JP2015185459A - electrode manufacturing method - Google Patents

electrode manufacturing method Download PDF

Info

Publication number
JP2015185459A
JP2015185459A JP2014062388A JP2014062388A JP2015185459A JP 2015185459 A JP2015185459 A JP 2015185459A JP 2014062388 A JP2014062388 A JP 2014062388A JP 2014062388 A JP2014062388 A JP 2014062388A JP 2015185459 A JP2015185459 A JP 2015185459A
Authority
JP
Japan
Prior art keywords
electrode
negative electrode
lithium
occluded
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014062388A
Other languages
Japanese (ja)
Other versions
JP6341366B2 (en
Inventor
嘉夫 田川
Yoshio Tagawa
嘉夫 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2014062388A priority Critical patent/JP6341366B2/en
Publication of JP2015185459A publication Critical patent/JP2015185459A/en
Application granted granted Critical
Publication of JP6341366B2 publication Critical patent/JP6341366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an electrode whose deterioration is suppressed due to great suppression of expansion and contraction even if occlusion and discharge of Li are repeated.SOLUTION: An electrode material 21 in a state where Li is occluded and expanded is finely crushed to produce finely crushed materials from which stress is removed, the finely crushed materials in the state where the stress is removed are mixed with each other to make arrangements of Li uniform, thereby manufacturing a negative electrode 12.

Description

本発明は、二次電池の負極を作製するための電極作製方法に関する。   The present invention relates to an electrode manufacturing method for manufacturing a negative electrode of a secondary battery.

電気自動車やプラグインハイブリッド自動車等の電動車両に搭載されているモーター駆動用のバッテリとして、リチウム二次電池等の二次電池が用いられている。二次電池は、充電を行うと正極からリチウムが放出されて負極に吸蔵され、放電時には、負極からリチウムが放出されて正極に吸蔵される。   A secondary battery such as a lithium secondary battery is used as a battery for driving a motor mounted on an electric vehicle such as an electric vehicle or a plug-in hybrid vehicle. When the secondary battery is charged, lithium is released from the positive electrode and stored in the negative electrode, and during discharge, lithium is released from the negative electrode and stored in the positive electrode.

二次電池の負極は、充電時にリチウムが吸蔵されて膨張し、放電時にリチウムが放出されて収縮することになる。このため、充電、放電を繰り返すことで、膨張、収縮が繰り返され、構造が弱くなる部位が生じる虞があった。即ち、リチウムを吸蔵できる量(充電量)が低下し、リチウムの吸蔵、放出の繰り返しに耐え得る回数には限界があるのが現状であった。   In the negative electrode of the secondary battery, lithium is occluded and expanded during charging, and lithium is released and contracted during discharging. For this reason, by repeating charging and discharging, there is a possibility that a portion where expansion and contraction are repeated and the structure becomes weak may occur. That is, the amount of lithium that can be occluded (amount of charge) is reduced, and there is a limit to the number of times that lithium can be stored and released repeatedly.

正極と負極の可逆反応により移動するリチウム量によって電池容量が決まるため、例えば、負極を構成する電極材として、リチウムを多く吸蔵できる材料が検討されている。リチウムを多く吸蔵できる材料は、膨張の割合が高いため、膨張と収縮の繰り返しにより、充電量が低下する割合が高くなることが考えられ、劣化が生じやすくなる虞があった。   Since the battery capacity is determined by the amount of lithium moving due to the reversible reaction between the positive electrode and the negative electrode, for example, a material that can occlude a large amount of lithium has been studied as an electrode material constituting the negative electrode. A material that can occlude a large amount of lithium has a high expansion rate. Therefore, it is conceivable that the rate of decrease in the charge amount is increased due to repeated expansion and contraction, and there is a risk of deterioration.

負極を作製する方法として、リチウムを含む材料(炭素質材料、珪素酸化物粉末)を用いて負極を形成する技術が従来から知られている(例えば、特許文献1、2参照)。特許文献1、2で開示された技術は、負極の材料に予めリチウムを固定しておくことで、正極から放出されたリチウムを負極で吸蔵した際に、吸蔵したリチウムが負極に固定されずに放電時に確実に放出されるようにしたものである。   As a method for producing a negative electrode, a technique for forming a negative electrode using a material containing lithium (carbonaceous material, silicon oxide powder) has been conventionally known (see, for example, Patent Documents 1 and 2). The techniques disclosed in Patent Documents 1 and 2 are such that lithium is fixed to the negative electrode material in advance, so that when the lithium released from the positive electrode is occluded by the negative electrode, the occluded lithium is not fixed to the negative electrode. It is ensured to be discharged during discharge.

つまり、従来から知られている技術は、リチウムを負極にプリドープし、充電時に吸蔵されたリチウムの電極材への固定を抑制するための技術であり、負極において、充電時のリチウムの吸蔵量に対し、放電時のリチウムの放出量が減少しないようにするための技術である。   In other words, a conventionally known technique is a technique for pre-doping lithium into the negative electrode and suppressing the fixation of lithium occluded during charging to the electrode material. In the negative electrode, the amount of lithium occluded during charging is reduced. On the other hand, this is a technique for preventing the amount of lithium released during discharge from decreasing.

このため、特許文献1、2で開示された技術は、可逆反応により移動するリチウムを有効に電池容量に活かすことができる技術であり、負極の膨張、収縮による劣化を抑制する技術とは異なる技術であり、負極の劣化を抑制することはできない。   For this reason, the technologies disclosed in Patent Documents 1 and 2 are technologies that can effectively utilize lithium moving by reversible reaction in battery capacity, and are different from technologies that suppress deterioration due to expansion and contraction of the negative electrode. Therefore, deterioration of the negative electrode cannot be suppressed.

特開平6−44958号公報JP-A-6-44958 特開2013−114820号公報JP2013-114820A

本発明は上記状況に鑑みてなされたもので、リチウムの吸蔵、放出を繰り返しても、膨張、収縮が大幅に抑制されて劣化が抑制される負極を作製することができる電極作製方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an electrode manufacturing method capable of manufacturing a negative electrode in which expansion and contraction are greatly suppressed and deterioration is suppressed even when lithium insertion and extraction are repeated. For the purpose.

上記目的を達成するための請求項1に係る本発明の電極作製方法は、正極と負極の間で可逆反応によりリチウムを吸蔵、放出させて充放電を行う二次電池の負極を作製する電極作製方法であって、放出されるためのリチウムを負極となる電極材に吸蔵させ、リチウムを吸蔵させた状態の電極材を粉砕し、粉砕物を用いて負極を作製したことを特徴とする。   In order to achieve the above object, the electrode manufacturing method of the present invention according to claim 1 is an electrode manufacturing method for manufacturing a negative electrode of a secondary battery that performs charge and discharge by inserting and extracting lithium by a reversible reaction between the positive electrode and the negative electrode. A method is characterized in that lithium to be released is occluded in an electrode material serving as a negative electrode, the electrode material in a state where lithium is occluded is pulverized, and a negative electrode is produced using the pulverized product.

請求項1に係る本発明では、リチウムを吸蔵させて膨張した状態の電極材を粉砕することで、応力が除去された粉砕物となり、応力が除去された状態の粉砕物を混連する等してリチウムの配置を均一な状態にして負極を作製することができる。このため、作製された負極は、リチウムの配置が均一で強固な状態の電極となり、強固な状態でリチウムが放出され、強固な状態のままでリチウムが吸蔵される。   In the present invention according to claim 1, by pulverizing the electrode material in an expanded state with occlusion of lithium, a pulverized product from which stress has been removed is obtained, and the pulverized product from which stress has been removed is mixed. Thus, the negative electrode can be manufactured with a uniform lithium arrangement. For this reason, the produced negative electrode becomes an electrode having a uniform and strong lithium arrangement, lithium is released in a strong state, and lithium is occluded in a strong state.

従って、リチウムの吸蔵、放出を繰り返しても、膨張、収縮が大幅に抑制されて劣化が抑制される負極を作製することができる。   Therefore, even when lithium insertion and extraction is repeated, a negative electrode in which the expansion and contraction are significantly suppressed and deterioration is suppressed can be manufactured.

そして、請求項2に係る本発明の電極作製方法は、請求項1に記載の電極作製方法において、前記粉砕される電極材は、所定量のリチウムが含有されたものであることを特徴とする。   The electrode manufacturing method of the present invention according to claim 2 is the electrode manufacturing method according to claim 1, wherein the pulverized electrode material contains a predetermined amount of lithium. .

請求項2に係る本発明では、粉砕される電極材に所定量のリチウムが含有されているので、十分な量のリチウムを吸蔵させた電極材を粉砕してリチウムの配置を均一な状態にすることができる。所定量のリチウムは、例えば、満充電の場合のリチウムの量とされ、所定量のリチウムが含有されていることの判断は、例えば、リチウムの吸蔵時間(充電時間)で判断することができる。   In the present invention according to claim 2, since a predetermined amount of lithium is contained in the electrode material to be pulverized, the electrode material in which a sufficient amount of lithium is occluded is pulverized to make the arrangement of lithium uniform. be able to. The predetermined amount of lithium is, for example, the amount of lithium in a fully charged state, and the determination that the predetermined amount of lithium is contained can be determined by, for example, the lithium storage time (charging time).

また、請求項3に係る本発明の電極作製方法は、請求項2に記載の電極作製方法において、前記所定量のリチウムが含有されていることの判断は、前記電極材が膨張したことで行うことを特徴とする。   According to a third aspect of the present invention, in the electrode manufacturing method of the second aspect, the determination that the predetermined amount of lithium is contained is made by the expansion of the electrode material. It is characterized by that.

請求項3に係る本発明では、電極材が膨張したことにより所定量のリチウムが含有されていることが判断される。電極材の膨張の判断は、膨張率の状況を計測することで行うことができる。   In the present invention according to claim 3, it is determined that a predetermined amount of lithium is contained due to expansion of the electrode material. The determination of the expansion of the electrode material can be made by measuring the state of the expansion coefficient.

また、請求項4に係る本発明の電極作製方法は、請求項1から請求項3のいずれか一項に記載の電極作製方法において、放出されるためのリチウムは、二次電池の正極から充電により移されたリチウムを含むことを特徴とする。   The electrode manufacturing method of the present invention according to claim 4 is the electrode manufacturing method according to any one of claims 1 to 3, wherein lithium to be discharged is charged from a positive electrode of a secondary battery. It contains lithium transferred by the above.

請求項4に係る本発明では、負極の電極材に吸蔵されるリチウムは、二次電池の正極から充電により移されたリチウムを含むため、充電でリチウムが放出された正極と対にして電池を構成することができる。   In the present invention according to claim 4, since the lithium occluded in the electrode material of the negative electrode includes lithium transferred from the positive electrode of the secondary battery by charging, the battery is paired with the positive electrode from which lithium has been released by charging. Can be configured.

因みに、特願平11−307129号公報には、正極用部材からリチウムイオンを離脱させ、離脱したリチウムイオンを負極部材に吸蔵させて二次電池を製造する方法が開示され、擬似の負極部材にリチウムイオンを吸蔵させることにより、負極部材の必要以上の膨張を抑制して劣化の少ない二次電池を得るものである。しかし、負極部材自体の劣化を抑制するための製造方法の技術ではないため、本願発明の電極製造方法とは相違する技術である。   Incidentally, Japanese Patent Application No. 11-307129 discloses a method for producing a secondary battery by detaching lithium ions from a positive electrode member and occluding the separated lithium ions in a negative electrode member. By occluding lithium ions, a secondary battery with little deterioration is obtained by suppressing the expansion of the negative electrode member more than necessary. However, since it is not a technique of a manufacturing method for suppressing deterioration of the negative electrode member itself, it is a technique different from the electrode manufacturing method of the present invention.

また、請求項5に係る本発明の電極作製方法は、請求項1から請求項4のいずれか一項に記載の電極作製方法において、前記電極材は、シリコン、スズ、アルミニウムの少なくとも一つを含むことを特徴とする。   The electrode manufacturing method of the present invention according to claim 5 is the electrode manufacturing method according to any one of claims 1 to 4, wherein the electrode material is made of at least one of silicon, tin, and aluminum. It is characterized by including.

請求項5に係る本発明では、膨張の割合が大きい材料を電極材として用いても、膨張、収縮を大幅に抑制することができる。   In this invention which concerns on Claim 5, even if it uses a material with a large expansion | swelling ratio as an electrode material, expansion | swelling and shrinkage | contraction can be suppressed significantly.

本発明の電極作製方法は、リチウムの吸蔵、放出を繰り返しても、膨張、収縮が大幅に抑制されて劣化が抑制される負極を作製することが可能になる。   The electrode production method of the present invention makes it possible to produce a negative electrode in which expansion and contraction are greatly suppressed and deterioration is suppressed even when lithium insertion and extraction are repeated.

電気自動車の概念図である。It is a conceptual diagram of an electric vehicle. リチウム二次電池の構成を概念的に説明する断面図である。It is sectional drawing which illustrates notionally the structure of a lithium secondary battery. 本発明の一実施例に係る電極作製方法の工程説明図である。It is process explanatory drawing of the electrode preparation method which concerns on one Example of this invention. 本発明の一実施例に係る電極作製方法の工程を模式的に表す説明図である。It is explanatory drawing which represents typically the process of the electrode preparation method which concerns on one Example of this invention. 負極の膨張過程を比較する説明図である。It is explanatory drawing which compares the expansion process of a negative electrode. 本発明の一実施例に係る電極作製方法で作製した電極の容量と充・放電回数との関係を表すグラフである。It is a graph showing the relationship between the capacity | capacitance of the electrode produced with the electrode production method which concerns on one Example of this invention, and the frequency | count of charging / discharging. 電極作製における正極との関係の説明図である。It is explanatory drawing of the relationship with the positive electrode in electrode preparation.

図1、図2に基づいてリチウム二次電池(二次電池)の状況を説明する。   The state of the lithium secondary battery (secondary battery) will be described with reference to FIGS.

図1には本発明の一実施例に係る電極作製方法により作製された負極を備えた二次電池が搭載される電気自動車の概念、図2には二次電池の構成を概念的に説明する断面を示してある。   FIG. 1 conceptually illustrates an electric vehicle on which a secondary battery including a negative electrode manufactured by an electrode manufacturing method according to an embodiment of the present invention is mounted, and FIG. 2 conceptually illustrates the configuration of the secondary battery. A cross section is shown.

図1に示すように、車載用の電池パック1は、電気自動車2の床下に搭載され、電気自動車2の走行用モータ等に電力を供給するようになっている。電池パック1には、リチウム二次電池(二次電池)3がモジュール化されて多数個収容されている。   As shown in FIG. 1, an in-vehicle battery pack 1 is mounted under the floor of an electric vehicle 2 and supplies power to a traveling motor or the like of the electric vehicle 2. In the battery pack 1, a large number of lithium secondary batteries (secondary batteries) 3 are modularized and accommodated.

図2に示すように、二次電池3は、ケース5内に負極側の電極体6及び正極側の電極体7が収納され、電極体6、7は電解液8に浸漬されている。負極側の電極体6は、集電箔11に負極電極材が塗布されて負極の電極(負極)12とされ、集電箔11が負極端子13に接続されている。正極側の電極体7は、集電箔15に正極電極材が塗布されて電極(正極)16とされ、集電箔15が正極端子17に接続されている。   As shown in FIG. 2, in the secondary battery 3, a negative electrode body 6 and a positive electrode body 7 are housed in a case 5, and the electrode bodies 6 and 7 are immersed in an electrolytic solution 8. In the negative electrode body 6, a negative electrode material is applied to a current collector foil 11 to form a negative electrode (negative electrode) 12, and the current collector foil 11 is connected to a negative electrode terminal 13. The positive electrode body 7 has a current collector foil 15 coated with a positive electrode material to form an electrode (positive electrode) 16, and the current collector foil 15 is connected to a positive electrode terminal 17.

電極材12(負極)は、例えば、シリコン(Si)、スズ(Sn)、アルミニウム(Al)等を含む合金系の電極材が用いられる。Si、Sn、Al等を含む合金系の電極材は、膨張することで多くのリチウム(Li)を吸蔵し、大容量の電池とすることができる。   As the electrode material 12 (negative electrode), for example, an alloy-based electrode material containing silicon (Si), tin (Sn), aluminum (Al), or the like is used. An alloy-based electrode material containing Si, Sn, Al, or the like can store a large amount of lithium (Li) by expansion, and can be a large-capacity battery.

尚、負極12の電極材としては、例えば、黒鉛(人造、天然)、ソフトカーボン、または、ハードカーボン等の非晶質炭素材料、酸化物系負極材料を適用することが可能である。   In addition, as an electrode material of the negative electrode 12, for example, an amorphous carbon material such as graphite (artificial or natural), soft carbon, or hard carbon, or an oxide-based negative electrode material can be applied.

二次電池3は、正極と負極の可逆反応により移動するリチウム量によって電池容量が決まるため、負極12の電極材として、Liを多く吸蔵できるSi、Al、Sn等を含む合金系の電極材が用いられている。Liを多く吸蔵できる電極材は、膨張の割合が高いため、膨張と収縮の繰り返しを行うと、充電量が低下する割合が高くなり、劣化が生じやすくなる。   Since the battery capacity of the secondary battery 3 is determined by the amount of lithium moving due to the reversible reaction between the positive electrode and the negative electrode, an alloy-based electrode material containing Si, Al, Sn, or the like that can absorb a large amount of Li is used as the electrode material of the negative electrode 12. It is used. An electrode material that can occlude a large amount of Li has a high rate of expansion. Therefore, when the expansion and contraction are repeated, the rate of decrease in the charge amount increases and the deterioration tends to occur.

このため、Liの吸蔵、放出を繰り返しても、膨張、収縮が大幅に抑制されて劣化が抑制される電極を作製できる作製方法により、負極12を作製している。   For this reason, the negative electrode 12 is produced by a production method capable of producing an electrode in which the expansion and contraction are greatly suppressed and deterioration is suppressed even when the insertion and extraction of Li are repeated.

図3から図7に基づいて本発明の一実施例に係る電極作製方法を説明する。   An electrode manufacturing method according to an embodiment of the present invention will be described with reference to FIGS.

図3には本発明の一実施例に係る電極作製方法の工程の概略の状況、図4には本発明の一実施例に係る電極作製方法の工程を模式的に表した状況、図5には電極(負極)の膨張過程を従来の作成方法と比較して模式的に表した状況、図6には本発明の一実施例に係る電極作製方法で作製した電極の劣化の抑制を説明するために、負極の容量と充・放電回数との関係を、図7には電極作製における正極との関係の態様を説明した状況示してある。   FIG. 3 shows a schematic situation of an electrode manufacturing method according to an embodiment of the present invention, FIG. 4 schematically shows a process of an electrode manufacturing method according to an embodiment of the present invention, and FIG. Is a situation schematically showing the expansion process of the electrode (negative electrode) compared with the conventional preparation method, and FIG. 6 illustrates suppression of deterioration of the electrode produced by the electrode production method according to one embodiment of the present invention. Therefore, the relationship between the capacity of the negative electrode and the number of charge / discharge cycles is shown, and FIG. 7 shows the situation explaining the aspect of the relationship with the positive electrode in electrode fabrication.

図3、図4に基づいて電極の作製の工程を具体的に説明する。   The electrode manufacturing process will be specifically described with reference to FIGS.

図3に示すように、例えば、シリコン(Si)、スズ(Sn)、アルミニウム(Al)等を含む合金系の電極材21にLiを吸蔵させて充電された状態にし、電池化する。そして、膨張率を計測し、例えば、満充電と判断された時に、電池化した電極材21を粉砕する。   As shown in FIG. 3, for example, Li is occluded in an alloy-based electrode material 21 containing silicon (Si), tin (Sn), aluminum (Al), and the like, and is charged to form a battery. Then, the expansion rate is measured. For example, when it is determined that the battery is fully charged, the battery-made electrode material 21 is crushed.

つまり、図4に示すように、電極材21と正極となる電極16(正極16)を準備し(a)、充電動作により、正極16に吸蔵されていたLiを放出し、所定量のLiを電極材21に吸蔵させて充電された状態にする(b)。電極材21にLiが吸蔵されることで、電極材21が膨張して応力が加わった状態になる。そして、Liが吸蔵され、膨張して応力が加わった状態の電極材21が粉砕される(c)。   That is, as shown in FIG. 4, the electrode material 21 and the electrode 16 (positive electrode 16) to be the positive electrode are prepared (a), and the Li stored in the positive electrode 16 is released by the charging operation, and a predetermined amount of Li is released. The electrode material 21 is occluded and charged (b). When Li is occluded in the electrode material 21, the electrode material 21 expands and stress is applied. Then, the electrode material 21 in a state where Li is occluded and expands and stress is applied is pulverized (c).

所定量のLiが吸蔵されたかの判断、即ち、所定量のLiが含有されていることの判断は、電極材21の膨張率の状況を計測して行う。計測は、例えば、計測装置の接触子を当接させて膨張の状況を検出する。   The determination as to whether a predetermined amount of Li has been occluded, that is, the determination that a predetermined amount of Li is contained, is made by measuring the state of the expansion rate of the electrode material 21. In the measurement, for example, the state of expansion is detected by bringing a contact of the measuring device into contact.

この場合、電池の充電容量に対する充電残量の比率であるSOCの状態に応じた膨張を検出することにより、所定量のLiが含有されたことを判断することができる。例えば、満充電と定義される割合(例えば、SOCが80%)になったことが、膨張の状況の計測により検出された際に、所定量のLiが含有されたことが判断される。   In this case, it is possible to determine that a predetermined amount of Li has been contained by detecting expansion corresponding to the state of the SOC, which is the ratio of the remaining charge to the charge capacity of the battery. For example, it is determined that a predetermined amount of Li is contained when a ratio defined as full charge (for example, SOC is 80%) is detected by measurement of an expansion state.

図3に示すように、粉砕されて膨張状態のまま応力が解放された所定量のLiを吸蔵した電極材21の粉体を混連し、電極の形状に成形、もしくは、混練物を集電箔や金属板に塗布し、負極12とされて電極が作製される。   As shown in FIG. 3, the powder of the electrode material 21 occluded with a predetermined amount of Li that has been pulverized and released in the expanded state is mixed, and formed into an electrode shape, or the kneaded material is collected. It is applied to a foil or a metal plate to form a negative electrode 12 to produce an electrode.

つまり、図4に示すように、Liが吸蔵され、膨張して応力が加わった状態の電極材21が粉砕されて膨張状態のまま応力が除去された粉体となり(c)、混練されて集電箔や金属板に塗布される等により、電極が作製されて負極12となる(d)。   That is, as shown in FIG. 4, the electrode material 21 in a state where Li is occluded and expanded and stress is applied is pulverized into a powder from which stress is removed in the expanded state (c), and is kneaded and collected. An electrode is produced, for example, by being applied to an electric foil or a metal plate, and becomes the negative electrode 12 (d).

負極12は、膨張して応力が加わった状態の電極材21が粉砕され、混練されているので、Liの配置が均一な状態になり、膨張した状態で応力が除かれた状態になっている(d)。そして、Liが放出された正極16と負極12を対にすることで二次電池3とされる(e)。   In the negative electrode 12, the electrode material 21 in a state where it is expanded and stressed is pulverized and kneaded, so that the arrangement of Li is uniform and the stress is removed in the expanded state. (D). Then, the positive electrode 16 and the negative electrode 12 from which Li is released are paired to form the secondary battery 3 (e).

上述した電極作成方法で作製した負極12は、Liを吸蔵させて膨張した状態の電極材21を粉砕することで、応力が除去された粉砕物となり、応力が除去された状態の粉砕物を混連してLiの配置を均一な状態にして負極12を作製することができる。   The negative electrode 12 produced by the above-described electrode preparation method is pulverized from the stress removed by pulverizing the electrode material 21 in an expanded state by absorbing Li, and the pulverized material from which the stress has been removed is mixed. Continuously, the negative electrode 12 can be manufactured by making the arrangement of Li uniform.

このため、作製された負極12は、Liの配置が均一で強固な状態の電極となり、放電時には、強固な状態でLiが放出され、充電時には、強固な状態のままでLiが吸蔵され、初期状態を超えて膨張することが殆どない。従って、Liの吸蔵、放出を繰り返しても、膨張、収縮が大幅に抑制されて劣化が抑制される負極12を作製することができる。   For this reason, the produced negative electrode 12 becomes an electrode in which the arrangement of Li is uniform and strong, Li is released in a strong state at the time of discharging, and Li is occluded while remaining in a strong state at the time of charging. There is almost no expansion beyond the state. Therefore, even when Li occlusion and release are repeated, it is possible to produce the negative electrode 12 in which expansion and contraction are significantly suppressed and deterioration is suppressed.

図5に基づいて膨張、収縮が大幅に抑制される状況を説明する。   A situation where expansion and contraction are greatly suppressed will be described with reference to FIG.

図5(a)は本発明方法で作製した負極12の充放電の概念図、図5(b)は一般的な負極の充放電の概念図である。   FIG. 5A is a conceptual diagram of charging / discharging of the negative electrode 12 produced by the method of the present invention, and FIG. 5B is a conceptual diagram of charging / discharging of a general negative electrode.

図5(b)に示すように、一般的な電極(負極)31では、充電時には、収縮した状態の電極材にLiが吸蔵されて負極31aとなる。負極31aは、Liが吸蔵されて、収縮した状態から膨張して軟弱な構造の電極となり、Liの配置は不均一な状態となる。   As shown in FIG. 5B, in the general electrode (negative electrode) 31, during charging, Li is occluded in the contracted electrode material to become the negative electrode 31a. In the negative electrode 31a, Li is occluded and expands from a contracted state to become an electrode having a soft structure, and the arrangement of Li is in a non-uniform state.

放電時には、不均一に配置されたLiが放出され、軟弱な構造が残った状態の負極31bとなる(収縮)。そして、負極31bは、Liが抜けた後の部分31cの間の壁部に薄い部位が存在し、Liの吸蔵、放出の繰り返しに耐えることができる回数が限られてしまう。   At the time of discharging, Li arranged unevenly is released, and the negative electrode 31b is left in a state where a soft structure remains (shrinkage). And the negative electrode 31b has a thin site | part in the wall part between the parts 31c after Li escapes, and the frequency | count which can endure repetition of occlusion and discharge | release of Li will be limited.

図5(a)に示すように、本発明方法で作製した負極12は、Liを吸蔵させて膨張した状態の電極材の粉砕物を用いているので、Liの配置が均一な状態の充電状態にある負極12となっている。つまり、収縮した材料が膨張してLiが吸蔵された負極ではなく、強固な構造の電極材にLiが吸蔵されて構成されている。   As shown in FIG. 5 (a), the negative electrode 12 produced by the method of the present invention uses a pulverized electrode material in a state where Li is occluded and expanded, so that the state of charge in a state where Li is uniformly arranged is used. This is the negative electrode 12. That is, Li is occluded by an electrode material having a strong structure, not a negative electrode in which the contracted material expands and Li is occluded.

このため、Liが放出されても、収縮することがなく(膨張)、強固な構造が維持され、膨張、収縮を繰り返すことがなく、Liの吸蔵、放出を繰り返しても劣化が抑制される。   For this reason, even if Li is released, it does not contract (expand), maintains a strong structure, does not repeat expansion and contraction, and deterioration is suppressed even if Li is occluded and released repeatedly.

図6に基づいて、本発明方法で作製した負極12、及び、一般的な負極31の劣化の状況を説明する。   Based on FIG. 6, the deterioration state of the negative electrode 12 produced by the method of the present invention and the general negative electrode 31 will be described.

図6に実線で示すように、本発明方法で作製した負極12は、劣化が抑制されているため、充放電の回数が多くなっても電池の容量は殆ど低下しない。このため、必要容量Qの性能を長期間に亘って維持するためには、必要容量Qよりも僅かに多い容量Q1の負極12を用いればよい。   As shown by the solid line in FIG. 6, since the negative electrode 12 produced by the method of the present invention is suppressed from being deteriorated, the capacity of the battery hardly decreases even when the number of times of charge / discharge increases. For this reason, in order to maintain the performance of the required capacity Q over a long period of time, the negative electrode 12 having a capacity Q1 slightly larger than the required capacity Q may be used.

図6に点線で示すように、一般的な負極31は、充放電の回数が多くなるにしたがい劣化が進行し、電池の容量が低下する。このため、必要容量Qの性能を長期間に亘って維持するためには、必要容量Qよりも大幅に多い容量Q2の負極31を用いる必要がある。   As shown by a dotted line in FIG. 6, the general negative electrode 31 deteriorates as the number of charge / discharge increases, and the battery capacity decreases. For this reason, in order to maintain the performance of the required capacity Q over a long period of time, it is necessary to use the negative electrode 31 having a capacity Q2 that is significantly larger than the required capacity Q.

図6に示したように、本発明方法で作製した負極12は、容量の低下が殆どなく、劣化が抑制されていることがわかる。   As shown in FIG. 6, it can be seen that the negative electrode 12 produced by the method of the present invention has almost no decrease in capacity and the deterioration is suppressed.

図7に基づいて、本発明方法の負極12を作製する際における正極との関係を示し電池を作製する状況を説明する。図において、斜線部分はLiが吸蔵されている状態を示してある。   Based on FIG. 7, the relationship with the positive electrode in producing the negative electrode 12 of the method of the present invention will be described and the situation of producing a battery will be described. In the figure, the hatched portion indicates a state where Li is occluded.

図7(a)に示すように、負極12を作製する際に、電極となる電極材21と電池の正極となる電極16を用いる。電極16に吸蔵されたLiを放出して電極材21に吸蔵させ、粉砕、混練して負極12を作製する。負極12に対し、Liを放出した電極16を正極として電池を構成する。このため、電池を製造する過程で電極16を作製することができる。   As shown in FIG. 7A, when the negative electrode 12 is produced, an electrode material 21 that is an electrode and an electrode 16 that is a positive electrode of the battery are used. Li stored in the electrode 16 is released and stored in the electrode material 21, and pulverized and kneaded to prepare the negative electrode 12. A battery is formed by using the electrode 16 from which Li is released as a positive electrode with respect to the negative electrode 12. For this reason, the electrode 16 can be produced in the process of manufacturing the battery.

図7(b)に示すように、電極となる電極材21と電池の正極となる電極41を用いる。電極41には電極材21の吸蔵量よりも多いLiが吸蔵されている。電極41に吸蔵されたLiの一部を放出して電極材21に吸蔵させ、粉砕、混練して負極12を作製する。電極41にはLiが残った状態になっている。負極12に対し、Liが残された電極41を正極として電池を構成する。   As shown in FIG. 7B, an electrode material 21 to be an electrode and an electrode 41 to be a positive electrode of the battery are used. The electrode 41 stores more Li than the storage amount of the electrode material 21. A part of Li occluded in the electrode 41 is released, occluded in the electrode material 21, and pulverized and kneaded to produce the negative electrode 12. Li is left in the electrode 41. A battery is formed by using the electrode 41 in which Li is left as a positive electrode with respect to the negative electrode 12.

電池の正極には、Liが一部固定されるため、負極12に吸蔵させる量のLiが吸蔵されていると、電池容量が十分に確保できない虞がある。電極材21の吸蔵量よりも多いLiが吸蔵されている電極41を用いて電極材21にLiを吸蔵させることで、固定されるLiが予め吸蔵されている状態の電極41を正極として用い、負極12と組み合わせて電池を構成することができる。   Since a part of Li is fixed to the positive electrode of the battery, if the amount of Li stored in the negative electrode 12 is stored, the battery capacity may not be sufficiently secured. By using the electrode 41 in which more Li is occluded than the amount of occlusion in the electrode material 21 to occlude Li in the electrode material 21, the electrode 41 in a state in which Li to be fixed is occluded in advance is used as a positive electrode. A battery can be configured in combination with the negative electrode 12.

図7(c)に示すように、電極となる電極材21を用い、電解液等、正極以外のLi源からのLiを電極材21に吸蔵させ、粉砕、混練して負極12を作製する。負極12に対し、Liが放出された状態の電極16、もしくは、Liが一部残された状態の41を正極として電池を構成する。   As shown in FIG. 7C, an electrode material 21 to be an electrode is used, Li from an Li source other than the positive electrode, such as an electrolytic solution, is occluded in the electrode material 21, and pulverized and kneaded to produce the negative electrode 12. A battery is configured using the electrode 16 in a state where Li is released or 41 in a state where a part of Li is left as a positive electrode with respect to the negative electrode 12.

尚、図7に示した構成例において、Liを放出した電極16、41を用いずに、別の電極を正極として電池を構成することも可能である。   In the configuration example shown in FIG. 7, it is possible to configure a battery using another electrode as a positive electrode without using the electrodes 16 and 41 from which Li is released.

負極12と正極の組み合わせは任意であり、吸蔵されるLiの量、可逆反応によって放充電の際に移動するLiの量の設定も任意である。つまり、電池の性能などにより、負極12と種々の正極の組み合わせが可能であり、Liの吸蔵状態が任意の電極等を用いて電池を構成することが可能である。   The combination of the negative electrode 12 and the positive electrode is arbitrary, and the amount of Li that is occluded and the amount of Li that is moved during recharging by reversible reaction are also arbitrary. In other words, the negative electrode 12 and various positive electrodes can be combined depending on the performance of the battery, and the battery can be configured using an electrode or the like having an arbitrary Li occlusion state.

本発明の電極作成方法は、Liを吸蔵させて膨張した状態の電極材21を粉砕することで、応力が除去された粉砕物とし、応力が除去された状態の粉砕物を混連してLiの配置を均一な状態にして負極12を作製したので、強固な状態の電極となり、放電時には、強固な状態でLiが放出され、充電時には、強固な状態のままでLiが吸蔵され、初期状態を超えて膨張することがない。   In the electrode manufacturing method of the present invention, the electrode material 21 in an expanded state by occluding Li is pulverized to obtain a pulverized product from which stress has been removed, and the pulverized product from which stress has been removed is mixed to form Li Since the negative electrode 12 was produced in a uniform state, the electrode was in a strong state, Li was released in a strong state at the time of discharging, and Li was occluded while remaining in a strong state at the time of charging. Will not expand beyond.

従って、Liの吸蔵、放出を繰り返しても、膨張、収縮が大幅に抑制されて劣化が抑制される負極12を作製することが可能になる。   Therefore, even when Li occlusion and release are repeated, it is possible to manufacture the negative electrode 12 in which expansion and contraction are significantly suppressed and deterioration is suppressed.

本発明は、二次電池の負極を作製するための電極作製方法の産業分野で利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized in the industrial field | area of the electrode preparation method for producing the negative electrode of a secondary battery.

1 電池パック
2 電気自動車
3 リチウム二次電池(二次電池)
5 ケース
6、7 電極体
8 電解液
11、15 集電箔
12 電極(負極)
13 負極端子
16、41 電極(正極)
17 正極端子
21 電極材
31 負極
DESCRIPTION OF SYMBOLS 1 Battery pack 2 Electric vehicle 3 Lithium secondary battery (secondary battery)
5 Case 6, 7 Electrode body 8 Electrolyte solution 11, 15 Current collector foil 12 Electrode (negative electrode)
13 Negative terminal 16, 41 Electrode (positive electrode)
17 Positive terminal 21 Electrode material 31 Negative electrode

Claims (5)

正極と負極の間で可逆反応によりリチウムを吸蔵、放出させて充放電を行う二次電池の負極を作製する電極作製方法であって、
放出されるためのリチウムを負極となる電極材に吸蔵させ、リチウムを吸蔵させた状態の電極材を粉砕し、粉砕物を用いて負極を作製した
ことを特徴とする電極作製方法。
An electrode production method for producing a negative electrode of a secondary battery that performs charge and discharge by inserting and extracting lithium by a reversible reaction between a positive electrode and a negative electrode,
A method for producing an electrode, characterized in that lithium to be released is occluded in an electrode material serving as a negative electrode, the electrode material in which lithium is occluded is pulverized, and a negative electrode is produced using the pulverized product.
請求項1に記載の電極作製方法において、
前記粉砕される電極材は、所定量のリチウムが含有されたものである
ことを特徴とする電極作製方法。
The electrode manufacturing method according to claim 1,
The electrode material to be pulverized contains a predetermined amount of lithium.
請求項2に記載の電極作製方法において、
前記所定量のリチウムが含有されていることの判断は、前記電極材が膨張したことで行う
ことを特徴とする電極作製方法。
The electrode manufacturing method according to claim 2,
The determination that the predetermined amount of lithium is contained is made by the expansion of the electrode material.
請求項1から請求項3のいずれか一項に記載の電極作製方法において、
放出されるためのリチウムは、二次電池の正極から充電により移されたリチウムを含む
ことを特徴とする電極作製方法。
In the electrode manufacturing method according to any one of claims 1 to 3,
The lithium for release includes lithium transferred by charging from the positive electrode of the secondary battery.
請求項1から請求項4のいずれか一項に記載の電極作製方法において、
前記電極材は、シリコン、スズ、アルミニウムの少なくとも一つを含む
ことを特徴とする電極作製方法。


In the electrode manufacturing method according to any one of claims 1 to 4,
The electrode material includes at least one of silicon, tin, and aluminum.


JP2014062388A 2014-03-25 2014-03-25 Electrode fabrication method Active JP6341366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062388A JP6341366B2 (en) 2014-03-25 2014-03-25 Electrode fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062388A JP6341366B2 (en) 2014-03-25 2014-03-25 Electrode fabrication method

Publications (2)

Publication Number Publication Date
JP2015185459A true JP2015185459A (en) 2015-10-22
JP6341366B2 JP6341366B2 (en) 2018-06-13

Family

ID=54351746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062388A Active JP6341366B2 (en) 2014-03-25 2014-03-25 Electrode fabrication method

Country Status (1)

Country Link
JP (1) JP6341366B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169282A1 (en) * 2011-06-10 2012-12-13 日本電気株式会社 Lithium ion secondary battery
JP2013114820A (en) * 2011-11-25 2013-06-10 National Institute Of Advanced Industrial & Technology Silicon oxide powder, lithium ion secondary battery negative electrode material including the same, lithium ion secondary battery including the material, and method for producing silicon oxide powder for lithium ion secondary battery negative electrode material
WO2013187176A1 (en) * 2012-06-12 2013-12-19 日本電気株式会社 Method for producing lithium ion secondary battery, and lithium ion secondary battery
JP2014103019A (en) * 2012-11-21 2014-06-05 Shin Etsu Chem Co Ltd Negative electrode material for power storage device, electrode for power storage device, power storage device and method for manufacturing them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169282A1 (en) * 2011-06-10 2012-12-13 日本電気株式会社 Lithium ion secondary battery
JP2013114820A (en) * 2011-11-25 2013-06-10 National Institute Of Advanced Industrial & Technology Silicon oxide powder, lithium ion secondary battery negative electrode material including the same, lithium ion secondary battery including the material, and method for producing silicon oxide powder for lithium ion secondary battery negative electrode material
WO2013187176A1 (en) * 2012-06-12 2013-12-19 日本電気株式会社 Method for producing lithium ion secondary battery, and lithium ion secondary battery
JP2014103019A (en) * 2012-11-21 2014-06-05 Shin Etsu Chem Co Ltd Negative electrode material for power storage device, electrode for power storage device, power storage device and method for manufacturing them

Also Published As

Publication number Publication date
JP6341366B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6638227B2 (en) Power storage element deterioration state estimation device, storage element deterioration state estimation method, and power storage system
JP6355552B2 (en) Lithium ion secondary battery charging method and charging control system thereof
JP6500789B2 (en) Control system of secondary battery
JP5207750B2 (en) Alkaline storage battery
JP6897253B2 (en) Negative electrode for lithium ion secondary battery
KR20170071408A (en) All-solid-state battery and method of manufacturing the same
JP6156216B2 (en) Full charge capacity estimation device
JP2013161622A5 (en)
KR101739649B1 (en) Nonaqueous electrolyte rechargeable battery
JP2018501605A (en) Electrode, manufacturing method thereof, electrode manufactured thereby, and secondary battery including the same
JP2008117587A (en) Control valve type lead acid battery
CN107078278B (en) Lithium ion battery
JP6341366B2 (en) Electrode fabrication method
JP2021093312A (en) Lithium ion battery manufacturing method
KR20130126344A (en) Method for charging lithium secondary battery at low temperature
JP7039846B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2020102301A (en) Evaluation method for substituent element of cathode active material for lithium ion secondary battery
JP2016178026A (en) Power storage device
JP2009181910A (en) Charging and discharging control method and charging and discharging control system for alkaline storage battery
JP5092230B2 (en) Control valve type lead acid battery
CN105074969A (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
JP6465390B2 (en) I / O recovery method and control system
JP6894947B2 (en) Manufacturing method of electrodes of power storage device and electrodes of power storage device
JP7131568B2 (en) Estimation device, estimation method and computer program
JP2017107808A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180501

R151 Written notification of patent or utility model registration

Ref document number: 6341366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350