JP2015184494A - Electrophotographic photoreceptor, process cartridge, and image forming apparatus - Google Patents

Electrophotographic photoreceptor, process cartridge, and image forming apparatus Download PDF

Info

Publication number
JP2015184494A
JP2015184494A JP2014060954A JP2014060954A JP2015184494A JP 2015184494 A JP2015184494 A JP 2015184494A JP 2014060954 A JP2014060954 A JP 2014060954A JP 2014060954 A JP2014060954 A JP 2014060954A JP 2015184494 A JP2015184494 A JP 2015184494A
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
layer
particles
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014060954A
Other languages
Japanese (ja)
Other versions
JP6201850B2 (en
Inventor
博史 中村
Hiroshi Nakamura
博史 中村
智雄 松嶋
Tomoo Matsushima
智雄 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2014060954A priority Critical patent/JP6201850B2/en
Publication of JP2015184494A publication Critical patent/JP2015184494A/en
Application granted granted Critical
Publication of JP6201850B2 publication Critical patent/JP6201850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor that can suppress unevenness in density of halftone images after repeated image formation, and the occurrence of a change in density due to the history of the previous cycle.SOLUTION: There is provided an electrophotographic photoreceptor that includes: a conductive substrate 1; an undercoat layer 2 that is arranged on the conductive substrate and contains a binder resin and, as surface treatment particles in which the surface of metal oxide particles has been treated with a silane coupling agent having an amino group, first surface treatment particles having a BET specific surface area of 10 m/g or more and 15 m/g or less and second surface treatment particles having a BET specific surface area of 18 m/g or more and 30 m/g or less; and a photosensitive layer 3 that is arranged on the undercoat layer.

Description

本発明は、電子写真感光体、プロセスカートリッジ、及び画像形成装置に関する。   The present invention relates to an electrophotographic photosensitive member, a process cartridge, and an image forming apparatus.

電子写真方式の画像形成装置は高速でかつ高印字の品質が得られ、複写機およびレーザービームプリンター等の画像形成装置において利用されている。画像形成装置において用いられる感光体としては、有機の光導電性材料を用いた有機感光体が主流となっている。有機感光体を製造する場合、例えば、アルミニウム基材の上に下引層(中間層と呼ばれる場合もある)を形成し、その後、感光層、特に電荷発生層および電荷輸送層からなる感光層を形成する場合が多い。   An electrophotographic image forming apparatus has high speed and high printing quality, and is used in image forming apparatuses such as copying machines and laser beam printers. As a photoreceptor used in an image forming apparatus, an organic photoreceptor using an organic photoconductive material has become the mainstream. When producing an organic photoreceptor, for example, an undercoat layer (sometimes referred to as an intermediate layer) is formed on an aluminum substrate, and then a photosensitive layer, in particular, a photosensitive layer comprising a charge generation layer and a charge transport layer is formed. Often formed.

例えば、特許文献1には、導電性支持体上に中間層を介して感光層を有する電子写真感光体において、該中間層が特定のポリアミド樹脂を含有することを特徴とする電子写真感光体が開示されている。   For example, Patent Document 1 discloses an electrophotographic photosensitive member having a photosensitive layer through an intermediate layer on a conductive support, wherein the intermediate layer contains a specific polyamide resin. It is disclosed.

特許文献2には、感光体に形成されたトナー像を記録媒体に転写して画像を形成する画像形成装置において、前記感光体は、導電性基材と、前記導電性基材の周囲に形成された中間層と、前記中間層の周囲に形成された感光層と、を有し、前記中間層は、平均粒径が100nm以下の金属酸化物微粒子を結着樹脂中に含有することを特徴とする画像形成装置が開示されている。   In Patent Document 2, in an image forming apparatus that forms an image by transferring a toner image formed on a photoconductor to a recording medium, the photoconductor is formed around a conductive base material and the conductive base material. And a photosensitive layer formed around the intermediate layer, wherein the intermediate layer contains fine metal oxide particles having an average particle size of 100 nm or less in the binder resin. An image forming apparatus is disclosed.

特許文献3には、導電性基体上に光導電層を設けた電子写真感光体において、導電性基体と光導電層との間に白色顔料と結着剤樹脂を主成分とし、かつ白色顔料と結着剤樹脂の使用割合が容量比で1/1〜3/1の範囲にある中間層を設けると共に、導電性基体と該中間層との間に結着剤樹脂による下引層を設けたことを特徴とする電子写真感光体が開示されている。   In Patent Document 3, in an electrophotographic photosensitive member in which a photoconductive layer is provided on a conductive substrate, a white pigment and a binder resin are main components between the conductive substrate and the photoconductive layer, and the white pigment and An intermediate layer having a binder resin usage ratio in the range of 1/1 to 3/1 by volume ratio was provided, and an undercoat layer was formed between the conductive substrate and the intermediate layer. An electrophotographic photosensitive member is disclosed.

特許文献4には、導電性基体と、該基体上に形成された中間層と、該中間層上に形成された感光層とを備える電子写真感光体であって、前記中間層が、金属酸化物微粒子及び結着樹脂を含有し、28℃、85%RHで106V/mの電場を印加したときの体積抵抗が108〜1013Ω・cmであり、且つ15℃、15%RHで106V/mの電場を印加したときの体積抵抗が28℃、85%RHで106V/mの電場を印可したときの体積抵抗の500倍以下であることを特徴とする電子写真感光体が開示されている。 Patent Document 4 discloses an electrophotographic photosensitive member comprising a conductive substrate, an intermediate layer formed on the substrate, and a photosensitive layer formed on the intermediate layer, wherein the intermediate layer is a metal oxide. And a volume resistance of 10 8 to 10 13 Ω · cm when an electric field of 10 6 V / m is applied at 28 ° C. and 85% RH, and 15 ° C. and 15% RH The volume resistance when an electric field of 10 6 V / m is applied at 28 ° C. and 85% RH is 500 times or less of the volume resistance when an electric field of 10 6 V / m is applied. A photoreceptor is disclosed.

特許文献5には、電子写真感光体、帯電手段、露光手段、現像手段及び転写手段を備え、前記電子写真感光体の外周面を所定方向に移動させながら帯電、露光、現像及び転写を行う画像形成装置であって、帯電から現像までに要する時間が可変となるように、前記電子写真感光体の外周面の移動速度を制御する制御手段を更に備え、前記電子写真感光体が少なくとも下引層と感光層を有し、前記下引層が少なくとも金属酸化物微粒子と該金属酸化物微粒子と反応可能な基を有するアクセプター性化合物とを含有することを特徴とする画像形成装置が開示されている。   Patent Document 5 includes an electrophotographic photosensitive member, a charging unit, an exposing unit, a developing unit, and a transferring unit, and an image that is charged, exposed, developed, and transferred while moving the outer peripheral surface of the electrophotographic photosensitive member in a predetermined direction. The forming apparatus further comprises control means for controlling the moving speed of the outer peripheral surface of the electrophotographic photosensitive member so that the time required from charging to development is variable, and the electrophotographic photosensitive member is at least an undercoat layer And an photosensitive layer, and the undercoat layer contains at least a metal oxide fine particle and an acceptor compound having a group capable of reacting with the metal oxide fine particle. .

特開平5−11483号公報Japanese Patent Laid-Open No. 5-11483 特開2002−123028号公報JP 2002-123028 A 特開平5−80572号公報Japanese Patent Laid-Open No. 5-80572 特開2003−186219号公報JP 2003-186219 A 特開2006−30698号公報JP 2006-30698 A

本発明は、画像形成を繰り返した時のハーフトーン画像の濃度ムラ及び前サイクルの履歴による濃度変化(以下、「ゴースト」と称する)の発生が抑制される電子写真感光体を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an electrophotographic photosensitive member that suppresses the occurrence of density unevenness in a halftone image and the change in density due to the history of the previous cycle (hereinafter referred to as “ghost”) when image formation is repeated. And

上記目的を達成するため、以下の発明が提供される。
請求項1に係る発明は、導電性基材と、前記導電性基材上に配置され、結着樹脂、並びに、金属酸化物粒子をアミノ基を有するシランカップリング剤により表面処理した表面処理粒子として、BET比表面積が10m/g以上15m/g以下である第1の表面処理粒子及びBET比表面積が18m/g以上30m/g以下である第2の表面処理粒子を含む下引層と、前記下引層上に配置された感光層と、を有する電子写真感光体。
In order to achieve the above object, the following invention is provided.
The invention according to claim 1 is a surface-treated particle that is disposed on the conductive substrate and is surface-treated with a binder resin and a metal oxide particle with a silane coupling agent having an amino group. The first surface-treated particles having a BET specific surface area of 10 m 2 / g to 15 m 2 / g and the second surface-treated particles having a BET specific surface area of 18 m 2 / g to 30 m 2 / g An electrophotographic photosensitive member having a drawing layer and a photosensitive layer disposed on the undercoat layer.

請求項2に係る発明は、前記金属酸化物粒子は、酸化錫、酸化チタン、及び酸化亜鉛からなる群より選ばれる少なくとも1種である請求項1に記載の電子写真感光体。   The invention according to claim 2 is the electrophotographic photosensitive member according to claim 1, wherein the metal oxide particles are at least one selected from the group consisting of tin oxide, titanium oxide, and zinc oxide.

請求項3に係る発明は、前記第1の表面処理粒子及び前記第2の表面処理粒子は、それぞれ前記金属酸化物粒子に対する前記アミノ基を有するシランカップリング剤の表面処理量が0.05質量%以上1.5質量%以下である請求項1又は請求項2に記載の電子写真感光体。   In the invention according to claim 3, in the first surface-treated particles and the second surface-treated particles, a surface treatment amount of the silane coupling agent having an amino group with respect to the metal oxide particles is 0.05 mass, respectively. The electrophotographic photosensitive member according to claim 1, wherein the electrophotographic photosensitive member is from 1% to 1.5% by mass.

請求項4に係る発明は、前記下引層がさらに電子受容性化合物を含んでいる請求項1〜請求項3のいずれか1項に記載の電子写真感光体。
請求項5に係る発明は、前記電子受容性化合物がアントラキノン誘導体である請求項4に記載の電子写真感光体。
請求項6に係る発明は、前記アントラキノン誘導体が下記一般式(1)で表される請求項5に記載の電子写真感光体。
The invention according to claim 4 is the electrophotographic photosensitive member according to any one of claims 1 to 3, wherein the undercoat layer further contains an electron-accepting compound.
The invention according to claim 5 is the electrophotographic photosensitive member according to claim 4, wherein the electron-accepting compound is an anthraquinone derivative.
The invention according to claim 6 is the electrophotographic photosensitive member according to claim 5, wherein the anthraquinone derivative is represented by the following general formula (1).

(一般式(1)中、n1及びn2は、各々独立に0以上3以下の整数を表す。但し、n1及びn2の少なくとも一方は、各々独立に1以上3以下の整数を表す。m1及びm2は、各々独立に0又は1の整数を示す。R及びRは、各々独立に炭素数1以上10以下のアルキル基、又は炭素数1以上10以下のアルコキシ基を表す。) (In general formula (1), n1 and n2 each independently represent an integer of 0 or more and 3 or less, provided that at least one of n1 and n2 independently represents an integer of 1 or more and 3 or less. M1 and m2 Each independently represents an integer of 0 or 1. R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.

請求項7に係る発明は、前記下引層の厚みが15μm以上30μm以下である請求項1〜請求項6のいずれか1項に記載の電子写真感光体。   The invention according to claim 7 is the electrophotographic photoreceptor according to any one of claims 1 to 6, wherein the thickness of the undercoat layer is 15 μm or more and 30 μm or less.

請求項8に係る発明は、前記下引層における前記第2の表面処理粒子の含有量が、前記第1の表面処理粒子の含有量よりも多い請求項1〜請求項7のいずれか1項に記載の電子写真感光体。   The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the content of the second surface treatment particles in the undercoat layer is larger than the content of the first surface treatment particles. The electrophotographic photoreceptor described in 1.

請求項9に係る発明は、請求項1〜請求項8のいずれか1項に記載の電子写真感光体を備え、画像形成装置に着脱するプロセスカートリッジ。   A ninth aspect of the present invention is a process cartridge comprising the electrophotographic photosensitive member according to any one of the first to eighth aspects, wherein the process cartridge is detachable from an image forming apparatus.

請求項10に係る発明は、前記電子写真感光体に接触して該電子写真感光体の表面を帯電させる接触帯電方式の帯電手段をさらに備える請求項9に記載のプロセスカートリッジ。   The process cartridge according to claim 9, further comprising a contact charging type charging unit that contacts the electrophotographic photosensitive member to charge the surface of the electrophotographic photosensitive member.

請求項11に係る発明は、請求項1〜請求項8のいずれか1項に記載の電子写真感光体と、前記電子写真感光体の表面を帯電する帯電手段と、帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、前記トナー像を記録媒体の表面に転写する転写手段と、を備える画像形成装置。   The invention according to claim 11 is the electrophotographic photosensitive member according to any one of claims 1 to 8, charging means for charging the surface of the electrophotographic photosensitive member, and the charged electrophotographic photosensitive member. Development that forms a toner image by developing the electrostatic latent image formed on the surface of the electrophotographic photosensitive member with an electrostatic latent image forming unit that forms an electrostatic latent image on the surface of the toner and a developer containing toner An image forming apparatus comprising: means; and transfer means for transferring the toner image to the surface of the recording medium.

請求項12に係る発明は、前記帯電手段が接触帯電方式の帯電手段である請求項11に記載の画像形成装置。   12. The image forming apparatus according to claim 12, wherein the charging unit is a contact charging type charging unit.

請求項1、2に係る発明によれば、下引層が、金属酸化物粒子をアミノ基を有するシランカップリング剤により表面処理した表面処理粒子として、BET比表面積が10m/g以上15m/g以下である第1の表面処理粒子及びBET比表面積が18m/g以上30m/g以下である第2の表面処理粒子を含まない場合に比べ、画像形成を繰り返した時のハーフトーン画像の濃度ムラ及びゴーストの発生が抑制される電子写真感光体が提供される。 According to the invention of claim 1, undercoat layer, as the surface treated particles surface-treated with a silane coupling agent having an amino group metal oxide particles, BET specific surface area of 10 m 2 / g or more 15 m 2 Halftone when image formation is repeated as compared with the case where the first surface-treated particles having a BET specific surface area of 18 m 2 / g or less and the second surface-treated particles having a BET specific surface area of 18 m 2 / g or more and 30 m 2 / g or less are not included. An electrophotographic photosensitive member is provided in which the occurrence of image density unevenness and ghosting is suppressed.

請求項3に係る発明によれば、金属酸化物粒子に対するアミノ基を有するシランカップリング剤の表面処理量が0.05質量%以上1.5質量%以下の範囲外である場合に比べ、画像形成を繰り返した時の初期のゴーストの発生が抑制される電子写真感光体が提供される。   According to the invention of claim 3, compared with the case where the surface treatment amount of the silane coupling agent having an amino group with respect to the metal oxide particles is out of the range of 0.05% by mass or more and 1.5% by mass or less, the image An electrophotographic photosensitive member is provided in which the occurrence of an initial ghost when the formation is repeated is suppressed.

請求項4、5、6に係る発明によれば、下引層が電子受容性化合物を含まない場合に比べ、画像形成を繰り返した時の残留電位の上昇が抑制される電子写真感光体が提供される。   According to the inventions according to claims 4, 5, and 6, there is provided an electrophotographic photosensitive member in which an increase in residual potential when image formation is repeated is suppressed as compared with a case where the undercoat layer does not contain an electron accepting compound. Is done.

請求項7に係る発明によれば、下引層の厚みが15μm以上30μm以下の範囲外である場合に比べ、(15μm未満の場合に対しては)外来異物によるリークの発生、(30μm超の場合に対しては)残留電位の上昇が抑制される電子写真感光体が提供される。   According to the seventh aspect of the present invention, compared to the case where the thickness of the undercoat layer is outside the range of 15 μm or more and 30 μm or less, the occurrence of leakage due to an external foreign substance (for a case of less than 15 μm) (over 30 μm) In some cases, an electrophotographic photoreceptor is provided in which the increase in residual potential is suppressed.

請求項8に係る発明によれば、電子写真感光体の下引層が、金属酸化物粒子をアミノ基を有するシランカップリング剤により表面処理した表面処理粒子として、BET比表面積が10m/g以上15m/g以下である第1の表面処理粒子及びBET比表面積が18m/g以上30m/g以下である第2の表面処理粒子を含まない場合に比べ、繰り返し使用時のハーフトーン画像の濃度ムラ及びゴーストの発生が抑制されるプロセスカートリッジが提供される。
請求項9に係る発明によれば、画像形成を繰り返した時のハーフトーン画像の濃度ムラ及びゴーストが発生し易い接触帯電方式の帯電手段を備えたときであっても、ハーフトーン画像の濃度ムラ及びゴーストの発生が抑制されるプロセスカートリッジが提供される。
According to the invention according to claim 8, the BET specific surface area is 10 m 2 / g as the surface-treated particles in which the undercoat layer of the electrophotographic photoreceptor is surface-treated with the silane coupling agent having an amino group on the metal oxide particles. Compared with the case where the first surface-treated particles having a surface area of 15 m 2 / g or less and the second surface-treated particles having a BET specific surface area of 18 m 2 / g or more and 30 m 2 / g or less are not included, halftone during repeated use A process cartridge is provided in which density unevenness and ghosting of an image are suppressed.
According to the ninth aspect of the present invention, the density unevenness of the halftone image is provided even when the charging means of the contact charging method in which the density unevenness of the halftone image and the ghost are easily generated when the image formation is repeated is provided. And a process cartridge in which the occurrence of ghosts is suppressed.

請求項10に係る発明によれば、電子写真感光体の下引層が、金属酸化物粒子をアミノ基を有するシランカップリング剤により表面処理した表面処理粒子として、BET比表面積が10m/g以上15m/g以下である第1の表面処理粒子及びBET比表面積が18m/g以上30m/g以下である第2の表面処理粒子を含まない場合に比べ、画像形成を繰り返した時のハーフトーン画像の濃度ムラ及びゴーストの発生が抑制される画像形成装置が提供される。
請求項11に係る発明によれば、画像形成を繰り返した時のハーフトーン画像の濃度ムラ及びゴーストが発生し易い接触帯電方式の帯電手段を備えたときであっても、ハーフトーン画像の濃度ムラ及びゴーストの発生が抑制される画像形成装置が提供される。
According to the invention of claim 10, the undercoat layer of the electrophotographic photosensitive member has a BET specific surface area of 10 m 2 / g as surface-treated particles obtained by surface-treating metal oxide particles with a silane coupling agent having an amino group. When image formation is repeated as compared with the case where the first surface-treated particles having a surface area of 15 m 2 / g or less and the second surface-treated particles having a BET specific surface area of 18 m 2 / g to 30 m 2 / g are not included. An image forming apparatus is provided in which density unevenness and ghosting of halftone images are suppressed.
According to the eleventh aspect of the present invention, the density unevenness of the halftone image is provided even when the charging means of the contact charging method that easily generates the density unevenness and ghost of the halftone image when the image formation is repeated is provided. And an image forming apparatus in which the occurrence of ghosts is suppressed.

本実施形態に係る電子写真感光体の層構成の一例を示す概略図である。It is the schematic which shows an example of the layer structure of the electrophotographic photoreceptor which concerns on this embodiment. 本実施形態に係る電子写真感光体の層構成の他の例を示す概略図である。It is the schematic which shows the other example of the layer structure of the electrophotographic photoreceptor which concerns on this embodiment. 本実施形態に係る電子写真感光体の層構成の他の例を示す概略図である。It is the schematic which shows the other example of the layer structure of the electrophotographic photoreceptor which concerns on this embodiment. 本実施形態に係る電子写真感光体の層構成の他の例を示す概略図である。It is the schematic which shows the other example of the layer structure of the electrophotographic photoreceptor which concerns on this embodiment. 本実施形態に係る電子写真感光体の層構成の他の例を示す概略図である。It is the schematic which shows the other example of the layer structure of the electrophotographic photoreceptor which concerns on this embodiment. 本実施形態に係る電子写真感光体の層構成の他の例を示す概略図である。It is the schematic which shows the other example of the layer structure of the electrophotographic photoreceptor which concerns on this embodiment. 本実施形態に係る画像形成装置の一例を示す概略構成図である。1 is a schematic configuration diagram illustrating an example of an image forming apparatus according to an exemplary embodiment. 本実施形態に係る画像形成装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the image forming apparatus which concerns on this embodiment. 実施例において、画質評価に用いるチャートを示す模式図である。In an Example, it is a schematic diagram which shows the chart used for image quality evaluation.

以下、図面を参照しつつ、本実施形態に係る電子写真感光体について詳細に説明する。   Hereinafter, the electrophotographic photoreceptor according to the exemplary embodiment will be described in detail with reference to the drawings.

[電子写真感光体]
本実施形態に係る電子写真感光体(以下、単に「感光体」と称する場合がある)は、導電性基材と、前記導電性基材上に配置され、結着樹脂、並びに、金属酸化物粒子をアミノ基を有するシランカップリング剤により表面処理した表面処理粒子として、BET比表面積が10m/g以上15m/g以下である第1の表面処理粒子及びBET比表面積が18m/g以上30m/g以下である第2の表面処理粒子を含む下引層と、前記下引層上に配置された感光層と、を有して構成されている。以下、単に「表面処理粒子」という場合は、第1の表面処理粒子及び第2の表面処理粒子に共通することを意味する。
[Electrophotographic photoreceptor]
An electrophotographic photoreceptor according to the exemplary embodiment (hereinafter sometimes simply referred to as “photoreceptor”) includes a conductive substrate, a binder resin, and a metal oxide disposed on the conductive substrate. As the surface-treated particles obtained by surface-treating the particles with a silane coupling agent having an amino group, the first surface-treated particles having a BET specific surface area of 10 m 2 / g to 15 m 2 / g and a BET specific surface area of 18 m 2 / g The subbing layer includes the second surface-treated particles that are 30 m 2 / g or less, and the photosensitive layer disposed on the subbing layer. Hereinafter, the term “surface-treated particles” simply means common to the first surface-treated particles and the second surface-treated particles.

本実施形態に係る電子写真感光体を用いて画像形成装置を行えば、画像形成を繰り返した時のハーフトーン画像の濃度ムラ及びゴーストの発生が抑制される。この理由は定かではないが、以下に示す理由によるものと考えられる。   When the image forming apparatus is performed using the electrophotographic photosensitive member according to the present embodiment, density unevenness and ghosting of a halftone image when image formation is repeated are suppressed. The reason for this is not clear, but is thought to be due to the following reasons.

下引層を形成する塗布液中の金属酸化物粒子の分散時間が短いと循環式塗布装置のフィルターの目詰まりが生じ易く、分散時間が長いと長期間使用した場合に電気特性が変動しやすい。
一方、塗布液中の金属酸化物粒子の分散性は比表面積に依存し、比表面積が小さいと分散が速く、比表面積が大きいと分散が遅くなる傾向がある。また、金属酸化物粒子の表面処理量が少ないと分散が速く、表面処理量が多いと分散が遅くなる傾向がある。
そして、アミノ基を有するシランカップリング剤で表面処理され、それぞれ上記範囲内にあるBET比表面積を有する2種類の金属酸化物粒子(第1の表面処理粒子及び第2の表面処理粒子)を併用した塗布液を用いることで分散性が適度な範囲となると考えられる。そのため、この塗布液を用いることにより表面処理粒子の凝集が抑制された下引層が形成され、ハーフトーン画像の濃度ムラ及びゴーストの発生が抑制されると考えられる。
If the dispersion time of the metal oxide particles in the coating solution for forming the undercoat layer is short, the filter of the circulation type coating device is likely to be clogged, and if the dispersion time is long, the electrical characteristics are likely to fluctuate when used for a long time. .
On the other hand, the dispersibility of the metal oxide particles in the coating solution depends on the specific surface area. When the specific surface area is small, the dispersion is fast, and when the specific surface area is large, the dispersion tends to be slow. Further, when the surface treatment amount of the metal oxide particles is small, the dispersion is fast, and when the surface treatment amount is large, the dispersion tends to be slow.
Then, two types of metal oxide particles (first surface-treated particles and second surface-treated particles) that are surface-treated with a silane coupling agent having an amino group and each have a BET specific surface area within the above range are used in combination. It is considered that the dispersibility is in an appropriate range by using the applied coating solution. Therefore, it is considered that an undercoat layer in which aggregation of surface-treated particles is suppressed is formed by using this coating liquid, and generation of density unevenness and ghost in a halftone image is suppressed.

また、特に、接触帯電方式の帯電手段を備える画像形成装置(プロセスカートリッジ)では、局所的な放電が発生し易く、下引層の面内不均一が大きい場合異常放電が更に発生し易いと考えられる。
このため、接触帯電方式の帯電手段を備える画像形成装置(プロセスカートリッジ)では、ハーフトーン画像の濃度ムラ及びゴーストが発生し易いが、本実施形態に係る電子写真感光体を適用すると、ハーフトーン画像の濃度ムラ及びゴーストの発生が抑制された画像が得られ易くなる。
In particular, in an image forming apparatus (process cartridge) including a contact charging type charging unit, local discharge is likely to occur, and abnormal discharge is more likely to occur when the in-plane unevenness of the undercoat layer is large. It is done.
For this reason, in an image forming apparatus (process cartridge) including a contact charging type charging unit, halftone image density unevenness and ghost are likely to occur. However, when the electrophotographic photosensitive member according to this embodiment is applied, a halftone image is obtained. It is easy to obtain an image in which the density unevenness and the ghost are suppressed.

図1乃至図6は、本実施形態に係る感光体の層構成の例を示す概略図である。図1に示す感光体は、導電性基材1と、導電性基材1の上に形成された下引層2と、下引層2の上に形成された感光層3と、から構成されている。
また、図2に示すように、感光層3は電荷発生層31と電荷輸送層32との2層構造でもよい。さらに、図3及び図4に示すように、感光層3上又は電荷輸送層32上に保護層5を設けてもよい。また、図5及び図6に示すように、下引層2と感光層3との間又は下引層2と電荷発生層31との間に中間層4を設けてもよい。
1 to 6 are schematic views showing examples of the layer structure of the photoreceptor according to the present embodiment. The photoreceptor shown in FIG. 1 includes a conductive substrate 1, an undercoat layer 2 formed on the conductive substrate 1, and a photosensitive layer 3 formed on the undercoat layer 2. ing.
Further, as shown in FIG. 2, the photosensitive layer 3 may have a two-layer structure of a charge generation layer 31 and a charge transport layer 32. Further, as shown in FIGS. 3 and 4, a protective layer 5 may be provided on the photosensitive layer 3 or the charge transport layer 32. 5 and 6, an intermediate layer 4 may be provided between the undercoat layer 2 and the photosensitive layer 3 or between the undercoat layer 2 and the charge generation layer 31.

なお、中間層4は、下引層2と感光層3との間又は下引層2と電荷発生層31との間に設けた態様を示しているが、導電性基材1と下引層2との間に設けてもよい。無論、中間層4を設けない態様であってもよい。   In addition, although the intermediate | middle layer 4 has shown the aspect provided between the undercoat layer 2 and the photosensitive layer 3, or between the undercoat layer 2 and the electric charge generation layer 31, the electroconductive base material 1 and an undercoat layer are shown. 2 may be provided. Of course, the aspect which does not provide the intermediate | middle layer 4 may be sufficient.

次に、本実施形態に係る電子写真感光体の各要素について説明する。なお、符号は省略して説明する。   Next, each element of the electrophotographic photosensitive member according to this embodiment will be described. Note that the reference numerals are omitted.

(導電性基材)
導電性基材としては、例えば、金属(アルミニウム、銅、亜鉛、クロム、ニッケル、モリブデン、バナジウム、インジウム、金、白金等)又は合金(ステンレス鋼等)を含む金属板、金属ドラム、及び金属ベルト等が挙げられる。また、導電性基材としては、例えば、導電性化合物(例えば導電性ポリマー、酸化インジウム等)、金属(例えばアルミニウム、パラジウム、金等)又は合金を塗布、蒸着又はラミネートした紙、樹脂フィルム、ベルト等も挙げられる。ここで、「導電性」とは体積抵抗率が1013Ωcm未満であることをいう。
(Conductive substrate)
Examples of the conductive substrate include a metal plate, metal drum, and metal belt containing metal (aluminum, copper, zinc, chromium, nickel, molybdenum, vanadium, indium, gold, platinum, etc.) or an alloy (stainless steel, etc.). Etc. Examples of the conductive substrate include paper, resin film, and belt on which a conductive compound (for example, conductive polymer, indium oxide, etc.), a metal (for example, aluminum, palladium, gold, etc.) or an alloy is applied, evaporated or laminated. And so on. Here, “conductive” means that the volume resistivity is less than 10 13 Ωcm.

導電性基材の表面は、電子写真感光体がレーザプリンタに使用される場合、レーザ光を照射する際に生じる干渉縞を抑制する目的で、中心線平均粗さRaで0.04μm以上0.5μm以下に粗面化されていることが好ましい。なお、非干渉光を光源に用いる場合、干渉縞防止の粗面化は、特に必要ないが、導電性基材の表面の凹凸による欠陥の発生を抑制するため、より長寿命化に適する。   When the electrophotographic photosensitive member is used in a laser printer, the surface of the conductive substrate has a center line average roughness Ra of 0.04 μm or more and 0.0.mu.m for the purpose of suppressing interference fringes generated when laser light is irradiated. It is preferable that the surface is roughened to 5 μm or less. When non-interfering light is used as a light source, roughening for preventing interference fringes is not particularly required, but it is suitable for extending the life because it suppresses generation of defects due to irregularities on the surface of the conductive substrate.

粗面化の方法としては、例えば、研磨剤を水に懸濁させて支持体に吹き付けることによって行う湿式ホーニング、回転する砥石に導電性基材を圧接し、連続的に研削加工を行うセンタレス研削、陽極酸化処理等が挙げられる。   Examples of the roughening method include wet honing performed by suspending an abrasive in water and spraying it on a support, centerless grinding in which a conductive base material is pressed against a rotating grindstone, and grinding is continuously performed. And anodizing treatment.

粗面化の方法としては、導電性基材の表面を粗面化することなく、導電性又は半導電性粉体を樹脂中に分散させて、導電性基材の表面上に層を形成し、その層中に分散させる粒子により粗面化する方法も挙げられる。   As a roughening method, without roughening the surface of the conductive substrate, conductive or semiconductive powder is dispersed in the resin to form a layer on the surface of the conductive substrate. Also, a method of roughening with particles dispersed in the layer can be mentioned.

陽極酸化による粗面化処理は、金属製(例えばアルミニウム製)の導電性基材を陽極とし電解質溶液中で陽極酸化することにより導電性基材の表面に酸化膜を形成するものである。電解質溶液としては、例えば、硫酸溶液、シュウ酸溶液等が挙げられる。しかし、陽極酸化により形成された多孔質陽極酸化膜は、そのままの状態では化学的に活性であり、汚染され易く、環境による抵抗変動も大きい。そこで、多孔質陽極酸化膜に対して、酸化膜の微細孔を加圧水蒸気又は沸騰水中(ニッケル等の金属塩を加えてもよい)で水和反応による体積膨張でふさぎ、より安定な水和酸化物に変える封孔処理を行うことが好ましい。   In the roughening treatment by anodic oxidation, a metal (for example, aluminum) conductive substrate is used as an anode to form an oxide film on the surface of the conductive substrate by anodizing in an electrolyte solution. Examples of the electrolyte solution include a sulfuric acid solution and an oxalic acid solution. However, the porous anodic oxide film formed by anodic oxidation is chemically active as it is, easily contaminated, and has a large resistance fluctuation due to the environment. Therefore, the pores of the oxide film are blocked by the volume expansion due to the hydration reaction in pressurized water vapor or boiling water (a metal salt such as nickel may be added) against the porous anodic oxide film, and more stable hydration oxidation It is preferable to perform a sealing treatment for changing to a product.

陽極酸化膜の膜厚は、例えば、0.3μm以上15μm以下が好ましい。この膜厚が上記範囲内にあると、注入に対するバリア性が発揮される傾向があり、また繰り返し使用による残留電位の上昇が抑えられる傾向にある。   The thickness of the anodized film is preferably, for example, 0.3 μm or more and 15 μm or less. When this film thickness is within the above range, the barrier property against implantation tends to be exhibited, and the increase in residual potential due to repeated use tends to be suppressed.

導電性基材には、酸性処理液による処理又はベーマイト処理を施してもよい。
酸性処理液による処理は、例えば、以下のようにして実施される。先ず、リン酸、クロム酸及びフッ酸を含む酸性処理液を調製する。酸性処理液におけるリン酸、クロム酸及びフッ酸の配合割合は、例えば、リン酸が10質量%以上11質量%以下の範囲、クロム酸が3質量%以上5質量%以下の範囲、フッ酸が0.5質量%以上2質量%以下の範囲であって、これらの酸全体の濃度は13.5質量%以上18質量%以下の範囲がよい。処理温度は例えば42℃以上48℃以下が好ましい。被膜の膜厚は、0.3μm以上15μm以下が好ましい。
The conductive substrate may be subjected to treatment with an acidic treatment liquid or boehmite treatment.
The treatment with the acidic treatment liquid is performed as follows, for example. First, an acidic treatment liquid containing phosphoric acid, chromic acid and hydrofluoric acid is prepared. The mixing ratio of phosphoric acid, chromic acid and hydrofluoric acid in the acidic treatment liquid is, for example, in the range of 10% by mass to 11% by mass of phosphoric acid, in the range of 3% by mass to 5% by mass of chromic acid, The concentration of these acids is preferably in the range of 13.5% by mass or more and 18% by mass or less. The treatment temperature is preferably 42 ° C. or higher and 48 ° C. or lower, for example. The film thickness is preferably from 0.3 μm to 15 μm.

ベーマイト処理は、例えば90℃以上100℃以下の純水中に5分から60分間浸漬すること、又は90℃以上120℃以下の加熱水蒸気に5分から60分間接触させて行う。被膜の膜厚は、0.1μm以上5μm以下が好ましい。これをさらにアジピン酸、硼酸、硼酸塩、燐酸塩、フタル酸塩、マレイン酸塩、安息香酸塩、酒石酸塩、クエン酸塩等の被膜溶解性の低い電解質溶液を用いて陽極酸化処理してもよい。   The boehmite treatment is performed, for example, by immersing in pure water of 90 ° C. or higher and 100 ° C. or lower for 5 minutes to 60 minutes, or by contacting with heated steam of 90 ° C. or higher and 120 ° C. or lower for 5 minutes to 60 minutes. The film thickness is preferably 0.1 μm or more and 5 μm or less. This may be further anodized using an electrolyte solution with low film solubility such as adipic acid, boric acid, borate, phosphate, phthalate, maleate, benzoate, tartrate, citrate, etc. Good.

(下引層)
下引層は、結着樹脂、並びに、金属酸化物粒子をアミノ基を有するシランカップリング剤により表面処理した表面処理粒子として、BET比表面積が10m/g以上15m/g以下である第1の表面処理粒子及びBET比表面積が18m/g以上30m/g以下である第2の表面処理粒子を含み、好ましくはさらに電子受容性化合物を含んで構成されている。
(Undercoat layer)
The subbing layer has a BET specific surface area of 10 m 2 / g or more and 15 m 2 / g or less as surface-treated particles obtained by surface-treating the binder resin and the metal oxide particles with a silane coupling agent having an amino group. 1 and 2nd surface treatment particle | grains whose BET specific surface area is 18 m < 2 > / g or more and 30 m < 2 > / g or less, Preferably it is comprised including the electron-accepting compound further.

なお、表面処理粒子のBET比表面積は、アミノ基を有するシランカップリング剤によって表面処理された後の金属酸化物粒子(表面処理粒子)について、BET式比表面積測定器(島津製作所製:フローソープII2300)を用い窒素置換法にて測定した値である。   In addition, the BET specific surface area of the surface treatment particles is a BET specific surface area measuring instrument (manufactured by Shimadzu Corporation: Flow Soap) for the metal oxide particles (surface treatment particles) after being surface-treated with a silane coupling agent having an amino group. II2300) and measured by the nitrogen substitution method.

・結着樹脂
結着樹脂としては、例えば、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂などの高分子樹脂化合物等が挙げられる。また、これら樹脂と硬化剤との反応により得られる樹脂も挙げられる。
-Binder resin As the binder resin, for example, acetal resin (for example, polyvinyl butyral), polyvinyl alcohol resin, casein, polyamide resin, cellulose resin, gelatin, polyurethane resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride Examples thereof include polymer resin compounds such as resins, polyvinyl acetate resins, vinyl chloride-vinyl acetate-maleic anhydride resins, silicone resins, silicone-alkyd resins, phenol resins, phenol-formaldehyde resins, and melamine resins. Moreover, the resin obtained by reaction of these resin and a hardening | curing agent is also mentioned.

・表面処理粒子
下引層には、金属酸化物粒子をアミノ基を有するシランカップリング剤により表面処理した表面処理粒子として、BET比表面積が10m/g以上15m/g以下である第1の表面処理粒子と、BET比表面積が18m/g以上30m/g以下である第2の表面処理粒子が含まれる。
-Surface-treated particles As the surface-treated particles in which the metal oxide particles are surface-treated with a silane coupling agent having an amino group, the BET specific surface area is 10 m 2 / g or more and 15 m 2 / g or less. Surface-treated particles and second surface-treated particles having a BET specific surface area of 18 m 2 / g or more and 30 m 2 / g or less.

ハーフトーン画像の濃度ムラ及びゴーストの発生を抑制する観点から、第1の表面処理粒子のBET比表面積は好ましくは12m/g以上14m/g以下であり、第2の表面処理粒子のBET比表面積は好ましくは19m/g以上22m/g以下である。 From the viewpoint of suppressing density unevenness and ghosting in the halftone image, the BET specific surface area of the first surface-treated particles is preferably 12 m 2 / g or more and 14 m 2 / g or less, and the BET of the second surface-treated particles is The specific surface area is preferably 19 m 2 / g or more and 22 m 2 / g or less.

金属酸化物粒子としては、酸化アンチモン、酸化インジウム、酸化錫、酸化チタン、酸化亜鉛等の粒子が挙げられる。
これらの中でも、金属酸化物粒子としては、残留電位の上昇抑制の観点から、酸化錫、酸化チタン、酸化亜鉛の粒子がよい。
なお、第1の表面処理粒子を構成する金属酸化物粒子(第1の金属酸化物粒子)と第2の表面処理粒子を構成する金属酸化物粒子(第2の金属酸化物粒子)の構成材料は異なってもよいが、同種の材料であることが望ましい。
Examples of the metal oxide particles include particles of antimony oxide, indium oxide, tin oxide, titanium oxide, zinc oxide and the like.
Among these, as the metal oxide particles, tin oxide, titanium oxide, and zinc oxide particles are preferable from the viewpoint of suppressing an increase in residual potential.
The constituent material of the metal oxide particles (first metal oxide particles) constituting the first surface treatment particles and the metal oxide particles (second metal oxide particles) constituting the second surface treatment particles May be different, but are preferably of the same type.

金属酸化物粒子としては、望ましくは粒径が100nm以下、特に10nm以上100nm以下の導電粉が望ましく用いられる。ここでいう粒径とは、平均1次粒径を意味する。金属酸化物粒子の平均1次粒径は、SEM(走査型電子顕微鏡)により観察し測定される値であり、無作為に選んだ50個の金属酸化物粒子について測定した平均値である。   As the metal oxide particles, a conductive powder having a particle size of 100 nm or less, particularly 10 nm or more and 100 nm or less is preferably used. The particle size here means an average primary particle size. The average primary particle size of the metal oxide particles is a value observed and measured by SEM (scanning electron microscope), and is an average value measured for 50 randomly selected metal oxide particles.

金属酸化物粒子としては10Ω・cm以上1010Ω・cm以下の粉体抵抗とすることが望ましい。これにより、下引層は、電子写真プロセス速度に対応した周波数で適切なインピーダンスを得ることが実現され易くなる。
金属酸化物粒子の抵抗値が10Ω・cmよりも低いと、インピーダンスの粒子添加量依存性の傾きが大きすぎて、インピーダンスの制御が難しくなる場合がある。一方、金属酸化物粒子の抵抗値が1010Ω・cmよりも高いと残留電位の上昇を引き起こす場合がある。
The metal oxide particles preferably have a powder resistance of 10 4 Ω · cm to 10 10 Ω · cm. As a result, it becomes easy for the undercoat layer to obtain an appropriate impedance at a frequency corresponding to the electrophotographic process speed.
If the resistance value of the metal oxide particles is lower than 10 4 Ω · cm, the slope of the dependency of the impedance on the particle addition amount is too large, and it may be difficult to control the impedance. On the other hand, if the resistance value of the metal oxide particles is higher than 10 10 Ω · cm, the residual potential may be increased.

第1の表面処理粒子及び第2の表面処理粒子を得るには、例えば各表面処理粒子に対応したBET比表面積を有する金属酸化物粒子をそれぞれ用いて、アミノ基を有するシランカップリング剤による表面処理を行えばよい。市販されている金属酸化物粒子を用いてもよい。
第1の表面処理粒子(BET比表面積:10m/g以上15m/g以下)を構成する市販の金属酸化物粒子としては、テイカ社 酸化亜鉛MZ−150、酸化チタンMT−100が挙げられる。
第2の表面処理粒子(BET比表面積:18m/g以上30m/g以下)を構成する市販の金属酸化物粒子としては、テイカ社 酸化亜鉛MZ−200、酸化チタンMT−300が挙げられる。
In order to obtain the first surface-treated particles and the second surface-treated particles, for example, metal oxide particles having a BET specific surface area corresponding to each surface-treated particle are used, and the surface by the silane coupling agent having an amino group is used. What is necessary is just to process. Commercially available metal oxide particles may be used.
Examples of commercially available metal oxide particles constituting the first surface-treated particles (BET specific surface area: 10 m 2 / g or more and 15 m 2 / g or less) include Teika Corporation zinc oxide MZ-150 and titanium oxide MT-100. .
Commercially available metal oxide particles constituting the second surface-treated particles (BET specific surface area: 18 m 2 / g or more and 30 m 2 / g or less) include Teika Corporation zinc oxide MZ-200 and titanium oxide MT-300. .

アミノ基を有するシランカップリング剤の例としては、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルメトキシシラン、N,N−ビス(β−ヒドロキシエチル)−γ−アミノプロピルトリエトキシシランが挙げられるが、これらに限定されるものではない。また、これらのアミノ基を有するカップリング剤は2種以上を混合して使用することもできる。   Examples of the silane coupling agent having an amino group include γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-amino. Examples include, but are not limited to, propylmethylmethoxysilane and N, N-bis (β-hydroxyethyl) -γ-aminopropyltriethoxysilane. These coupling agents having an amino group can be used in combination of two or more.

表面処理粒子におけるアミノ基を有するシランカップリング剤の表面処理量は、金属酸化物粒子に対して、0.05質量%以上1.5質量%以下であることが好ましく、より好ましくは0.1質量%以上1.0質量%以下である。金属酸化物粒子に対するアミノ基を有するシランカップリング剤の表面処理量が0.05質量%以上1.5質量%以下であると表面処理粒子同士の凝集が抑制され、初期のゴーストの発生が抑制される。   The surface treatment amount of the silane coupling agent having an amino group in the surface-treated particles is preferably 0.05% by mass or more and 1.5% by mass or less, more preferably 0.1% by mass with respect to the metal oxide particles. The mass is 1.0% by mass or more. When the surface treatment amount of the silane coupling agent having an amino group with respect to the metal oxide particles is 0.05% by mass or more and 1.5% by mass or less, aggregation of the surface treatment particles is suppressed and generation of initial ghost is suppressed. Is done.

なお、アミノ基を有するシランカップリング剤の処理量は、次のように測定する。
FT−IR法、29Si固体NMR法、熱分析、XPSなどの分析法があるが、FT−IR法が最も簡便である。FT−IR法では通常のKBr錠剤法でも、ATR法でもよい。少量の処理済金属酸化物粒子(表面処理粒子)をKBrと混合し、FT−IRを測定することで、アミノ基を有するシランカップリング剤の処理量を測定する。
In addition, the processing amount of the silane coupling agent which has an amino group is measured as follows.
There are analysis methods such as FT-IR method, 29Si solid state NMR method, thermal analysis, XPS, etc., but FT-IR method is the simplest. In the FT-IR method, the normal KBr tablet method or the ATR method may be used. A small amount of treated metal oxide particles (surface-treated particles) are mixed with KBr, and FT-IR is measured to measure the treatment amount of the silane coupling agent having an amino group.

金属酸化物粒子は、上記アミノ基を有するシランカップリング剤で表面処理後、必要に応じて抵抗値の環境依存性等の改善のために熱処理を行ってもよい。熱処理温度は、例えば、150℃以上300℃以下、処理時間は30分以上5時間以下がよい。   The metal oxide particles may be subjected to a heat treatment after the surface treatment with the above-described silane coupling agent having an amino group to improve the environmental dependency of the resistance value, if necessary. The heat treatment temperature is preferably, for example, 150 ° C. or more and 300 ° C. or less, and the treatment time is 30 minutes or more and 5 hours or less.

下引層における表面処理粒子の含有量(第1の表面処理粒子及び第2の表面処理粒子の合計量)は、電気特性維持の観点から、30質量%以上60質量%以下が望ましく、35質量%以上55質量%以下がより望ましい。   The content of the surface-treated particles in the undercoat layer (the total amount of the first surface-treated particles and the second surface-treated particles) is preferably 30% by mass or more and 60% by mass or less, and 35% by mass from the viewpoint of maintaining electrical characteristics. % To 55% by mass is more desirable.

また、下引層における第2の表面処理粒子の含有量が、第1の表面処理粒子の含有量よりも多いことが望ましい。下引層に含まれる第1の表面処理粒子及び第2の表面処理粒子の合計含有量に対する第2の表面処理粒子の含有比率は、55質量%以上85質量%以下であることが好ましく、60質量%以上70質量%以下であることがより好ましい。   Moreover, it is desirable that the content of the second surface treatment particles in the undercoat layer is larger than the content of the first surface treatment particles. The content ratio of the second surface treatment particles to the total content of the first surface treatment particles and the second surface treatment particles contained in the undercoat layer is preferably 55% by mass or more and 85% by mass or less, More preferably, it is at least 70% by mass.

・電子受容性化合物
電子受容性化合物は、下引層に含有される、アミノ基を有するシランカップリング剤によって表面処理された金属酸化物粒子(表面処理粒子)の表面と化学反応する材料、又は表面処理粒子の表面に吸着する材料であり、表面処理粒子の表面に選択的に存在し得る。
-Electron-accepting compound The electron-accepting compound is a material that chemically reacts with the surface of metal oxide particles (surface-treated particles) surface-treated with a silane coupling agent having an amino group, contained in the undercoat layer, or It is a material that adsorbs to the surface of the surface-treated particles, and can selectively exist on the surface of the surface-treated particles.

電子受容性化合物としては、好ましくは酸性基を持つ電子受容性化合物が適用される。この酸性基としては、水酸基(フェノール水酸基)、カルボキシル基、スルホニル基等が挙げられる。
電子受容性化合物として具体的には、例えば、キノン系、アントラキノン系、クマリン系、フタロシアニン系、トリフェニルメタン系、アントシアニン系、フラボン系、フラーレン系、ルテニウム錯体、キサンテン系、ベンゾキサジン系、ポルフィリン系の化合物が挙げられる。
特に、電子受容性化合物としては、ハーフトーン画像の濃度ムラ及びゴーストの発生を抑制すると共に、材料の安全性、入手性、電子輸送能力を考慮すると、アントラキノン系の材料(アントラキノン誘導体)が望ましく、特に下記一般式(1)で表される化合物であることが望ましい。なお、アントラキノン誘導体とは、アントラキノン骨格を有する化合物を意味する。
これらの中でも、一般式(1)で表される化合物のうち、R及びRが各々独立に炭素数1以上10以下のアルコキシ基を示す化合物がよい。
As the electron accepting compound, an electron accepting compound having an acidic group is preferably used. Examples of the acidic group include a hydroxyl group (phenolic hydroxyl group), a carboxyl group, and a sulfonyl group.
Specific examples of the electron-accepting compound include quinone series, anthraquinone series, coumarin series, phthalocyanine series, triphenylmethane series, anthocyanin series, flavone series, fullerene series, ruthenium complex, xanthene series, benzoxazine series, and porphyrin series. Compounds.
In particular, as an electron-accepting compound, an anthraquinone-based material (anthraquinone derivative) is desirable in consideration of the density unevenness of a halftone image and the occurrence of ghost, and considering the safety, availability, and electron transport capability of the material. In particular, a compound represented by the following general formula (1) is desirable. An anthraquinone derivative means a compound having an anthraquinone skeleton.
Among these, among the compounds represented by the general formula (1), a compound in which R 1 and R 2 each independently represents an alkoxy group having 1 to 10 carbon atoms is preferable.



一般式(1)中、n1及びn2は、各々独立に0以上3以下の整数を表す。但し、n1及びn2の少なくとも一方は、各々独立に1以上3以下の整数を表す(つまり、n1及びn2が同時に0を表さない)。m1及びm2は、各々独立に0又は1の整数を示す。R及びRは、各々独立に炭素数1以上10以下のアルキル基、又は炭素数1以上10以下のアルコキシ基を表す。 In general formula (1), n1 and n2 each independently represent an integer of 0 or more and 3 or less. However, at least one of n1 and n2 independently represents an integer of 1 or more and 3 or less (that is, n1 and n2 do not simultaneously represent 0). m1 and m2 each independently represent an integer of 0 or 1. R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.

また、電子受容性化合物としては、下記一般式(2)で表される化合物であってもよい。   Moreover, as an electron-accepting compound, the compound represented by following General formula (2) may be sufficient.


一般式(2)中、n1、n2、n3、及びn4は、各々独立に0以上3以下の整数を表す。m1及びm2は、各々独立に0又は1の整数を示す。n1及びn2の少なくとも一方は、各々独立に1以上3以下の整数を表す(つまり、n1及びn2が同時に0を表さない)。n3及びn4の少なくとも一方は、各々独立に1以上3以下の整数を表す(つまり、n3及びn4が同時に0を表さない)。rは、2以上10以下の整数を示す。R及びRは、各々独立に炭素数1以上10以下のアルキル基、又は炭素数1以上10以下のアルコキシ基を表す。 In general formula (2), n1, n2, n3, and n4 each independently represent an integer of 0 or more and 3 or less. m1 and m2 each independently represent an integer of 0 or 1. At least one of n1 and n2 independently represents an integer of 1 or more and 3 or less (that is, n1 and n2 do not simultaneously represent 0). At least one of n3 and n4 each independently represents an integer of 1 or more and 3 or less (that is, n3 and n4 do not simultaneously represent 0). r represents an integer of 2 or more and 10 or less. R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.

ここで、一般式(1)及び(2)中、R及びRが表す炭素数1以上10以下のアルキル基としては、直鎖状、又は分枝状のいずれでもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基等が挙げられる。炭素数1以上10以下のアルキル基としては、望ましくは1以上8以下のアルキル基、より望ましくは1以上6以下のアルキル基である。
及びRが表す炭素数1以上10以下のアルコキシ基(アルコキシル基)としては、直鎖状、又は分枝状のいずれでもよく、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基等が挙げられる。炭素数1以上10以下のアルコキシ基としては、望ましくは1以上8以下のアルコキシル基、より望ましくは1以上6以下のアルコキシル基である。
Here, in the general formulas (1) and (2), the alkyl group having 1 to 10 carbon atoms represented by R 1 and R 2 may be linear or branched, for example, a methyl group , Ethyl group, propyl group, isopropyl group and the like. The alkyl group having 1 to 10 carbon atoms is preferably an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
The alkoxy group (alkoxyl group) having 1 to 10 carbon atoms represented by R 1 and R 2 may be either linear or branched, for example, methoxy group, ethoxy group, propoxy group, isopropoxy group Etc. The alkoxy group having 1 to 10 carbon atoms is preferably an alkoxyl group having 1 to 8 carbon atoms, more preferably an alkoxyl group having 1 to 6 carbon atoms.

電子受容性化合物の具体例を以下に示すが、これらに限定されるものではない。   Specific examples of the electron-accepting compound are shown below, but are not limited thereto.




電子受容性化合物の含有量は、化学反応又は吸着する相手である金属酸化物粒子の表面積及び含有量と、各材料の電子輸送能力から決められるが、通常は0.01質量%以上20質量%以下の範囲がよく、より望ましくは0.1質量%以上10質量%以下の範囲である。
電子受容性化合物の含有量が0.1質量%以上であると電子受容性化合物の効果が発現し易い。また、電子受容性化合物の含有量が20質量%以下であると金属酸化物粒子同士の凝集が抑制され、金属酸化物粒子が下引層内で分布が均等になり易く、良好な導電路を形成し易い。そのため、残留電位の上昇を抑制し、ゴーストの発生、黒点の発生、ハーフトーン濃度の不均一が抑制される。
The content of the electron-accepting compound is determined from the surface area and content of the metal oxide particles that are the chemical reaction or adsorption partner, and the electron transport ability of each material, but is usually 0.01% by mass or more and 20% by mass. The following range is preferable, and the range is more preferably 0.1% by mass or more and 10% by mass or less.
When the content of the electron accepting compound is 0.1% by mass or more, the effect of the electron accepting compound is easily exhibited. Further, when the content of the electron-accepting compound is 20% by mass or less, aggregation of the metal oxide particles is suppressed, and the distribution of the metal oxide particles tends to be uniform in the undercoat layer, and a good conductive path is obtained. Easy to form. Therefore, the increase in the residual potential is suppressed, and the occurrence of ghost, black spots, and non-uniform halftone density are suppressed.

−その他添加剤−
その他添加剤としては、樹脂粒子が挙げられる。露光装置にレーザ等のコヒーレント光を用いた場合、モアレ像を防止することがよい。そのためには。下引層の表面粗さを、使用する露光用レーザ波長λの1/4n(nは上層の屈折率)以上1/2λ以下に調整することがよい。そこで、樹脂粒子を下引層中に添加すると、表面粗さの調整が実現される。樹脂粒子としてはシリコーン樹脂粒子、架橋型ポリメチルメタアクリレート(PMMA)樹脂等が挙げられる。
また、その他添加剤としては、上記に限られず、周知の添加剤も挙げられる。
-Other additives-
Other additives include resin particles. When coherent light such as a laser is used for the exposure apparatus, it is preferable to prevent moiré images. for that purpose. The surface roughness of the undercoat layer is preferably adjusted to ¼n (n is the refractive index of the upper layer) or more and ½λ or less of the exposure laser wavelength λ to be used. Therefore, when the resin particles are added to the undercoat layer, the surface roughness can be adjusted. Examples of the resin particles include silicone resin particles and cross-linked polymethyl methacrylate (PMMA) resin.
Further, the other additives are not limited to the above, and well-known additives are also included.

−下引層の形成−
下引層の形成の際には、結着樹脂、並びに、金属酸化物粒子をアミノ基を有するシランカップリング剤により表面処理した表面処理粒子あって、BET比表面積が10m/g以上15m/g以下である第1の表面処理粒子及びBET比表面積が18m/g以上30m/g以下である第2の表面処理粒子を溶媒に加えた下引層形成用塗布液が使用される。下引層形成用塗布液は、必要に応じて、電子受容性化合物、さらにその他の添加剤を予備混合又は予備分散したものを、結着樹脂に分散させて得られる。
-Formation of undercoat layer-
In the formation of the undercoat layer, there are surface-treated particles obtained by surface-treating the binder resin and the metal oxide particles with a silane coupling agent having an amino group, and the BET specific surface area is 10 m 2 / g or more and 15 m 2. The coating solution for forming the undercoat layer is used in which the first surface-treated particles having a BET specific surface area of 18 m 2 / g or less and the second surface treated particles having a BET specific surface area of 18 m 2 / g or more and 30 m 2 / g or less are added to a solvent. . The coating solution for forming the undercoat layer is obtained by dispersing a premixed or predispersed electron-accepting compound and other additives in a binder resin as necessary.

下引層形成用塗布液を得るために用いる溶剤としては前述した結着樹脂を溶解する公知の有機溶剤、例えばアルコール系、芳香族系、ハロゲン化炭化水素系、ケトン系、ケトンアルコール系、エーテル系、エステル系の溶剤が挙げられる。これらの溶剤は単独又は2種類以上混合して用いてもよい。   The solvent used for obtaining the coating solution for forming the undercoat layer is a known organic solvent that dissolves the above-mentioned binder resin, for example, alcohol, aromatic, halogenated hydrocarbon, ketone, ketone alcohol, ether. And ester solvents. These solvents may be used alone or in combination of two or more.

下引層形成用塗布液に表面処理粒子を分散させる方法としては公知の分散方法が用いられる。例えば、ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカーなどが挙げられる。ガラスビーズを用いたサンドミルが分散性及び量産性の観点からより好ましい。   As a method for dispersing the surface-treated particles in the coating solution for forming the undercoat layer, a known dispersion method is used. Examples thereof include a roll mill, a ball mill, a vibrating ball mill, an attritor, a sand mill, a colloid mill, and a paint shaker. A sand mill using glass beads is more preferable from the viewpoints of dispersibility and mass productivity.

下引層形成用塗布液の塗布方法としては浸漬塗布法、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法など公知の塗布方法が用いられる。   As a coating method for the coating solution for forming the undercoat layer, known coating methods such as a dip coating method, a blade coating method, a wire bar coating method, a spray coating method, a bead coating method, an air knife coating method, and a curtain coating method are used.

下引層は、ビッカース硬度が35以上50以下であることが望ましい。   The undercoat layer preferably has a Vickers hardness of 35 to 50.

下引層の厚みは、画像の粒状性向上の観点から、15μm以上が望ましく、15μm以上30μm以下であることがより望ましく、20μm以上25μm以下が更に望ましい。   The thickness of the undercoat layer is preferably 15 μm or more, more preferably 15 μm or more and 30 μm or less, and further preferably 20 μm or more and 25 μm or less from the viewpoint of improving the graininess of the image.

(中間層)
図示は省略するが、下引層と感光層との間に中間層をさらに設けてもよい。
中間層は、例えば、樹脂を含む層である。中間層に用いる樹脂としては、例えば、アセタール樹脂(例えばポリビニルブチラール等)、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、カゼイン樹脂、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂等の高分子化合物が挙げられる。
中間層は、有機金属化合物を含む層であってもよい。中間層に用いる有機金属化合物としては、ジルコニウム、チタニウム、アルミニウム、マンガン、ケイ素等の金属原子を含有する有機金属化合物等が挙げられる。
これらの中間層に用いる化合物は、単独で又は複数の化合物の混合物若しくは重縮合物として用いてもよい。
(Middle layer)
Although illustration is omitted, an intermediate layer may be further provided between the undercoat layer and the photosensitive layer.
An intermediate | middle layer is a layer containing resin, for example. Examples of the resin used for the intermediate layer include an acetal resin (for example, polyvinyl butyral), polyvinyl alcohol resin, polyvinyl acetal resin, casein resin, polyamide resin, cellulose resin, gelatin, polyurethane resin, polyester resin, methacrylic resin, acrylic resin, Polymer compounds such as polyvinyl chloride resin, polyvinyl acetate resin, vinyl chloride-vinyl acetate-maleic anhydride resin, silicone resin, silicone-alkyd resin, phenol-formaldehyde resin, melamine resin, and the like can be given.
The intermediate layer may be a layer containing an organometallic compound. Examples of the organometallic compound used for the intermediate layer include organometallic compounds containing metal atoms such as zirconium, titanium, aluminum, manganese, and silicon.
The compounds used for these intermediate layers may be used alone or as a mixture or polycondensate of a plurality of compounds.

これらの中でも、中間層は、ジルコニウム原子又はケイ素原子を含有する有機金属化合物を含む層であることが好ましい。   Among these, the intermediate layer is preferably a layer containing an organometallic compound containing a zirconium atom or a silicon atom.

中間層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた中間層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。
中間層を形成する塗布方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法が用いられる。
The formation of the intermediate layer is not particularly limited, and a well-known formation method is used. For example, a coating film of an intermediate layer forming coating solution in which the above components are added to a solvent is formed, and the coating film is dried and necessary. It is performed by heating according to.
As the coating method for forming the intermediate layer, usual methods such as a dip coating method, a push-up coating method, a wire bar coating method, a spray coating method, a blade coating method, a knife coating method, and a curtain coating method are used.

中間層の膜厚は、例えば、好ましくは0.1μm以上3μm以下の範囲に設定される。なお、中間層を下引層として使用してもよい。   For example, the thickness of the intermediate layer is preferably set in a range of 0.1 μm to 3 μm. An intermediate layer may be used as the undercoat layer.

(電荷発生層)
電荷発生層は、例えば、電荷発生材料と結着樹脂とを含む層である。また、電荷発生層は、電荷発生材料の蒸着層であってもよい。電荷発生材料の蒸着層は、LED(Light Emitting Diode)、有機EL(Electro−Luminescence)イメージアレー等の非干渉性光源を用いる場合に好適である。
(Charge generation layer)
The charge generation layer is, for example, a layer containing a charge generation material and a binder resin. The charge generation layer may be a vapor deposition layer of a charge generation material. The vapor-deposited layer of the charge generation material is suitable when an incoherent light source such as an LED (Light Emitting Diode) or an organic EL (Electro-Luminescence) image array is used.

電荷発生材料としては、ビスアゾ、トリスアゾ等のアゾ顔料;ジブロモアントアントロン等の縮環芳香族顔料;ペリレン顔料;ピロロピロール顔料;フタロシアニン顔料;酸化亜鉛;三方晶系セレン等が挙げられる。   Examples of the charge generating material include azo pigments such as bisazo and trisazo; fused aromatic pigments such as dibromoanthanthrone; perylene pigments; pyrrolopyrrole pigments; phthalocyanine pigments; zinc oxide;

これらの中でも、近赤外域のレーザ露光に対応させるためには、電荷発生材料としては、金属フタロシアニン顔料、又は無金属フタロシアニン顔料を用いることが好ましい。具体的には、例えば、特開平5−263007号公報、特開平5−279591号公報等に開示されたヒドロキシガリウムフタロシアニン;特開平5−98181号公報等に開示されたクロロガリウムフタロシアニン;特開平5−140472号公報、特開平5−140473号公報等に開示されたジクロロスズフタロシアニン;特開平4−189873号公報等に開示されたチタニルフタロシアニンがより好ましい。   Among these, in order to cope with near-infrared laser exposure, it is preferable to use a metal phthalocyanine pigment or a metal-free phthalocyanine pigment as the charge generation material. Specifically, for example, hydroxygallium phthalocyanine disclosed in JP-A-5-263007, JP-A-5-279591, etc .; chlorogallium phthalocyanine disclosed in JP-A-5-98181; More preferred are dichlorotin phthalocyanines disclosed in JP-A No. 140472, JP-A No. 5-140473 and the like; and titanyl phthalocyanine disclosed in JP-A No. 4-189873.

一方、近紫外域のレーザ露光に対応させるためには、電荷発生材料としては、ジブロモアントアントロン等の縮環芳香族顔料;チオインジゴ系顔料;ポルフィラジン化合物;酸化亜鉛;三方晶系セレン;特開2004−78147号公報、特開2005−181992号公報に開示されたビスアゾ顔料等が好ましい。   On the other hand, in order to cope with laser exposure in the near-ultraviolet region, as the charge generation material, condensed aromatic pigments such as dibromoanthanthrone; thioindigo pigments; porphyrazine compounds; zinc oxide; trigonal selenium; Bisazo pigments and the like disclosed in 2004-78147 and JP-A-2005-181992 are preferred.

450nm以上780nm以下に発光の中心波長があるLED,有機ELイメージアレー等の非干渉性光源を用いる場合にも、上記電荷発生材料を用いてもよいが、解像度の観点より、感光層を20μm以下の薄膜で用いるときには、感光層中の電界強度が高くなり、基材からの電荷注入による帯電低下、いわゆる黒点と呼ばれる画像欠陥を生じやすくなる。これは、三方晶系セレン、フタロシアニン顔料等のp−型半導体で暗電流を生じやすい電荷発生材料を用いたときに顕著となる。   The above-described charge generation material may also be used in the case of using an incoherent light source such as an LED having a central wavelength of light emission of 450 nm to 780 nm and an organic EL image array. However, from the viewpoint of resolution, the photosensitive layer is 20 μm or less. When the thin film is used, the electric field strength in the photosensitive layer is increased, and a charge reduction due to charge injection from the base material, so-called image defects called black spots are likely to occur. This becomes conspicuous when a charge generating material that easily generates a dark current is used in a p-type semiconductor such as trigonal selenium or a phthalocyanine pigment.

これに対し、電荷発生材料として、縮環芳香族顔料、ペリレン顔料、アゾ顔料等のn−型半導体を用いた場合、暗電流を生じ難く、薄膜にしても黒点と呼ばれる画像欠陥を抑制し得る。n−型の電荷発生材料としては、例えば、特開2012−155282号公報の段落[0288]〜[0291]に記載された化合物(CG−1)〜(CG−27)が挙げられるがこれに限られるものではない。
なお、n−型の判定は、通常使用されるタイムオブフライト法を用い、流れる光電流の極性によって判定され、正孔よりも電子をキャリアとして流しやすいものをn−型とする。
On the other hand, when an n-type semiconductor such as a condensed ring aromatic pigment, perylene pigment, azo pigment or the like is used as the charge generation material, dark current hardly occurs and even a thin film can suppress image defects called black spots. . Examples of the n-type charge generation material include compounds (CG-1) to (CG-27) described in paragraphs [0288] to [0291] of JP2012-155282A. It is not limited.
The n-type determination is performed by using a time-of-flight method that is usually used, and is determined by the polarity of the flowing photocurrent, and an n-type is more likely to flow electrons as carriers than holes.

電荷発生層に用いる結着樹脂としては、広範な絶縁性樹脂から選択され、また、結着樹脂としては、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルピレン、ポリシラン等の有機光導電性ポリマーから選択してもよい。
結着樹脂としては、例えば、ポリビニルブチラール樹脂、ポリアリレート樹脂(ビスフェノール類と芳香族2価カルボン酸の重縮合体等)、ポリカーボネート樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリアミド樹脂、アクリル樹脂、ポリアクリルアミド樹脂、ポリビニルピリジン樹脂、セルロース樹脂、ウレタン樹脂、エポキシ樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂等が挙げられる。ここで、「絶縁性」とは、体積抵抗率が1013Ωcm以上であることをいう。
これらの結着樹脂は1種を単独で又は2種以上を混合して用いられる。
The binder resin used for the charge generation layer is selected from a wide range of insulating resins, and the binder resin is selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinyl anthracene, polyvinyl pyrene, and polysilane. You may choose.
As the binder resin, for example, polyvinyl butyral resin, polyarylate resin (polycondensate of bisphenol and aromatic divalent carboxylic acid, etc.), polycarbonate resin, polyester resin, phenoxy resin, vinyl chloride-vinyl acetate copolymer, Examples thereof include polyamide resin, acrylic resin, polyacrylamide resin, polyvinyl pyridine resin, cellulose resin, urethane resin, epoxy resin, casein, polyvinyl alcohol resin, polyvinyl pyrrolidone resin, and the like. Here, “insulating” means that the volume resistivity is 10 13 Ωcm or more.
These binder resins are used singly or in combination of two or more.

なお、電荷発生材料と結着樹脂の配合比は、質量比で10:1から1:10までの範囲内であることが好ましい。   The mixing ratio of the charge generation material and the binder resin is preferably in the range of 10: 1 to 1:10 by mass ratio.

電荷発生層には、その他、周知の添加剤が含まれていてもよい。   In addition, the charge generation layer may contain a known additive.

電荷発生層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた電荷発生層形成用塗布液の塗膜を形成し、当該塗膜を乾燥し、必要に応じて加熱することで行う。なお、電荷発生層の形成は、電荷発生材料の蒸着により行ってもよい。電荷発生層の蒸着による形成は、特に、電荷発生材料として縮環芳香族顔料、ペリレン顔料を利用する場合に好適である。   The formation of the charge generation layer is not particularly limited, and a known formation method is used. For example, a coating film of a charge generation layer forming coating solution in which the above components are added to a solvent is formed, and the coating film is dried. And heating as necessary. The charge generation layer may be formed by vapor deposition of a charge generation material. Formation of the charge generation layer by vapor deposition is particularly suitable when a condensed ring aromatic pigment or perylene pigment is used as the charge generation material.

電荷発生層形成用塗布液を調製するための溶剤としては、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロロベンゼン、トルエン等が挙げられる。これら溶剤は、1種を単独で又は2種以上を混合して用いる。   Solvents for preparing the charge generation layer forming coating solution include methanol, ethanol, n-propanol, n-butanol, benzyl alcohol, methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, n-acetate. -Butyl, dioxane, tetrahydrofuran, methylene chloride, chloroform, chlorobenzene, toluene and the like. These solvents are used alone or in combination of two or more.

電荷発生層形成用塗布液中に粒子(例えば電荷発生材料)を分散させる方法としては、例えば、ボールミル、振動ボールミル、アトライター、サンドミル、横型サンドミル等のメディア分散機や、攪拌、超音波分散機、ロールミル、高圧ホモジナイザー等のメディアレス分散機が利用される。高圧ホモジナイザーとしては、例えば、高圧状態で分散液を液−液衝突や液−壁衝突させて分散する衝突方式や、高圧状態で微細な流路を貫通させて分散する貫通方式等が挙げられる。
なお、この分散の際、電荷発生層形成用塗布液中の電荷発生材料の平均粒径を0.5μm以下、好ましくは0.3μm以下、更に好ましくは0.15μm以下にすることが有効である。
Examples of a method for dispersing particles (for example, a charge generation material) in a coating solution for forming a charge generation layer include, for example, a media disperser such as a ball mill, a vibrating ball mill, an attritor, a sand mill, a horizontal sand mill, a stirring, an ultrasonic disperser, etc. Medialess dispersers such as roll mills and high-pressure homogenizers are used. Examples of the high-pressure homogenizer include a collision method in which a dispersion liquid is dispersed by liquid-liquid collision or liquid-wall collision in a high pressure state, and a penetration method in which a fine flow path is dispersed in a high pressure state.
In this dispersion, it is effective that the average particle size of the charge generation material in the coating solution for forming the charge generation layer is 0.5 μm or less, preferably 0.3 μm or less, more preferably 0.15 μm or less. .

電荷発生層形成用塗布液を下引層上(又は中間層上)に塗布する方法としては、例えばブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。   Examples of methods for applying the charge generation layer forming coating solution on the undercoat layer (or on the intermediate layer) include blade coating, wire bar coating, spray coating, dip coating, bead coating, and air knife coating. And usual methods such as a curtain coating method.

電荷発生層の膜厚は、例えば、好ましくは0.1μm以上5.0μm以下、より好ましくは0.2μm以上2.0μm以下の範囲内に設定される。   The film thickness of the charge generation layer is, for example, preferably set in the range of 0.1 μm to 5.0 μm, more preferably 0.2 μm to 2.0 μm.

(電荷輸送層)
電荷輸送層は、例えば、電荷輸送材料と結着樹脂とを含む層である。電荷輸送層は、高分子電荷輸送材料を含む層であってもよい。
(Charge transport layer)
The charge transport layer is, for example, a layer containing a charge transport material and a binder resin. The charge transport layer may be a layer containing a polymer charge transport material.

電荷輸送材料としては、p−ベンゾキノン、クロラニル、ブロマニル、アントラキノン等のキノン系化合物;テトラシアノキノジメタン系化合物;2,4,7−トリニトロフルオレノン等のフルオレノン化合物;キサントン系化合物;ベンゾフェノン系化合物;シアノビニル系化合物;エチレン系化合物等の電子輸送性化合物が挙げられる。電荷輸送材料としては、トリアリールアミン系化合物、ベンジジン系化合物、アリールアルカン系化合物、アリール置換エチレン系化合物、スチルベン系化合物、アントラセン系化合物、ヒドラゾン系化合物等の正孔輸送性化合物も挙げられる。これらの電荷輸送材料は1種を単独で又は2種以上で用いられるが、これらに限定されるものではない。   Examples of charge transport materials include quinone compounds such as p-benzoquinone, chloranil, bromanyl and anthraquinone; tetracyanoquinodimethane compounds; fluorenone compounds such as 2,4,7-trinitrofluorenone; xanthone compounds; benzophenone compounds A cyanovinyl compound; an electron transporting compound such as an ethylene compound; Examples of the charge transporting material include hole transporting compounds such as triarylamine compounds, benzidine compounds, arylalkane compounds, aryl-substituted ethylene compounds, stilbene compounds, anthracene compounds, and hydrazone compounds. These charge transport materials may be used alone or in combination of two or more, but are not limited thereto.

電荷輸送材料としては、電荷移動度の観点から、下記構造式(a−1)で示されるトリアリールアミン誘導体、及び下記構造式(a−2)で示されるベンジジン誘導体が好ましい。   As the charge transport material, from the viewpoint of charge mobility, a triarylamine derivative represented by the following structural formula (a-1) and a benzidine derivative represented by the following structural formula (a-2) are preferable.

構造式(a−1)中、ArT1、ArT2、及びArT3は、各々独立に置換若しくは無置換のアリール基、−C−C(RT4)=C(RT5)(RT6)、又は−C−CH=CH−CH=C(RT7)(RT8)を示す。RT4、RT5、RT6、RT7、及びRT8は各々独立に水素原子、置換若しくは無置換のアルキル基、又は置換若しくは無置換のアリール基を示す。
上記各基の置換基としては、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基が挙げられる。また、上記各基の置換基としては、炭素数1以上3以下のアルキル基で置換された置換アミノ基も挙げられる。
In Structural Formula (a-1), Ar T1 , Ar T2 , and Ar T3 are each independently a substituted or unsubstituted aryl group, —C 6 H 4 —C (R T4 ) ═C (R T5 ) (R T6), or -C 6 H 4 -CH = CH- CH = C (R T7) shows the (R T8). R T4 , R T5 , R T6 , R T7 , and R T8 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group.
Examples of the substituent for each group include a halogen atom, an alkyl group having 1 to 5 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms. Examples of the substituent of each group also include a substituted amino group substituted with an alkyl group having 1 to 3 carbon atoms.

構造式(a−2)中、RT91及びRT92は各々独立に水素原子、ハロゲン原子、炭素数1以上5以下のアルキル基、又は炭素数1以上5以下のアルコキシ基を示す。RT101、RT102、RT111及びRT112は各々独立に、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基、炭素数1以上2以下のアルキル基で置換されたアミノ基、置換若しくは無置換のアリール基、−C(RT12)=C(RT13)(RT14)、又は−CH=CH−CH=C(RT15)(RT16)を示し、RT12、RT13、RT14、RT15及びRT16は各々独立に水素原子、置換若しくは無置換のアルキル基、又は置換若しくは無置換のアリール基を表す。Tm1、Tm2、Tn1及びTn2は各々独立に0以上2以下の整数を示す。
上記各基の置換基としては、ハロゲン原子、炭素数1以上5以下のアルキル基、炭素数1以上5以下のアルコキシ基が挙げられる。また、上記各基の置換基としては、炭素数1以上3以下のアルキル基で置換された置換アミノ基も挙げられる。
In Structural Formula (a-2), R T91 and R T92 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms. R T101 , R T102 , R T111 and R T112 are each independently substituted with a halogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or an alkyl group having 1 to 2 carbon atoms. A substituted amino group, a substituted or unsubstituted aryl group, —C (R T12 ) ═C (R T13 ) (R T14 ), or —CH═CH— CH═C (R T15 ) (R T16 ), R T12 , R T13 , R T14 , R T15 and R T16 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group. Tm1, Tm2, Tn1, and Tn2 each independently represent an integer of 0 or more and 2 or less.
Examples of the substituent for each group include a halogen atom, an alkyl group having 1 to 5 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms. Examples of the substituent of each group also include a substituted amino group substituted with an alkyl group having 1 to 3 carbon atoms.

ここで、構造式(a−1)で示されるトリアリールアミン誘導体、及び前記構造式(a−2)で示されるベンジジン誘導体のうち、特に、「−C−CH=CH−CH=C(RT7)(RT8)」を有するトリアリールアミン誘導体、及び「−CH=CH−CH=C(RT15)(RT16)」を有するベンジジン誘導体が、電荷移動度の観点で好ましい。 Here, among the triarylamine derivative represented by the structural formula (a-1) and the benzidine derivative represented by the structural formula (a-2), in particular, “—C 6 H 4 —CH═CH—CH═ Triarylamine derivatives having “C (R T7 ) (R T8 )” and benzidine derivatives having “—CH═CH— CH═C (R T15 ) (R T16 )” are preferable from the viewpoint of charge mobility.

高分子電荷輸送材料としては、ポリ−N−ビニルカルバゾール、ポリシラン等の電荷輸送性を有する公知のものが用いられる。特に、特開平8−176293号公報、特開平8−208820号公報等に開示されているポリエステル系の高分子電荷輸送材は特に好ましい。なお、高分子電荷輸送材料は、単独で使用してよいが、結着樹脂と併用してもよい。   As the polymer charge transporting material, known materials having charge transporting properties such as poly-N-vinylcarbazole and polysilane are used. In particular, polyester-based polymer charge transport materials disclosed in JP-A-8-176293, JP-A-8-208820 and the like are particularly preferable. The polymer charge transport material may be used alone or in combination with a binder resin.

電荷輸送層に用いる結着樹脂は、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコーン樹脂、シリコーンアルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキッド樹脂、ポリ−N−ビニルカルバゾール、ポリシラン等が挙げられる。これらの中でも、結着樹脂としては、ポリカーボネート樹脂又はポリアリレート樹脂が好適である。これらの結着樹脂は1種を単独で又は2種以上で用いる。
なお、電荷輸送材料と結着樹脂との配合比は、質量比で10:1から1:5までが好ましい。
The binder resin used for the charge transport layer is polycarbonate resin, polyester resin, polyarylate resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl acetate resin, styrene-butadiene copolymer, Vinylidene chloride-acrylonitrile copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, silicone resin, silicone alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin, poly-N -Vinylcarbazole, polysilane, etc. are mentioned. Among these, as the binder resin, a polycarbonate resin or a polyarylate resin is preferable. These binder resins are used alone or in combination of two or more.
The mixing ratio of the charge transport material and the binder resin is preferably 10: 1 to 1: 5 by mass ratio.

電荷輸送層には、その他、周知の添加剤が含まれていてもよい。   In addition, the charge transport layer may contain a known additive.

電荷輸送層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた電荷輸送層形成用塗布液の塗膜を形成し、当該塗膜を乾燥、必要に応じて加熱することで行う。   The formation of the charge transport layer is not particularly limited, and a known formation method is used. For example, a coating film of a charge transport layer forming coating solution in which the above components are added to a solvent is formed, and the coating film is dried. This is done by heating as necessary.

電荷輸送層形成用塗布液を調製するための溶剤としては、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素類;アセトン、2−ブタノン等のケトン類;塩化メチレン、クロロホルム、塩化エチレン等のハロゲン化脂肪族炭化水素類;テトラヒドロフラン、エチルエーテル等の環状又は直鎖状のエーテル類等の通常の有機溶剤が挙げられる。これら溶剤は、単独で又は2種以上混合して用いる。   Solvents for preparing the coating solution for forming the charge transport layer include aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene; ketones such as acetone and 2-butanone; methylene chloride, chloroform and ethylene chloride. Halogenated aliphatic hydrocarbons: Usual organic solvents such as cyclic or linear ethers such as tetrahydrofuran and ethyl ether. These solvents are used alone or in combination of two or more.

電荷輸送層形成用塗布液を電荷発生層の上に塗布する際の塗布方法としては、ブレード塗布法、ワイヤーバー塗布法、スプレー塗布法、浸漬塗布法、ビード塗布法、エアーナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。   Coating methods for applying the charge transport layer forming coating solution on the charge generation layer include blade coating method, wire bar coating method, spray coating method, dip coating method, bead coating method, air knife coating method, curtain A usual method such as a coating method may be mentioned.

電荷輸送層の膜厚は、例えば、好ましくは5μm以上50μm以下、より好ましくは10μm以上30μm以下の範囲内に設定される。   The thickness of the charge transport layer is, for example, preferably set in the range of 5 μm to 50 μm, more preferably 10 μm to 30 μm.

(保護層)
保護層は、必要に応じて感光層上に設けられる。保護層は、例えば、帯電時の感光層の化学的変化を防止したり、感光層の機械的強度をさらに改善する目的で設けられる。
そのため、保護層は、硬化膜(架橋膜)で構成された層を適用することがよい。これら層としては、例えば、下記1)又は2)に示す層が挙げられる。
(Protective layer)
The protective layer is provided on the photosensitive layer as necessary. The protective layer is provided, for example, for the purpose of preventing chemical change of the photosensitive layer during charging or further improving the mechanical strength of the photosensitive layer.
Therefore, it is preferable to apply a layer composed of a cured film (crosslinked film) as the protective layer. Examples of these layers include the layers shown in 1) or 2) below.

1)反応性基及び電荷輸送性骨格を同一分子内に有する反応性基含有電荷輸送材料を含む組成物の硬化膜で構成された層(つまり当該反応性基含有電荷輸送材料の重合体又は架橋体を含む層)
2)非反応性の電荷輸送材料と、電荷輸送性骨格を有さず、反応性基を有する反応性基含有非電荷輸送材料と、を含む組成物の硬化膜で構成された層(つまり、非反応性の電荷輸送材料と、当該反応性基含有非電荷輸送材料の重合体又は架橋体と、を含む層)
1) A layer composed of a cured film of a composition containing a reactive group-containing charge transporting material having a reactive group and a charge transporting skeleton in the same molecule (that is, a polymer or cross-linking of the reactive group-containing charge transporting material) Layer containing body)
2) a layer composed of a cured film of a composition comprising a non-reactive charge transport material and a reactive group-containing non-charge transport material having a reactive group and having no charge transport skeleton (that is, A layer comprising a non-reactive charge transport material and a polymer or a cross-linked product of the reactive group-containing non-charge transport material)

反応性基含有電荷輸送材料の反応性基としては、連鎖重合性基、エポキシ基、−OH、−OR[但し、Rはアルキル基を示す]、−NH、−SH、−COOH、−SiRQ1 3−Qn(ORQ2Qn[但し、RQ1は水素原子、アルキル基、又は置換若しくは無置換のアリール基を表し、RQ2は水素原子、アルキル基、トリアルキルシリル基を表す。Qnは1〜3の整数を表す]等の周知の反応性基が挙げられる。 The reactive group of the reactive group-containing charge transport material includes a chain polymerizable group, an epoxy group, —OH, —OR [wherein R represents an alkyl group], —NH 2 , —SH, —COOH, —SiR. Q1 3-Qn (OR Q2 ) Qn [wherein R Q1 represents a hydrogen atom, an alkyl group, or a substituted or unsubstituted aryl group, and R Q2 represents a hydrogen atom, an alkyl group, or a trialkylsilyl group. Qn represents an integer of 1 to 3], and the like, and other well-known reactive groups.

連鎖重合性基としては、ラジカル重合しうる官能基であれば特に限定されるものではなく、例えば、少なくとも炭素二重結合を含有する基を有する官能基である。具体的には、ビニル基、ビニルエーテル基、ビニルチオエーテル基、スチリル基、アクリロイル基、メタクリロイル基、及びそれらの誘導体から選択される少なくとも一つを含有する基等が挙げられる。なかでも、その反応性に優れることから、連鎖重合性基としては、ビニル基、スチリル基、アクリロイル基、メタクリロイル基、及びそれらの誘導体から選択される少なくとも一つを含有する基であることが好ましい。   The chain polymerizable group is not particularly limited as long as it is a functional group capable of radical polymerization. For example, it is a functional group having a group containing at least a carbon double bond. Specific examples include groups containing at least one selected from a vinyl group, vinyl ether group, vinyl thioether group, styryl group, acryloyl group, methacryloyl group, and derivatives thereof. Among them, the chain polymerizable group is preferably a group containing at least one selected from a vinyl group, a styryl group, an acryloyl group, a methacryloyl group, and derivatives thereof because of its excellent reactivity. .

反応性基含有電荷輸送材料の電荷輸送性骨格としては、電子写真感光体における公知の構造であれば特に限定されるものではなく、例えば、トリアリールアミン系化合物、ベンジジン系化合物、ヒドラゾン系化合物等の含窒素の正孔輸送性化合物に由来する骨格であって、窒素原子と共役している構造が挙げられる。これらの中でも、トリアリールアミン骨格が好ましい。   The charge transporting skeleton of the reactive group-containing charge transporting material is not particularly limited as long as it is a known structure in an electrophotographic photoreceptor, and examples thereof include triarylamine compounds, benzidine compounds, hydrazone compounds, and the like. And a structure conjugated from a nitrogen-containing hole transporting compound and conjugated with a nitrogen atom. Among these, a triarylamine skeleton is preferable.

これら反応性基及び電荷輸送性骨格を有する反応性基含有電荷輸送材料、非反応性の電荷輸送材料、反応性基含有非電荷輸送材料は、周知の材料から選択すればよい。   The reactive group-containing charge transport material having a reactive group and a charge transport skeleton, a non-reactive charge transport material, and a reactive group-containing non-charge transport material may be selected from well-known materials.

保護層には、その他、周知の添加剤が含まれていてもよい。   In addition, the protective layer may contain known additives.

保護層の形成は、特に制限はなく、周知の形成方法が利用されるが、例えば、上記成分を溶剤に加えた保護層形成用塗布液の塗膜を形成し、当該塗膜を乾燥し、必要に応じて加熱等の硬化処理することで行う。   The formation of the protective layer is not particularly limited, and a known formation method is used.For example, a coating film of a coating liquid for forming a protective layer in which the above components are added to a solvent is formed, and the coating film is dried. It is performed by performing a curing process such as heating as necessary.

保護層形成用塗布液を調製するための溶剤としては、トルエン、キシレン等の芳香族系溶剤;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;テトラヒドロフラン、ジオキサン等のエーテル系溶剤;エチレングリコールモノメチルエーテル等のセロソルブ系溶剤;イソプロピルアルコール、ブタノール等のアルコール系溶剤等が挙げられる。これら溶剤は、単独で又は2種以上混合して用いる。
なお、保護層形成用塗布液は、無溶剤の塗布液であってもよい。
Solvents for preparing the coating solution for forming the protective layer include aromatic solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ester solvents such as ethyl acetate and butyl acetate; tetrahydrofuran And ether solvents such as dioxane; cellosolv solvents such as ethylene glycol monomethyl ether; alcohol solvents such as isopropyl alcohol and butanol. These solvents are used alone or in combination of two or more.
The protective layer forming coating solution may be a solventless coating solution.

保護層形成用塗布液を感光層(例えば電荷輸送層)上に塗布する方法としては、浸漬塗布法、突き上げ塗布法、ワイヤーバー塗布法、スプレー塗布法、ブレード塗布法、ナイフ塗布法、カーテン塗布法等の通常の方法が挙げられる。   As a method for applying the coating solution for forming the protective layer on the photosensitive layer (for example, charge transport layer), dip coating method, push-up coating method, wire bar coating method, spray coating method, blade coating method, knife coating method, curtain coating method. Ordinary methods such as a method may be mentioned.

保護層の膜厚は、例えば、好ましくは1μm以上20μm以下、より好ましくは2μm以上10μm以下の範囲内に設定される。   The thickness of the protective layer is, for example, preferably set in the range of 1 μm to 20 μm, more preferably 2 μm to 10 μm.

(単層型感光層)
単層型感光層(電荷発生/電荷輸送層)は、例えば、電荷発生材料と電荷輸送材料と、必要に応じて、結着樹脂、及びその他周知の添加剤と、を含む層である。なお、これら材料は、電荷発生層及び電荷輸送層で説明した材料と同様である。
そして、単層型感光層中、電荷発生材料の含有量は、全固形分に対して10質量%以上85質量%以下がよく、好ましくは20質量%以上50質量%以下である。また、単層型感光層中、電荷輸送材料の含有量は、全固形分に対して5質量%以上50質量%以下がよい。
単層型感光層の形成方法は、電荷発生層や電荷輸送層の形成方法と同様である。
単層型感光層の膜厚は、例えば、5μm以上50μm以下がよく、好ましくは10μm以上40μm以下である。
(Single layer type photosensitive layer)
The single-layer type photosensitive layer (charge generation / charge transport layer) is, for example, a layer containing a charge generation material, a charge transport material, and, if necessary, a binder resin and other known additives. Note that these materials are the same as those described for the charge generation layer and the charge transport layer.
In the single-layer type photosensitive layer, the content of the charge generating material is preferably 10% by mass or more and 85% by mass or less, and preferably 20% by mass or more and 50% by mass or less with respect to the total solid content. In the single-layer type photosensitive layer, the content of the charge transport material is preferably 5% by mass or more and 50% by mass or less based on the total solid content.
The method for forming the single-layer type photosensitive layer is the same as the method for forming the charge generation layer and the charge transport layer.
The film thickness of the single-layer type photosensitive layer is, for example, from 5 μm to 50 μm, and preferably from 10 μm to 40 μm.

(その他)
本実施形態に係る電子写真感光体において、感光層や保護層には、画像形成装置中で発生するオゾンや酸化性ガス、又は光・熱による感光体の劣化を防止する目的で、感光層中に酸化防止剤、光安定剤、熱安定剤などの添加剤を添加してもよい。
また、感光層や保護層には、感度の向上、残留電位の低減、繰り返し使用時の疲労低減等を目的として少なくとも1種の電子受容性物質を添加してもよい。
また、感光層や保護層には、各層を形成する塗布液にレベリング剤としてシリコーンオイルを添加し、塗膜の平滑性向上させてもよい。
(Other)
In the electrophotographic photosensitive member according to the exemplary embodiment, the photosensitive layer and the protective layer are formed in the photosensitive layer for the purpose of preventing deterioration of the photosensitive member due to ozone, oxidizing gas, or light / heat generated in the image forming apparatus. Additives such as antioxidants, light stabilizers, heat stabilizers and the like may be added.
Further, at least one electron accepting substance may be added to the photosensitive layer and the protective layer for the purpose of improving sensitivity, reducing residual potential, and reducing fatigue during repeated use.
Further, in the photosensitive layer and the protective layer, silicone oil may be added as a leveling agent to the coating solution for forming each layer to improve the smoothness of the coating film.

[画像形成装置(及びプロセスカートリッジ)]
本実施形態に係る画像形成装置は、電子写真感光体と、電子写真感光体の表面を帯電する帯電手段と、帯電した電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、トナーを含む現像剤により電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、トナー像を記録媒体の表面に転写する転写手段と、を備える。そして、電子写真感光体として、上記本実施形態に係る電子写真感光体が適用される。
[Image forming apparatus (and process cartridge)]
The image forming apparatus according to the present embodiment includes an electrophotographic photosensitive member, a charging unit that charges the surface of the electrophotographic photosensitive member, and an electrostatic latent image formation that forms an electrostatic latent image on the surface of the charged electrophotographic photosensitive member. Means, developing means for developing the electrostatic latent image formed on the surface of the electrophotographic photosensitive member with a developer containing toner to form a toner image, and transfer means for transferring the toner image to the surface of the recording medium; Is provided. The electrophotographic photosensitive member according to the present embodiment is applied as the electrophotographic photosensitive member.

本実施形態に係る画像形成装置は、記録媒体の表面に転写されたトナー像を定着する定着手段を備える装置;電子写真感光体の表面に形成されたトナー像を直接記録媒体に転写する直接転写方式の装置;電子写真感光体の表面に形成されたトナー像を中間転写体の表面に一次転写し、中間転写体の表面に転写されたトナー像を記録媒体の表面に二次転写する中間転写方式の装置;トナー像の転写後、帯電前の電子写真感光体の表面をクリーニングするクリーニング手段を備えた装置;トナー像の転写後、帯電前に像保持体の表面に除電光を照射して除電する除電手段を備える装置;電子写真感光体の温度を上昇させ、相対温度を低減させるための電子写真感光体加熱部材を備える装置等の周知の画像形成装置が適用される。   The image forming apparatus according to the present embodiment includes an apparatus having fixing means for fixing a toner image transferred to the surface of a recording medium; direct transfer for directly transferring the toner image formed on the surface of the electrophotographic photosensitive member to the recording medium Type apparatus; intermediate transfer in which the toner image formed on the surface of the electrophotographic photosensitive member is primarily transferred onto the surface of the intermediate transfer member, and the toner image transferred onto the surface of the intermediate transfer member is secondarily transferred onto the surface of the recording medium. Type apparatus; apparatus provided with cleaning means for cleaning the surface of the electrophotographic photosensitive member after the toner image is transferred and before charging; after the toner image is transferred, the surface of the image carrier is irradiated with a charge-removing light before charging. A known image forming apparatus, such as an apparatus provided with a static elimination means for removing electricity; an apparatus provided with an electrophotographic photosensitive member heating member for increasing the temperature of the electrophotographic photosensitive member and reducing the relative temperature is applied.

中間転写方式の装置の場合、転写手段は、例えば、表面にトナー像が転写される中間転写体と、像保持体の表面に形成されたトナー像を中間転写体の表面に一次転写する一次転写手段と、中間転写体の表面に転写されたトナー像を記録媒体の表面に二次転写する二次転写手段と、を有する構成が適用される。   In the case of an intermediate transfer type apparatus, the transfer means includes, for example, an intermediate transfer body on which a toner image is transferred onto the surface, and a primary transfer that primarily transfers the toner image formed on the surface of the image holding body onto the surface of the intermediate transfer body. And a secondary transfer unit that secondarily transfers the toner image transferred onto the surface of the intermediate transfer member onto the surface of the recording medium.

本実施形態に係る画像形成装置は、乾式現像方式の画像形成装置、湿式現像方式(液体現像剤を利用した現像方式)の画像形成装置のいずれであってもよい。   The image forming apparatus according to the present embodiment may be either a dry developing type image forming apparatus or a wet developing type (developing type using a liquid developer).

なお、本実施形態に係る画像形成装置において、例えば、電子写真感光体を備える部分が、画像形成装置に対して脱着されるカートリッジ構造(プロセスカートリッジ)であってもよい。プロセスカートリッジとしては、例えば、本実施形態に係る電子写真感光体を備えるプロセスカートリッジが好適に用いられる。なお、プロセスカートリッジには、電子写真感光体以外に、例えば、帯電手段、静電潜像形成手段、現像手段、転写手段からなる群から選択される少なくとも一つを備えてもよい。   Note that in the image forming apparatus according to the present embodiment, for example, the portion including the electrophotographic photosensitive member may have a cartridge structure (process cartridge) that is detachable from the image forming apparatus. As the process cartridge, for example, a process cartridge including the electrophotographic photosensitive member according to this embodiment is preferably used. In addition to the electrophotographic photosensitive member, the process cartridge may include at least one selected from the group consisting of a charging unit, an electrostatic latent image forming unit, a developing unit, and a transfer unit.

以下、本実施形態に係る画像形成装置の一例を示すが、これに限定されるわけではない。なお、図に示す主要部を説明し、その他はその説明を省略する。   Hereinafter, an example of the image forming apparatus according to the present embodiment will be described, but the present invention is not limited thereto. In addition, the main part shown to a figure is demonstrated and the description is abbreviate | omitted about others.

図7は、本実施形態に係る画像形成装置の一例を示す概略構成図である。
本実施形態に係る画像形成装置100は、図7に示すように、電子写真感光体7を備えるプロセスカートリッジ300と、露光装置9(静電潜像形成手段の一例)と、転写装置40(一次転写装置)と、中間転写体50とを備える。なお、画像形成装置100において、露光装置9はプロセスカートリッジ300の開口部から電子写真感光体7に露光し得る位置に配置されており、転写装置40は中間転写体50を介して電子写真感光体7に対向する位置に配置されており、中間転写体50はその一部が電子写真感光体7に接触して配置されている。図示しないが、中間転写体50に転写されたトナー像を記録媒体(例えば用紙)に転写する二次転写装置も有している。なお、中間転写体50、転写装置40(一次転写装置)、及び二次転写装置(不図示)が転写手段の一例に相当する。
FIG. 7 is a schematic configuration diagram illustrating an example of an image forming apparatus according to the present embodiment.
As shown in FIG. 7, the image forming apparatus 100 according to this embodiment includes a process cartridge 300 including an electrophotographic photosensitive member 7, an exposure device 9 (an example of an electrostatic latent image forming unit), and a transfer device 40 (primary. Transfer device) and an intermediate transfer member 50. In the image forming apparatus 100, the exposure device 9 is disposed at a position where the electrophotographic photosensitive member 7 can be exposed from the opening of the process cartridge 300, and the transfer device 40 is interposed between the electrophotographic photosensitive member via the intermediate transfer member 50. 7, and a part of the intermediate transfer member 50 is disposed in contact with the electrophotographic photosensitive member 7. Although not shown, it also has a secondary transfer device that transfers the toner image transferred to the intermediate transfer member 50 to a recording medium (for example, paper). The intermediate transfer member 50, the transfer device 40 (primary transfer device), and the secondary transfer device (not shown) correspond to an example of a transfer unit.

図7におけるプロセスカートリッジ300は、ハウジング内に、電子写真感光体7、帯電装置8(帯電手段の一例)、現像装置11(現像手段の一例)、及びクリーニング装置13(クリーニング手段の一例)を一体に支持している。クリーニング装置13は、クリーニングブレード(クリーニング部材の一例)131を有しており、クリーニングブレード131は、電子写真感光体7の表面に接触するように配置されている。なお、クリーニング部材は、クリーニングブレード131の態様ではなく、導電性又は絶縁性の繊維状部材であってもよく、これを単独で、又はクリーニングブレード131と併用してもよい。   In the process cartridge 300 in FIG. 7, an electrophotographic photosensitive member 7, a charging device 8 (an example of a charging unit), a developing device 11 (an example of a developing unit), and a cleaning device 13 (an example of a cleaning unit) are integrated in a housing. I support it. The cleaning device 13 includes a cleaning blade (an example of a cleaning member) 131, and the cleaning blade 131 is disposed so as to contact the surface of the electrophotographic photosensitive member 7. The cleaning member may be a conductive or insulating fibrous member instead of the cleaning blade 131, and may be used alone or in combination with the cleaning blade 131.

なお、図7には、画像形成装置として、潤滑材14を電子写真感光体7の表面に供給する繊維状部材132(ロール状)、及び、クリーニングを補助する繊維状部材133(平ブラシ状)を備えた例を示してあるが、これらは必要に応じて配置される。   In FIG. 7, as an image forming apparatus, a fibrous member 132 (roll shape) for supplying the lubricant 14 to the surface of the electrophotographic photosensitive member 7 and a fibrous member 133 (flat brush shape) for assisting cleaning are shown. Examples are provided, but these are arranged as necessary.

以下、本実施形態に係る画像形成装置の各構成について説明する。   Hereinafter, each configuration of the image forming apparatus according to the present embodiment will be described.

−帯電装置−
帯電装置8としては、例えば、導電性又は半導電性の帯電ローラ、帯電ブラシ、帯電フィルム、帯電ゴムブレード、帯電チューブ等を用いた接触型帯電器が使用される。また、非接触方式のローラ帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器等のそれ自体公知の帯電器等も使用される。
-Charging device-
As the charging device 8, for example, a contact type charger using a conductive or semiconductive charging roller, a charging brush, a charging film, a charging rubber blade, a charging tube or the like is used. Further, a non-contact type roller charger, a known charger such as a scorotron charger using a corona discharge or a corotron charger may be used.

−露光装置−
露光装置9としては、例えば、電子写真感光体7表面に、半導体レーザ光、LED光、液晶シャッタ光等の光を、定められた像様に露光する光学系機器等が挙げられる。光源の波長は電子写真感光体の分光感度領域内とする。半導体レーザの波長としては、780nm付近に発振波長を有する近赤外が主流である。しかし、この波長に限定されず、600nm台の発振波長レーザや青色レーザとして400nm以上450nm以下に発振波長を有するレーザも利用してもよい。また、カラー画像形成のためにはマルチビームを出力し得るタイプの面発光型のレーザ光源も有効である。
-Exposure device-
Examples of the exposure device 9 include optical system devices that expose the surface of the electrophotographic photoreceptor 7 with light such as semiconductor laser light, LED light, and liquid crystal shutter light in a predetermined image-like manner. The wavelength of the light source is set within the spectral sensitivity region of the electrophotographic photosensitive member. As the wavelength of the semiconductor laser, near infrared having an oscillation wavelength near 780 nm is the mainstream. However, the present invention is not limited to this wavelength, and an oscillation wavelength laser in the 600 nm range or a laser having an oscillation wavelength of 400 nm to 450 nm as a blue laser may be used. In addition, a surface-emitting type laser light source that can output a multi-beam is also effective for color image formation.

−現像装置−
現像装置11としては、例えば、現像剤を接触又は非接触させて現像する一般的な現像装置が挙げられる。現像装置11としては、上述の機能を有している限り特に制限はなく、目的に応じて選択される。例えば、一成分系現像剤又は二成分系現像剤をブラシ、ローラ等を用いて電子写真感光体7に付着させる機能を有する公知の現像器等が挙げられる。中でも現像剤を表面に保持した現像ローラを用いるものが好ましい。
-Developer-
Examples of the developing device 11 include a general developing device that performs development by bringing a developer into contact or non-contact with the developer. The developing device 11 is not particularly limited as long as it has the functions described above, and is selected according to the purpose. For example, a known developing device having a function of attaching a one-component developer or a two-component developer to the electrophotographic photosensitive member 7 using a brush, a roller, or the like can be used. Among these, those using a developing roller holding the developer on the surface are preferable.

現像装置11に使用される現像剤は、トナー単独の一成分系現像剤であってもよいし、トナーとキャリアとを含む二成分系現像剤であってもよい。また、現像剤は、磁性であってもよいし、非磁性であってもよい。これら現像剤は、周知のものが適用される。   The developer used in the developing device 11 may be a one-component developer including a toner alone or a two-component developer including a toner and a carrier. Further, the developer may be magnetic or non-magnetic. A well-known thing is applied for these developers.

−クリーニング装置−
クリーニング装置13は、クリーニングブレード131を備えるクリーニングブレード方式の装置が用いられる。
なお、クリーニングブレード方式以外にも、ファーブラシクリーニング方式、現像同時クリーニング方式を採用してもよい。
-Cleaning device-
As the cleaning device 13, a cleaning blade type device including a cleaning blade 131 is used.
In addition to the cleaning blade method, a fur brush cleaning method and a simultaneous development cleaning method may be employed.

−転写装置−
転写装置40としては、例えば、ベルト、ローラ、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器等のそれ自体公知の転写帯電器が挙げられる。
-Transfer device-
As the transfer device 40, for example, a contact transfer charger using a belt, a roller, a film, a rubber blade, etc., or a known transfer charger such as a scorotron transfer charger using a corona discharge or a corotron transfer charger. Can be mentioned.

−中間転写体−
中間転写体50としては、半導電性を付与したポリイミド、ポリアミドイミド、ポリカーボネート、ポリアリレート、ポリエステル、ゴム等を含むベルト状のもの(中間転写ベルト)が使用される。また、中間転写体の形態としては、ベルト状以外にドラム状のものを用いてもよい。
-Intermediate transfer member-
As the intermediate transfer member 50, a belt-like member (intermediate transfer belt) containing polyimide, polyamideimide, polycarbonate, polyarylate, polyester, rubber or the like having semiconductivity is used. Further, as the form of the intermediate transfer member, a drum-like member may be used in addition to the belt-like member.

図8は、本実施形態に係る画像形成装置の他の一例を示す概略構成図である。
図8に示す画像形成装置120は、プロセスカートリッジ300を4つ搭載したタンデム方式の多色画像形成装置である。画像形成装置120では、中間転写体50上に4つのプロセスカートリッジ300がそれぞれ並列に配置されており、1色に付き1つの電子写真感光体が使用される構成となっている。なお、画像形成装置120は、タンデム方式であること以外は、画像形成装置100と同様の構成を有している。
FIG. 8 is a schematic configuration diagram illustrating another example of the image forming apparatus according to the present embodiment.
An image forming apparatus 120 shown in FIG. 8 is a tandem multicolor image forming apparatus equipped with four process cartridges 300. In the image forming apparatus 120, four process cartridges 300 are arranged in parallel on the intermediate transfer member 50, and one electrophotographic photosensitive member is used for one color. The image forming apparatus 120 has the same configuration as that of the image forming apparatus 100 except that it is a tandem system.

次に、本実施形態に係る画像形成装置100の動作について説明する。まず、電子写真感光体7が回転すると同時に、帯電装置8により負に帯電する。   Next, the operation of the image forming apparatus 100 according to the present embodiment will be described. First, at the same time as the electrophotographic photosensitive member 7 rotates, it is negatively charged by the charging device 8.

帯電装置8によって表面が負に帯電した電子写真感光体7は、露光装置10により露光され、表面に静電潜像が形成される。   The electrophotographic photosensitive member 7 whose surface is negatively charged by the charging device 8 is exposed by the exposure device 10 to form an electrostatic latent image on the surface.

電子写真感光体7における静電潜像の形成された部分が現像装置11に近づくと、現像装置11により、静電潜像にトナーが付着し、トナー像が形成される。   When the portion where the electrostatic latent image is formed on the electrophotographic photosensitive member 7 approaches the developing device 11, the developing device 11 attaches toner to the electrostatic latent image and forms a toner image.

トナー像が形成された電子写真感光体7がさらに回転して、転写装置40によりトナー像は中間転写体50に1次転写され、さらに不図示の記録紙に2次転写される。これにより、記録紙にトナー像が形成される。
1次転写後、電子写真感光体7に残留するトナーはクリーニング装置13によって除去される。
The electrophotographic photosensitive member 7 on which the toner image is formed further rotates, and the toner image is primarily transferred to the intermediate transfer member 50 by the transfer device 40 and then secondarily transferred to a recording sheet (not shown). Thereby, a toner image is formed on the recording paper.
After the primary transfer, the toner remaining on the electrophotographic photoreceptor 7 is removed by the cleaning device 13.

トナー像が形成された記録紙は、不図示の定着装置によりトナー像が定着される。   The toner image is fixed on the recording paper on which the toner image is formed by a fixing device (not shown).

なお、中間転写体50を用いずに感光体7の表面に形成されたトナー像が記録紙に直接転写されてもよい。   Note that the toner image formed on the surface of the photoconductor 7 without using the intermediate transfer body 50 may be directly transferred to the recording paper.

以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

<表面処理された金属酸化物粒子(表面処理粒子)の作製>
[表面処理例1]
金属酸化物粒子として酸化亜鉛(商品名: MZ−300、テイカ社製)100質量部、シランカップリング剤としてN−β(アミノエチル)−γ−アミノプロピルトリメトキシシランの10質量%のトルエン溶液を5質量部、トルエン195質量部を混合、攪拌を行い、2時間還流を行った。その後10mmHgにてトルエンを減圧留去し、135℃で2時間焼き付け処理を行い、表面処理粒子を得た。
<Preparation of surface-treated metal oxide particles (surface-treated particles)>
[Surface treatment example 1]
100 parts by mass of zinc oxide (trade name: MZ-300, manufactured by Teika) as metal oxide particles, and 10% by mass toluene solution of N-β (aminoethyl) -γ-aminopropyltrimethoxysilane as a silane coupling agent 5 parts by mass and 195 parts by mass of toluene were mixed and stirred, and refluxed for 2 hours. Thereafter, toluene was distilled off under reduced pressure at 10 mmHg, followed by baking at 135 ° C. for 2 hours to obtain surface-treated particles.

得られた表面処理粒子のBET比表面積について、BET式比表面積測定器(島津製作所製:フローソープII2300)を用い窒素置換法にて測定したところ、29m/gであった。 It was 29 m < 2 > / g when it measured by the nitrogen substitution method about the BET specific surface area of the obtained surface treatment particle | grains using the BET type specific surface area measuring device (Shimadzu Corporation make: Flow soap II2300).

[表面処理例2乃至15]
下記表1に示すように金属酸化物粒子及び表面処理剤(シランカップリング剤)を変更したこと以外は表面処理例1と同様にして表面処理された金属酸化物粒子(表面処理粒子)を作製した。
なお、表1に示す各表面処理例で用いた金属酸化物粒子は以下の通りである。
・酸化亜鉛1:テイカ社製、商品名:MZ−300
・酸化亜鉛2:テイカ社製、商品名:MZ−150
・酸化亜鉛3:テイカ社製、商品名:MZ−200
・酸化亜鉛4:テイカ社製、商品名:MZ−500
・酸化亜鉛5:テイカ社製、商品名:MZ−100
・酸化亜鉛6:テイカ社製、商品名:特注品-1
・酸化亜鉛7:テイカ社製、商品名:特注品-2
・酸化チタン1:テイカ社製、商品名:MT−700B
・酸化チタン2:テイカ社製、商品名:MT−500B
[Surface treatment examples 2 to 15]
As shown in Table 1 below, surface-treated metal oxide particles (surface-treated particles) were prepared in the same manner as in Surface Treatment Example 1 except that the metal oxide particles and the surface-treating agent (silane coupling agent) were changed. did.
In addition, the metal oxide particles used in each surface treatment example shown in Table 1 are as follows.
・ Zinc oxide 1: manufactured by Teika Co., Ltd., trade name: MZ-300
-Zinc oxide 2: manufactured by Teika Co., Ltd., trade name: MZ-150
-Zinc oxide 3: manufactured by Teika Co., Ltd., trade name: MZ-200
-Zinc oxide 4: manufactured by Teika Co., Ltd., trade name: MZ-500
・ Zinc oxide 5: manufactured by Teika Co., Ltd., trade name: MZ-100
・ Zinc oxide 6: Made by Teika Co., Ltd.
・ Zinc oxide 7: Made by Teika Co., Ltd., Product name: Special order product-2
・ Titanium oxide 1: manufactured by Teika Co., Ltd., trade name: MT-700B
-Titanium oxide 2: manufactured by Teika Co., Ltd., trade name: MT-500B

[実施例1]
表面処理例1で表面処理した酸化亜鉛粒子:10質量部と表面処理例4で表面処理した酸化亜鉛:10質量部とを、ブロック化イソシアネート スミジュール3175(住友バイエルンウレタン社製):5質量部、前記電子受容性化合物「1−2」を0.08質量部、メチルエチルケトン:25質量部を30分間混合し、その後ブチラール樹脂 エスレック BM−1(積水化学工業社製):5質量部を添加し、サンドミルにて1時間の分散を行い、分散液を得た。
さらにシリコーン樹脂粒子 トスパール130(東芝シリコーン社製):3質量部を加えて時間撹拌し、塗布液を得た。
さらに、塗布液を浸漬塗布法にて直径84mm、長さ340mm、肉厚1mmのアルミニウム基材上に塗布し、180℃、30分の乾燥硬化を行い、厚さ19μmの下引層を得た。
[Example 1]
Zinc oxide particles surface-treated in surface treatment example 1: 10 parts by mass and zinc oxide surface-treated in surface treatment example 4: 10 parts by mass, blocked isocyanate Sumijoule 3175 (manufactured by Sumitomo Bayern Urethane Co., Ltd.): 5 parts by mass In addition, 0.08 parts by mass of the electron-accepting compound “1-2” and 25 parts by mass of methyl ethyl ketone are mixed for 30 minutes, and then 5 parts by mass of butyral resin ESREC BM-1 (manufactured by Sekisui Chemical Co., Ltd.) is added. Then, dispersion was performed for 1 hour in a sand mill to obtain a dispersion.
Furthermore, 3 parts by mass of silicone resin particles Tospearl 130 (manufactured by Toshiba Silicone) were added and stirred for a time to obtain a coating solution.
Furthermore, the coating solution was applied on an aluminum substrate having a diameter of 84 mm, a length of 340 mm, and a wall thickness of 1 mm by a dip coating method, followed by drying and curing at 180 ° C. for 30 minutes to obtain an undercoat layer having a thickness of 19 μm. .

次に、電荷発生材料として、ヒドロキシガリウムフタロシアニンを用い、その15質量部、塩化ビニル−酢酸ビニル共重合体樹脂(VMCH、日本ユニオンカーバイト社製)10質量部およびn−ブチルアルコール300質量部からなる混合物をサンドミルにて4時間分散した。得られた分散液を、上記中間層上に浸漬塗布し、100℃、10分乾燥して、膜厚0.2μmの電荷発生層を形成した。   Next, hydroxygallium phthalocyanine is used as a charge generation material, from 15 parts by mass thereof, from 10 parts by mass of vinyl chloride-vinyl acetate copolymer resin (VMCH, manufactured by Nippon Union Carbide) and 300 parts by mass of n-butyl alcohol. The resulting mixture was dispersed in a sand mill for 4 hours. The obtained dispersion was dip-coated on the intermediate layer and dried at 100 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.2 μm.

また、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1、1’]ビフェニル−4,4’−ジアミン 4質量部と、ビスフェノールZポリカーボネート樹脂(分子量4万)6質量部とを、テトラヒドロフラン25質量部及びクロルベンゼン5質量部を加えて溶解することで調製した塗布液を電荷発生層上に塗布し、130℃、40分の乾燥を行うことにより膜厚35μmの電荷輸送層を形成した。これにより実施例1の感光体を得た。   In addition, 4 parts by mass of N, N′-diphenyl-N, N′-bis (3-methylphenyl)-[1,1 ′] biphenyl-4,4′-diamine and bisphenol Z polycarbonate resin (molecular weight 40,000) A coating solution prepared by dissolving 6 parts by mass with 25 parts by mass of tetrahydrofuran and 5 parts by mass of chlorobenzene was applied on the charge generation layer and dried at 130 ° C. for 40 minutes to obtain a film thickness of 35 μm. The charge transport layer was formed. As a result, a photoreceptor of Example 1 was obtained.

(画質評価)
以上のようにして得られた感光体を富士ゼロックス社製複写機「Docu Centre Color 500」に搭載し、30℃/80%RHの条件で図9に示すチャートをA4横送り(短手方向送り)で連続10万枚出力した。図9に示すチャートは、画像濃度100%の黒色のベタ画像中に白抜きの文字「G」を有する領域と画像濃度40%のハーフトーン画像の領域と、をプリントしたチャートである。
(Image quality evaluation)
The photoconductor obtained as described above is mounted on a copying machine “Docu Center Color 500” manufactured by Fuji Xerox Co., Ltd., and the chart shown in FIG. 9 is fed in A4 side feed (short side feed) at 30 ° C./80% RH. ) And 100,000 sheets were output continuously. The chart shown in FIG. 9 is a chart in which an area having a white letter “G” and a halftone image area having an image density of 40% are printed in a black solid image having an image density of 100%.

−ゴースト評価−
1枚目に出力した画像(初期画像)、10万出力後の画像(10万枚出力後画像)について、目視にて、Gの文字状の濃度変化を確認して行った。評価基準は以下の通りである。
A:濃度変化なし
B:濃度変化若干あり実使用上問題ない
C:濃度変化あり実使用に耐えない
-Ghost evaluation-
The first image output (initial image) and the 100,000 output image (100,000 output image) were visually confirmed by confirming the change in G-shaped density. The evaluation criteria are as follows.
A: No change in density B: Some change in density and no problem in actual use C: Change in density cannot withstand actual use

−ハーフトーン画像濃度ムラ評価−
ハーフトーン画像濃度ムラの評価は、1枚目に出力した画像(初期画像)、10万出力後の画像(10万枚出力後画像)について、画像濃度40%のハーフトーン画像の領域におけるランダムな濃度変化を目視にて行った。
評価基準は以下の通りである。
A:濃度変化なし
B:濃度変化若干あり実使用上問題ない
C:濃度変化あり実使用に耐えない
-Halftone image density unevenness evaluation-
The evaluation of the halftone image density unevenness is random in the region of the halftone image having an image density of 40% with respect to the first output image (initial image) and the 100,000 output image (100,000 output image). The density change was made visually.
The evaluation criteria are as follows.
A: No change in density B: Some change in density and no problem in actual use C: Change in density cannot withstand actual use

−粒状性評価−
粒状性は1枚目に出力した40%ハーフトーン画像を細かい濃度ムラを目視にて評価した。
A:問題なし
B:若干あり実使用上問題ない
C:実使用に耐えない
-Graininess evaluation-
Graininess was evaluated by visual observation of fine density unevenness in the 40% halftone image output on the first sheet.
A: No problem B: There is a slight problem in actual use C: Unbearable in actual use

[実施例2乃至6]
表面処理粒子を下記表2に示すように変更したこと以外は実施例1と同様にして電子写真感光体を作製し、同様の評価を行った。
[Examples 2 to 6]
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the surface-treated particles were changed as shown in Table 2 below, and the same evaluation was performed.

[実施例7]
下引層の厚みを14μmに変更した以外は実施例1と同様にして電子写真感光体を作製し、同様の評価を行った。
[Example 7]
An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that the thickness of the undercoat layer was changed to 14 μm, and the same evaluation was performed.

[実施例8]
表1に示す酸化チタンを用いた以外は実施例1と同様にして電子写真感光体を作製し、同様の評価を行った。
[Example 8]
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the titanium oxide shown in Table 1 was used, and the same evaluation was performed.

[実施例9]
表1に示すシランカップリング剤を用いた以外は実施例1と同様にして電子写真感光体を作製し、同様の評価を行った。
[Example 9]
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the silane coupling agent shown in Table 1 was used, and the same evaluation was performed.

[実施例10]
電子受容性化合物として、前記電子受容性化合物「1−21」を用いた以外は実施例1と同様にして電子写真感光体を作製し、同様の評価を行った。
[Example 10]
An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that the electron accepting compound “1-21” was used as the electron accepting compound, and the same evaluation was performed.

[実施例11]
表面処理粒子を下記表2に示すように変更したこと以外は実施例1と同様にして電子写真感光体を作製し、同様の評価を行った。
[Example 11]
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the surface-treated particles were changed as shown in Table 2 below, and the same evaluation was performed.

[比較例1乃至7]
下引層に含まれる表面処理粒子を下記表2に示すように変更したこと以外は実施例1と同様にして電子写真感光体を作製し、同様の評価を行った。
[Comparative Examples 1 to 7]
An electrophotographic photosensitive member was produced in the same manner as in Example 1 except that the surface-treated particles contained in the undercoat layer were changed as shown in Table 2 below, and the same evaluation was performed.

各例で作製した電子写真感光体の下引層に含まれる表面処理粒子の構成を表2に記す。なお、実施例1以外の各例における下引層中の表面処理粒子の合計含有量は実施例1と同様であり、「含有比率」は、表面処理粒子全体の含有量に対する各表面処理粒子の含有比率である。   Table 2 shows the composition of the surface-treated particles contained in the undercoat layer of the electrophotographic photosensitive member produced in each example. In addition, the total content of the surface-treated particles in the undercoat layer in each example other than Example 1 is the same as that in Example 1, and the “content ratio” is the amount of each surface-treated particle relative to the content of the entire surface-treated particles. It is a content ratio.

実施例及び比較例の評価結果を表3に示す。   Table 3 shows the evaluation results of Examples and Comparative Examples.

上記結果から、本実施例では、比較例に比べ、初期及び長期(10万枚)出力後の画像について、ゴースト及びハーフトーン画像濃度ムラの発生が抑制されたことがわかる。   From the above results, it can be seen that in this example, the occurrence of ghost and halftone image density unevenness was suppressed for the image after the initial and long-term (100,000 sheets) output as compared with the comparative example.

1 導電性基材、2 下引層、3 感光層、4 中間層、5 保護層、7 電子写真感光体、8 帯電装置、9 露光装置、11 現像装置、13 クリーニング装置、14 潤滑材、31 電荷発生層、32 電荷輸送層、40 転写装置、50 中間転写体、100 画像形成装置、120 画像形成装置、300 プロセスカートリッジ DESCRIPTION OF SYMBOLS 1 Conductive base material, 2 Undercoat layer, 3 Photosensitive layer, 4 Intermediate layer, 5 Protective layer, 7 Electrophotographic photosensitive member, 8 Charging apparatus, 9 Exposure apparatus, 11 Developing apparatus, 13 Cleaning apparatus, 14 Lubricant, 31 Charge generation layer, 32 Charge transport layer, 40 Transfer device, 50 Intermediate transfer member, 100 Image forming device, 120 Image forming device, 300 Process cartridge

Claims (12)

導電性基材と、
前記導電性基材上に配置され、結着樹脂、並びに、金属酸化物粒子をアミノ基を有するシランカップリング剤により表面処理した表面処理粒子として、BET比表面積が10m/g以上15m/g以下である第1の表面処理粒子及びBET比表面積が18m/g以上30m/g以下である第2の表面処理粒子を含む下引層と、
前記下引層上に配置された感光層と、
を有する電子写真感光体。
A conductive substrate;
Wherein disposed on the conductive substrate on the binder resin, and, as the surface treated particles surface-treated with a silane coupling agent having an amino group metal oxide particles, BET specific surface area of 10 m 2 / g or more 15 m 2 / an undercoat layer comprising first surface-treated particles that are not more than g and second surface-treated particles that have a BET specific surface area of not less than 18 m 2 / g and not more than 30 m 2 / g;
A photosensitive layer disposed on the undercoat layer;
An electrophotographic photosensitive member having:
前記金属酸化物粒子は、酸化錫、酸化チタン、及び酸化亜鉛からなる群より選ばれる少なくとも1種である請求項1に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein the metal oxide particles are at least one selected from the group consisting of tin oxide, titanium oxide, and zinc oxide. 前記第1の表面処理粒子及び前記第2の表面処理粒子は、それぞれ前記金属酸化物粒子に対する前記アミノ基を有するシランカップリング剤の表面処理量が0.05質量%以上1.5質量%以下である請求項1又は請求項2に記載の電子写真感光体。   The first surface-treated particles and the second surface-treated particles each have a surface treatment amount of the amino group-containing silane coupling agent with respect to the metal oxide particles of 0.05% by mass to 1.5% by mass. The electrophotographic photosensitive member according to claim 1, which is 前記下引層がさらに電子受容性化合物を含んでいる請求項1〜請求項3のいずれか1項に記載の電子写真感光体。   The electrophotographic photosensitive member according to claim 1, wherein the undercoat layer further contains an electron accepting compound. 前記電子受容性化合物がアントラキノン誘導体である請求項4に記載の電子写真感光体。   The electrophotographic photoreceptor according to claim 4, wherein the electron-accepting compound is an anthraquinone derivative. 前記アントラキノン誘導体が下記一般式(1)で表される請求項5に記載の電子写真感光体。


(一般式(1)中、n1及びn2は、各々独立に0以上3以下の整数を表す。但し、n1及びn2の少なくとも一方は、各々独立に1以上3以下の整数を表す。m1及びm2は、各々独立に0又は1の整数を示す。R及びRは、各々独立に炭素数1以上10以下のアルキル基、又は炭素数1以上10以下のアルコキシ基を表す。)
The electrophotographic photoreceptor according to claim 5, wherein the anthraquinone derivative is represented by the following general formula (1).


(In general formula (1), n1 and n2 each independently represent an integer of 0 or more and 3 or less, provided that at least one of n1 and n2 independently represents an integer of 1 or more and 3 or less. M1 and m2 Each independently represents an integer of 0 or 1. R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.
前記下引層の厚みが15μm以上30μm以下である請求項1〜請求項6のいずれか1項に記載の電子写真感光体。   The electrophotographic photoreceptor according to claim 1, wherein the undercoat layer has a thickness of 15 μm or more and 30 μm or less. 前記下引層における前記第2の表面処理粒子の含有量が、前記第1の表面処理粒子の含有量よりも多い請求項1〜請求項7のいずれか1項に記載の電子写真感光体。   The electrophotographic photosensitive member according to any one of claims 1 to 7, wherein a content of the second surface-treated particles in the undercoat layer is larger than a content of the first surface-treated particles. 請求項1〜請求項8のいずれか1項に記載の電子写真感光体を備え、
画像形成装置に着脱するプロセスカートリッジ。
The electrophotographic photosensitive member according to any one of claims 1 to 8,
A process cartridge that can be attached to and detached from an image forming apparatus.
前記電子写真感光体に接触して該電子写真感光体の表面を帯電させる接触帯電方式の帯電手段をさらに備える請求項9に記載のプロセスカートリッジ。   The process cartridge according to claim 9, further comprising a contact charging type charging unit that contacts the electrophotographic photosensitive member to charge the surface of the electrophotographic photosensitive member. 請求項1〜請求項8のいずれか1項に記載の電子写真感光体と、
前記電子写真感光体の表面を帯電する帯電手段と、
帯電した前記電子写真感光体の表面に静電潜像を形成する静電潜像形成手段と、
トナーを含む現像剤により、前記電子写真感光体の表面に形成された静電潜像を現像してトナー像を形成する現像手段と、
前記トナー像を記録媒体の表面に転写する転写手段と、
を備える画像形成装置。
The electrophotographic photosensitive member according to any one of claims 1 to 8,
Charging means for charging the surface of the electrophotographic photosensitive member;
An electrostatic latent image forming means for forming an electrostatic latent image on the surface of the charged electrophotographic photosensitive member;
Developing means for developing the electrostatic latent image formed on the surface of the electrophotographic photosensitive member with a developer containing toner to form a toner image;
Transfer means for transferring the toner image to the surface of the recording medium;
An image forming apparatus comprising:
前記帯電手段が接触帯電方式の帯電手段である請求項11に記載の画像形成装置。   The image forming apparatus according to claim 11, wherein the charging unit is a contact charging type charging unit.
JP2014060954A 2014-03-24 2014-03-24 Electrophotographic photosensitive member, process cartridge, and image forming apparatus Active JP6201850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014060954A JP6201850B2 (en) 2014-03-24 2014-03-24 Electrophotographic photosensitive member, process cartridge, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014060954A JP6201850B2 (en) 2014-03-24 2014-03-24 Electrophotographic photosensitive member, process cartridge, and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2015184494A true JP2015184494A (en) 2015-10-22
JP6201850B2 JP6201850B2 (en) 2017-09-27

Family

ID=54351083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014060954A Active JP6201850B2 (en) 2014-03-24 2014-03-24 Electrophotographic photosensitive member, process cartridge, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP6201850B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016110127A (en) * 2014-11-28 2016-06-20 キヤノン株式会社 Electrophotographic photoreceptor, method of manufacturing the same, process cartridge, and electrophotographic device
DE102016117254A1 (en) 2015-09-17 2017-03-23 Fujitsu Ten Limited Radar device, signal processing device for radar device and speed measuring method for radar device
JP2017223868A (en) * 2016-06-16 2017-12-21 キヤノン株式会社 Electrophotographic photoreceptor, electrophotographic photoreceptor manufacturing method, process cartridge, and electrophotographic device
JP2019066818A (en) * 2017-09-28 2019-04-25 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262971A (en) * 2002-03-08 2003-09-19 Fuji Xerox Co Ltd Method of manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2006293130A (en) * 2005-04-13 2006-10-26 Ricoh Co Ltd Electrophotographic photoreceptor, electrophotographic apparatus, and process cartridge for electrophotographic apparatus
JP2007079307A (en) * 2005-09-15 2007-03-29 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus, full-color image forming apparatus and process cartridge
JP2008139372A (en) * 2006-11-30 2008-06-19 Kyocera Mita Corp Laminate type electrophotographic photoreceptor and image forming device
JP2008299020A (en) * 2007-05-30 2008-12-11 Sharp Corp Electrophotographic photoreceptor and image forming apparatus equipped with the same
JP2009069678A (en) * 2007-09-14 2009-04-02 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2012203404A (en) * 2011-03-28 2012-10-22 Fuji Xerox Co Ltd Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2013072986A (en) * 2011-09-27 2013-04-22 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2013114178A (en) * 2011-11-30 2013-06-10 Canon Inc Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2013114177A (en) * 2011-11-30 2013-06-10 Canon Inc Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2013190494A (en) * 2012-03-12 2013-09-26 Fuji Xerox Co Ltd Image formation device and process cartridge
JP2014038138A (en) * 2012-08-10 2014-02-27 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2014052621A (en) * 2012-08-06 2014-03-20 Konica Minolta Inc Electrophotographic photoreceptor and image forming apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262971A (en) * 2002-03-08 2003-09-19 Fuji Xerox Co Ltd Method of manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2006293130A (en) * 2005-04-13 2006-10-26 Ricoh Co Ltd Electrophotographic photoreceptor, electrophotographic apparatus, and process cartridge for electrophotographic apparatus
JP2007079307A (en) * 2005-09-15 2007-03-29 Ricoh Co Ltd Electrophotographic photoreceptor, image forming apparatus, full-color image forming apparatus and process cartridge
JP2008139372A (en) * 2006-11-30 2008-06-19 Kyocera Mita Corp Laminate type electrophotographic photoreceptor and image forming device
JP2008299020A (en) * 2007-05-30 2008-12-11 Sharp Corp Electrophotographic photoreceptor and image forming apparatus equipped with the same
JP2009069678A (en) * 2007-09-14 2009-04-02 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP2012203404A (en) * 2011-03-28 2012-10-22 Fuji Xerox Co Ltd Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP2013072986A (en) * 2011-09-27 2013-04-22 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2013114178A (en) * 2011-11-30 2013-06-10 Canon Inc Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2013114177A (en) * 2011-11-30 2013-06-10 Canon Inc Electrophotographic photosensitive member, method of producing electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2013190494A (en) * 2012-03-12 2013-09-26 Fuji Xerox Co Ltd Image formation device and process cartridge
JP2014052621A (en) * 2012-08-06 2014-03-20 Konica Minolta Inc Electrophotographic photoreceptor and image forming apparatus
JP2014038138A (en) * 2012-08-10 2014-02-27 Fuji Xerox Co Ltd Electrophotographic photoreceptor, process cartridge, and image forming apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016110127A (en) * 2014-11-28 2016-06-20 キヤノン株式会社 Electrophotographic photoreceptor, method of manufacturing the same, process cartridge, and electrophotographic device
DE102016117254A1 (en) 2015-09-17 2017-03-23 Fujitsu Ten Limited Radar device, signal processing device for radar device and speed measuring method for radar device
JP2017223868A (en) * 2016-06-16 2017-12-21 キヤノン株式会社 Electrophotographic photoreceptor, electrophotographic photoreceptor manufacturing method, process cartridge, and electrophotographic device
JP2019066818A (en) * 2017-09-28 2019-04-25 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP7146459B2 (en) 2017-09-28 2022-10-04 キヤノン株式会社 Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus

Also Published As

Publication number Publication date
JP6201850B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6447178B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6003544B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2015184493A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6123714B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2016141841A (en) Cylindrical support, electrophotographic photoreceptor, process cartridge, image forming apparatus, method of manufacturing cylindrical support
JP6201850B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6838324B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus
JP2016065888A (en) Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP6221853B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2018054707A (en) Image forming apparatus and process cartridge
US20200117105A1 (en) Image forming apparatus and process cartridge
JP2018049060A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2017203846A (en) Image forming apparatus and image forming method
US20140212799A1 (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6631235B2 (en) Conductive support, electrophotographic photoreceptor, process cartridge, image forming apparatus, and method of manufacturing conductive support
JP2019060928A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6221883B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
US20200096886A1 (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6620461B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2017062423A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP6372274B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2019061146A (en) Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP7275772B2 (en) Electrophotographic photoreceptor, process cartridge and image forming apparatus
JP6179629B2 (en) Method for producing cylindrical support for electrophotographic photoreceptor
JP2017201366A (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6201850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350