の電源として、太陽光や深夜電力等で充電し、必要時に放電する電源システム、あるいは日中の太陽光を充電して夜間に放電する街路灯用の電源や、停電時に駆動する信号機用のバックアップ電源等にも利用できる。このような例を図14に示す。この図に示す電源装置1000は、複数の電池パック81をユニット状に接続して電池ユニット82を構成している。各電池パック81は、複数の電池セルが直列及び/又は並列に接続されている。各電池パック81は、電源コントローラ84により制御される。この電源装置1000は、電池ユニット82を充電用電源CPで充電した後、負荷LDを駆動する。このため電源装置1000は、充電モードと放電モードを備える。負荷LDと充電用電源CPはそれぞれ、放電スイッチDS及び充電スイッチCSを介して電源装置1000と接続されている。放電スイッチDS及び充電スイッチCSのON/OFFは、電源装置1000の電源コントローラ84によって切り替えられる。充電モードにおいては、電源コントローラ84は充電スイッチCSをONに、放電スイッチDSをOFFに切り替えて、充電用電源CPから電源装置1000への充電を許可する。また充電が完了し満充電になると、あるいは所定値以上の容量が充電された状態で負荷LDからの要求に応じて、電源コントローラ84は充電スイッチCSをOFFに、放電スイッチDSをONにして放電モードに切り替え、電源装置1000から負荷LDへの放電を許可する。また、必要に応じて、充電スイッチCSをONに、放電スイッチDSをONにして、負荷LDの電力供給と、電源装置1000への充電を同時に行うこともできる。 Furthermore, this power supply device can be used not only as a power source for moving bodies but also as a stationary power storage facility. For example, as a power source for home and factory use, a power supply system that is charged with sunlight or midnight power and discharged when necessary, or a streetlight power supply that charges sunlight during the day and discharges at night, or during a power outage It can also be used as a backup power source for driving signals. Such an example is shown in FIG. The power supply apparatus 1000 shown in this figure forms a battery unit 82 by connecting a plurality of battery packs 81 in a unit shape. Each battery pack 81 has a plurality of battery cells connected in series and / or in parallel. Each battery pack 81 is controlled by a power controller 84. The power supply apparatus 1000 drives the load LD after charging the battery unit 82 with the charging power supply CP. Therefore, the power supply apparatus 1000 has a charge mode and a discharge mode. The load LD and the charging power source CP are connected to the power supply apparatus 1000 via the discharging switch DS and the charging switch CS, respectively. ON / OFF of the discharge switch DS and the charge switch CS is switched by the power supply controller 84 of the power supply apparatus 1000. In the charging mode, the power controller 84 switches the charging switch CS to ON and the discharging switch DS to OFF to permit charging from the charging power supply CP to the power supply apparatus 1000. Further, when the charging is completed and the battery is fully charged, or in response to a request from the load LD in a state where a capacity of a predetermined value or more is charged, the power controller 84 turns off the charging switch CS and turns on the discharging switch DS to discharge. The mode is switched to permit discharge from the power supply apparatus 1000 to the load LD. Further, if necessary, the charge switch CS can be turned on and the discharge switch DS can be turned on to supply power to the load LD and charge the power supply apparatus 1000 at the same time.
 電源装置1000で駆動される負荷LDは、放電スイッチDSを介して電源装置1000と接続されている。電源装置1000の放電モードにおいては、電源コントローラ84が放電スイッチDSをONに切り替えて、負荷LDに接続し、電源装置1000からの電力で負荷LDを駆動する。放電スイッチDSはFET等のスイッチング素子が利用できる。放電スイッチDSのON/OFFは、電源装置1000の電源コントローラ84によって制御される。また電源コントローラ84は、外部機器と通信するための通信インターフェースを備えている。図14の例では、UARTやRS-232C等の既存の通信プロトコルに従い、ホスト機器HTと接続されている。また必要に応じて、電源システムに対してユーザが操作を行うためのユーザインターフェースを設けることもできる。 The load LD driven by the power supply apparatus 1000 is connected to the power supply apparatus 1000 via the discharge switch DS. In the discharge mode of the power supply apparatus 1000, the power supply controller 84 switches the discharge switch DS to ON, connects to the load LD, and drives the load LD with the power from the power supply apparatus 1000. As the discharge switch DS, a switching element such as an FET can be used. ON / OFF of the discharge switch DS is controlled by the power supply controller 84 of the power supply apparatus 1000. The power controller 84 also includes a communication interface for communicating with external devices. In the example of FIG. 14, the host device HT is connected in accordance with an existing communication protocol such as UART or RS-232C. Further, if necessary, a user interface for the user to operate the power supply system can be provided.
 各電池パック81は、信号端子と電源端子を備える。信号端子は、パック入出力端子DIと、パック異常出力端子DAと、パック接続端子DOとを含む。パック入出力端子DIは、他のパック電池や電源コントローラ84からの信号を入出力するための端子であり、パック接続端子DOは子パックである他のパック電池に対して信号を入出力するための端子である。またパック異常出力端子DAは、パック電池の異常を外部に出力するための端子である。さらに電源端子は、電池パック81同士を直列、並列に接続するための端子である。 Each battery pack 81 includes a signal terminal and a power supply terminal. The signal terminals include a pack input / output terminal DI, a pack abnormality output terminal DA, and a pack connection terminal DO. The pack input / output terminal DI is a terminal for inputting / outputting signals from other pack batteries and the power supply controller 84, and the pack connection terminal DO is for inputting / outputting signals to / from other pack batteries which are child packs. Terminal. The pack abnormality output terminal DA is a terminal for outputting the abnormality of the battery pack to the outside. Furthermore, the power supply terminal is a terminal for connecting the battery packs 81 in series and in parallel.
 本発明に係る電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。 A power supply device, an electric vehicle including the power supply device, a power storage device, and a method for manufacturing the power supply device according to the present invention include a plug-in hybrid electric vehicle, a hybrid electric vehicle, and an electric vehicle that can switch between an EV traveling mode and an HEV traveling mode. It can utilize suitably as power supplies, such as. Also, a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.
100、1000…電源装置
1…電池セル;1a…外装缶
2…電池積層体
3…エンドプレート
4…締結手段
5…第二締結手段
6…ガスダクト;6a…鍔部;6x…ダクト排出部
8、8B、608…バスバーホルダ
9…回路基板
10…封口板
11…ガス排出弁
12…ガス排出口
13…電極端子
14、14B、14C…バスバー
15、15B…電極穴
16…位置決めガイド
17…絶縁部
18…ガイド穴
19…突起状のホルダ突出部;19B…ガイド突起
20…トップカバー
24…開口窓
50…スペーサ
52…溶接リング
53…リング穴
60…ホルダ突出部
81…電池パック
82…電池ユニット
84…電源コントローラ
85…並列接続スイッチ
90…車両本体
93…モータ
94…発電機
95…DC/ACインバータ
96…エンジン
97…車輪
1501…電池セル
1508…バスバーホルダ
1513…電極端子
1514…バスバー
1516…壁状
EV、HV…車両
LD…負荷
CP…充電用電源
DS…放電スイッチ
CS…充電スイッチ
OL…出力ライン
HT…ホスト機器
DI…パック入出力端子;DA…パック異常出力端子;DO…パック接続端子
DESCRIPTION OF SYMBOLS 100, 1000 ... Power supply device 1 ... Battery cell; 1a ... Exterior can 2 ... Battery laminated body 3 ... End plate 4 ... Fastening means 5 ... Second fastening means 6 ... Gas duct; 6a ... Gutter part; 6x ... Duct discharge part 8, 8B, 608 ... bus bar holder 9 ... circuit board 10 ... sealing plate 11 ... gas exhaust valve 12 ... gas exhaust port 13 ... electrode terminals 14, 14B, 14C ... bus bars 15, 15B ... electrode holes 16 ... positioning guide 17 ... insulating part 18 ... Guide hole 19 ... Protruding holder projection; 19B ... Guide projection 20 ... Top cover 24 ... Open window 50 ... Spacer 52 ... Welding ring 53 ... Ring hole 60 ... Holder projection 81 ... Battery pack 82 ... Battery unit 84 ... Power controller 85 ... Parallel connection switch 90 ... Vehicle main body 93 ... Motor 94 ... Generator 95 ... DC / AC inverter 96 ... Engine 97 ... Wheel 150 ... battery cell 1508 ... bus bar holder 1513 ... electrode terminal 1514 ... bus bar 1516 ... wall EV, HV ... vehicle LD ... load CP ... charging power supply DS ... discharge switch CS ... charge switch OL ... output line HT ... host device DI ... pack Input / output terminal; DA ... Pack abnormal output terminal; DO ... Pack connection terminal

Claims (13)

  1.  一対の電極端子を備える複数の電池セルと、
     隣接する電池セルの電極端子を接続する導電性のバスバーと、
     前記複数の電池セルを積層した電池積層体の上面に固定されると共に、前記バスバーを位置決めするための絶縁性のバスバーホルダと
    を備える電源装置であって、
     前記バスバーは、該バスバーと前記電池積層体の上面との間に前記バスバーホルダを挟んだ状態で、前記電極端子とレーザ溶接により固定されており、
     前記バスバーホルダは、前記バスバーを前記電極端子と固定する姿勢に位置決めするためのホルダ突出部を備えており、
     前記ホルダ突出部の高さが、前記バスバーのレーザ溶接された位置から、レーザ溶接によって飛翔するスパッタの飛翔する角度よりも低くなるように形成されてなることを特徴とする電源装置。
    A plurality of battery cells comprising a pair of electrode terminals;
    A conductive bus bar connecting the electrode terminals of adjacent battery cells;
    A power supply device that is fixed to the upper surface of the battery stack in which the plurality of battery cells are stacked and includes an insulating bus bar holder for positioning the bus bar,
    The bus bar is fixed by laser welding with the electrode terminal in a state where the bus bar holder is sandwiched between the bus bar and the upper surface of the battery stack,
    The bus bar holder includes a holder protrusion for positioning the bus bar in a posture to fix the bus bar to the electrode terminal,
    The power supply device, wherein the height of the holder protrusion is formed to be lower than the angle at which the sputters fly by laser welding from the laser welded position of the bus bar.
  2.  請求項1に記載の電源装置であって、
     前記バスバーは、前記電極端子をそれぞれ挿入するための電極穴を複数開口しており、
     前記電極端子を前記電極穴に挿入した状態で、少なくとも一の前記電極穴と電極端子とが接触する部分を溶接してなることを特徴とする電源装置。
    The power supply device according to claim 1,
    The bus bar has a plurality of electrode holes for inserting the electrode terminals,
    A power supply apparatus comprising: welding a portion where at least one of the electrode hole and the electrode terminal is in contact with the electrode terminal inserted into the electrode hole.
  3.  請求項1又は2に記載の電源装置であって、
     前記電極穴の少なくとも一が長穴状に開口されており、
     電源装置はさらに、中心にリング穴を開口させると共に、前記バスバーの電極穴に前記電極端子を挿通した状態で、さらに該電極端子をリング穴に挿通させる溶接リングを備えており、
     前記溶接リングの外周と前記バスバーとの接触部分、及び前記溶接リングのリング穴と前記電極端子との接触部分がレーザ溶接にて固定されてなることを特徴とする電源装置。
    The power supply device according to claim 1 or 2,
    At least one of the electrode holes is opened in a long hole shape,
    The power supply device further includes a welding ring that opens a ring hole in the center and further inserts the electrode terminal into the ring hole in a state where the electrode terminal is inserted into the electrode hole of the bus bar.
    A power supply device, wherein a contact portion between the outer periphery of the weld ring and the bus bar and a contact portion between a ring hole of the weld ring and the electrode terminal are fixed by laser welding.
  4.  請求項1~3のいずれか一に記載の電源装置であって、
     前記バスバーと前記電極端子とのレーザ溶接位置又は前記バスバーと溶接リングとのレーザ溶接位置を基準位置とし、該基準位置から水平方向にβだけ離れた特定の位置から、水平方向に対し所定の角度αをなす範囲内に含まれるように、前記ホルダ突出部が形成されてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 3,
    The laser welding position between the bus bar and the electrode terminal or the laser welding position between the bus bar and the welding ring is used as a reference position, and a predetermined angle with respect to the horizontal direction from a specific position that is separated by β in the horizontal direction from the reference position. The power supply device, wherein the holder protrusion is formed so as to be included in a range forming α.
  5.  請求項4に記載の電源装置であって、
     β=0~3mm、α=30°~60°の範囲であることを特徴とする電源装置。
    The power supply device according to claim 4,
    A power supply device characterized in that β = 0 to 3 mm and α = 30 ° to 60 °.
  6.  請求項1から5のいずれか一に記載の電源装置であって、
     前記ホルダ突出部は、前記バスバーを囲むように形成された位置決めガイドであることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 5,
    The power supply device, wherein the holder protruding portion is a positioning guide formed so as to surround the bus bar.
  7.  請求項1から5のいずれか一に記載の電源装置であって、
     前記ホルダ突出部が、前記バスバーを貫通する突起状に形成され、
     前記バスバーは、前記ホルダ突出部を挿入するガイド穴を開口してなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 5,
    The holder protrusion is formed in a protruding shape penetrating the bus bar;
    The bus bar is formed by opening a guide hole into which the holder protruding portion is inserted.
  8.  請求項1から7のいずれか一に記載の電源装置を備える電動車両であって、
     前記電源装置から電力供給される走行用のモータと、
     前記電源装置及び前記モータを搭載してなる車両本体と、
     前記モータで駆動されて前記車両本体を走行させる車輪と
    を備えることを特徴とする電動車両。
    An electric vehicle comprising the power supply device according to any one of claims 1 to 7,
    A traveling motor powered by the power supply device;
    A vehicle body on which the power supply device and the motor are mounted;
    An electric vehicle comprising: wheels driven by the motor to cause the vehicle body to travel.
  9.  請求項1から7のいずれか一に記載の電源装置を備える蓄電装置であって、
     前記電源装置への充放電を制御する電源コントローラを備えており、
     前記電源コントローラでもって、外部からの電力により前記電源装置への充電を可能とすると共に、前記電源装置に対し充電を行うよう制御可能としてなることを特徴とする蓄電装置。
    A power storage device comprising the power supply device according to any one of claims 1 to 7,
    A power supply controller for controlling charging and discharging of the power supply device;
    The power storage device, wherein the power supply controller can charge the power supply device with electric power from the outside and can be controlled to charge the power supply device.
  10.  電極端子を備える複数の電池セルと、
     各電池セルの電極端子同士を接続するための、電極穴を複数開口した導電性のバスバーと、
     前記複数の電池セルを積層した電池積層体の上面に固定される、前記電極端子を突出させる開口窓を設けた絶縁性のバスバーホルダと
    を備える電源装置の製造方法であって、
     前記電池セルの上面に前記バスバーホルダを、前記電極端子が前記開口窓から突出させる位置にて配置すると共に、前記バスバーホルダの上面に、前記バスバーを、各電極端子が電極穴からそれぞれ突出されるように、前記電池セルの上面と前記バスバーとの間に、
    前記バスバーホルダを挟み込む工程と、
     電極穴と電極端子とが接触する部分の少なくとも一部を、レーザ溶接して固定する工程と
    を含み、
     前記バスバーと電極端子の溶接位置から水平方向にβだけ離れた位置から、水平方向に対し所定の角度αをなす範囲内に含まれるように、前記ホルダ突出部が形成されており、
     β=0~3mm、α=30°~60°の範囲であることを特徴とする電源装置の製造方法。
    A plurality of battery cells comprising electrode terminals;
    A conductive bus bar having a plurality of electrode holes for connecting the electrode terminals of each battery cell;
    A method of manufacturing a power supply device comprising: an insulating bus bar holder provided with an opening window for projecting the electrode terminal, which is fixed to an upper surface of a battery stack in which the plurality of battery cells are stacked,
    The bus bar holder is disposed on the upper surface of the battery cell at a position where the electrode terminal projects from the opening window, and the bus bar is disposed on the upper surface of the bus bar holder, and each electrode terminal projects from the electrode hole. As described above, between the upper surface of the battery cell and the bus bar,
    Sandwiching the bus bar holder;
    A step of laser welding and fixing at least a part of a portion where the electrode hole and the electrode terminal are in contact with each other,
    The holder protruding portion is formed so as to be included in a range that forms a predetermined angle α with respect to the horizontal direction from a position that is separated by β in the horizontal direction from the welding position of the bus bar and the electrode terminal,
    A method of manufacturing a power supply device, wherein β = 0 to 3 mm and α = 30 ° to 60 °.
  11.  電極端子を備える複数の電池セルと、
     各電池セルの電極端子同士を接続するための、電極穴を複数開口した導電性のバスバーと、
     前記複数の電池セルを積層した電池積層体の上面に固定される、前記電極端子を突出させる開口窓を設けた絶縁性のバスバーホルダと
    を備える電源装置の製造方法であって、
     前記電極穴の少なくとも一が長穴状に開口されており、
     電源装置はさらに、中心にリング穴が開口される溶接リングを備えており、
    電源装置の製造方法はさらに、
     前記溶接リングのリング穴に、長穴状に開口された前記電極穴に挿通された状態の電極端子を挿通させる工程と、
     前記溶接リングの外周と前記バスバーとの接触部分、及び前記溶接リングのリング穴と前記電極端子との接触部分を溶接する工程とを含み、
     前記バスバーと前記溶接リングの溶接位置から水平方向にβだけ離れた位置から、水平方向に対し所定の角度αをなす範囲内に含まれるように、前記ホルダ突出部が形成されており、
     β=0~3mm、α=30°~60°の範囲であること特徴とする電源装置の製造方法。
    A plurality of battery cells comprising electrode terminals;
    A conductive bus bar having a plurality of electrode holes for connecting the electrode terminals of each battery cell;
    A method of manufacturing a power supply device comprising: an insulating bus bar holder provided with an opening window for projecting the electrode terminal, which is fixed to an upper surface of a battery stack in which the plurality of battery cells are stacked,
    At least one of the electrode holes is opened in a long hole shape,
    The power supply device further includes a weld ring with a ring hole opened in the center,
    The manufacturing method of the power supply device is further
    Inserting the electrode terminal in a state of being inserted into the electrode hole opened in a long hole shape into the ring hole of the welding ring; and
    Welding the contact portion between the outer periphery of the weld ring and the bus bar, and the contact portion between the ring hole of the weld ring and the electrode terminal,
    The holder protrusion is formed so as to be included in a range that forms a predetermined angle α with respect to the horizontal direction from a position that is separated by β in the horizontal direction from the welding position of the bus bar and the welding ring,
    A method of manufacturing a power supply device, wherein β = 0 to 3 mm and α = 30 ° to 60 °.
  12.  請求項10又は11に記載の電源装置の製造方法であって、
     前記レーザ溶接が、パルス発振により行われることを特徴とする電源装置の製造方法。
    It is a manufacturing method of the power supply device according to claim 10 or 11,
    A method of manufacturing a power supply device, wherein the laser welding is performed by pulse oscillation.
  13.  請求項10から12のいずれか一に記載の電源装置の製造方法であって、
     前記レーザ溶接が、固体レーザ加工機により行われることを特徴とする電源装置の製造方法。
    It is a manufacturing method of the power supply device according to any one of claims 10 to 12,
    The method of manufacturing a power supply device, wherein the laser welding is performed by a solid-state laser processing machine.
PCT/JP2013/005077 2012-08-30 2013-08-28 Power source device and electric vehicle equipped with power source device, electricity storage device and method for manufacturing power source device WO2014034106A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-189741 2012-08-30
JP2012189741A JP2015207340A (en) 2012-08-30 2012-08-30 Power unit, electric vehicle with power unit, power storage device, and manufacturing method of power unit

Publications (1)

Publication Number Publication Date
WO2014034106A1 true WO2014034106A1 (en) 2014-03-06

Family

ID=50182941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005077 WO2014034106A1 (en) 2012-08-30 2013-08-28 Power source device and electric vehicle equipped with power source device, electricity storage device and method for manufacturing power source device

Country Status (2)

Country Link
JP (1) JP2015207340A (en)
WO (1) WO2014034106A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157268A1 (en) * 2015-03-31 2016-10-06 三洋電機株式会社 Battery system
WO2016182610A1 (en) * 2015-05-11 2016-11-17 Johnson Controls Technology Company Features for preventing short circuit in a battery module
CN107251270A (en) * 2015-03-31 2017-10-13 三洋电机株式会社 Battery system
CN109148743A (en) * 2018-09-05 2019-01-04 昆山金鑫新能源股份有限公司 Battery modules
EP3832752A4 (en) * 2018-07-31 2021-10-20 SANYO Electric Co., Ltd. Power supply device, vehicle having same, and buffer
US11283099B2 (en) 2017-12-13 2022-03-22 Panasonic Intellectual Property Management Co., Ltd. Battery pack
CN115053386A (en) * 2020-03-31 2022-09-13 三洋电机株式会社 Power supply device, vehicle provided with same, and power storage device
DE102016222703B4 (en) 2015-11-20 2023-10-19 Yazaki Corporation Busbar support structure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6220536B2 (en) * 2013-03-25 2017-10-25 矢崎総業株式会社 Duct holding structure of battery assembly
WO2015019570A1 (en) * 2013-08-08 2015-02-12 パナソニックIpマネジメント株式会社 Battery unit
JP6611820B2 (en) * 2015-12-04 2019-11-27 日立オートモティブシステムズ株式会社 Assembled battery
WO2017098838A1 (en) * 2015-12-07 2017-06-15 日立オートモティブシステムズ株式会社 Battery pack
JP6570568B2 (en) * 2017-03-14 2019-09-04 株式会社オートネットワーク技術研究所 Wiring module
CN207183332U (en) * 2017-09-06 2018-04-03 宁德时代新能源科技股份有限公司 Battery modules
CN112335114B (en) * 2018-06-26 2023-12-22 三洋电机株式会社 Battery system, electric vehicle having battery system, and power storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055882A (en) * 2008-08-27 2010-03-11 Toshiba Corp Battery pack
JP2011159445A (en) * 2010-01-29 2011-08-18 Toshiba Corp Battery device and inter-terminal connection method of the same
JP2012038703A (en) * 2010-07-14 2012-02-23 Sanyo Electric Co Ltd Prismatic sealed secondary battery and method for manufacturing the same
WO2012043593A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Battery system
WO2012043578A1 (en) * 2010-09-30 2012-04-05 株式会社Gsユアサ Battery and production method for battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055882A (en) * 2008-08-27 2010-03-11 Toshiba Corp Battery pack
JP2011159445A (en) * 2010-01-29 2011-08-18 Toshiba Corp Battery device and inter-terminal connection method of the same
JP2012038703A (en) * 2010-07-14 2012-02-23 Sanyo Electric Co Ltd Prismatic sealed secondary battery and method for manufacturing the same
WO2012043593A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Battery system
WO2012043578A1 (en) * 2010-09-30 2012-04-05 株式会社Gsユアサ Battery and production method for battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713364A (en) * 2015-03-31 2021-04-27 三洋电机株式会社 Battery system
CN107251270B (en) * 2015-03-31 2021-01-26 三洋电机株式会社 Battery system
JPWO2016157268A1 (en) * 2015-03-31 2017-09-28 三洋電機株式会社 Battery system
CN107251270A (en) * 2015-03-31 2017-10-13 三洋电机株式会社 Battery system
US20170365827A1 (en) * 2015-03-31 2017-12-21 Sanyo Electric Co., Ltd. Battery system
US20170365838A1 (en) * 2015-03-31 2017-12-21 Sanyo Electric Co., Ltd. Battery system
WO2016157268A1 (en) * 2015-03-31 2016-10-06 三洋電機株式会社 Battery system
US10601014B2 (en) * 2015-03-31 2020-03-24 Sanyo Electric Co., Ltd. Battery system for laser-welding a busbar to electrode terminals and connecting battery cells in a low resistance state
WO2016182610A1 (en) * 2015-05-11 2016-11-17 Johnson Controls Technology Company Features for preventing short circuit in a battery module
DE102016222703B4 (en) 2015-11-20 2023-10-19 Yazaki Corporation Busbar support structure
US11283099B2 (en) 2017-12-13 2022-03-22 Panasonic Intellectual Property Management Co., Ltd. Battery pack
EP3832752A4 (en) * 2018-07-31 2021-10-20 SANYO Electric Co., Ltd. Power supply device, vehicle having same, and buffer
CN109148743A (en) * 2018-09-05 2019-01-04 昆山金鑫新能源股份有限公司 Battery modules
CN109148743B (en) * 2018-09-05 2024-02-23 昆山金鑫新能源科技股份有限公司 Battery module
CN115053386A (en) * 2020-03-31 2022-09-13 三洋电机株式会社 Power supply device, vehicle provided with same, and power storage device

Also Published As

Publication number Publication date
JP2015207340A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
WO2014034106A1 (en) Power source device and electric vehicle equipped with power source device, electricity storage device and method for manufacturing power source device
JP6239523B2 (en) Power supply device, electric vehicle including power supply device, power storage device, and method of manufacturing power supply device
KR101271567B1 (en) Battery Module of Structure Having Fixing Member Inserted into Through-Hole of Plates and Battery Pack Employed with the Same
EP2988344B1 (en) Battery module having novel structure and battery pack comprising same
WO2014024430A1 (en) Battery pack, electric vehicle provided with same, and power storage device
JP6234929B2 (en) Power supply device, vehicle equipped with power supply device, power storage device, and method of manufacturing power supply device
JP6151254B2 (en) Power supply device, electric vehicle including the same, and power storage device
JP6158474B2 (en) Secondary battery
KR101276186B1 (en) Voltage Sensing Assembly and Battery Module Employed with the Same
KR101165503B1 (en) Rechargeable battery
WO2014024448A1 (en) Battery pack, electric vehicle provided with same, and power storage device
KR20150062777A (en) Battery module and battery pack including the same
KR20150062743A (en) Battery module and battery pack including the same
JP6328842B2 (en) Power supply device and vehicle equipped with the same
EP3101714B1 (en) Battery module having voltage sensing member having receptacle structure
WO2014024450A1 (en) Power source device, electric vehicle provided with same, and electricity storage device
KR20130110943A (en) Battery module of novel structure and battery pack comprising the same
KR20160094909A (en) Battery module and battery pack including the same
JP2020513661A (en) Battery module
JP2013114954A (en) Power supply unit and vehicle and power storage device incorporating the same
WO2019235173A1 (en) Battery module and vehicle equipped with same
CN113614996B (en) Power supply device, electric vehicle provided with power supply device, and power storage device
KR101810660B1 (en) Battery Module Having Electrode Terminal Supporting Part
KR101658587B1 (en) Lithium Secondary Battery and Battery Pack Comprising The Same
KR102371373B1 (en) Battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP