KR20130126344A - Method for charging lithium secondary battery at low temperature - Google Patents
Method for charging lithium secondary battery at low temperature Download PDFInfo
- Publication number
- KR20130126344A KR20130126344A KR1020120050400A KR20120050400A KR20130126344A KR 20130126344 A KR20130126344 A KR 20130126344A KR 1020120050400 A KR1020120050400 A KR 1020120050400A KR 20120050400 A KR20120050400 A KR 20120050400A KR 20130126344 A KR20130126344 A KR 20130126344A
- Authority
- KR
- South Korea
- Prior art keywords
- charging
- low temperature
- secondary battery
- charging method
- rate
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Materials Engineering (AREA)
Abstract
Description
본 발명은 리튬 이차 전지의 저온 충전 방법에 관한 것이다.The present invention relates to a low temperature charging method of a lithium secondary battery.
리튬 이차 전지는, 큰 용량 및 고 에너지밀도 특성을 가지며, 뛰어난 충전 및 방전주기 특성을 보여주고, 장기간동안 일정한 출력을 유지할 수 있기 때문에, 휴대폰, 노트북 또는 PDA와 같은 다양한 장치에 구동전지로서 널시 사용된다.Lithium secondary batteries have a large capacity, high energy density, excellent charge and discharge cycle characteristics, and can maintain a constant output for a long time, so they are used as driving batteries in various devices such as mobile phones, laptops, or PDAs. do.
일반적인 이차 전지의 충전 방법으로 정전류(constant current)-정전압(constant voltage) 충전방법(이하 「CC-CV」충전방법이라 한다)이 있다.A typical secondary battery charging method is a constant current-constant voltage charging method (hereinafter referred to as a "CC-CV" charging method).
CC-CV 충전방법은 이차 전지를 충전함에 있어 초기에는 일정한 정전류로 충전을 수행한 후, 만충전 전위에 가까운 일정한 전압에 이르렀을 때 정전압 충전으로 전환하는 방법이다.The CC-CV charging method is a method of initially charging at a constant constant current in charging a secondary battery, and then switching to constant voltage charging when a constant voltage near a full charge potential is reached.
즉, CC-CV 충전방식에서, 전지는 전압이 소정 전압 상한값에 도달할 때까지 일정한 전류로 충전되고, 그러므로 전압은 소정의 전압 상한값으로 유지된다. 전지가 일정전압 모드로 설정될 때, 전류값은 감소하며, 충전은 전류값이 주어진 전류값으로 떨어지는 시점에 완료된다(하기 특허문헌 1 참조).That is, in the CC-CV charging method, the battery is charged with a constant current until the voltage reaches the predetermined upper voltage limit, and therefore the voltage is maintained at the predetermined upper voltage limit. When the battery is set in the constant voltage mode, the current value decreases, and charging is completed at the time when the current value falls to a given current value (see Patent Document 1 below).
그런데, 리튬 이차 전지는 전해액 용매로서 높은 전기저항성을 갖는 비수용성 전해액을 사용하기 때문에, 리튬 이차 전지를 완전히 충전하는데 많은 시간이 걸린다.By the way, since a lithium secondary battery uses the non-aqueous electrolyte which has high electrical resistance as electrolyte solvent, it takes a long time to fully charge a lithium secondary battery.
상기 CC-CV 충전방법만으로 완전충전하는 시간을 짧게 하기 위해서는 정전류 충전 시에 충전 전류를 크게하거나, 일정전류 충전동안 전압 상한값을 높게 설정할 필요가 있으나, 양극활성물질로 주로 LiCoO2 등을 사용하는 리튬 이차 전지가 지나치게 높은 전류나 지나치게 높은 전압으로 충전된다면, 양극활성물질로부터 Li가 지나칠 정도로 제거되어 격자를 파괴하고 충·방전 특성을 악화시킨다는 문제가 발생하는 등 전지 성능을 저하시킬 우려가 있으므로 바람직하지 않다.In order to shorten the time to fully charge only by the CC-CV charging method, it is necessary to increase the charging current during constant current charging or to set a high voltage upper limit during constant current charging. However, lithium mainly using LiCoO 2 as a cathode active material is used. If the secondary battery is charged with an excessively high current or an excessively high voltage, the lithium battery may be excessively removed from the positive electrode active material, resulting in a problem of deterioration of the battery performance, such as a problem of destroying the lattice and deteriorating charge and discharge characteristics. not.
이를 해소하기 위해, 충전과 휴지를 반복하는 펄스 충전에 의해서 전지성능의 저하를 방지하며 충전시간을 단축하는 기술을 개발되었다(하기 특허문헌 2 참조). 이 충전 방법은 펄스 충전하는 공정에서 이차 전지의 만충전 전압보다 높은 제 1 전압에서 충전을 행하지만, 충전과 휴지를 반복하기 때문에 전지성능의 저하를 방지할 수 있고, 제 2 전압보다 높은 제 1 전압에 의한 충전을 행하기 때문에 충전시간을 짧게 할 수는 있지만, 정전류 충전 회로, 펄스 충전 회로 및 정전압 충전 회로를 필요로 하여 충전 회로가 복잡해진다는 문제점이 있다.In order to solve this problem, a technique has been developed to prevent deterioration of battery performance and to shorten the charging time by pulse charging which repeats charging and rest (see Patent Document 2). This charging method charges at the first voltage higher than the full charge voltage of the secondary battery in the pulse charging step, but since the charging and rest are repeated, the degradation of the battery performance can be prevented, and the first higher than the second voltage. The charging time can be shortened because charging is performed by voltage, but there is a problem that the charging circuit becomes complicated by requiring a constant current charging circuit, a pulse charging circuit and a constant voltage charging circuit.
이처럼, 리튬 이차 전지는 충전 방법에 따라 전지 성능에 크게 영향을 줄 수 있기 때문에, 부스트 충전법, 펄스 충전법 등, 보다 향샹된 리튬 이차 전지의 충전 방법에 대한 연구가 요구되고 있는 실정이다.
As described above, since a lithium secondary battery may greatly affect battery performance depending on a charging method, research on a more improved charging method of a lithium secondary battery, such as a boost charging method and a pulse charging method, is required.
특히, 최근 리튬 이차 전지는 하이브리드차 또는 전기차의 핵심 동력원으로서 사용되고 있고, 추운 겨울철이나 극지방 등에서도 차량이 운행될 수 있어야 하기 때문에, 저온 충·방전 특성이 매우 중요한 전지 성능 평가항목으로 부각되고 있다.In particular, recently, lithium secondary batteries are being used as a core power source of hybrid cars or electric vehicles, and the vehicle must be able to operate even in cold winter or polar regions, and thus low-temperature charging and discharging characteristics are very important battery evaluation items.
차량용 이차 전지는 고 에너지 밀도를 가져야 하기 때문에, 주로 흑연계 음극이 사용되고, 상기 흑연계 음극은 만충전 시의 표준 전위가 Li/Li+ 대비 수십 ㎷ 차이지고, 상온에 비해 저온에서 내부 이온 전도도가 저하가 되어 「리튬 도금(Li Plating)」이 유발되기 쉬운 문제점이 있다.Since a vehicle secondary battery must have a high energy density, a graphite-based negative electrode is mainly used, and the graphite-based negative electrode has a standard potential at full charge that is different from several tens of ㎷ compared to Li / Li + , and has an internal ion conductivity at low temperature compared with room temperature. There is a problem in that deterioration is likely to result in "li plating".
즉, 인조흑연(MCMB 25-28, Osaka Gas)음극, LiCoO2 양극 채택하고, 양극/음극 가역용량비(C/A)=0.985로 조정한 셀에 대해서, CC-CV 충전한 결과, 대부분의 충전 조건, 특히 고전류와 저온 조건 하에서 리튬 도금이 발생하였으며, 온도의 감소 리튬 도금을 더욱 악화시키는 것으로 알려져 있다(비특허문헌 1 참조).That is, CC-CV charging was performed on the cells in which artificial graphite (MCMB 25-28, Osaka Gas) cathode and LiCoO 2 anode were used and the anode / cathode reversible capacity ratio (C / A) was adjusted to 0.985. Lithium plating occurred under conditions, especially high current and low temperature conditions, and it is known that the reduction of temperature worsens lithium plating further (refer nonpatent literature 1).
따라서, 고 에너지 셀을 저온 충전하는 경우라도, 전지의 열화 방지 및 충전 시간을 단축시킬 수 있는 충전 방법에 대한 기술이 절실히 요구되고 있다.Therefore, even when charging a high energy cell at low temperature, the technique of the charging method which can prevent deterioration of a battery and shorten a charging time is urgently required.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하고자, 저온에서도 전지의 열화 없이 고속 충전하는 충전방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a charging method for fast charging without deterioration of a battery even at low temperatures in order to solve the problems of the prior art and the technical problems that have been requested from the past.
본 발명은 종래기술의 문제점을 해결하기 위해 안출된 것으로서,The present invention has been made to solve the problems of the prior art,
0℃ 이하의 저온 CC-CV 충전 방법에 있어서,In the low temperature CC-CV charging method of 0 ° C or less,
CV 구간에서 충전 씨-레이트의 10%가 될 때까지 충전하되,In the CV section, charge until 10% of the charge C-rate,
상기 씨-레이트는 0.4C 이하인 것임을 특징으로 하는 저온 CC-CV 충전 방법을 제공한다.The c-rate provides a low temperature CC-CV charging method characterized in that less than 0.4C.
또한 본 발명에 있어서, 상기 CV의 범위는 4.2V 미만인 것임을 특징으로 하는 저온 CC-CV 충전 방법을 제공한다.In addition, in the present invention, the range of the CV provides a low-temperature CC-CV charging method, characterized in that less than 4.2V.
또한 본 발명에 있어서, 상기 방전 전압은 2.5V인 것임을 특징으로 하는 저온 CC-CV 충전 방법을 제공한다.In addition, the present invention provides a low-temperature CC-CV charging method characterized in that the discharge voltage is 2.5V.
또한 본 발명에 있어서, 상기 씨-레이트의 범위는 0.1C 이하인 것임을 특징으로 하는 저온 CC-CV 충전 방법을 제공한다.In addition, in the present invention, the C-rate provides a low-temperature CC-CV charging method characterized in that the range of 0.1C or less.
또한 본 발명에 있어서, 상기 충·방전 온도 범위는 -25 ~ 0℃ 인 것임을 특징으로 하는 저온 CC-CV 충전 방법을 제공한다.In addition, in the present invention, the charge and discharge temperature range is -25 ~ 0 ℃ provides a low-temperature CC-CV charging method, characterized in that.
본 발명 충전방법은, 저온 조건 하에서도, 흑연계 음극의 리튬 도금 생성이 최소화되고, 충전시간도 단축되는 효과가 있다.The charging method of the present invention has the effect of minimizing the generation of lithium plating of the graphite negative electrode even under low temperature conditions, and also shortening the charging time.
이하에서는 첨부한 도면을 참조하여 바람직한 실시형태에 대해서 상세히 설명한다. 다만, 실시형태를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 상세한 설명은 생략한다. 또한, 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다.
Hereinafter, preferred embodiments will be described in detail with reference to the accompanying drawings. However, in describing the embodiments, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted. In addition, the size of each component in the drawings may be exaggerated for description, it does not mean the size that is actually applied.
본 발명은, 0℃ 이하의 저온 CC-CV 충전 방법에 있어서, CV 구간에서 만충전 용량의 10%까지 충전 후, 상기 충전 시와 같은 씨-레이트로 방전하는 것을 반복하되, 상기 씨-레이트의 범위는 0.4C 이하인 것임을 특징으로 하는 저온 CC-CV 충전 방법에 대한 것이다.The present invention, in the low-temperature CC-CV charging method of 0 ° C or less, after charging up to 10% of the full charge capacity in the CV section, it is repeated to discharge with the same c-rate as the charge, but the The range is for a low temperature CC-CV charging method, characterized in that less than 0.4C.
씨-레이트(C-rate)는 당해 기술분야의 통상을 지식을 가진 자(이하 '당업자'라 한다)에게 자명한 용어이지만, 발명의 명확한 이해를 위해 간략히 설명한다.C-rate is a term that is obvious to a person of ordinary skill in the art (hereinafter referred to as a person skilled in the art), but will be briefly described for a clear understanding of the invention.
씨-레이트(C-rate)란 풀어 말하면 커런트레이트(Current rate)라 할 수 있다. 전지의 충방전시 다양한 사용조건하에서의 전류값 설정 및 전지의 가능 사용시간을 예측하거나 표기하기 위한 단위로서, 충전 및 방전에 따른 전류값의 산출은 충전 또는 방전전류를 전지 정격용량으로 나누어 충·방전 전류값을 산출한다. 즉, 1C는 셀의 정격 용량과 같은 전류로 충전하는 것을 의미한다. 씨-레이트의 단위는 C를 사용하며, 하기 수학식 1과 같이 정의될 수 있다.C-rate, in other words, is the current rate (Current rate). This is a unit for estimating or marking the current value under various use conditions and the possible use time of the battery during charging and discharging.The calculation of the current value according to charging and discharging is performed by dividing the charging or discharging current by the battery's rated capacity. Calculate the current value. That is, 1C means charging with a current equal to the rated capacity of the cell. The unit of the c-rate uses C, and may be defined as in Equation 1 below.
특히, 상기 씨-레이트의 범위는 0.4C 이하인 것이 바람직하고, 0.1C 이하인 것이 더 바람직하다. 씨-레이트의 범위가 0.4C를 초과하면, 충전시간이 줄어드는 효과는 크게 줄어드는 반면, 리튬 도금 현상은 크게 증가시키므로 바람직하지 않다.In particular, it is preferable that the range of the said c-rate is 0.4 C or less, and it is more preferable that it is 0.1 C or less. If the c-rate range exceeds 0.4C, the effect of reducing the charging time is greatly reduced, while the lithium plating phenomenon is greatly increased, which is not preferable.
이에 대한 보다 상세한 내용은 후술할 실시예를 참고하여 이해할 수 있을 것이다.More details on this will be understood with reference to the following embodiments.
상기 CV의 범위는 4.2V 미만인 것이 바람직하다. 충전 시 상한 전압이 이를 초과하는 경우, 용량 저하가 급격히 일어나 좋지 아니하였다. 이에 대한 보다 상세한 내용은 후술할 실시예를 참고하여 이해할 수 있을 것이다.It is preferable that the range of said CV is less than 4.2V. When the upper limit voltage at the time of charging exceeded this, capacity | capacitance fall | disappeared rapidly and was not good. More details on this will be understood with reference to the following embodiments.
상기 방전 전압은 2.5V인 것이 바람직하다.It is preferable that the said discharge voltage is 2.5V.
특히, 본 발명의 충전 방법은, 0℃ 이하의 저온 환경 하에서 유용하고, 특히, -20 내지 -15℃의 극히 저온환경 하에서도 유용하다. 이에 대한 이에 대한 보다 상세한 내용은 후술할 실시예를 참고하여 이해할 수 있을 것이다.
In particular, the filling method of the present invention is useful in a low temperature environment of 0 ° C or lower, and particularly in an extremely low temperature environment of -20 to -15 ° C. This will be described in more detail with reference to the following embodiments.
이하, 실시예를 들어 본 발명에 대해서 더 상세히 설명한다. 이하의 실시예는 발명의 상세한 설명을 위한 것일 뿐이며, 이에 의해 권리범위를 제한하려는 의도가 아님을 분명히 한다.Hereinafter, the present invention will be described in more detail with reference to Examples. The following examples are merely intended for the detailed description of the invention, which is not intended to limit the scope of the rights thereby.
실시예Example
실시예Example 1 - 씨- 1-Mr- 레이트Rate 변화에 따른 리튬 도금 생성 여부 확인 Check whether lithium plating is generated according to the change
흑연 음극과 LiCoO2 양극의 리튬 이차 전지를 하기와 같은 단계를 거치도록 하였다.The lithium secondary battery of the graphite negative electrode and the LiCoO 2 positive electrode was subjected to the following steps.
(1단계) 전지 포메이션 공정 등을 거쳐 최종 제작된 상온에서 전지를 완전히 방전시켰다.(Step 1) The battery was completely discharged at the final temperature produced at the final stage through the battery formation step.
(2단계) -15℃에서, 전지를 약 3 시간 이상 방치하였다.(Step 2) At -15 ° C, the battery was left for about 3 hours or longer.
(3단계) CC-CV 충전을 하되, 하기 표 1과 같은 각 씨-레이트 비율로 하여 충전하되, CV 구간에서 충전 씨-레이트의 10%가 될 때 까지 충전하였다. 이 때 충전 상한 전압은 4.05V로 하였다.(Step 3) Charged CC-CV, but charged at each c-rate ratio as shown in Table 1 below, but charged until the CV rate of 10% of the charged c-rate. At this time, the charge upper limit voltage was 4.05V.
(4단계) 상온(약 20℃)에서, 전지를 약 3 시간 이상 방치하였다.(Step 4) At room temperature (about 20 ° C), the battery was left for about 3 hours or longer.
(5단계) 1C 방전하였다.(Step 5) 1C discharged.
(6단계) 상기 1~5 단계를 3 싸이클 반복하였다.(Step 6) Steps 1 to 5 were repeated three cycles.
3 싸이클 반복 후, 초기 용량 대비 3 싸이클 반복 후 용량을 비교하여 그 비율을 측정하였다. 용량이 줄어든 만큼, 리튬 도금이 형성되었다고 판단할 수 있기 때문이다. 결과는 하기 표 1과 같았다.After 3 cycle repetition, the ratio was measured by comparing the capacity after 3 cycle repetition with respect to the initial dose. It is because it can be judged that lithium plating was formed as much as capacity reduced. The results are shown in Table 1 below.
실시예Example 2 - 충전 상한 전압 변화에 따른 리튬 도금 생성 여부 확인 2-Check whether the lithium plating is generated by the change of the charge upper limit voltage
흑연 음극과 LiCoO2 양극의 리튬 이차 전지를, 전압 하기 표 2와 같은 조건으로 충전과 방전을 반복하여 만충전하되, 충전 시 상한 전압을 하기 표 2와 같이 달리하여 각각 초기 대비 1C 방전 용량을 측정하였다.The lithium secondary battery of the graphite negative electrode and the LiCoO 2 positive electrode was charged and repeatedly charged and discharged under the conditions shown in Table 2 below, but the upper limit voltage during charging was changed as shown in Table 2 below, and the respective 1C discharge capacities were measured. It was.
상기 표 1에 나타나 있듯이, 충전 씨-레이트는 0.1C의 경우에 가장 용량 감소가 적었고, 상기 표 2에 나타나 있듯이, 충전 상한 전압은 4.20V에서 급격한 용량 감소가 일어났는 바, 4.20V 미만이 바람직한 것임을 확인하였다.
As shown in Table 1, the charge C-rate was the smallest decrease in capacity in the case of 0.1C, as shown in Table 2, the upper limit of charge voltage is a sudden capacity decrease at 4.20V, less than 4.20V is preferred It was confirmed that.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 전술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.In the foregoing detailed description of the present invention, specific examples have been described. However, various modifications are possible within the scope of the present invention. The technical spirit of the present invention should not be limited to the above-described embodiments of the present invention, but should be determined by the claims and equivalents thereof.
Claims (6)
CV 구간에서 충전 씨-레이트의 10%가 될 때까지 충전하되,
상기 충전 씨-레이트는 0.4C 이하인 것임을 특징으로 하는 저온 CC-CV 충전 방법.In the low temperature CC-CV charging method of 0 ° C or less,
In the CV section, charge until 10% of the charge C-rate,
The charging C-rate is a low temperature CC-CV charging method, characterized in that less than 0.4C.
상기 CV의 범위는 4.2V 미만인 것임을 특징으로 하는 저온 CC-CV 충전 방법.The method according to claim 1,
Low temperature CC-CV charging method characterized in that the range of the CV is less than 4.2V.
상기 방전 전압은 2.5V인 것임을 특징으로 하는 저온 CC-CV 충전 방법.The method according to claim 1,
Low-temperature CC-CV charging method characterized in that the discharge voltage is 2.5V.
상기 씨-레이트의 범위는 0.1C 이하인 것임을 특징으로 하는 저온 CC-CV 충전 방법.The method according to claim 1,
The C-rate low temperature CC-CV charging method, characterized in that the range of less than 0.1C.
상기 충·방전 온도 범위는 -25 ~ 0℃ 인 것임을 특징으로 하는 저온 CC-CV 충전 방법.The method according to claim 1,
The low-temperature CC-CV charging method characterized in that the charge and discharge temperature range is -25 ~ 0 ℃.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120050400A KR20130126344A (en) | 2012-05-11 | 2012-05-11 | Method for charging lithium secondary battery at low temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120050400A KR20130126344A (en) | 2012-05-11 | 2012-05-11 | Method for charging lithium secondary battery at low temperature |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20130126344A true KR20130126344A (en) | 2013-11-20 |
Family
ID=49854462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120050400A KR20130126344A (en) | 2012-05-11 | 2012-05-11 | Method for charging lithium secondary battery at low temperature |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20130126344A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170105320A (en) * | 2016-03-09 | 2017-09-19 | 주식회사 엘지화학 | Charging Method of Secondary Battery and Charging Apparatus of the Same |
CN110109029A (en) * | 2018-01-29 | 2019-08-09 | 宁德时代新能源科技股份有限公司 | Battery cell lithium analysis parameter detection method and device, battery cell detection system and computer readable storage medium |
CN114628850A (en) * | 2020-12-10 | 2022-06-14 | 中国科学院大连化学物理研究所 | Low-temperature lithium ion battery and charging and discharging method thereof |
KR20230060307A (en) | 2021-10-27 | 2023-05-04 | 에스케이온 주식회사 | Lithium secondary battery and manufacturing method thereof |
-
2012
- 2012-05-11 KR KR1020120050400A patent/KR20130126344A/en not_active Application Discontinuation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170105320A (en) * | 2016-03-09 | 2017-09-19 | 주식회사 엘지화학 | Charging Method of Secondary Battery and Charging Apparatus of the Same |
CN110109029A (en) * | 2018-01-29 | 2019-08-09 | 宁德时代新能源科技股份有限公司 | Battery cell lithium analysis parameter detection method and device, battery cell detection system and computer readable storage medium |
CN110109029B (en) * | 2018-01-29 | 2022-05-03 | 宁德时代新能源科技股份有限公司 | Battery cell lithium analysis parameter detection method and device, battery cell detection system and computer readable storage medium |
CN114628850A (en) * | 2020-12-10 | 2022-06-14 | 中国科学院大连化学物理研究所 | Low-temperature lithium ion battery and charging and discharging method thereof |
KR20230060307A (en) | 2021-10-27 | 2023-05-04 | 에스케이온 주식회사 | Lithium secondary battery and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6498792B2 (en) | Battery charge limit prediction method, battery quick charge method and apparatus using the same | |
Keshan et al. | Comparison of lead-acid and lithium ion batteries for stationary storage in off-grid energy systems | |
JP6523450B2 (en) | Battery quick charging method and apparatus | |
WO2017143761A1 (en) | Method for recharging rechargeable battery | |
KR102441469B1 (en) | Battery charging method and battery charging apparatus | |
CN105048014B (en) | A kind of lithium-ion-power cell fast charge method with temperature-compensating | |
CN104335445A (en) | Method for charging secondary battery | |
JP7159590B2 (en) | Charging control device, power storage device, charging control method for power storage element, and computer program | |
Jin et al. | Comparison of Li-ion battery degradation models for system design and control algorithm development | |
Omar et al. | Electric and thermal characterization of advanced hybrid Li-ion capacitor rechargeable energy storage system | |
KR20130126344A (en) | Method for charging lithium secondary battery at low temperature | |
KR20220052703A (en) | Method, battery management system, charging apparatus for charging secondary battery using silicon based negative electrode | |
KR20150145344A (en) | Battery charging method | |
WO2016068463A2 (en) | Method and apparatus for rapidly charging battery | |
Pruthvija et al. | Review on Battery Technology and its Challenges | |
CN113632290B (en) | Method for improving battery cycle performance and electronic device | |
KR20210098215A (en) | Apparatus and method for controlling charge and dsicharge of battery | |
Naznin | State of charge (SOC) governed fast charging method for lithium based batteries | |
Chi et al. | An advanced fast charging strategy for lithium polymer batteries | |
Chetri et al. | Prevention of Accelerated Battery Capacity Degradation using Voltage-sag Analysis under Sub-zero Fast Discharging Conditions | |
KR101472881B1 (en) | Charging Method For Secondary Battery and Charging System Comprising The Same | |
Döge et al. | Charge Transport in Energy Storage and Conversion Devices | |
Chandrabose et al. | ANALYSIS OF CHEMICAL CELLS IN DIFFERENT ASPECTS FOR OFF-GRID ENERGY SYSTEMS | |
JP5549396B2 (en) | Battery system | |
Hasan | Implications of Rapid Charging and Chemo-Mechanical Degradation in Lithium-Ion Battery Electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |