JP2015183210A - Neutral electrolytic solution for stainless steel, and electrolytic method - Google Patents

Neutral electrolytic solution for stainless steel, and electrolytic method Download PDF

Info

Publication number
JP2015183210A
JP2015183210A JP2014059144A JP2014059144A JP2015183210A JP 2015183210 A JP2015183210 A JP 2015183210A JP 2014059144 A JP2014059144 A JP 2014059144A JP 2014059144 A JP2014059144 A JP 2014059144A JP 2015183210 A JP2015183210 A JP 2015183210A
Authority
JP
Japan
Prior art keywords
stainless steel
neutral
mass
electrolytic
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014059144A
Other languages
Japanese (ja)
Other versions
JP5893066B2 (en
Inventor
真輝 野川
Masaki Nogawa
真輝 野川
亮平 山村
Ryohei Yamamura
亮平 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taseto Co Ltd
Original Assignee
Taseto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taseto Co Ltd filed Critical Taseto Co Ltd
Priority to JP2014059144A priority Critical patent/JP5893066B2/en
Publication of JP2015183210A publication Critical patent/JP2015183210A/en
Application granted granted Critical
Publication of JP5893066B2 publication Critical patent/JP5893066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide neutral electrolytic solution for stainless steel and an electrolytic method by which a passivation film with satisfactory corrosion resistance can be stably obtained without using a special apparatus or executing a special processing method, or regardless of a type of current in electrolytic treatment such as direct current or alternating current, or AC/DC superimposed current in which alternating current is superimposed onto direct current, in removing weld burning of a stainless steel surface, and in which mirror surface properties of stainless steel after treatment is excellent, and a surface whose luminance unevenness is eliminated.SOLUTION: Neutral electrolytic solution for stainless steel contains a base material containing 0.05 mass% or more of one kind or two or more kinds selected from the group consisting of sodium salt, potassium salt and ammonium salt of citric acid or phosphoric acid, and 0.01 mass% or more of cesium fluoride, and a remainder of the solution is water and impurity. Further, it is also possible that the solution contains 0.01 mass% or more of silicofluoride having one kind or two or more kinds selected from the group consisting of sodium, potassium and magnesium as cations.

Description

本発明は、ステンレス鋼の表面を電気分解によって処理する際に使用するステンレス鋼用中性電解液及びそれを使用した電解方法に関する。   The present invention relates to a neutral electrolytic solution for stainless steel used when the surface of stainless steel is treated by electrolysis and an electrolysis method using the same.

ステンレス鋼を溶接する際、溶接部とその溶接部周辺の熱影響部に、酸化スケール及び汚れを含む溶接焼けが発生する。この溶接焼けを除去するため、物理的処理により、例えばサンダー等を用いてステンレス鋼の表面を処理すると、ステンレス鋼の腐食を防止する不動態皮膜を、溶接焼けと共に除去してしまい、ステンレス鋼の耐食性を低下させてしまう。一方、例えばフッ化物系の強酸又は王水等を用いて、化学的処理によりステンレス鋼の表面を処理する場合は、不動態皮膜は除去されないため、ステンレス鋼表面の耐食性を維持することはできるが、酸化スケール及び汚れを完全に除去することはできず、これらがステンレス鋼表面に残存してしまう。   When stainless steel is welded, welding burn including oxide scale and dirt occurs in the welded portion and the heat-affected zone around the welded portion. In order to remove this weld burn, if the surface of stainless steel is treated by physical treatment, for example, using a sander, the passive film that prevents corrosion of the stainless steel is removed together with the weld burn. Corrosion resistance is reduced. On the other hand, when the surface of stainless steel is treated by chemical treatment using, for example, a fluoride-based strong acid or aqua regia, the passive film is not removed, so that the corrosion resistance of the stainless steel surface can be maintained. The oxide scale and dirt cannot be completely removed, and these remain on the stainless steel surface.

これに対し、電解処理によりステンレス鋼の表面を処理する場合は、溶接焼けの除去性が良好であり、また既存の不動態皮膜に加え、電解処理により更に不動態皮膜が形成され、ステンレス鋼表面の耐食性を向上させることができる。また、電解処理によりステンレス鋼の表面を処理すると、ステンレス鋼表面に存在するミクロの凹凸を平滑化させることができるため、処理後のステンレス鋼表面を鏡面に近い状態にすることができる。このような点から、ステンレス鋼に生じた溶接焼けを除去する方法としては、物理的処理及び化学的処理よりも、電気分解を利用した電解処理が有効である。   On the other hand, when the surface of stainless steel is treated by electrolytic treatment, the ability to remove weld burn is good, and in addition to the existing passive film, a passive film is further formed by electrolytic treatment. Corrosion resistance can be improved. Further, when the surface of stainless steel is treated by electrolytic treatment, the micro unevenness present on the stainless steel surface can be smoothed, so that the treated stainless steel surface can be brought into a state close to a mirror surface. From such a point, as a method for removing the welding burn generated in the stainless steel, electrolytic treatment utilizing electrolysis is more effective than physical treatment and chemical treatment.

ステンレス鋼の溶接焼けを電解処理により除去する方法の原理は、直流電流用の電源装置を使用する場合、陽極としてのステンレス鋼母材を電源装置の正極に接続し、陰極を電源装置の負極に接続し、電解液を介在させて両極間に直流電流を流すことにより、陽極から溶接焼けを溶出することによって、溶接焼けを除去するというものである。その際、この陰極部分に、電解液の保持性が良好な布又はフェルト等を取付け、この布又はフェルト等に電解液を含浸させた状態で、これを陽極であるステンレス鋼母材に押し当てることにより、電解液が電気分解における電解質系となる。そして、陽極で溶解が起こり、陽極であるステンレス鋼母材表面から溶接焼け等の金属酸化物が溶出することにより、溶接焼け等が除去される。電解処理に適用される電流の方式は、前述の直流方式の他に、陽極と陰極とが周期的に入れ替わる交流方式又は直流電流に交流電流を周期的に混在させる交直重畳法式等がある。これらの電流方式は、ステンレス鋼の表面処理の用途、電解処理液の仕様、表面処理を行う母材の材質又は母材の表面処理加工の種類によって、最適な方式が選択される。   The principle of removing stainless steel weld burn by electrolytic treatment is that when using a DC current power supply, the stainless steel base material as the anode is connected to the positive electrode of the power supply, and the cathode is connected to the negative electrode of the power supply. The welding burn is removed by eluting the weld burn from the anode by passing a direct current between the two electrodes with the electrolyte interposed. At that time, a cloth or felt having good electrolyte retention is attached to the cathode portion, and the cloth or felt is impregnated with the electrolyte and pressed against the stainless steel base material as the anode. Thus, the electrolytic solution becomes an electrolyte system in electrolysis. Then, melting occurs at the anode, and metal oxides such as weld burn are eluted from the surface of the stainless steel base material that is the anode, whereby weld burn and the like are removed. In addition to the direct current method described above, there are an alternating current method in which the anode and the cathode are periodically switched, an alternating current superimposing method in which an alternating current is periodically mixed in the direct current, and the like. As these current methods, an optimum method is selected depending on the use of the surface treatment of stainless steel, the specification of the electrolytic treatment solution, the material of the base material to be surface-treated, or the type of surface treatment of the base material.

この電解処理に使用する電解液には、大きく分けて酸性電解液と中性電解液(pHの値が7近辺)がある。従前は、酸性電解液のみが存在していたが、この酸性電解液は、作業現場の環境を悪化させる要因となるため、近年、作業環境の向上を目的として、中性電解液が開発された。この中性電解液を使用した従来技術として、特許文献1には、燐酸、硫酸又はシュウ酸の塩を含有した中性電解液を用いて、ステンレス鋼の溶接時に発生するスケールを、交流方式で電解処理して除去する方法が開示されている。この従来技術は、燐酸塩、硫酸塩又はシュウ酸塩を含有する電解液中に交流を流すことにより、電解液中の陽イオン及び陰イオンが励起(活性化)し、温度上昇を伴い、電極に接触したステンレス鋼の表面に、発生期状態の水素及び酸素が生じ、これらが、スケールを除去した後の表面を保護し、スケール発生箇所の下地を溶解せず、スケール発生箇所とスケール未発生箇所との輝度ムラを解消しようとしたものである。この中性電解液が開発された後、作業環境性が悪い酸性電解液の使用を回避し、従来一般的に使用されてきた酸性電解液から、中性電解液に切り替えることにより、作業環境を向上させようとする試みが急増している。しかしながら、中性電解液は、酸性電解液よりも、ステンレス鋼表面から溶接焼けを除去する処理速度が遅く、また中性電解液を使用した際のステンレス鋼表面は、酸性電解液を用いた場合よりも、その鏡面性が悪い。このような技術的な面から、作業現場において中性電解液が酸性電解液に完全に取って代わることは、現状では容易ではないと考えられる。   The electrolytic solution used for this electrolytic treatment is roughly divided into an acidic electrolytic solution and a neutral electrolytic solution (pH value is around 7). Previously, only acidic electrolytes existed. However, since these acidic electrolytes cause deterioration of the environment at the work site, in recent years, neutral electrolytes have been developed for the purpose of improving the working environment. . As a prior art using this neutral electrolytic solution, Patent Document 1 discloses a scale generated during welding of stainless steel using a neutral electrolytic solution containing a salt of phosphoric acid, sulfuric acid or oxalic acid in an alternating current system. A method of removing by electrolytic treatment is disclosed. In this prior art, when an alternating current is passed through an electrolyte containing phosphate, sulfate or oxalate, cations and anions in the electrolyte are excited (activated), and the temperature rises. Hydrogen and oxygen in the nascent state are generated on the surface of the stainless steel in contact with the surface, which protects the surface after removing the scale, does not dissolve the base of the scale generation location, and the scale generation location and scale not generated This is an attempt to eliminate uneven brightness with the location. After the development of this neutral electrolyte, avoid the use of acidic electrolytes with poor working environment, and switch from acidic electrolytes that have been used in the past to neutral electrolytes. There has been a surge in attempts to improve. However, the neutral electrolyte has a slower processing speed to remove weld burn from the stainless steel surface than the acidic electrolyte, and the stainless steel surface when the neutral electrolyte is used is the case where the acidic electrolyte is used. Than, its specularity is worse. From such technical aspects, it is considered that it is not easy at present to completely replace the neutral electrolyte solution with the acidic electrolyte solution at the work site.

また、特許文献2に開示された技術においては、ステンレス鋼の表面の不動態被膜を破壊することなく、交流電源を使用した電解を可能とするために、ステンレス鋼に対して非酸化性に作用する酸のナトリウム塩等を基材とし、これに、フッ化水素酸又はフッ化水素酸のナトリウム塩等を配合した水溶液を電解液としている。しかし、この特許文献2に記載された電解液においても、電解処理により、ステンレス鋼表面の溶接焼けを除去しようとしても、処理後のステンレス鋼の表面の鏡面性が劣化してしまうという問題点がある。   Further, in the technique disclosed in Patent Document 2, the stainless steel has a non-oxidizing action to enable electrolysis using an AC power source without destroying the passive film on the surface of the stainless steel. An aqueous solution in which a sodium salt of acid to be used is used as a base material and hydrofluoric acid or sodium salt of hydrofluoric acid is blended therein is used as an electrolytic solution. However, even in the electrolytic solution described in Patent Document 2, even if an attempt is made to remove the welding burn on the surface of the stainless steel by the electrolytic treatment, there is a problem that the mirror surface property of the surface of the stainless steel after the treatment is deteriorated. is there.

特開2000−54200号公報JP 2000-54200 A 特開2003−27296号公報JP 2003-27296 A

上述のごとく、従来、中性電解液を用いて、ステンレス鋼表面を電解処理する際、耐食性が良好な不動態皮膜を安定して得ようとすると、特殊な電解装置が必要である。又は、中性電解液の組成により、耐食性を向上させようとすると、使用可能な電流の種類(直流又は交流)を限定されてしまう。更に、従来の中性電解液は、電解処理後のステンレス鋼の表面の鏡面性の改善は不十分であり、輝度ムラの解消には至っていないという問題点がある。   As described above, conventionally, when electrolytic treatment is performed on a stainless steel surface using a neutral electrolytic solution, a special electrolytic device is required in order to stably obtain a passive film having good corrosion resistance. Or if it is going to improve corrosion resistance by the composition of a neutral electrolyte solution, the kind (direct current or alternating current) which can be used will be limited. Furthermore, the conventional neutral electrolytic solution has a problem that the improvement of the specularity of the surface of the stainless steel after the electrolytic treatment is insufficient, and the luminance unevenness has not been solved.

本発明はかかる問題点に鑑みてなされたものであって、ステンレス鋼表面の溶接焼けを除去する際に、特殊な装置を使用したり、特殊な処理方法を実施しなくても、また、直流若しくは交流又は直流に交流を重ねた交直重畳電流などの電解処理時の電流の種類の如何に拘わらず、耐食性が良好な不動態皮膜を安定して得ることができ、処理後のステンレス鋼の鏡面性が優れており、輝度ムラが解消された表面を得ることができるステンレス鋼用中性電解液及び電解方法を提供することを目的とする。   The present invention has been made in view of such problems, and when removing the welding burn on the surface of the stainless steel, it is possible to use a direct device without using a special device or performing a special treatment method. Alternatively, a passive film with good corrosion resistance can be stably obtained regardless of the type of current during electrolytic treatment, such as alternating current or alternating current superimposed on alternating current or direct current, and the mirror surface of stainless steel after treatment An object of the present invention is to provide a neutral electrolytic solution for stainless steel and an electrolysis method capable of obtaining a surface that has excellent properties and eliminates unevenness in luminance.

本発明に係るステンレス鋼用中性電解液は、
クエン酸又はリン酸のナトリウム塩、カリウム塩、及びアンモニウム塩からなる群から選択された1種又は2種以上を0.05質量%以上含む基材と、
0.01質量%以上のフッ化セシウムとを含有し、
残部が水及び不純物であることを特徴とする。
The neutral electrolyte for stainless steel according to the present invention is:
A base material containing 0.05% by mass or more of one or more selected from the group consisting of sodium salt, potassium salt, and ammonium salt of citric acid or phosphoric acid;
Containing 0.01 mass% or more of cesium fluoride,
The balance is water and impurities.

このステンレス鋼用中性電解液において、例えば、
ナトリウム、カリウム、及びマグネシウムからなる群から選択された1種又は2種以上を陽イオンとする珪フッ化物を、0.01質量%以上含有することができる。
In this stainless steel neutral electrolyte, for example,
0.01% by mass or more of silicofluoride having one or more selected from the group consisting of sodium, potassium, and magnesium as a cation can be contained.

また、本発明のステンレス鋼用中性電解液においては、
前記0.01質量%以上のフッ化セシウムの代わりに、セシウムイオンが前記0.01質量%以上のフッ化セシウムと当量のセシウムの有機酸塩又は無機酸塩を含有するように構成しても良い。これらの場合に、ステンレス鋼用中性電解液は、多価アルコールを1質量%以上含有してもよい。
Moreover, in the neutral electrolyte for stainless steel of the present invention,
Instead of the cesium fluoride of 0.01% by mass or more, the cesium ion may contain an organic acid salt or an inorganic acid salt of cesium equivalent to the cesium fluoride of 0.01% by mass or more. good. In the case of these, stainless steel for neutral electrolytic solution, a polyhydric alcohol may contain more than 1 wt%.

更に、本発明のステンレス鋼用中性電解液は、例えば、
ステンレス鋼を直流の陽極又は交流の−極に接続して、電解処理する際に使用されるものである。
Furthermore, the neutral electrolyte for stainless steel of the present invention is, for example,
Stainless steel is used for electrolytic treatment by connecting it to a DC anode or AC negative electrode.

又は、本発明のステンレス鋼用中性電解液は、例えば、
ステンレス鋼を直流に交流を重ねた交直重畳電流の陽極側に接続して、電解処理する際に使用されるものである。
Alternatively, the neutral electrolyte for stainless steel of the present invention is, for example,
It is used when electrolytic treatment is performed by connecting stainless steel to the anode side of the AC / DC superimposed current in which AC is superimposed on DC.

本発明に係る電解方法は、
ステンレス鋼を直流の陽極又は交流の−極に接続し、前記請求項1乃至5のいずれか1項に記載のステンレス鋼用中性電解液を使用して、電解処理することを特徴とする。
The electrolysis method according to the present invention comprises:
The stainless steel is connected to a DC anode or an AC negative electrode, and is subjected to electrolytic treatment using the neutral electrolytic solution for stainless steel according to any one of claims 1 to 5.

更に、本発明に係る他の電解方法は、
ステンレス鋼を直流に交流を重ねた交直重畳電流の陽極側に接続し、前記請求項1乃至5のいずれか1項に記載のステンレス鋼用中性電解液を使用して、電解処理することを特徴とする。
Furthermore, other electrolysis methods according to the present invention include:
The stainless steel is connected to the anode side of the AC / DC superimposed current obtained by superimposing the alternating current on the direct current, and the electrolytic treatment is performed using the neutral electrolytic solution for stainless steel according to any one of claims 1 to 5. Features.

本発明によれば、電解処理により、ステンレス鋼の表面から溶出されるクロムイオンを活性化し、ステンレス鋼の耐食性を高める不動態被膜をステンレス鋼の表面に形成することができる。このとき、ステンレス鋼表面の鏡面性も向上し、表面の輝度ムラを低減することができる。   According to the present invention, a passive film that activates chromium ions eluted from the surface of stainless steel and improves the corrosion resistance of stainless steel can be formed on the surface of stainless steel by electrolytic treatment. At this time, the mirror surface property of the stainless steel surface is also improved, and uneven brightness on the surface can be reduced.

腐食試験によるステンレス鋼の表面性状の相違を示す写真である。It is a photograph which shows the difference in the surface property of stainless steel by a corrosion test.

以下、本発明の実施の形態について、具体的に説明する。本実施形態に係る電解液は、直流電流を使用したステンレス鋼表面の電解処理に用いるものであり、pHの値が6乃至8の中性水溶液である。そして、この電解液は、基材として、クエン酸又はリン酸のナトリウム塩、カリウム塩、又はアンモニウム塩を含有する。これらの塩は、その1種又は2種以上を含み、単独又は複合添加される。この基材の含有量は、電解液全体の0.05質量%以上である。なお、クエン酸又はリン酸の外に、リン酸、クエン酸、酒石酸、シュウ酸、リンゴ酸、乳酸、酢酸、グルコン酸、グリコール酸、コハク酸等のステンレス鋼に対して非酸化性である酸も使用できるが、取扱性の上から、クエン酸又はリン酸が好ましい。基材の含有量は0.05質量%以上であるが、2以上の塩の複合添加の場合は、その全体の量が0.05質量%以上である。なお、各塩は、水に溶解した状態で存在する必要があり、従って、各塩の含有量は、その水に対する飽和濃度以下であることは当然である。   Hereinafter, embodiments of the present invention will be specifically described. The electrolytic solution according to the present embodiment is used for electrolytic treatment of a stainless steel surface using a direct current, and is a neutral aqueous solution having a pH value of 6 to 8. And this electrolyte solution contains the sodium salt, potassium salt, or ammonium salt of a citric acid or phosphoric acid as a base material. These salts include one or more of them, and are added alone or in combination. The content of this base material is 0.05% by mass or more of the entire electrolytic solution. In addition to citric acid or phosphoric acid, acids that are non-oxidizing to stainless steel such as phosphoric acid, citric acid, tartaric acid, oxalic acid, malic acid, lactic acid, acetic acid, gluconic acid, glycolic acid, and succinic acid Can also be used, but citric acid or phosphoric acid is preferred in view of handling. The content of the base material is 0.05% by mass or more, but in the case of complex addition of two or more salts, the total amount is 0.05% by mass or more. In addition, each salt needs to exist in the state melt | dissolved in water, therefore, naturally content of each salt is below the saturation density | concentration with respect to the water.

電解液は、更に、その0.01質量%以上のフッ化セシウムを含有する。このフッ化セシウムに代えて、セシウムの有機酸塩又は無機酸塩も使用することができる。このフッ化セシウム又はセシウムの有機酸塩若しくは無機酸塩の含有量は、0.01質量%以上であるが、これらの物質も、電解液中に溶解している必要があるから、その含有量は、それらの水に対する飽和濃度以下であることは当然である。なお、セシウムの有機酸塩又は無機酸塩を使用する場合は、その含有量は、基材を含む水に、フッ化セシウムを0.01質量%添加した場合のセシウムのイオン濃度と、同一当量となるものである。即ち、セシウムの有機酸塩又は無機酸塩を水に溶解させた場合に、その含有量の下限値は、水にフッ化セシウムを溶解させた場合に得られるセシウムイオンの当量の下限値と、同一当量のイオン濃度が得られるものとする必要がある。   The electrolytic solution further contains 0.01% by mass or more of cesium fluoride. Instead of this cesium fluoride, an organic acid salt or an inorganic acid salt of cesium can also be used. The content of this cesium fluoride or organic acid salt or inorganic acid salt of cesium is 0.01% by mass or more, but since these substances also need to be dissolved in the electrolytic solution, the content thereof Is naturally below their saturated concentration in water. In addition, when using the organic acid salt or inorganic acid salt of cesium, the content is equivalent to the ion concentration of cesium when 0.01% by mass of cesium fluoride is added to the water containing the base material. It will be. That is, when the organic acid salt or inorganic acid salt of cesium is dissolved in water, the lower limit value of the content thereof is the lower limit value of the equivalent of cesium ions obtained when cesium fluoride is dissolved in water, It is necessary to obtain the same equivalent ion concentration.

更に、電解液中には、ナトリウム、カリウム又はマグネシウムを陽イオンとする珪フッ化物を、電解液の0.01質量%以上添加することができる。この珪フッ化物も、複数種類の陽イオンを含むように添加することができるが、その含有量は、全体で0.01質量%以上である。また、珪フッ化物も水に対する飽和濃度以下の割合で配合することは勿論である。   Furthermore, 0.01 mass% or more of electrolyte solution can be added to the electrolyte solution using sodium, potassium, or magnesium as a cation. This silicofluoride can also be added so as to contain a plurality of types of cations, but its content is 0.01% by mass or more in total. Of course, silicofluoride is also blended at a ratio equal to or lower than the saturation concentration with respect to water.

残部は、水及び不純物である。このようにして、水を溶質とし、クエン酸又はリン酸のナトリウム塩、カリウム塩又はアンモニウム塩を基材として含有し、更に、フッ化セシウムの溶解により得られたセシウムイオンを含有する水溶液からなる電解液が得られる。セシウムイオンは、セシウムの有機酸塩又は無機酸塩から得ることもできる。更に、必要に応じて、電解液中には、ナトリウム、カリウム、又はマグネシウムを陽イオンとする珪フッ化物が添加される。   The balance is water and impurities. In this way, water is used as a solute, containing sodium salt, potassium salt or ammonium salt of citric acid or phosphoric acid as a base material, and further comprising an aqueous solution containing cesium ions obtained by dissolving cesium fluoride. An electrolytic solution is obtained. Cesium ions can also be obtained from organic or inorganic acid salts of cesium. Furthermore, if necessary, a silicofluoride containing sodium, potassium, or magnesium as a cation is added to the electrolytic solution.

この電解液は、直流電流、若しくは交流電流、又は直流に交流を重ねた交直重畳電流を使用する電解装置に使用される。この電解装置が直流電流を使用する場合は、ステンレス鋼が直流電源の陽極に接続される。また、交流電流を使用する場合は、ステンレス鋼はその一極に接続される。更に、直流に交流を重ねた交直重畳電流を使用する場合は、ステンレス鋼は、その電源の陽極に接続される。このように電源にステンレス鋼を接続し、何らかの方法で電解液をステンレス鋼に接触させ、ステンレス鋼の表面を電解処理する。これにより、ステンレス鋼表面の溶接焼けが除去される。また、ステンレス鋼の表面に不働態被膜が形成され、ステンレス鋼の耐食性が向上する。なお、本発明においては、ステンレス鋼に対して耐食性が良好なステンレス鋼が得られるが、この「優れた耐食性」とは、JIS G 0578「ステンレス鋼の塩化第二鉄腐食試験方法」において、孔食が確認されない程度の状態をいう。この孔食の評価については、JIS G 0578本文に、「孔食の評価については、当事者間の協定による。」と記載されている。   This electrolytic solution is used in an electrolysis apparatus that uses a direct current or alternating current, or an alternating current superposed current obtained by superposing alternating current on direct current. When this electrolyzer uses a direct current, stainless steel is connected to the anode of the direct current power source. Moreover, when using an alternating current, stainless steel is connected to the one pole. Further, when using an AC / DC superimposed current in which AC is superimposed on DC, the stainless steel is connected to the anode of the power source. In this way, the stainless steel is connected to the power source, the electrolytic solution is brought into contact with the stainless steel by some method, and the surface of the stainless steel is subjected to electrolytic treatment. Thereby, the welding burn of the stainless steel surface is removed. Moreover, a passive film is formed on the surface of the stainless steel, and the corrosion resistance of the stainless steel is improved. In the present invention, stainless steel having good corrosion resistance with respect to stainless steel can be obtained. This “excellent corrosion resistance” is defined by JIS G 0578 “Method of ferric chloride corrosion test for stainless steel”. A state where no food is confirmed. The evaluation of this pitting corrosion is described in the text of JIS G 0578 as “the evaluation of pitting corrosion is based on an agreement between the parties”.

次に、上述の如く構成された本実施形態の動作について説明する。本実施形態において、ステンレス鋼を電解処理すると、ステンレス鋼の表面からクロムがイオン化する。この場合に、本実施例の電解液には、セシウムイオンが含有されているので、クロムイオンが活性化し、セシウムイオンによりクロムイオンの活性化が促進される。そして、クロムイオンの活性化により、ステンレス鋼の表面層に存在する不動態皮膜の形成が促進され、結果的に、ステンレス鋼表面に良好な不動態皮膜が完成し、それ自体の耐食性が向上する。   Next, the operation of the present embodiment configured as described above will be described. In this embodiment, when stainless steel is electrolytically treated, chromium is ionized from the surface of the stainless steel. In this case, since the electrolytic solution of this example contains cesium ions, the chromium ions are activated and the activation of the chromium ions is promoted by the cesium ions. The activation of chromium ions promotes the formation of a passive film present on the surface layer of the stainless steel, resulting in the completion of a good passive film on the surface of the stainless steel, improving its own corrosion resistance. .

クロムイオンの活性化の要因としては、セシウムイオンのイオン化傾向が極めて大きいことがあげられる。セシウムは、ナトリウム及びカリウム等より、原子半径が大きいため、セシウム塩は、陰イオンと陽イオンのイオン間距離が離れており、イオン間結合力が小さい。よって、セシウム塩を水溶液中に添加することにより、セシウム塩は容易に電離するため、電子の授受を行なう電解液の系においては、理想的な挙動を示す。セシウム化合物は、反応性の高さ故、系全体の反応性を向上させるという特性があり、有機化合物を重合する際の触媒として使用されている。本発明においては、セシウム化合物による「系全体の反応性を向上させる」という特性を、電解液に新たに適用することによって、電解処理によりステンレス鋼表面から溶出されるクロムイオンを活性化し、耐食性向上に起因するステンレス鋼表面上の不動態皮膜の形成を促進する。   As a factor of the activation of chromium ions, there is an extremely large tendency of ionization of cesium ions. Since cesium has a larger atomic radius than sodium and potassium, etc., the cesium salt has a small interionic distance between an anion and a cation, and has a small interionic bonding force. Therefore, since the cesium salt is easily ionized by adding the cesium salt to the aqueous solution, it exhibits an ideal behavior in an electrolytic solution system that transfers and receives electrons. The cesium compound has a characteristic of improving the reactivity of the entire system because of its high reactivity, and is used as a catalyst for polymerizing organic compounds. In the present invention, by newly applying to the electrolytic solution the property of “improving the reactivity of the entire system” by the cesium compound, the chromium ions eluted from the stainless steel surface by the electrolytic treatment are activated, and the corrosion resistance is improved. Promotes the formation of a passive film on the stainless steel surface due to

また、クエン酸又はリン酸のナトリウム塩、カリウム塩又はアンモニア塩を基材とし、これに、ナトリウム、カリウム又はマグネシウムを陽イオンとした珪フッ化物を配合した電解液においては、珪フッ化イオンが、ステンレス鋼表面に不動態皮膜が形成される過程で、所謂バインダーのような働きをして、より耐食性が向上した不動態皮膜の形成を助長する。この珪フッ化イオンは、そのイオン化傾向が高いために、クロムメッキ等において、特殊鋼に対する表面処理に使用されている。本発明においては、これらの技術を中性電解液に適用したものである。この珪フッ化イオンによる効果は、直流電流、交流電流、又は直流に交流を重ねた交直重畳電流等の電流の種類によらず発揮され、電流の種類に拘わらず、電解処理を行うだけで、ステンレス鋼表面上に強固且つ良好な不動態皮膜を形成させ、ステンレス鋼の表面の耐食性を向上させる。   Moreover, in an electrolytic solution containing a sodium salt, potassium salt or ammonia salt of citric acid or phosphoric acid as a base material and a silicic fluoride containing sodium, potassium or magnesium as a cation, In the process of forming a passive film on the surface of stainless steel, it acts as a so-called binder, and promotes the formation of a passive film with improved corrosion resistance. This silicofluoride ion has a high ionization tendency and is used for surface treatment of special steel in chromium plating or the like. In the present invention, these techniques are applied to a neutral electrolyte. The effect of this silicofluoride ion is exhibited regardless of the type of current such as direct current, alternating current, or AC / DC superimposed current in which alternating current is superimposed on direct current. A strong and good passive film is formed on the stainless steel surface, and the corrosion resistance of the stainless steel surface is improved.

また、本発明においては、電解液に、多価アルコールを1質量%以上含有させることができる。これにより、電解液の粘性が増加し、電解処理する対象の鋼板が水平方向に対して傾斜している場合にも、電解液が鋼板表面から垂れ難く、電解処理の作業性が向上する。多価アルコールとは、その分子内に水酸基を2個以上持つアルコール類である。代表的な多価アルコールとしては、グリセリン、エチレングリコール、ジエチレングリコール等がある。なお、電解液に、多価アルコールを1質量%以上含有させても、腐食量(mg/cm)には影響がなく、多価アルコールの含有により、電解処理時の作業性の向上効果が得られる。 Moreover, in this invention, a polyhydric alcohol can be contained 1 mass% or more in electrolyte solution. Thereby, even when the viscosity of the electrolytic solution is increased and the steel plate to be subjected to electrolytic treatment is inclined with respect to the horizontal direction, the electrolytic solution is difficult to drip from the steel plate surface, and the workability of the electrolytic treatment is improved. Polyhydric alcohols are alcohols having two or more hydroxyl groups in the molecule. Typical polyhydric alcohols include glycerin, ethylene glycol, diethylene glycol and the like. It should be noted that even when polyhydric alcohol is contained in the electrolytic solution in an amount of 1% by mass or more, the corrosion amount (mg / cm 2 ) is not affected. can get.

次に、本発明の実施例及び比較例について説明し、本発明の効果について説明する。溶接を施したSUS304(2B材)を試験片として、電圧が15Vで一定の直流電源の+極を、前記SUS304試験片に接続した。また、前記直流電源の−極を、布に覆われた電極板に接続した。そして、この−極に接続された電極板を覆った布に、比較例及び実施例により調製した電解液を十分に染み込ませた後、この−極の電極板を、前記SUS304試験片の溶接ビードに、一定面積(100cm、5cm×10cmの試験片の両面)を対象に押し当て、この状態で+極と−極との間に直流電流を流しながら3分間継続して押し当てることにより、電解処理を行った。電解処理を行った後、電解処理したSUS304試験片を用いて、ステンレス鋼の塩化第二鉄腐食試験(JIS G 0578)を行った。なお、比較例及び実施例におけるアルカリ金属塩の含有量を、調整した電解液のpH値が6及至8となるように決定した。 Next, examples and comparative examples of the present invention will be described, and effects of the present invention will be described. Using the welded SUS304 (2B material) as a test piece, a positive electrode of a DC power source having a constant voltage of 15 V was connected to the SUS304 test piece. Further, the negative pole of the DC power source was connected to an electrode plate covered with a cloth. And after making the cloth which covered the electrode plate connected to this negative electrode fully infiltrated with the electrolyte solution prepared by the comparative example and the Example, this negative electrode plate was welded to the weld bead of the SUS304 test piece. By pressing a certain area (100 cm 2 , both sides of a 5 cm × 10 cm test piece) against the object and continuously pressing for 3 minutes while flowing a direct current between the + pole and the − pole in this state, Electrolytic treatment was performed. After the electrolytic treatment, the ferric chloride corrosion test (JIS G 0578) of stainless steel was conducted using the electrolytically treated SUS304 test piece. In addition, content of the alkali metal salt in a comparative example and an Example was determined so that the pH value of the adjusted electrolyte solution might be 6-8.

比較例1とは、溶接を施したSUS304(2B材)試験片に表面処理を施していない状態である。比較例2は、水を95質量%、クエン酸塩であるクエン酸三ナトリウムを5質量%に調製した電解液を作製し、その電解液を用いて、電解処理を行ったものである。比較例1及び2のSUS304試験片を使用して、ステンレス鋼の塩化第二鉄腐食試験(JIS G 0578)を行った。その結果を下記表1に示す。表1は、電解液の組成と腐食量の試験結果を示す。   The comparative example 1 is a state in which the surface treatment is not performed on the welded SUS304 (2B material) test piece. In Comparative Example 2, an electrolytic solution prepared with 95% by mass of water and 5% by mass of trisodium citrate, which is a citrate, was prepared, and electrolytic treatment was performed using the electrolytic solution. A stainless steel ferric chloride corrosion test (JIS G 0578) was performed using the SUS304 specimens of Comparative Examples 1 and 2. The results are shown in Table 1 below. Table 1 shows the test results of the electrolyte composition and the amount of corrosion.

次に、実施例として、クエン酸塩であるクエン酸三ナトリウムに、フッ化セシウム、又はセシウムの有機酸塩若しくは無機酸塩を添加し、更に、一部は、ナトリウム、カリウム、マグネシウム等を陽イオンとした珪フッ化物を添加して、電解液を作成した。実施例1として、水を94.7質量%、クエン酸塩であるクエン酸三ナトリウムを5質量%、セシウムの無機酸塩でもあるフッ化セシウムを0.3質量%に調整した電解液を作製した。また、実施例2として水を94.7質量%、クエン酸三ナトリウムを5質量%、珪フッ化物として珪フッ化カリウムを0.3質量%に調整した電解液を作製した。この実施例1乃至2の電解液を用いて、電解処理を行った後、電解処理したSUS304試験片を用いて、ステンレス鋼の塩化第二鉄腐食試験(JIS G 0578)を行った。その結果を、下記表1に合わせて示す。なお、図1は、実施例1,2及び比較例1,2の腐食試験の前後における表面状態を示す。   Next, as an example, cesium fluoride, or an organic acid salt or inorganic acid salt of cesium is added to trisodium citrate, which is a citrate salt, and some of the sodium salt, potassium, magnesium, etc. are positively added. An electrolytic solution was prepared by adding ionized silicofluoride. As Example 1, an electrolyte was prepared by adjusting water to 94.7% by mass, trisodium citrate, which is a citrate salt, to 5% by mass, and cesium fluoride, which is also an inorganic acid salt of cesium, to 0.3% by mass. did. Further, as Example 2, an electrolytic solution was prepared by adjusting water to 94.7% by mass, trisodium citrate to 5% by mass, and silicofluoride to 0.3% by mass of potassium silicofluoride. After electrolytic treatment was performed using the electrolytic solutions of Examples 1 and 2, a ferric chloride corrosion test (JIS G 0578) of stainless steel was performed using an electrolytically treated SUS304 test piece. The results are shown in Table 1 below. FIG. 1 shows surface states before and after the corrosion tests of Examples 1 and 2 and Comparative Examples 1 and 2.

Figure 2015183210
Figure 2015183210

この表1に示すように、溶接のままの比較例1は、多数の孔食発生が確認され、腐食量も65〜70(mg/cm)と極めて多いものであった。比較例2、3は電解処理を行うことにより、陽極であるステンレス鋼母材表面から溶接焼け等の金属酸化物が溶出し、溶出されたクロムイオンによってステンレス鋼表面に不動態皮膜が形成されるため、未処理の場合に比べて、腐食量が35〜40(mg/cm)と低い。しかし、この比較例2、3は、電解液の組成が本発明の範囲から外れるため、熱影響部に孔食発生が確認された。 As shown in Table 1, a large number of pitting corrosion was confirmed in Comparative Example 1 as welded, and the amount of corrosion was 65-70 (mg / cm 2 ), which was extremely large. In Comparative Examples 2 and 3, by performing electrolytic treatment, metal oxides such as welding burn out from the surface of the stainless steel base material, which is the anode, and a passive film is formed on the stainless steel surface by the eluted chromium ions. Therefore, the amount of corrosion is as low as 35-40 (mg / cm < 2 >) compared with the case of non-processing. However, in Comparative Examples 2 and 3, since the composition of the electrolytic solution deviated from the scope of the present invention, the occurrence of pitting corrosion was confirmed in the heat affected zone.

一方、実施例1〜6は、電解液の組成が本発明の範囲に入るため、いずれも、試験片表面にはほとんど孔食は認められなかった。また、腐食量も、実施例1〜6は10〜15(mg/cm)と、比較例1〜3の腐食量と比較して、極めて小さかった。いずれも比較例1及び比較例2と比較すると、セシウムの無機酸塩であるフッ化セシウム又はフッ化セシウム及び珪フッ化物である珪フッ化カリウムを添加することにより、電解処理後、処理されたステンレス鋼表面には、より耐食性が向上した不動態皮膜が形成され、腐食を抑制できることが確認された。また、実施例4〜6は、実施例1〜3と比較すると、焼け取りの仕上り具合に関して、より光沢があることが確認できた。つまり、実施例4〜6は、セシウムの無機酸塩であるフッ化セシウム又はフッ化セシウム及び珪フッ化物である珪フッ化カリウムを添加することにより、耐食性は同等であるが、仕上がり具合(光沢)が向上した。 On the other hand, in Examples 1 to 6, since the composition of the electrolytic solution was within the scope of the present invention, almost no pitting corrosion was observed on the surface of the test piece. Moreover, the corrosion amount was also very small compared with the corrosion amount of Examples 1-6 with 10-15 (mg / cm < 2 >) and Comparative Examples 1-3. As compared with Comparative Example 1 and Comparative Example 2, both were treated after electrolytic treatment by adding cesium fluoride which is an inorganic acid salt of cesium or cesium fluoride and potassium silicofluoride which is silicofluoride. A passive film with improved corrosion resistance was formed on the stainless steel surface, and it was confirmed that corrosion could be suppressed. Moreover, when Examples 4-6 compared with Examples 1-3, it has confirmed that there was more gloss regarding the finish of burn-in. That is, in Examples 4 to 6, by adding cesium fluoride which is an inorganic acid salt of cesium or cesium fluoride and potassium silicofluoride which is a silicofluoride, the corrosion resistance is equivalent, but the finish (glossy) ) Improved.

Claims (8)

クエン酸又はリン酸のナトリウム塩、カリウム塩、及びアンモニウム塩からなる群から選択された1種又は2種以上を0.05質量%以上含む基材と、
0.01質量%以上のフッ化セシウムとを含有し、
残部が水及び不純物であることを特徴とするステンレス鋼用中性電解液。
A base material containing 0.05% by mass or more of one or more selected from the group consisting of sodium salt, potassium salt, and ammonium salt of citric acid or phosphoric acid;
Containing 0.01 mass% or more of cesium fluoride,
A neutral electrolytic solution for stainless steel, wherein the balance is water and impurities.
ナトリウム、カリウム、及びマグネシウムからなる群から選択された1種又は2種以上を陽イオンとする珪フッ化物を、0.01質量%以上含有することを特徴とする請求項1に記載のステンレス鋼用中性電解液。 2. The stainless steel according to claim 1, comprising 0.01% by mass or more of a silicofluoride having one or more selected from the group consisting of sodium, potassium, and magnesium as a cation. Neutral electrolyte for use. 前記0.01質量%以上のフッ化セシウムの代わりに、セシウムイオンが前記0.01質量%以上のフッ化セシウムと当量のセシウムの有機酸塩又は無機酸塩を含有することを特徴とする請求項1又は2に記載のステンレス鋼用中性電解液。 The cesium ion contains an organic acid salt or an inorganic acid salt of cesium equivalent to the 0.01 mass% or more of cesium fluoride instead of the 0.01 mass% or more of cesium fluoride. Item 3. The neutral electrolyte for stainless steel according to Item 1 or 2. 多価アルコールを1質量%以上含有することを特徴とする請求項1乃至3のいずれか1項に記載のステンレス鋼用中性電解液。 The neutral electrolyte for stainless steel according to any one of claims 1 to 3, wherein the neutral alcohol contains 1% by mass or more of a polyhydric alcohol. ステンレス鋼を直流の陽極又は交流の−極に接続して、電解処理する際に使用されるものであることを特徴とする請求項1乃至4のいずれか1項に記載のステンレス鋼用中性電解液。 The neutral for stainless steel according to any one of claims 1 to 4, wherein the stainless steel is used for electrolytic treatment by connecting to a direct current anode or an alternating negative electrode. Electrolytic solution. ステンレス鋼を直流に交流を重ねた交直重畳電流の陽極側に接続して、電解処理する際に使用されるものであることを特徴とする請求項1乃至4のいずれか1項に記載のステンレス鋼用中性電解液。 The stainless steel according to any one of claims 1 to 4, wherein the stainless steel is used when electrolytic treatment is performed by connecting the stainless steel to an anode side of an AC-DC superimposed current obtained by superimposing alternating current on direct current. Neutral electrolyte for steel. ステンレス鋼を直流の陽極又は交流の−極に接続し、前記請求項1乃至4のいずれか1項に記載のステンレス鋼用中性電解液を使用して、電解処理することを特徴とする電解方法。 Electrolysis characterized in that stainless steel is connected to a DC anode or an AC negative electrode and subjected to electrolytic treatment using the neutral electrolytic solution for stainless steel according to any one of claims 1 to 4. Method. ステンレス鋼を直流に交流を重ねた交直重畳電流の陽極側に接続し、前記請求項1乃至4のいずれか1項に記載のステンレス鋼用中性電解液を使用して、電解処理することを特徴とする電解方法。 The stainless steel is connected to the anode side of the AC / DC superimposed current obtained by superimposing the alternating current on the direct current, and the electrolytic treatment is performed using the neutral electrolytic solution for stainless steel according to any one of claims 1 to 4. Electrolytic method characterized.
JP2014059144A 2014-03-20 2014-03-20 Neutral electrolyte for stainless steel and electrolysis method Active JP5893066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014059144A JP5893066B2 (en) 2014-03-20 2014-03-20 Neutral electrolyte for stainless steel and electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014059144A JP5893066B2 (en) 2014-03-20 2014-03-20 Neutral electrolyte for stainless steel and electrolysis method

Publications (2)

Publication Number Publication Date
JP2015183210A true JP2015183210A (en) 2015-10-22
JP5893066B2 JP5893066B2 (en) 2016-03-23

Family

ID=54350111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059144A Active JP5893066B2 (en) 2014-03-20 2014-03-20 Neutral electrolyte for stainless steel and electrolysis method

Country Status (1)

Country Link
JP (1) JP5893066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019119908A (en) * 2017-12-28 2019-07-22 株式会社日本科学エンジニアリング Electrolytic polishing liquid for stainless steel
JP2019119909A (en) * 2017-12-28 2019-07-22 株式会社日本科学エンジニアリング Electrolytic polishing liquid for stainless steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027296A (en) * 2001-07-06 2003-01-29 Chemical Yamamoto:Kk Method for cleaning and passivating treatment for stainless steel surface
JP2012241227A (en) * 2011-05-18 2012-12-10 Japan Scientific Engineering Co Ltd Method for removing oxide scale by electropolishing and apparatus thereof
JP2014043596A (en) * 2012-08-24 2014-03-13 Taseto:Kk Electrolytic solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027296A (en) * 2001-07-06 2003-01-29 Chemical Yamamoto:Kk Method for cleaning and passivating treatment for stainless steel surface
JP2012241227A (en) * 2011-05-18 2012-12-10 Japan Scientific Engineering Co Ltd Method for removing oxide scale by electropolishing and apparatus thereof
JP2014043596A (en) * 2012-08-24 2014-03-13 Taseto:Kk Electrolytic solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019119908A (en) * 2017-12-28 2019-07-22 株式会社日本科学エンジニアリング Electrolytic polishing liquid for stainless steel
JP2019119909A (en) * 2017-12-28 2019-07-22 株式会社日本科学エンジニアリング Electrolytic polishing liquid for stainless steel
JP7177425B2 (en) 2017-12-28 2022-11-24 株式会社日本科学エンジニアリング Electropolishing liquid for stainless steel
JP7177426B2 (en) 2017-12-28 2022-11-24 株式会社日本科学エンジニアリング Electropolishing liquid for stainless steel

Also Published As

Publication number Publication date
JP5893066B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
US20160376724A1 (en) Electrolyte and process for the electrolytic polishing of a metallic substrate
US11162185B2 (en) Process for the electrolytic polishing of a metallic substrate
JPWO2011111391A1 (en) How to passivate stainless steel
JP5893066B2 (en) Neutral electrolyte for stainless steel and electrolysis method
JP2017160484A (en) Agent for removing weldment burnt deposit for electrolytic polishing and electrolytic polishing method
JP2007332416A (en) Electrolytic solution for use in electropolishing process for stainless steel
JP3484525B2 (en) Stainless steel surface cleaning and passivation treatment method
JP2007332416A5 (en)
JP2019119909A (en) Electrolytic polishing liquid for stainless steel
JP5914255B2 (en) Electrolyte
JP2007231413A (en) Electrolytic solution to be used for electrolytic polishing method for stainless steel
JP2011208183A (en) Method for improving surface of stainless steel
JP2007277682A (en) Electrolytic solution used for electrolytic polishing method on stainless steel
TWI420001B (en) Remove the rust of stainless steel
JP5659633B2 (en) Surface treatment method for stainless steel sheet
JP5914265B2 (en) Electrolyte
JP4678612B2 (en) Surface-modified stainless steel and processing method for surface-modified stainless steel
JPS6324098A (en) Method for removing scale formed by welding of alloy steel
JP6976573B2 (en) Electropolishing liquid for stainless steel
JP5755508B2 (en) Electropolishing liquid for stainless steel and stainless steel
JPS5942760B2 (en) Electrolytic polishing method using neutral electrolyte for austenitic alloy steel containing nickel and nickel-based alloy
KR102300834B1 (en) Ionic liquid for pickling stainless steel and pickling method for stainless steel using the same
JP2005042177A (en) Electrolytic polishing method for stainless steel increasing its corrosion resistance
JP2019119907A (en) Electrolytic polishing liquid for stainless steel welding scale removal
JP2019119908A (en) Electrolytic polishing liquid for stainless steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160223

R150 Certificate of patent or registration of utility model

Ref document number: 5893066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250