JP2015183864A - Hot water supply device - Google Patents

Hot water supply device Download PDF

Info

Publication number
JP2015183864A
JP2015183864A JP2014057799A JP2014057799A JP2015183864A JP 2015183864 A JP2015183864 A JP 2015183864A JP 2014057799 A JP2014057799 A JP 2014057799A JP 2014057799 A JP2014057799 A JP 2014057799A JP 2015183864 A JP2015183864 A JP 2015183864A
Authority
JP
Japan
Prior art keywords
temperature
hot water
water
water supply
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014057799A
Other languages
Japanese (ja)
Other versions
JP6330406B2 (en
Inventor
跡部 嘉史
Yoshifumi Atobe
嘉史 跡部
晴喜 井上
Haruki Inoue
晴喜 井上
中山 賢一
Kenichi Nakayama
賢一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2014057799A priority Critical patent/JP6330406B2/en
Publication of JP2015183864A publication Critical patent/JP2015183864A/en
Application granted granted Critical
Publication of JP6330406B2 publication Critical patent/JP6330406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a hot water supply device capable of accurately discharging hot water of target temperature even if hot water of high temperature shows a rapid variation in temperature.SOLUTION: This invention relates a hot water supply device in which cold water of low temperature got from a feeding pipe 12 and hot water of high temperature got from a primary heat exchanger 8 for supplying hot water are mixed to each other to generate mixed hot water to be supplied as hot water. There are provided temperature sensors 17 to 19 for detecting each of temperatures of low temperature water, high temperature water and these mixed hot water. A control part 6 controls a mixing ratio of high temperature water and low temperature water on the basis of temperature data of the temperature sensors so as to control temperature specifying a temperature of the mixed hot water to a target temperature, the control part 6 detects the temperature data of high temperature water under a specified period and monitors it and when its variation wave-form is kept at its normal state, the detected temperature data is applied as a temperature of high temperature hot water and in turn when its variation wave-form is in a low frequency range, increasing or decreasing of the temperature data is amplified and when it is in a high frequency range, increasing or decreasing of the temperature data is reduced to perform a correcting processing and executes the prescribed temperature control.

Description

この発明は給湯装置に関し、より詳細には、低温水と高温水とを混合して目標温度の温水を生成して給湯を行う給湯装置に関する。   The present invention relates to a hot water supply apparatus, and more particularly, to a hot water supply apparatus that mixes low-temperature water and high-temperature water to generate hot water at a target temperature to supply hot water.

従来、カランやシャワーなどの給湯栓に温水を供給する給湯装置においては、市水などの水源から供給される常温の低温水と、熱交換器で加熱昇温させた高温水とを混合して目標温度(たとえば、給湯設定温度)の温水を生成し、生成した混合温水を給湯栓に供給するように構成されている。   Conventionally, in a hot water supply apparatus that supplies hot water to hot water taps such as currants and showers, normal temperature low temperature water supplied from a water source such as city water and hot water heated by a heat exchanger are mixed. Hot water having a target temperature (for example, hot water set temperature) is generated, and the generated mixed hot water is supplied to the hot water tap.

このような給湯装置では、低温水の温度を検出する低温水用の温度センサ(たとえば、入水温度センサ)と、高温水の温度を検出する高温水用の温度センサ(たとえば、缶体温度センサ)と、混合温水の温度を検出する混合温水用の温度センサ(たとえば、出湯温度センサ)とが備えられており、給湯装置の制御部は、これら各温度センサで検出される温度データに基づいて、低温水と高温水の混合比率を調整して目標温度の温水を生成している(たとえば、特許文献1参照)。   In such a hot water supply apparatus, a temperature sensor for low temperature water (for example, a water temperature sensor) for detecting the temperature of low temperature water and a temperature sensor for high temperature water (for example, a can body temperature sensor) for detecting the temperature of high temperature water. And a temperature sensor for mixed hot water (for example, a tapping temperature sensor) that detects the temperature of the mixed hot water, and the controller of the hot water supply device is based on the temperature data detected by each of these temperature sensors, The mixing ratio of the low temperature water and the high temperature water is adjusted to generate hot water having a target temperature (see, for example, Patent Document 1).

特開2006−177623号公報JP 2006-177623 A

しかしながら、このような従来の給湯装置には以下のような問題があり、その改善が望まれていた。   However, such a conventional hot water supply apparatus has the following problems, and improvements have been desired.

すなわち、従来の給湯装置では、これら低温水、高温水、混合温水の各温度の検出に用いる温度センサとしてサーミスタが一般的に用いられているが、高温水の温度を検出する缶体サーミスタはガスバーナなどの加熱手段によって加熱される熱交換器の出湯(出口)側に備えられていることから、低温水や混合温水の温度検出用の温度センサに比して、検出する温水(高温水)の温度変動が頻繁かつ大きい。   That is, in the conventional hot water supply apparatus, a thermistor is generally used as a temperature sensor for detecting each temperature of these low temperature water, high temperature water, and mixed hot water, but a can thermistor for detecting the temperature of high temperature water is a gas burner. Because it is provided on the outlet (outlet) side of the heat exchanger that is heated by heating means such as hot water (hot water) to be detected compared to the temperature sensor for detecting the temperature of low-temperature water or mixed hot water Temperature fluctuation is frequent and large.

そのため、この傾向がより顕著に現れる熱交換器(たとえば、潜熱回収型の給湯装置における一次熱交換器)の出湯側に備えられる缶体サーミスタは、当該サーミスタの熱容量による応答遅れを主たる要因として、実際の高温水の温度(実温度)を正確に検出できず、混合温水の温度制定に支障をきたす場合があった。   Therefore, the can body thermistor provided on the outlet side of the heat exchanger (for example, the primary heat exchanger in the latent heat recovery type hot water supply device) in which this tendency appears more conspicuously has a delay in response due to the heat capacity of the thermistor as The actual temperature of the hot water (actual temperature) could not be detected accurately, which could hinder the establishment of the temperature of the mixed hot water.

図6は、高温水の温度変動とサーミスタの検出温度の相関関係の一例を示している。この図6に示すように、高温水の温度(実温度)が急激に上昇し、その後急激に下降し、再び上昇に転じたような場合、サーミスタの検出温度は、実温度に遅れて上昇し実温度の最高温度(図示例では80℃)を検出することなく実温度に遅れて下降に転じ、実温度の最低温度(図示例では40℃)を検出することなく実温度に遅れて上昇する。このように温度が上下に変動するような場合、サーミスタのように温度検出に遅れがある温度センサでは、検出の遅れだけでなく、検出される温度の値にも実温度とのずれがあった。   FIG. 6 shows an example of the correlation between the temperature fluctuation of the high temperature water and the detected temperature of the thermistor. As shown in FIG. 6, when the temperature (actual temperature) of the high-temperature water rises rapidly, then falls sharply and then starts to rise again, the detected temperature of the thermistor rises behind the actual temperature. Without detecting the maximum actual temperature (80 ° C in the illustrated example), the temperature starts falling after the actual temperature, and rises after the actual temperature without detecting the minimum actual temperature (40 ° C in the illustrated example). . When the temperature fluctuates up and down in this way, a temperature sensor such as a thermistor that has a delay in temperature detection has a deviation from the actual temperature in the detected temperature value as well as the detection delay. .

本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とするところは、高温水に急激な温度変動があっても目標温度の出湯を正確に行える給湯装置を提供することにある。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a hot water supply apparatus that can accurately discharge hot water at a target temperature even when there is a rapid temperature fluctuation in high temperature water. It is to provide.

上記目的を達成するため、本発明に係る給湯装置は、低温水と高温水とを混合して給湯を行う給湯装置であって、低温水、高温水およびこれらの混合温水の各温度を検出する温度センサと、これら温度センサで検出された各温度データに基づいて、高温水と低温水の混合比率を制御して混合温水の温度を目標温度に制定する温度制御を行う制御部を備えた給湯装置において、上記制御部は、所定周期で上記高温水の温度データを検出し、この検出した温度データの変動を監視して、その変動波形が定常状態にあるときは検出した温度データを高温水の温度とし、その変動波形が所定の低周波領域にあるときには温度データの増減を増幅させる一方、その変動波形が所定の高周波領域にあるときには温度データの増減を低減させる補正処理を行って上記温度制御を実行することを特徴とする。   In order to achieve the above object, a hot water supply apparatus according to the present invention is a hot water supply apparatus that mixes low-temperature water and high-temperature water to supply hot water, and detects each temperature of low-temperature water, high-temperature water, and mixed hot water thereof. Hot water supply provided with a temperature sensor and a control unit for controlling the mixing ratio of the hot water and the low temperature water to establish the temperature of the mixed hot water as a target temperature based on each temperature data detected by these temperature sensors In the apparatus, the control unit detects the temperature data of the high-temperature water at a predetermined cycle, monitors fluctuations in the detected temperature data, and when the fluctuation waveform is in a steady state, the detected temperature data is When the fluctuation waveform is in a predetermined low frequency region, the increase / decrease in temperature data is amplified, and when the fluctuation waveform is in a predetermined high frequency region, correction processing is performed to reduce the increase / decrease in temperature data. And executes the temperature control Te.

そして、その好適な実施態様として、上記補正処理は、下記の数式を用いて行われることを特徴とする。

θhi(n)={a0・θTh(n)+a1・θTh(n−1)+…+aN-1・θTh(n−N)}/(a0+a1+…aN-1
但し、θhi(n):温度制御用の高温水の温度、θTh(n):高温水用の温度センサの直近の検出温度、θTh(n−1):高温水用の温度センサの前回検出温度、θTh(n−N):高温水用の温度センサのN回前の検出温度、a0〜aN-1:係数
And as the suitable embodiment, the said correction process is performed using the following numerical formula, It is characterized by the above-mentioned.
Θ hi (n) = {a 0 · θ Th (n) + a 1 · θ Th (n−1) +... + A N−1 · θ Th (n−N)} / (a 0 + a 1 +... A N-1 )
Where θ hi (n) is the temperature of the high-temperature water for temperature control, θ Th (n) is the latest detected temperature of the temperature sensor for high-temperature water, and θ Th (n−1) is the temperature sensor for high-temperature water. Previously detected temperature, θ Th (n−N): detected temperature N times before the temperature sensor for high temperature water, a 0 to a N-1 : coefficient

すなわち、本発明に係る給湯装置では、混合温水の温度制御を行うにあたり、制御部が、所定周期で高温水の温度データを検出し、この検出した温度データに変動がなく定常状態であるときは検出した温度データをそのまま高温水の温度として温度制御を行う。これに対して、検出した温度データに変動があり、その変動波形が所定の低周波領域にあるときには温度データの増減を増幅させるとともに、その変動波形が所定の高周波領域にあるときには温度データの増減を低減させる補正処理を行うことにより、温度センサで検出される高温水の温度データを実際の高温水の温度に近づけて、混合温水を生成する温度制御を行う。これにより、目標温度の混合温水を正確に出湯できる給湯装置を提供することができるようになる。   That is, in the hot water supply apparatus according to the present invention, when the temperature control of the mixed hot water is performed, the control unit detects the temperature data of the high temperature water at a predetermined cycle, and when the detected temperature data is in a steady state without fluctuation. The temperature control is performed using the detected temperature data as it is as the temperature of the high-temperature water. On the other hand, when the detected temperature data is fluctuated and the fluctuation waveform is in a predetermined low frequency region, the increase or decrease in the temperature data is amplified, and when the fluctuation waveform is in the predetermined high frequency region, the temperature data is fluctuated. By performing the correction process for reducing the temperature, the temperature control for generating the mixed hot water is performed by bringing the temperature data of the hot water detected by the temperature sensor closer to the actual temperature of the hot water. Thereby, the hot water supply apparatus which can discharge hot water of the mixed temperature of target temperature correctly can be provided now.

そして、本発明は、その好適な実施態様として、上記高温水の温度を検出する温度センサが、上記高温水を生成する顕熱回収型の熱交換器の出湯側に備えられていることを特徴とする。   As a preferred embodiment of the present invention, the temperature sensor for detecting the temperature of the high-temperature water is provided on the tapping side of the sensible heat recovery type heat exchanger that generates the high-temperature water. And

すなわち、この実施態様では、高温水を生成する顕熱回収型の熱交換器の出湯側に高温水の温度を検出する温度センサが備えられるので、熱交換器内に配置される水管の長さが短く高温水の温度変動が激しい給湯装置においても混合温水の温度を正確に制御することができる。   That is, in this embodiment, since the temperature sensor for detecting the temperature of the high temperature water is provided on the tapping side of the sensible heat recovery type heat exchanger that generates the high temperature water, the length of the water pipe arranged in the heat exchanger is provided. The temperature of the mixed hot water can be accurately controlled even in a hot water supply apparatus that is short and has a high temperature fluctuation.

本発明によれば、高温水と低温水を混合して目標温度の混合温水を生成する温度制御を行うにあたり、制御部が、所定周期で高温水の温度データを検出し、この検出した温度データの変動波形が定常状態にあるときは検出した温度データを高温水の温度とし、その変動波形が所定の低周波領域にあるときには温度データの増減を増幅させる一方、その変動波形が所定の高周波領域にあるときには温度データの増減を低減させる補正処理を行うので、混合温水の温度制定を精度よく正確に行うことができる。   According to the present invention, when performing temperature control for mixing hot water and low temperature water to generate mixed hot water having a target temperature, the control unit detects the temperature data of the high temperature water at a predetermined cycle, and the detected temperature data When the fluctuation waveform is in a steady state, the detected temperature data is used as the temperature of the high-temperature water, and when the fluctuation waveform is in a predetermined low frequency region, the increase / decrease in the temperature data is amplified, while the fluctuation waveform is in the predetermined high frequency region. Since the correction process for reducing the increase / decrease in the temperature data is performed, the temperature of the mixed hot water can be established accurately and accurately.

本発明に係る給湯装置の概略構成の一例を示す構成図である。It is a block diagram which shows an example of schematic structure of the hot water supply apparatus which concerns on this invention. 高温水の実温度と温度センサの検出温度の相関関係を示す説明図であり、図2(a)は温度の変動波形の周波数に対する実温度と温度センサの検出温度の一例を示し、図2(b)は図2(a)の特性を実温度に対する検出温度の変化として表わしている。It is explanatory drawing which shows the correlation of the actual temperature of high temperature water, and the detection temperature of a temperature sensor, Fig.2 (a) shows an example of the actual temperature with respect to the frequency of the temperature fluctuation waveform, and the detection temperature of a temperature sensor, FIG. FIG. 2B shows the characteristic of FIG. 2A as a change in the detected temperature with respect to the actual temperature. 温度センサの検出温度の補正処理のモデルを示す説明図であり、図3(a)は補正処理のパルス伝達関数の特性で、復元したい周波数域において、補正率=実温度/検出温度(図2(b)の逆数)を、図3(b)は合成伝達関数の特性で、検出温度×補正率=検出温度×(実温度/検出温度)=実温度を示している。FIG. 3A is an explanatory diagram showing a model of a correction process for the detected temperature of the temperature sensor. FIG. 3A shows the characteristics of the pulse transfer function of the correction process, and correction rate = actual temperature / detected temperature (FIG. 2) in the frequency range to be restored. FIG. 3B is a characteristic of the combined transfer function, and shows detected temperature × correction rate = detected temperature × (actual temperature / detected temperature) = actual temperature. 温度センサの検出温度の補正処理に用いる係数の一例を示している。An example of the coefficient used for the correction process of the temperature detected by the temperature sensor is shown. 温度センサの検出温度と補正後の温度データの関係を示す説明図である。It is explanatory drawing which shows the relationship between the temperature detected by a temperature sensor, and the temperature data after correction | amendment. 高温水の温度変動とサーミスタの検出温度の相関関係の一例を示す相関図である。It is a correlation diagram which shows an example of the correlation of the temperature fluctuation of high temperature water, and the detection temperature of a thermistor.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明に係る給湯装置の一例を示している。この図1に示す給湯装置1は、いわゆる潜熱回収型のガス給湯装置であって、カランやシャワーなどの給湯栓に温水を供給する給湯機能と、床暖房パネルやファンコンベクタなどの温水暖房装置に熱媒体となる温水を供給する温水暖房機能と、浴槽への湯張りや風呂追い焚きを行う風呂機能とを備えて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a hot water supply apparatus according to the present invention. The hot water supply apparatus 1 shown in FIG. 1 is a so-called latent heat recovery type gas hot water supply apparatus, and is used for a hot water supply function for supplying hot water to hot water taps such as currants and showers, and a hot water heating apparatus such as a floor heating panel and a fan convector. A hot water heating function for supplying hot water as a heat medium and a bath function for performing hot water filling and bathing in a bathtub are provided.

具体的には、この給湯装置1は、燃焼缶体2と、給湯用の配管(給湯回路)3と、暖房用の配管(暖房回路)4と、風呂追い焚き用の配管(風呂回路)5と、給湯装置1の各部を制御する制御部6とを主要部として備えている。   Specifically, the hot water supply device 1 includes a combustion can body 2, a hot water supply pipe (hot water supply circuit) 3, a heating pipe (heating circuit) 4, and a bath reheating pipe (bath circuit) 5. And the control part 6 which controls each part of the hot water supply apparatus 1 is provided as a main part.

燃焼缶体2は、バーナ7を収容する金属製の容器であって、この燃焼缶体2内には、バーナ7と、給湯用の一次熱交換器8と、給湯用の二次熱交換器9と、暖房用の一次熱交換器10と、暖房用の二次熱交換器11とが収容されている。なお、2aはバーナ7の燃焼排ガスを排出するための排気口である。   The combustion can body 2 is a metal container that accommodates the burner 7. The combustion can body 2 includes the burner 7, a primary heat exchanger 8 for hot water supply, and a secondary heat exchanger for hot water supply. 9, a primary heat exchanger 10 for heating, and a secondary heat exchanger 11 for heating are accommodated. In addition, 2a is an exhaust port for discharging the combustion exhaust gas of the burner 7.

バーナ7は、上記給湯用および暖房用の各熱交換器8〜11を加熱する加熱手段であって、都市ガスやプロパンガスを燃料とするガスバーナで構成されている。なお、図1ではバーナ7の詳細な構造は図示を省略しているが、このバーナ7は、複数の燃焼管を備えて構成されており、制御部6によって燃焼管の燃焼状態を制御する(燃焼本数や燃料供給量を制御する)ことによって、給湯側および暖房側のバーナを独立して燃焼させることができるようになっている。   The burner 7 is a heating means that heats the heat exchangers 8 to 11 for hot water supply and heating, and is composed of a gas burner that uses city gas or propane gas as fuel. Although the detailed structure of the burner 7 is not shown in FIG. 1, the burner 7 includes a plurality of combustion tubes, and the control unit 6 controls the combustion state of the combustion tubes ( By controlling the number of combustion and the fuel supply amount), the hot water supply side and heating side burners can be burned independently.

給湯用および暖房用の一次熱交換器8,10は、バーナ7の燃焼ガスによって気−液熱交換を行う熱交換器(たとえば、フィンチューブ式の熱交換器)であって、バーナ7の直近上方に配置されている。これら給湯用および暖房用の一次熱交換器8,10は、バーナ7の燃焼ガスの温度を水の沸点以下まで下げずに熱交換を行う顕熱回収型の熱交換器で構成されている。本実施形態では、給湯用の一次熱交換器8は、二次熱交換器9で予熱された低温水が通る水管が上下方向に一段のみ配列されている。すなわち、一般的な給湯用の一次熱交換器では、燃焼ガスの熱を効率良く回収できるように水管が上下方向に二段以上配列されている(水管長が長くなるように配列されている)が、本実施形態の給湯装置1では、熱交換器の製造コストを低減化するために、給湯用の一次熱交換器8の水管は上下方向に一段のみ配列(水管長が短くなるように配列)されている。そのため、本実施形態に示す給湯装置1では、給湯用の一次熱交換器8から出湯される高温水は急激な温度変化を伴うことになる。   The primary heat exchangers 8 and 10 for hot water supply and heating are heat exchangers (for example, fin-tube type heat exchangers) that perform gas-liquid heat exchange with the combustion gas of the burner 7, and are in the immediate vicinity of the burner 7. It is arranged above. These primary heat exchangers 8 and 10 for hot water supply and heating are constituted by sensible heat recovery type heat exchangers that perform heat exchange without lowering the temperature of the combustion gas of the burner 7 to below the boiling point of water. In the present embodiment, in the primary heat exchanger 8 for hot water supply, only one stage of water pipes through which the low-temperature water preheated by the secondary heat exchanger 9 passes is arranged in the vertical direction. That is, in a typical primary heat exchanger for hot water supply, the water pipes are arranged in two or more stages in the vertical direction so that the heat of the combustion gas can be efficiently recovered (arranged so that the length of the water pipe becomes long). However, in the hot water supply apparatus 1 of this embodiment, in order to reduce the manufacturing cost of the heat exchanger, the water pipes of the primary heat exchanger 8 for hot water supply are arranged in only one stage in the vertical direction (arranged so that the length of the water pipe is shortened). ) Therefore, in the hot water supply apparatus 1 shown in the present embodiment, the hot water discharged from the primary heat exchanger 8 for hot water supply is accompanied by a rapid temperature change.

給湯用および暖房用の各二次熱交換器9,11は、給湯用および暖房用の一次熱交換器8,10で熱交換を行った後の燃焼排ガスによって気−液熱交換を行う熱交換器(たとえば、らせん管式の熱交換器)であって、給湯用および暖房用の各一次熱交換器8,10の上方に配置されている。これら給湯用および暖房用の二次熱交換器9,11は、いずれも一次熱交換器8,10で熱交換後の燃焼排ガスの温度を水の沸点以下に下げて熱交換を行う潜熱回収型の熱交換器で構成されている。そのため、この二次熱交換器9,11には、熱交換に伴って発生する凝縮水(ドレン)を排出するためのドレン排水手段(図示せず)が備えられている。   Each of the secondary heat exchangers 9 and 11 for hot water supply and heating uses heat exchange that performs gas-liquid heat exchange with the combustion exhaust gas after heat exchange is performed in the primary heat exchangers 8 and 10 for hot water supply and heating. It is a heat exchanger (for example, a spiral tube type heat exchanger), and is disposed above the primary heat exchangers 8 and 10 for hot water supply and heating. These hot water supply and heating secondary heat exchangers 9 and 11 are both latent heat recovery types that perform heat exchange by lowering the temperature of the combustion exhaust gas after heat exchange in the primary heat exchangers 8 and 10 below the boiling point of water. It consists of a heat exchanger. For this reason, the secondary heat exchangers 9 and 11 are provided with drain drain means (not shown) for discharging condensed water (drain) generated along with heat exchange.

給湯回路3は、図示しない給湯栓に供給する温水の通水経路であって、一端が上水道などの水源(図示せず)に接続され、他端が給湯用の二次熱交換器9の入水側に接続された入水管12と、一端が給湯用の一次熱交換器8の出湯側に接続され、他端が給湯栓に接続された出湯管13とを主要部として構成されており、給湯用の二次熱交換器9の出湯側と給湯用の一次熱交換器8の入水側とが接続されている。すなわち、この給湯回路3は、入水管12から供給される常温の水(低温水)を給湯用の二次熱交換器9から給湯用の一次熱交換器8を経て出湯管13に供給できるように構成されている。   The hot water supply circuit 3 is a water flow path for supplying hot water to a hot water tap (not shown), one end of which is connected to a water source (not shown) such as a water supply, and the other end is input to the secondary heat exchanger 9 for hot water supply. The main part is composed of a water inlet pipe 12 connected to the side, and a hot water outlet pipe 13 having one end connected to the hot water outlet side of the primary heat exchanger 8 for hot water supply and the other end connected to a hot water tap. The hot water outlet side of the secondary heat exchanger 9 is connected to the incoming water side of the primary heat exchanger 8 for hot water supply. That is, the hot water supply circuit 3 can supply normal temperature water (low temperature water) supplied from the water inlet pipe 12 to the hot water outlet pipe 13 from the secondary heat exchanger 9 for hot water supply through the primary heat exchanger 8 for hot water supply. It is configured.

また、入水管12と出湯管13との間には、入水管12に備えられた分配弁14を介して入水管12と出湯管13とを接続するバイパス管15が備えられている。分配弁14はバイパス管15を介して出湯管13に流入する低温水の水量を調整するための水量調整弁であって、制御部6は、この分配弁14の動作を制御することによって、高温水と低温水の混合比率を調整(制御)できるように構成されている。   A bypass pipe 15 is provided between the water inlet pipe 12 and the hot water outlet pipe 13 for connecting the water inlet pipe 12 and the hot water outlet pipe 13 via a distribution valve 14 provided in the water inlet pipe 12. The distribution valve 14 is a water amount adjustment valve for adjusting the amount of low-temperature water flowing into the hot water discharge pipe 13 via the bypass pipe 15, and the control unit 6 controls the operation of the distribution valve 14 to increase the temperature. The mixing ratio of water and low-temperature water can be adjusted (controlled).

また、この給湯回路3には、給湯用の二次熱交換器9に供給される低温水の水量(入水水量)を検出する入水水量センサ16と、給湯用の二次熱交換器9に供給される低温水の温度(入水温度)を検出する入水温度センサ17と、給湯用の一次熱交換器8から出湯される高温水の温度(缶体出湯温度)を検出する缶体温度センサ18と、出湯管13から出湯される混合温水(バイパス管15を介して供給される低温水との混合温水)の温度(出湯温度)を検出する出湯温度センサ19と、出湯管13から出湯する混合温水の水量(出湯水量)を調整する出湯水量調整弁20とが備えられており、制御部6は、上記各種センサ16,17,18,19で検出される水量データ(入水水量のデータ)と温度データ(入水温度、缶体出湯温度および出湯温度のデータ)とに基づいて、出湯温度が給湯設定温度(目標温度)となるように、分配弁14を介して出湯管13に供給する低温水の水量(混合比率)を調整するように構成されている。   Further, the hot water supply circuit 3 supplies an incoming water amount sensor 16 for detecting the amount of low-temperature water (incoming water amount) supplied to the secondary heat exchanger 9 for hot water supply and a secondary heat exchanger 9 for hot water supply. Water temperature sensor 17 for detecting the temperature of the low-temperature water (water temperature), can body temperature sensor 18 for detecting the temperature of the hot water discharged from the primary heat exchanger 8 for hot water supply (can body temperature) , A hot water temperature sensor 19 for detecting the temperature (hot water temperature) of the mixed hot water discharged from the hot water pipe 13 (hot water mixed with the low-temperature water supplied via the bypass pipe 15), and mixed hot water discharged from the hot water pipe 13 The control unit 6 controls the water amount data (data of the incoming water amount) detected by the various sensors 16, 17, 18, and 19 and the temperature. Data (incoming water temperature, hot water temperature of can body and The amount of low-temperature water (mixing ratio) to be supplied to the hot water discharge pipe 13 via the distribution valve 14 is adjusted so that the hot water temperature becomes the hot water supply set temperature (target temperature) based on the hot water temperature data). It is configured.

暖房回路4は、床暖房パネルなどの低温暖房端末とファンコンベクタなどの高温暖房端末とに暖房用の熱媒体である温水を供給する通水経路であって、一端が高温端末(図示せず)の温水入力側に接続され、他端が暖房用の一次熱交換器10の出湯側に接続された暖房高温往き管21と、一端が低温暖房端末(図示せず)の温水入力側に接続され、他端が暖房用の一次熱交換器の入水側に接続された暖房低温往き管22と、一端が高温暖房端末および低温暖房端末の各温水出力側(熱交換後の温水排出口)に接続され、他端が暖房用の二次熱交換器11の入水側に接続された暖房戻り管23と、一端が暖房用の二次熱交換器11の出湯側に接続され、他端が膨張タンク25および暖房用の循環ポンプ26を介して暖房低温往き管22に接続された暖房循環配管24とを主要部として備えている。   The heating circuit 4 is a water flow path for supplying hot water, which is a heating medium, to a low-temperature heating terminal such as a floor heating panel and a high-temperature heating terminal such as a fan convector, and one end is a high-temperature terminal (not shown). The heating high-temperature forward pipe 21 is connected to the hot water input side, and the other end is connected to the hot water outlet side of the primary heat exchanger 10 for heating, and one end is connected to the hot water input side of a low-temperature heating terminal (not shown). The other end is connected to the inlet side of the heating primary heat exchanger 22 and the other end is connected to the hot water output side of the high temperature heating terminal and the low temperature heating terminal (the hot water outlet after heat exchange). A heating return pipe 23 whose other end is connected to the water inlet side of the secondary heat exchanger 11 for heating, one end is connected to the hot water outlet side of the secondary heat exchanger 11 for heating, and the other end is an expansion tank. 25 and a heating circulation pump 26 are connected to the heating low temperature outlet pipe 22. Was the heating circulation pipe 24 is equipped as the main part.

ここで、膨張タンク25において暖房用の二次熱交換器11の出湯側に接続される暖房循環配管24aは膨張タンク25の下端部に接続されており、暖房低温往き管22に接続される暖房循環配管24bは膨張タンク25の下層領域から低温の温水を取り出せるように膨張タンク25の下層部に接続されている。また、膨張タンク25の上端部には、一端が入水管12に接続された補水配管27が接続されており、この補水配管27に備えられた補水用の開閉弁28を開弁させることで、膨張タンク25への補水ができるように構成されている。なお、膨張タンク25内には図示しない水位検知手段が備えられており、制御部6はこの水位検知手段で検出される水位が所定水位以下になると、上記開閉弁28を開いて膨張タンク25への補水を行うようになっている。   Here, in the expansion tank 25, the heating circulation pipe 24 a connected to the hot water outlet side of the secondary heat exchanger 11 for heating is connected to the lower end portion of the expansion tank 25, and heating connected to the heating low temperature forward pipe 22. The circulation pipe 24 b is connected to the lower layer portion of the expansion tank 25 so that low temperature hot water can be taken out from the lower layer region of the expansion tank 25. In addition, the upper end portion of the expansion tank 25 is connected to a water replenishing pipe 27 having one end connected to the water inlet pipe 12, and by opening the water replenishing on-off valve 28 provided in the water replenishing pipe 27, The expansion tank 25 is configured to be refilled. The expansion tank 25 is provided with a water level detection means (not shown). When the water level detected by the water level detection means falls below a predetermined water level, the controller 6 opens the on-off valve 28 to the expansion tank 25. It is designed to replenish water.

そして、この暖房回路4では、暖房用の一次熱交換器10から出湯される高温の温水が暖房高温往き管21を介して高温暖房端末に供給され、暖房高温端末で熱交換(放熱)後の温水が暖房戻り管23を介して暖房用の二次熱交換器11に供給されるようになっている。また、暖房用の二次熱交換器11に供給された放熱後の温水は暖房用の二次熱交換器11での潜熱回収によって加熱昇温された後に暖房循環配管24aを介して膨張タンク25の下層領域に供給される。そして、膨張タンク25の下層領域に貯留された低温の温水は、暖房用循環配管24bを介して暖房低温往き管22に合流し、ここで低温暖房端末と暖房用の一次熱交換器10とに供給される。つまり、膨張タンク25から取り出される低温の温水の一部が低温暖房端末に供給され、低温暖房端末で放熱後に暖房戻り管23を介して暖房用の二次熱交換器11に供給されるとともに、他の一部が暖房用の一次熱交換器10に供給され、暖房用の一次熱交換器10で高温の温水となって高温暖房端末に供給されるように構成されている。なお、この暖房回路4における温水の循環は、制御部6が循環ポンプ26を動作させることによって行われる。   And in this heating circuit 4, the high temperature hot water discharged from the primary heat exchanger 10 for heating is supplied to the high temperature heating terminal via the heating high temperature outgoing pipe 21, and after the heat exchange (heat radiation) at the heating high temperature terminal Hot water is supplied to the secondary heat exchanger 11 for heating via the heating return pipe 23. Further, the heat-dissipated hot water supplied to the heating secondary heat exchanger 11 is heated by the latent heat recovery in the heating secondary heat exchanger 11, and then heated through the heating circulation pipe 24a to the expansion tank 25. Supplied to the lower layer region. And the low temperature warm water stored in the lower layer area of the expansion tank 25 is joined to the heating low temperature forward pipe 22 via the heating circulation pipe 24b, and here, to the low temperature heating terminal and the primary heat exchanger 10 for heating. Supplied. That is, a part of the low-temperature hot water taken out from the expansion tank 25 is supplied to the low-temperature heating terminal, and after being radiated at the low-temperature heating terminal, supplied to the secondary heat exchanger 11 for heating via the heating return pipe 23, The other part is supplied to the primary heat exchanger 10 for heating, and the primary heat exchanger 10 for heating becomes high-temperature hot water and is supplied to the high-temperature heating terminal. The hot water is circulated in the heating circuit 4 by the control unit 6 operating the circulation pump 26.

そして、この暖房回路4には、暖房用の一次熱交換器10の出湯側に高温暖房端末に供給する温水の温度を検出する暖房高温温度センサ29と、膨張タンク25の下端部に低温端末に供給する温水の温度を検出する暖房低温温度センサ30とが備えられており、制御部6は、これら温度センサ29,30で検出される温度データに基づいて、暖房用の一次および二次熱交換器10,11を加熱するバーナ7の燃焼制御を行うようになっている。   And in this heating circuit 4, the heating high temperature sensor 29 which detects the temperature of the hot water supplied to the high temperature heating terminal on the tapping side of the primary heat exchanger 10 for heating, and the low temperature terminal at the lower end of the expansion tank 25 A heating low temperature sensor 30 that detects the temperature of the hot water to be supplied is provided, and the control unit 6 performs primary and secondary heat exchange for heating based on temperature data detected by the temperature sensors 29 and 30. Combustion control of the burner 7 for heating the vessels 10 and 11 is performed.

風呂回路5は、主として風呂の追い焚きを行うために備えられた通水経路であって、風呂追い焚き用の液−液熱交換器(風呂熱交換器)31の一次側に熱媒体となる温水を供給する追い焚き用温水管32と、一端が風呂熱交換器31の二次側の入水側に接続され、他端が図示しない浴槽(具体的には、浴槽からの温水の吸い込みと浴槽への温水の吐き出しを行うアダプタ金具の温水吸込口(図示せず))に接続されたふろ戻り管33と、一端が風呂熱交換器31の二次側の出湯側に接続され、他端が浴槽(具体的には、上記アダプタ金具の温水吐出口(図示せず))に接続されたふろ往き管34とを主要部として備えている。   The bath circuit 5 is a water passage mainly provided for reheating the bath, and serves as a heat medium on the primary side of the liquid-liquid heat exchanger (bath heat exchanger) 31 for reheating the bath. A reheating hot water pipe 32 for supplying hot water, one end is connected to the secondary water inlet side of the bath heat exchanger 31, and the other end is a bathtub (not shown). The return pipe 33 connected to the hot water inlet (not shown) of the adapter fitting that discharges hot water to the water, and one end connected to the secondary hot water side of the bath heat exchanger 31 and the other end The main part is provided with a bathtub 34 (specifically, a warm pipe discharge port (not shown) of the adapter fitting) connected to a bathtub.

そして、この風呂回路5のふろ戻り管33には、浴槽から吸い込んだ温水をふろ往き管34に循環させるための風呂用の循環ポンプ35と、風呂熱交換器31に供給される温水の温度(ふろ戻り温度)を検出するふろ戻り温度センサ36と、風呂熱交換器31からふろ往き管34に供給される温水の温度(ふろ往き温度)を検出するふろ往き温度センサ37とが備えられており、制御部6は、これら温度センサ36,37で検出される温度データに基づいて、浴槽内の温水の温度(すなわち、ふろ戻り温度)が風呂設定温度(ふろ目標温度)となるように暖房用の一次熱交換器10および二次熱交換器11を加熱するバーナ7の燃焼制御を行うようになっている。   The bath return pipe 33 of the bath circuit 5 has a bath circulation pump 35 for circulating the hot water sucked from the bathtub to the bath tube 34 and the temperature of the hot water supplied to the bath heat exchanger 31 ( A bath return temperature sensor 36 for detecting the bath return temperature) and a bath temperature sensor 37 for detecting the temperature of the warm water supplied from the bath heat exchanger 31 to the bath pipe 34 (bath temperature) are provided. Based on the temperature data detected by these temperature sensors 36 and 37, the control unit 6 is for heating so that the temperature of the hot water in the bathtub (that is, the bath return temperature) becomes the bath set temperature (the bath target temperature). Combustion control of the burner 7 that heats the primary heat exchanger 10 and the secondary heat exchanger 11 is performed.

また、この風呂回路5には、浴槽への注湯(温水の落とし込み)用の通水経路として、一端が出湯管13に接続され、他端がふろ戻り管33に接続された注湯管38が備えられており、この注湯管38には、注湯用の開閉弁39が備えられている。すなわち、制御部6が注湯用の開閉弁39を開弁させることによって、出湯管13から出湯される温水がふろ戻り管33を介して浴槽に落とし込まれるようになっている。   In addition, the bath circuit 5 has a pouring pipe 38 having one end connected to the hot water pipe 13 and the other end connected to the return pipe 33 as a water passage for pouring water into the bathtub (dropping warm water). The pouring pipe 38 is provided with an on-off valve 39 for pouring. That is, when the control unit 6 opens the pouring open / close valve 39, hot water discharged from the hot water discharge pipe 13 is dropped into the bathtub through the return pipe 33.

制御部6は、給湯装置1の各部を制御するための制御装置であって、図示しないマイコンを備えて構成され、マイコンに備えられた制御プログラムに基づいて、上記給湯機能、温水暖房機能および風呂機能が実現されるようになっている。なお、この制御部6には図示しない遠隔操作装置(リモコン)が備えられており、このリモコンによって給湯設定温度や風呂設定温度の設定や設定変更ができるようになっている。   The control unit 6 is a control device for controlling each part of the hot water supply device 1 and includes a microcomputer (not shown). Based on a control program provided in the microcomputer, the hot water supply function, the hot water heating function, and the bath Functions are realized. The control unit 6 is provided with a remote control device (remote controller) (not shown), and the remote controller can set and change the hot water supply set temperature and bath set temperature.

次に、このように構成された給湯装置1における給湯用の温水(混合温水)の温度制定(温度制御)について図2乃至図5に基づいて説明する。   Next, temperature establishment (temperature control) of hot water for hot water supply (mixed hot water) in the hot water supply apparatus 1 configured as described above will be described with reference to FIGS.

上述したように、本実施形態に示す給湯装置1では、給湯用の一次熱交換器8として、水管の長さが短い熱交換器を用いているので、給湯用の一次熱交換器8から出湯される高温水は急激な温度変化を伴うことがある。したがって、高温水の温度を検出する缶体温度センサ18として熱容量による応答遅れがあるサーミスタを用いると、制御部6において正確な高温水の温度の検出ができなくなるおそれがある。   As described above, in the hot water supply apparatus 1 shown in the present embodiment, since the heat exchanger having a short water pipe length is used as the primary heat exchanger 8 for hot water supply, the hot water is discharged from the primary heat exchanger 8 for hot water supply. The hot water that is produced may be accompanied by a rapid temperature change. Therefore, if a thermistor having a response delay due to heat capacity is used as the can temperature sensor 18 that detects the temperature of the high-temperature water, the controller 6 may not be able to accurately detect the temperature of the high-temperature water.

そのため、本実施形態に示す給湯装置1では、制御部6は、あらかじめ設定された所定周期(たとえば、100mS周期)で缶体温度センサ18の温度データを検出し、この検出した温度データの変動を監視して、その変動波形が定常状態にある(つまり、温度データに変動がない)ときには、缶体温度センサ18で検出した温度データを高温水の温度として混合温水の温度制御を行い、缶体温度センサ18で検出される温度データの変動波形に変動があるときは、その変動波形が所定の低周波領域にあれば、缶体温度センサ18で検出される温度データの増減を増幅させる補正処理を行う一方、その変動波形が所定の高周波領域にあるときには、缶体温度センサ18で検出される温度データの増減を低減させる補正処理を行って、混合温水の温度制御を行うように構成されている。   Therefore, in the hot water supply apparatus 1 shown in the present embodiment, the control unit 6 detects the temperature data of the can body temperature sensor 18 at a predetermined cycle (for example, a cycle of 100 mS) set in advance, and detects the fluctuation of the detected temperature data. When the fluctuation waveform is monitored and the fluctuation waveform is in a steady state (that is, there is no fluctuation in the temperature data), the temperature of the mixed hot water is controlled using the temperature data detected by the can body temperature sensor 18 as the temperature of the high temperature water. When the fluctuation waveform of the temperature data detected by the temperature sensor 18 has a fluctuation, if the fluctuation waveform is in a predetermined low frequency region, a correction process for amplifying the increase / decrease in the temperature data detected by the can temperature sensor 18 On the other hand, when the fluctuation waveform is in a predetermined high-frequency region, a correction process is performed to reduce the increase or decrease in the temperature data detected by the can body temperature sensor 18, and the mixed hot water It is configured to control the temperature.

すなわち、所定周期で検出した缶体温度センサ18の温度データの変動波形に変化がなく温度データの値がほぼ一定のとき(定常状態にあるとき)は、缶体温度センサ18の応答遅れはないので、検出した温度データをそのまま高温水の温度として混合温水の温度制御を行うことができる。これに対し、所定周期で検出した缶体温度センサ18の温度データに変動がある場合、缶体温度センサ18の応答遅れが問題となる。   That is, when there is no change in the fluctuation waveform of the temperature data of the can body temperature sensor 18 detected at a predetermined cycle and the value of the temperature data is substantially constant (when in a steady state), there is no response delay of the can body temperature sensor 18. Therefore, the temperature control of the mixed hot water can be performed using the detected temperature data as it is as the temperature of the high temperature water. On the other hand, when the temperature data of the can body temperature sensor 18 detected at a predetermined cycle varies, the response delay of the can body temperature sensor 18 becomes a problem.

図2は、温度の変動波形の周波数に対する高温水の実温度(または、熱電対のように熱容量が小さく実温度に近い温度を検出できる温度センサの温度データ)と、缶体温度センサ18に使用されるサーミスタの検出温度(温度データ)の相関関係を示している。具体的には、図2は、同一期間におけるこれら2つのデータを離散フーリエ変換などにより周波数ごとの強度で示しており、図2(a)に示すように、温度の変動波形の周波数が高くなるとサーミスタの応答遅れが大きくなる。図2(b)は、図2(a)に示した特性を実温度に対する検出温度の変化として表わしている。   FIG. 2 shows the actual temperature of high-temperature water with respect to the frequency of the temperature fluctuation waveform (or the temperature data of a temperature sensor that can detect a temperature close to the actual temperature such as a thermocouple) and the can body temperature sensor 18. The correlation of the detected temperature (temperature data) of the thermistor is shown. Specifically, FIG. 2 shows these two data in the same period with intensity for each frequency by discrete Fourier transform or the like, and when the frequency of the temperature fluctuation waveform becomes higher as shown in FIG. Thermistor response delay increases. FIG. 2B shows the characteristics shown in FIG. 2A as changes in the detected temperature with respect to the actual temperature.

このように、温度の変動波形の周波数が高くなるとサーミスタの検出温度の応答遅れが大きくなるのは、サーミスタの応答が無駄時間を含む一次遅れとして、以下の数式1に示す特性を持つためである。   Thus, the response delay of the thermistor detection temperature increases as the frequency of the temperature fluctuation waveform increases, because the response of the thermistor has a characteristic shown in the following Equation 1 as a primary delay including a dead time. .

Figure 2015183864
Figure 2015183864

そして、図2(b)で示した検出温度/実温度の比を表わす関数は、以下の数式2で示すようになる。   A function representing the ratio of detected temperature / actual temperature shown in FIG.

Figure 2015183864
Figure 2015183864

そこで、本実施形態では、制御部6がサーミスタの検出温度θTh(n)に処理を施し、その処理のパルス伝達関数H(z)に以下の数式3のような特性を持たせることによって、合成伝達関数GTh(s)H(z)に数式4のような特性を持たせるようにしている。 Therefore, in the present embodiment, the control unit 6 performs processing on the detected temperature θ Th (n) of the thermistor, and gives the pulse transfer function H (z) of the processing to the characteristic as shown in the following Expression 3. The composite transfer function G Th (s) H (z) is given a characteristic as shown in Equation 4.

Figure 2015183864
Figure 2015183864

Figure 2015183864
Figure 2015183864

すなわち、処理前のサーミスタの検出温度は、図3(a)に示すように、温度の変動波形の周波数が所定の閾値以上に高くなるときは、それはノイズとして処理すべきものであり、応答遅れによる検出温度のズレを復元すべき周波数範囲は一定の周波数範囲(図3(a)で「復元したい周波数域」で示した範囲)となる。そのため、本実施形態では、制御部6の補正処理によって、この復元したい周波数域のデータを、図3(b)のように復元することとしている。   That is, as shown in FIG. 3A, the detected temperature of the thermistor before processing is to be processed as noise when the frequency of the temperature fluctuation waveform becomes higher than a predetermined threshold value, and is due to response delay. The frequency range in which the deviation of the detected temperature is to be restored is a fixed frequency range (the range indicated by “frequency range to be restored” in FIG. 3A). For this reason, in the present embodiment, the data of the frequency region to be restored is restored as shown in FIG. 3B by the correction process of the control unit 6.

具体的には、本実施形態では、制御部6は、缶体温度センサ18で検出される温度データを以下の数式5を用いて補正処理を行うようにしている。   Specifically, in the present embodiment, the control unit 6 performs a correction process on the temperature data detected by the can body temperature sensor 18 using Equation 5 below.

Figure 2015183864
Figure 2015183864

但し、上記数式5において、θhi(n)は温度制御用の高温水の温度、θTh(n)は高温水用の温度センサの直近の検出温度、θTh(n−1)は高温水用の温度センサの前回検出温度、θTh(n−N)は高温水用の温度センサのN回前の検出温度、a0〜aN-1は係数を示している。 However, in the above formula 5, θ hi (n) is the temperature of the high temperature water for temperature control, θ Th (n) is the detected temperature nearest to the temperature sensor for high temperature water, and θ Th (n−1) is the high temperature water. The previous detected temperature of the temperature sensor for water, θ Th (n−N) represents the detected temperature N times before the temperature sensor for high temperature water, and a 0 to a N−1 represent coefficients.

なお、係数aは、給湯装置1の機種ごとに実験によって得られた経験値に基づいて設定される。図4は、この係数aの一例を示しており、係数aは概ね図4のような関係となる。   The coefficient a is set based on experience values obtained by experiments for each model of the hot water supply device 1. FIG. 4 shows an example of the coefficient a, and the coefficient a has a general relationship as shown in FIG.

そこで、数式5を用いた温度データの補正例を示す。ここで、制御部6が缶体サーミスタ18の検出温度を今回のデータと過去9回分のデータを用いて(N=10として)補正する場合、たとえば、制御部6は以下の数式6のような演算を行って缶体サーミスタ18で検出された温度データの補正を行う。なお、この例では今回のデータと過去9回分のデータを用いる場合を示すが、数式5におけるNの値は適宜変更可能である。   Therefore, a correction example of temperature data using Formula 5 is shown. Here, when the control unit 6 corrects the detected temperature of the can body thermistor 18 using the current data and the past nine data (N = 10), for example, the control unit 6 may Calculation is performed to correct the temperature data detected by the can body thermistor 18. In this example, the current data and the past nine data are used, but the value of N in Equation 5 can be changed as appropriate.

Figure 2015183864
Figure 2015183864

図5は、缶体温度センサ18の検出温度と制御部6による補正後の温度データの関係を示している。この図5に示すように、補正後の温度データは、缶体温度センサ18の応答遅れによる温度のずれが低減され、より実温度に近い値となる。   FIG. 5 shows the relationship between the temperature detected by the can body temperature sensor 18 and the temperature data corrected by the control unit 6. As shown in FIG. 5, the corrected temperature data is a value closer to the actual temperature because the temperature deviation due to the response delay of the can body temperature sensor 18 is reduced.

このように、本実施形態に示す給湯装置1では、高温水の温度を検出する温度センサ(缶体温度センサ18)で検出された温度データを制御部6が補正して混合温水の温度制定用のデータとして用いるので、給湯用の混合温水として、目標温度の混合温水を正確に出湯させることができる。   Thus, in the hot water supply apparatus 1 shown in this embodiment, the control unit 6 corrects the temperature data detected by the temperature sensor (can temperature sensor 18) that detects the temperature of the high-temperature water, and establishes the temperature of the mixed hot water. Therefore, the mixed hot water having the target temperature can be accurately discharged as the mixed hot water for hot water supply.

なお、上述した実施形態は本発明の好適な実施態様を示すものであって、本発明はこれに限定されることなく発明の範囲内で種々の設計変更が可能である。   The above-described embodiment shows a preferred embodiment of the present invention, and the present invention is not limited to this, and various design changes can be made within the scope of the invention.

たとえば、上述した実施形態では、本発明を潜熱回収型のガス給湯装置において、一次熱交換器8から出湯される高温水の温度データの補正を行う場合を示したが、本発明は潜熱回収型の給湯装置に限らず、他の態様の給湯装置にも適用可能である。すなわち、本発明は、高温水の温度変動が激しい給湯装置であれば適用可能である。   For example, in the above-described embodiment, the case where the temperature data of the hot water discharged from the primary heat exchanger 8 is corrected in the latent heat recovery type gas hot water supply apparatus of the present invention has been described. The present invention can be applied not only to the hot water supply apparatus but also to other forms of hot water supply apparatus. That is, the present invention can be applied to any hot water supply device in which the temperature fluctuation of high temperature water is severe.

また、上述した実施形態では、缶体温度センサ18としてサーミスタを用いた場合を示したが、実温度に対して応答遅れのある温度センサであれば、サーミスタ以外の温度センサにも本発明は適用可能である。   Moreover, although the case where the thermistor was used as the can body temperature sensor 18 was shown in embodiment mentioned above, if it is a temperature sensor with a response delay with respect to actual temperature, this invention is applied also to temperature sensors other than a thermistor. Is possible.

また、上述した実施形態では、給湯機能に加えて温水暖房機能および風呂機能を備えた給湯装置に本発明を適用した場合を示したが、温水暖房機能や風呂機能を備えない給湯装置にも本発明は適用可能である。   Moreover, although the case where this invention was applied to the hot water supply apparatus provided with the hot water heating function and the bath function in addition to the hot water supply function was shown in embodiment mentioned above, this hot water supply apparatus which does not have a hot water heating function and a bath function is also this. The invention is applicable.

1 給湯装置
2 燃焼缶体
3 給湯回路
4 暖房回路
5 風呂回路
6 制御部
7 バーナ
8 給湯用の一次熱交換器
9 給湯用の二次熱交換器
10 暖房用の一次熱交換器
11 暖房用の二次熱交換器
12 入水管
13 出湯管
14 分配弁
15 バイパス管
16 入水水量センサ
17 入水温度センサ(低温水の温度センサ)
18 缶体温度センサ(高温水の温度センサ)
19 出湯温度センサ(混合温水の温度センサ)
20 出湯水量調整弁
21 暖房高温往き管
22 暖房低温往き管
23 暖房戻り管
25 膨張タンク
26 暖房用の循環ポンプ
31 風呂熱交換器
32 追い焚き用温水管
33 ふろ戻り管
34 ふろ往き管
35 風呂用の循環ポンプ
DESCRIPTION OF SYMBOLS 1 Hot water supply apparatus 2 Combustion can 3 Hot water supply circuit 4 Heating circuit 5 Bath circuit 6 Control part 7 Burner 8 Primary heat exchanger 9 for hot water supply Secondary heat exchanger 10 for hot water supply Primary heat exchanger 11 for heating Secondary heat exchanger 12 Inlet pipe 13 Outlet pipe 14 Distribution valve 15 Bypass pipe 16 Incoming water amount sensor 17 Incoming water temperature sensor (temperature sensor for low temperature water)
18 Can body temperature sensor (temperature sensor for high temperature water)
19 Hot water temperature sensor (mixed hot water temperature sensor)
20 Hot water outlet adjustment valve 21 Heating high temperature outgoing pipe 22 Heating low temperature outgoing pipe 23 Heating return pipe 25 Expansion tank 26 Heating circulation pump 31 Bath heat exchanger 32 Reheating hot water pipe 33 Bath return pipe 34 Bath outgoing pipe 35 Bath use Circulation pump

Claims (3)

低温水と高温水とを混合して給湯を行う給湯装置であって、
低温水、高温水およびこれらの混合温水の各温度を検出する温度センサと、これら温度センサで検出された各温度データに基づいて、高温水と低温水の混合比率を制御して混合温水の温度を目標温度に制定する温度制御を行う制御部を備えた給湯装置において、
前記制御部は、所定周期で前記高温水の温度データを検出し、この検出した温度データの変動を監視して、その変動波形が定常状態にあるときは検出した温度データを高温水の温度とし、その変動波形が所定の低周波領域にあるときには温度データの増減を増幅させる一方、その変動波形が所定の高周波領域にあるときには温度データの増減を低減させる補正処理を行って前記温度制御を実行することを特徴とする給湯装置。
A hot water supply device that mixes low temperature water and high temperature water to supply hot water,
The temperature sensor for detecting the temperature of the low temperature water, the high temperature water and the mixed hot water, and the temperature of the mixed hot water by controlling the mixing ratio of the high temperature water and the low temperature water based on the temperature data detected by these temperature sensors. In a hot water supply apparatus equipped with a control unit that performs temperature control to establish a target temperature as
The control unit detects the temperature data of the high temperature water at a predetermined cycle, monitors the fluctuation of the detected temperature data, and when the fluctuation waveform is in a steady state, the detected temperature data is set as the temperature of the high temperature water. When the fluctuation waveform is in a predetermined low frequency region, the temperature data is increased or decreased. On the other hand, when the fluctuation waveform is in a predetermined high frequency region, the temperature control is performed by performing a correction process to reduce the increase or decrease in temperature data. A hot water supply apparatus characterized by the above.
前記補正処理は、下記の数式を用いて行われることを特徴とする請求項1に記載の給湯装置。

θhi(n)={a0・θTh(n)+a1・θTh(n−1)+…+aN-1・θTh(n−N)}/(a0+a1+…aN-1
但し、θhi(n):温度制御用の高温水の温度、θTh(n):高温水用の温度センサの直近の検出温度、θTh(n−1):高温水用の温度センサの前回検出温度、θTh(n−N):高温水用の温度センサのN回前の検出温度、a0〜aN-1:係数
The hot water supply apparatus according to claim 1, wherein the correction process is performed using the following mathematical formula.
Θ hi (n) = {a 0 · θ Th (n) + a 1 · θ Th (n−1) +... + A N−1 · θ Th (n−N)} / (a 0 + a 1 +... A N-1 )
Where θ hi (n) is the temperature of the high-temperature water for temperature control, θ Th (n) is the latest detected temperature of the temperature sensor for high-temperature water, and θ Th (n−1) is the temperature sensor for high-temperature water. Previously detected temperature, θ Th (n−N): detected temperature N times before the temperature sensor for high temperature water, a 0 to a N-1 : coefficient
前記高温水の温度を検出する温度センサは、前記高温水を生成する顕熱回収型の熱交換器の出湯側に備えられていることを特徴とする請求項1または2に記載の給湯装置。   3. The hot water supply apparatus according to claim 1, wherein a temperature sensor that detects a temperature of the high temperature water is provided on a tapping side of a sensible heat recovery type heat exchanger that generates the high temperature water.
JP2014057799A 2014-03-20 2014-03-20 Water heater Expired - Fee Related JP6330406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014057799A JP6330406B2 (en) 2014-03-20 2014-03-20 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014057799A JP6330406B2 (en) 2014-03-20 2014-03-20 Water heater

Publications (2)

Publication Number Publication Date
JP2015183864A true JP2015183864A (en) 2015-10-22
JP6330406B2 JP6330406B2 (en) 2018-05-30

Family

ID=54350614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057799A Expired - Fee Related JP6330406B2 (en) 2014-03-20 2014-03-20 Water heater

Country Status (1)

Country Link
JP (1) JP6330406B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973745A (en) * 1982-10-21 1984-04-26 Secom Co Ltd Method for measuring temperature
JPH0518605A (en) * 1991-07-08 1993-01-26 Hanshin Electric Co Ltd Method of supply-hot-water temperature control in automatic supply-hot-water system
US20120037096A1 (en) * 2010-08-16 2012-02-16 Takagi Industrial Co., Ltd. Combustion apparatus, method for combustion control, combustion control board, combustion control system and water heater
JP2012242021A (en) * 2011-05-20 2012-12-10 Purpose Co Ltd Water heater, hot-water supply control program thereof, and hot-water supply control method
JP2013096603A (en) * 2011-10-28 2013-05-20 Rinnai Corp Water heater
JP2013213608A (en) * 2012-04-02 2013-10-17 Rinnai Corp Water heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973745A (en) * 1982-10-21 1984-04-26 Secom Co Ltd Method for measuring temperature
JPH0518605A (en) * 1991-07-08 1993-01-26 Hanshin Electric Co Ltd Method of supply-hot-water temperature control in automatic supply-hot-water system
US20120037096A1 (en) * 2010-08-16 2012-02-16 Takagi Industrial Co., Ltd. Combustion apparatus, method for combustion control, combustion control board, combustion control system and water heater
JP2012242021A (en) * 2011-05-20 2012-12-10 Purpose Co Ltd Water heater, hot-water supply control program thereof, and hot-water supply control method
JP2013096603A (en) * 2011-10-28 2013-05-20 Rinnai Corp Water heater
JP2013213608A (en) * 2012-04-02 2013-10-17 Rinnai Corp Water heater

Also Published As

Publication number Publication date
JP6330406B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
CN108474587B (en) Boiler for heating and water heating and control method thereof
KR100985391B1 (en) Control Method according to change of heating load in individual heating control system and individual heating control system using the method
US11221150B2 (en) System and method of controlling a mixing valve of a heating system
US10480826B2 (en) System and method of controlling a mixing valve of a heating system
JP2019027637A (en) Heating water heater and its control method
JP6330406B2 (en) Water heater
JP4477566B2 (en) Hot water system
JP6653079B2 (en) Water heater
KR101815993B1 (en) Gas boiler and heated water control method thereof
JP2017122541A (en) Water heater
JP6045108B2 (en) One can two water channel combustion equipment
JP5734677B2 (en) One can two water bath water heater
KR20200012320A (en) Control system and method for heating boiler with external hot water tank
JP6506136B2 (en) Water heater
JP2009041843A (en) Hot water storing type hot water supply device
JP6881202B2 (en) Unit control device
JP6836453B2 (en) Hot water heater
JP2007078231A (en) Water heater
JP3872903B2 (en) One can multi-channel water heater
JP2017075750A (en) Water heater
JP2016136071A (en) One-boiler two-channel type hot water supply device
JP2017048974A (en) Heating medium boiler
KR101607023B1 (en) Heating device
JP6422297B2 (en) Bath apparatus and control method thereof
JP5761553B2 (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6330406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees