JP4678612B2 - Surface-modified stainless steel and processing method for surface-modified stainless steel - Google Patents

Surface-modified stainless steel and processing method for surface-modified stainless steel Download PDF

Info

Publication number
JP4678612B2
JP4678612B2 JP2008336144A JP2008336144A JP4678612B2 JP 4678612 B2 JP4678612 B2 JP 4678612B2 JP 2008336144 A JP2008336144 A JP 2008336144A JP 2008336144 A JP2008336144 A JP 2008336144A JP 4678612 B2 JP4678612 B2 JP 4678612B2
Authority
JP
Japan
Prior art keywords
stainless steel
boron
boric acid
aqueous solution
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008336144A
Other languages
Japanese (ja)
Other versions
JP2010189666A (en
Inventor
正登 山本
慶治 林
利行 大田
誠 中井
Original Assignee
株式会社ケミカル山本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケミカル山本 filed Critical 株式会社ケミカル山本
Priority to JP2008336144A priority Critical patent/JP4678612B2/en
Publication of JP2010189666A publication Critical patent/JP2010189666A/en
Application granted granted Critical
Publication of JP4678612B2 publication Critical patent/JP4678612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

本発明は、ステンレス鋼、特に原子力発電プラントや化学プラント等に使用されるステンレス鋼を表面改質することによって、耐食性特に応力腐食割れを効果的に防止し得る表面改質ステンレス鋼及びその処理方法に関する。  The present invention relates to a surface modified stainless steel that can effectively prevent corrosion resistance, particularly stress corrosion cracking, by surface modifying stainless steel, particularly stainless steel used in nuclear power plants, chemical plants, and the like, and a processing method thereof. About.

ステンレス鋼の耐食性は、その表面に生成させてある極めて薄い不動態化被膜の働きによるものであることは良く知られており、この不動態化被膜も悪条件の環境因子のもとでは、簡単に破壊されて耐食性をなくすことも良く知られているところである。  It is well known that the corrosion resistance of stainless steel is due to the action of an extremely thin passivation film formed on the surface, and this passivation film is also easy to use under adverse environmental factors. It is well known that it is destroyed by corrosion and loses its corrosion resistance.

原子力プラントに使用される配管や石油精製プラント等化学プラントの反応塔や配管等にはオーステナイト系ステンレス鋼等の各種ステンレス鋼が使用されている。
しかしながら、耐食性に優れているステンレス鋼も塩素イオンや水素イオン等の雰囲気化で、外部応力や残留応力が引張り応力としてかかる等の悪条件が重なれば、応力腐食割れ(以下「SCC」という。)が発生し易く、SCCを原因とした様々な問題が起こっている。
Various stainless steels such as austenitic stainless steel are used for reaction towers and piping of chemical plants such as piping used in nuclear power plants and petroleum refining plants.
However, stainless steel having excellent corrosion resistance is also stress corrosion cracking (hereinafter referred to as “SCC”) if an adverse atmosphere such as external stress or residual stress is applied as tensile stress in an atmosphere of chlorine ions or hydrogen ions. ) Are likely to occur, and various problems are caused by SCC.

ステンレス鋼のSCCを防止する方法として、種々提案されており、例えば特許文献1にはオーステナイト系ステンレス鋼の表面にクロムからなる被膜を形成し、ステンレス鋼の腐食を防止する方法としてカーボンやチタン等の陽極となる筆先工具の先端部にめっき液を供給し、陽極とステンレス鋼からなる被めっき物との間に電流を導通させ、被めっき物表面にめっき液を塗布しながら電気めっきを行う方法が提案されている。
特許文献2は、ステンレス鋼表面に腐食性イオン吸着剤を塗布することで、ステンレス鋼のSCCを防止する方法が開示されている。
Various methods for preventing SCC of stainless steel have been proposed. For example, Patent Document 1 discloses a method of forming a coating film made of chromium on the surface of austenitic stainless steel to prevent corrosion of stainless steel, such as carbon and titanium. A method of supplying a plating solution to the tip of a brush tip tool that becomes an anode of the electrode, conducting a current between the anode and the object to be plated made of stainless steel, and performing electroplating while applying the plating solution to the surface of the object to be plated Has been proposed.
Patent Document 2 discloses a method for preventing SCC of stainless steel by applying a corrosive ion adsorbent on the surface of stainless steel.

特許文献3乃至5は本発明に関係する電解研磨技術を含むもので、特許文献3は、SUS630からなる金属加工品の仕上げ法で、切削や研削等の加工を施した金属加工品を洗浄後、電解バリ取りを行い、次いで時効処理を施し、その後電解研磨を実施することで、電解研磨により金属加工品表面に不動態化被膜を形成させ、耐食性を向上させることでSCC防止に役立つものとされている。
特許文献4は、低応力でSCCが発生する原因と考えられている原子力部材の表面層であるCr欠乏層及び加工硬化層を除去する表面処理に関するもので、曲げ加工を施した当該部分について、酸洗、研削、電解研磨、放電加工、表面切削、表面還元・軟化、ウエットブラスト及びレーザ加工のうちのいずれか一つを実施する原子力部材の表面処理方法である。
特許文献5は、先に本出願人が提案しているもので、ステンレス鋼の表層部に弗素と酸素をイオン状で拡散、浸透せしめることにより、含弗素、酸素系被膜を形成させ、耐孔食性を改善したステンレス鋼とその製造法が開示されている。
Patent Documents 3 to 5 include an electropolishing technique related to the present invention, and Patent Document 3 is a finishing method of a metal workpiece made of SUS630, after cleaning a metal workpiece subjected to machining such as cutting and grinding. Electrolytic deburring, followed by aging treatment, followed by electropolishing, forming a passivated film on the surface of the metal workpiece by electropolishing, and helping to prevent SCC by improving corrosion resistance Has been.
Patent Document 4 relates to a surface treatment for removing a Cr-deficient layer and a work hardened layer, which is a surface layer of a nuclear member, which is considered to be a cause of occurrence of SCC with low stress. This is a nuclear member surface treatment method for performing any one of pickling, grinding, electropolishing, electric discharge machining, surface cutting, surface reduction / softening, wet blasting, and laser machining.
Patent Document 5 has been previously proposed by the present applicant, and fluorine and oxygen are diffused and infiltrated into the surface layer portion of stainless steel in an ionic state to form a fluorine-containing and oxygen-based film, thereby preventing pores. Stainless steel with improved corrosion resistance and a method for producing the same are disclosed.

特開平 09−279388号公報Japanese Patent Application Laid-Open No. 09-279388 特開2004−360007号公報JP 2004-360007 A 特開2001− 3200号公報Japanese Patent Laid-Open No. 2001-3200 特開2003−202391号公報JP 2003-202391 A 特開2003− 82495号公報JP 2003-82495 A

特許文献1は、めっき法に関するものでステンレス鋼の表面全体に均一にめっきすることが困難であるという問題がある。特許文献2は、腐食性イオン吸着剤を含有する処理剤を塗布する方法であり、作業性は良いものの、引張り応力のかかる悪条件のもとでは、SCCを防止する効果について、十分なものであるとは言い難い。
特許文献3は、ステンレス鋼からなる金属加工品を洗浄し、電解バリ取り、次いで時効処理を施した後、燐酸単独水溶液による電解研磨を実施するもので、工程が複雑で高価となり、特殊な金属加工品の処理に限定される。
特許文献4は、曲げ加工後の原子力部材を熱処理し、酸洗、研削、電解研磨、放電加工、表面切削、表面還元・軟化、ウエットブラスト及びレーザ加工などのいずれか一つの研磨による表面処理を行うもので、あらゆる技術について可能性を示してあるものの、SCC防止効果について、十分に解明されているとは言い難い。また工程が複雑である問題がある。特許文献5は、電気化学的方法により、ステンレス鋼表面に含弗素、酸素系被膜層を形成させて塩素による耐孔食性をより向上させ、ひいてはSCCを防止するものであるが、SCCに対する効果については、十分説明されていない。
Patent Document 1 relates to a plating method and has a problem that it is difficult to uniformly plate the entire surface of stainless steel. Patent Document 2 is a method of applying a treatment agent containing a corrosive ion adsorbent, which is good in workability, but sufficient for preventing SCC under adverse conditions where tensile stress is applied. It is hard to say that there is.
In Patent Document 3, a metal workpiece made of stainless steel is washed, electrolytic deburred, then subjected to aging treatment, and then electropolishing with an aqueous solution of phosphoric acid alone, making the process complicated and expensive. Limited to processing of processed products.
Patent document 4 heat-treats the nuclear member after bending, and performs surface treatment by any one of polishing such as pickling, grinding, electrolytic polishing, electric discharge machining, surface cutting, surface reduction / softening, wet blasting, and laser machining. Although it has been shown to be possible for all technologies, it is difficult to say that the SCC prevention effect has been fully elucidated. There is also a problem that the process is complicated. In Patent Document 5, an electrochemical method is used to form a fluorine-containing and oxygen-based coating layer on the surface of stainless steel to further improve the pitting corrosion resistance by chlorine, thereby preventing SCC. Is not well explained.

本発明は、上記のような課題を解決するためになされたもので、本出願人が先に提案した上記特許文献5を基本に鋭意研究を重ねた結果、ステンレス鋼表面に特殊な元素を含む電解液を用いて、イオン状で拡散、浸透せしめ、ステンレス鋼表面の改質処理を行うことにより、耐SCCを飛躍的に向上させた表面改質ステンレス鋼及びその処理方法を提供することを目的とする。  The present invention has been made to solve the above-described problems, and as a result of earnest research based on the above-mentioned Patent Document 5 previously proposed by the present applicant, a special element is included on the surface of stainless steel. An object of the present invention is to provide a surface-modified stainless steel having a dramatically improved SCC resistance and a method of treating the same by diffusing and infiltrating in an ionic state using an electrolytic solution and performing a modification treatment on the surface of the stainless steel. And

上記の目的を達成するため、請求項1記載の発明は、ステンレス鋼の表層部に対し、ホウ素又はホウ素とフッ素若しくはこれらと酸素とをイオン状で拡散、浸透させることにより、含ホウ素又は含ホウ素とフッ素若しくはこれらの酸素系被膜層を形成させ、耐食性特に応力腐食割れを防止せしめた表面改質ステンレス鋼を特徴とする。  In order to achieve the above object, the invention according to claim 1 is characterized in that boron or boron and fluorine or these and oxygen are diffused and infiltrated into the surface layer portion of stainless steel in an ionic state, thereby containing boron or boron. It is characterized by surface-modified stainless steel in which a fluorine or oxygen-based coating layer is formed to prevent corrosion resistance, particularly stress corrosion cracking.

請求項2記載の発明は、請求項1記載の表面改質ステンレス鋼の処理方法であって、ステンレス鋼を直流の陽極に又は交流の一極に、若しくは直流に交流を重ね合わせた交直重乗電流の陽極側に接続し、他の導電性対極との間にホウ酸水溶液単独又はホウ酸にフッ酸を加えた混合水溶液又は有機酸あるいは無機酸若しくはその水溶性塩類にホウ酸又はホウ酸とフッ酸若しくはそのナトリウム、カリウム、アンモニウム塩の一種若しくは二種以上を配合添加した溶液を電解液とし、ステンレス鋼を電解処理することにより、ステンレス鋼表層部に含ホウ素又は含ホウ素とフッ素若しくはこれらの酸素系被膜層を形成させることを特徴とする表面改質ステンレス鋼の処理方法にある。  Invention of Claim 2 is the processing method of the surface modified stainless steel of Claim 1, Comprising: Stainless steel is made into the direct current anode which made the stainless steel in the direct current | flow anode, or the alternating current pole, or the alternating current on the direct current. Connected to the anode side of the current, boric acid aqueous solution alone or mixed aqueous solution obtained by adding hydrofluoric acid to boric acid or organic acid or inorganic acid or water-soluble salts thereof with boric acid or boric acid A solution in which one or more of hydrofluoric acid or sodium, potassium or ammonium salt thereof is added and added is used as an electrolytic solution, and the stainless steel is subjected to electrolytic treatment, whereby the stainless steel surface layer is boron-containing, boron-containing and fluorine, or these. An oxygen-based coating layer is formed on the surface-modified stainless steel treatment method.

請求項1記載の発明によれば、原子力発電プラントや化学プラントの配管や反応塔等に使用されているステンレス鋼の表層部、若しくはSCCの発生が予想される個所に対し、電解処理という極めて簡単な手段により、耐SCCに有効である含ホウ素又は含ホウ素とフッ素、若しくはこれらと酸素とをイオン状で拡散、浸透させてステンレス表層部に酸素系被膜を形成させ、表面改質させることができるので、従来から種々検討されてきたものの極めて困難視されてきたSCCを効果的に防止せしめた表面改質ステンレス鋼を得ることができる。  According to the first aspect of the present invention, it is very easy to perform electrolytic treatment on the surface layer of stainless steel used in piping or reaction towers of nuclear power plants or chemical plants, or where SCC is expected to occur. By such means, boron-containing or boron-containing which is effective for SCC resistance, and fluorine, or these and oxygen can be diffused and infiltrated in an ionic form to form an oxygen-based film on the surface layer of the stainless steel, and the surface can be modified. Therefore, it is possible to obtain a surface-modified stainless steel that can effectively prevent SCC, which has been considered variously, but has been considered extremely difficult.

請求項2記載の発明によれば、請求項1記載の含ホウ素又は含フッ素とフッ素若しくはこれらの酸素系被膜を形成させるため、最も有効な電解液を用いてステンレス鋼表面を電解処理するので、耐食性特にSCCを防止し得る表面改質ステンレス鋼を容易に処理することができる。  According to the invention described in claim 2, in order to form the boron-containing or fluorine-containing and fluorine or the oxygen-based coating according to claim 1, the surface of the stainless steel is electrolytically treated using the most effective electrolytic solution. Surface-modified stainless steel that can prevent corrosion resistance, particularly SCC, can be easily treated.

本出願人は、先にフッ酸の中性塩を配合した電解液を用いて、表面処理を施したステンレス鋼には、表層から数十Åの深さまで酸素の他にフッ素が浸透、拡散していることを見出し、このことから、塩素による耐孔食性が向上することを明らかにした。
本発明は、このような事実をもとに更に研究を進めた結果、耐食性特にSCCを防止し得る表面改質ステンレス鋼とその処理方法を見出したものである。
The applicant of the present invention uses a liquid electrolyte containing a neutral salt of hydrofluoric acid, and surface-treated stainless steel penetrates and diffuses fluorine in addition to oxygen from the surface to a depth of several tens of millimeters. From this, it was clarified that the pitting corrosion resistance by chlorine is improved.
As a result of further research based on this fact, the present invention has found a surface-modified stainless steel that can prevent corrosion resistance, particularly SCC, and a treatment method thereof.

本発明の好ましい実施の形態は、オーステナイト系ステンレス鋼の中でも代表的なステンレス鋼であるSUS304の2B材を用いて、JIS規格のG0576に準じて直径16mmでU字型に曲げ、バックリング後、更に5mm狭くなるように、ボルト・ナットで締め付け、2B材の凸部に引っ張り応力が付加されるようにステンレス鋼(試験片)を作成した。勿論、2B材とボルト・ナットは絶縁している。  A preferred embodiment of the present invention uses a 2B material of SUS304, which is a typical stainless steel among austenitic stainless steels, bent into a U shape with a diameter of 16 mm in accordance with JIS standard G0576, and after buckling, Further, it was tightened with bolts and nuts so as to be narrower by 5 mm, and a stainless steel (test piece) was prepared so that a tensile stress was applied to the convex portion of the 2B material. Of course, the 2B material and the bolt and nut are insulated.

U字状に曲げ、引張り応力のかかった状態での上記ステンレス鋼に対し、ホウ酸水溶液の単独又はホウ酸にフッ酸を加えた混合水溶液又は有機酸あるいは無機酸若しくはその水溶性塩類にホウ酸又はホウ酸とフッ酸若しくはそのナトリウム、カリウム、アンモニウム塩類の一種若しくは二種以上を配合した溶液を電解液とし、処理すべきステンレス鋼を直流の陽極に又は直流に交流を重ね合わせた交直重乗電流の陽極側か若しくは交流電源の一極側に接続した状態で、上記電解液中に浸漬し、ステンレス鋼か黒鉛あるいはタングステン、モリブデン材などの難溶性電極を対極として対抗せしめた状態で通電する浸漬電解法を行うか又は他の一方法として、処理すべきステンレス鋼を電源の一極に接続すると共に同ステンレス鋼の表面上において対極との間に、天然又は合成、人造繊維よりなる織布若しくは不織布よりなる含水性物質(以下「モップ」という。)を介在させ、同モップに上記の電解液を含浸せしめた状態で、対極を用いてステンレス鋼の表面上で摺動しながら移動し電解処理を行うか、更に他の方法としては、直流の陽極又は直流に交流を重ね合わせた交直重乗電流の陽極側か若しくは交流電源の一極側に接続した処理すべきステンレス鋼の上面に上記電解液を浸した状態のモップを被せ、その上に対極を載置し電解処理を行うことにより、ステンレス鋼表層部にホウ素又はホウ素とフッ素若しくはこれらと酸素とをイオン状で拡散、浸透させるものであり、ホウ素又はホウ素とフッ素として表層から数十Å程度の内部にまで浸透させ、ステンレス鋼の耐食性特にSCC防止に優れた表面改質層を形成せしめるものである。  For the above stainless steel bent in a U shape and subjected to tensile stress, boric acid solution alone or a mixed solution obtained by adding hydrofluoric acid to boric acid or organic acid or inorganic acid or its water-soluble salts boric acid Alternatively, an AC / DC multiplying solution in which boric acid and hydrofluoric acid or one or more of sodium, potassium, and ammonium salts thereof are mixed is used as an electrolyte, and the stainless steel to be treated is placed on a direct current anode or on a direct current. While connected to the anode side of the current or one pole side of the AC power supply, it is immersed in the above electrolyte and energized with a sparingly soluble electrode made of stainless steel, graphite, tungsten, molybdenum, or the like as a counter electrode. The immersion electrolytic method is used, or as another method, the stainless steel to be treated is connected to one pole of the power source and placed on the surface of the stainless steel In the state in which a hydrated or non-woven fabric made of natural or synthetic or artificial fibers (hereinafter referred to as “mop”) is interposed between the counter electrode and the electrolyte solution is impregnated in the mop. To move while sliding on the surface of the stainless steel using an electrolytic treatment, or as another method, it is possible to use a direct current anode or the anode side of an AC / DC current obtained by superimposing alternating current on direct current or an alternating current power source The top surface of the stainless steel to be treated connected to one electrode side is covered with a mop soaked with the above electrolyte, and the counter electrode is placed on top of the mop so that the electrolytic treatment is performed, so that boron or boron And fluorine or these and oxygen are diffused and penetrated in the form of ions. Boron or boron and fluorine are penetrated from the surface layer to the inside of several tens of liters, and the corrosion resistance of stainless steel, particularly S In which it allowed to form an excellent surface modification layer C prevention.

上記電解液において、ホウ酸水溶液単独の場合は0.01Wt%から飽和濃度まで効果があるが、実用的には0.05から2.0Wt%程度が好ましい。
また、フッ酸については、0.01Wt%以上飽和濃度まで効果があり、実用的には0.05から2.0Wt%程度が良い。
In the above electrolytic solution, the boric acid aqueous solution alone is effective from 0.01 Wt% to the saturated concentration, but practically 0.05 to 2.0 W t% is preferable.
Further, hydrofluoric acid is effective up to a saturation concentration of 0.01 Wt% or more, and is practically about 0.05 to 2.0 Wt%.

次に応力腐食割れの評価試験として、U字型に曲げられ、引張り応力が付加された状態のステンレス鋼表面を、上記の通り電解処理しその表面を改質後、上記JIS G0576に準じて38から42Wt%の塩化マグネシウム水溶液の入った試験装置に、全く電解処理を行わない未処理の2B材とともに浸漬して、30分から数時間加熱し、SCCの状態を観察した。更には市販の電解液を用いて電解処理し表面改質を行ったステンレス鋼との比較も行った。  Next, as an evaluation test for stress corrosion cracking, the stainless steel surface bent into a U-shape and subjected to tensile stress was subjected to electrolytic treatment as described above, and the surface was modified, followed by 38 according to JIS G0576. To 42 Wt% of a magnesium chloride aqueous solution was immersed in an untreated 2B material that was not subjected to any electrolytic treatment, heated for 30 minutes to several hours, and the state of SCC was observed. Furthermore, a comparison was made with stainless steel subjected to surface modification by electrolytic treatment using a commercially available electrolytic solution.

未処理のステンレス鋼は30分から1時間程度で完全にSCCが発生するが、上述の含ホウ素、含ホウ素とフッ素に表面改質されたステンレス鋼は、3時間から5時間後程度では応力腐食割れは発生しなかった。但し、電解処理条件によっては微小な応力腐食割れが発生する場合があった。
また、市販の電解液を用い電解処理を施したステンレス鋼は、30分から1時間程度でSCCが発生し、未処理の場合と大差がないことが分かった。
これらは、目視によっても十分観察することができるが、顕微鏡写真で確認することができる。
Untreated stainless steel completely generates SCC in 30 minutes to 1 hour, but the above-mentioned stainless steel surface-modified to boron-containing, boron-containing and fluorine stress-cracked cracks in about 3 to 5 hours Did not occur. However, minute stress corrosion cracking may occur depending on the electrolytic treatment conditions.
Further, it was found that stainless steel subjected to electrolytic treatment using a commercially available electrolytic solution generated SCC in about 30 minutes to 1 hour, and was not significantly different from the case of untreated.
These can be sufficiently observed by visual observation, but can be confirmed by a micrograph.

以下に記述する実施例中の素材は、全てオーステナイト系ステンレス鋼の中でも代表的なステンレス鋼種のSUS304の2B材を使用した。
JIS G0576に準じ、曲げ試験機を用いて直径16mmになるようにU字型に曲げ、バックリング後、更に5mm狭くなるようにボルト・ナットで締め付け、凸部に引張り応力が付加されたステンレス鋼(以下「試験片」という。)を多数作成した。以下の記述については全て、この試験片を用いた。
The materials in the examples described below were all SUS304 2B material of a typical stainless steel type among austenitic stainless steels.
In accordance with JIS G0576, stainless steel with a bending tester bent to a U-shape with a diameter of 16 mm, buckled, and tightened with bolts and nuts to further narrow 5 mm, and tensile stress is added to the convex part (Hereinafter referred to as “test piece”). This test piece was used for all the following descriptions.

0.01から5.0Wt%濃度に調整したホウ酸水溶液からなる電解液を使用して、交直重乗電源に接続し、上述のモップが被せられた電極により、試験片全面を数秒から数十秒摺動し電解処理を施した。  Using an electrolytic solution made of an aqueous boric acid solution adjusted to a concentration of 0.01 to 5.0 Wt%, the entire surface of the test piece was connected to an AC / DC power source and covered with the mop described above for several seconds to several tens of hours. It was slid for 2 seconds and subjected to electrolytic treatment.

次いで、JIS G0576に記載されている、42Wt%濃度の沸騰塩化マグネシウム水溶液中に、電解処理した試験片と全く電解処理を施さない試験片とを浸漬し、応力腐食割れの状態を観察した。未処理の試験片は、30分後一部に割れが生じ、1時間20分後には、幅方向全面に割れが発生した。2時間45分後には破断した。
図1に未処理の試験片について、1時間20分経過後の割れの状況を撮影した顕微鏡写真を示す。
Subsequently, the test piece subjected to electrolytic treatment and the test piece not subjected to electrolytic treatment at all were immersed in a boiling magnesium chloride aqueous solution having a concentration of 42 Wt% described in JIS G0576, and the state of stress corrosion cracking was observed. The untreated specimen was partially cracked after 30 minutes, and cracked over the entire width direction after 1 hour and 20 minutes. It broke after 2 hours and 45 minutes.
FIG. 1 shows a photomicrograph of the untreated specimen, which was taken of the cracking situation after 1 hour and 20 minutes.

これに対し、ホウ酸水溶液を用いて電解処理した試験片は、2時間45分経過後も全く割れは発生しなかった。
しかしながら、更に試験片を塩化マグネシウム水溶液に浸漬し、加熱を続けたところ3時間30分後微小割れが発生した。
図2は、この場合の微小割れの状況を示す顕微鏡写真である。
そこで、電解液の濃度を変えて種々試験を行ったところ、電解液の濃度は0.05から2.0Wt%程度が耐SCCについて効果が大きいことが分かった。
On the other hand, the test piece electrolytically treated with an aqueous boric acid solution did not crack at all even after 2 hours and 45 minutes had elapsed.
However, when the test piece was further immersed in an aqueous magnesium chloride solution and heated, microcracks occurred after 3 hours and 30 minutes.
FIG. 2 is a photomicrograph showing the state of microcracking in this case.
Then, when various tests were performed by changing the concentration of the electrolytic solution, it was found that the concentration of the electrolytic solution was about 0.05 to 2.0 Wt% and the effect on SCC resistance was great.

上記の塩化マグネシウム42%については、付加される応力に対し、環境が厳しすぎると考え、次に塩化マグネシウムの濃度を38Wt%に設定し、実施例1と全く同じ条件で電解処理を施し、応力腐食割れの試験を行ったところ、未処理の試験片については、30分経過後でも割れは発生せず、1時間後に微小な割れが生じ、更に3.5時間後には幅方向全面に割れが発生した。
図3に3.5時間経過後の割れの状態を撮影した顕微鏡写真を示す。
Regarding the above-mentioned 42% magnesium chloride, the environment is considered to be too severe with respect to the applied stress. Next, the magnesium chloride concentration was set to 38 Wt%, and the electrolytic treatment was performed under exactly the same conditions as in Example 1, When the test for corrosion cracking was performed, the untreated test piece did not crack even after 30 minutes, and a minute crack occurred after 1 hour, and further cracking occurred across the entire width direction after 3.5 hours. Occurred.
FIG. 3 shows a photomicrograph of the state of cracking after 3.5 hours.

これに対し、ホウ酸水溶液を用いて電解処理した試験片は、処理時間数秒から数十秒処理の場合いずれの場合も5時間経過時点で割れは、発生しなかった。  On the other hand, in the test piece subjected to the electrolytic treatment using the boric acid aqueous solution, cracking did not occur at the time when 5 hours passed in any case of the treatment time of several seconds to several tens of seconds.

0.05から2.0Wt%濃度のホウ酸水溶液に0.05から2.0Wt%濃度のフッ酸水溶液を加えた混合液を用いて、実施例1と同様の電解液を浸したモップを摺動し数秒から数十秒間電解処理を行った。次いで、未処理の試験片とともに38Wt%濃度の塩化マグネシウム水溶液に浸漬し加熱したところ、未処理の試験片については、1時間後に微小な割れが生じたが、電解処理を施した試験片については、いずれも5時間経過後も割れは発生しなかった。
図4は電解処理時間10秒の場合で、5時間経過後も割れが発生していない状況を示す顕微鏡写真である。
A mop soaked with the same electrolyte as in Example 1 was slid using a mixed solution of 0.05 to 2.0 Wt% boric acid aqueous solution and 0.05 to 2.0 Wt% hydrofluoric acid aqueous solution. The electrolytic treatment was performed for several seconds to several tens of seconds. Then, when immersed in a 38 Wt% magnesium chloride aqueous solution together with the untreated test piece and heated, a minute crack occurred after 1 hour for the untreated test piece, but for the test piece subjected to electrolytic treatment, In either case, no cracks occurred even after 5 hours.
FIG. 4 is a photomicrograph showing a situation in which cracking does not occur even after 5 hours when the electrolytic treatment time is 10 seconds.

有機酸の水溶性塩類に0.05から2.0Wt濃度のホウ酸と0.05から2.0Wt%のフッ化ナトリウムを配合した電解液を用いて交流電源に接続し、U字型に曲げられた試験片の凸部の形状に合わせ、電解液を浸した不織布を被せ、その上に電極を載置して数秒から数十秒間電解処理を施した。その後、上述と同様に38Wt%の沸騰塩化マグネシウム水溶液に浸漬、応力腐食割れの状況を観察した結果では、いずれの場合も5時間経過後も割れは発生しなかった。  Connected to an AC power source using an electrolytic solution in which 0.05 to 2.0 Wt concentration of boric acid and 0.05 to 2.0 Wt% sodium fluoride are mixed with water-soluble salts of organic acids, bent into a U-shape In accordance with the shape of the convex portion of the test piece obtained, a non-woven fabric soaked with an electrolytic solution was covered, and an electrode was placed thereon, and electrolytic treatment was performed for several seconds to several tens of seconds. Thereafter, as described above, the specimens were immersed in a 38 Wt% boiling magnesium chloride aqueous solution and the state of stress corrosion cracking was observed. In all cases, no cracking occurred after 5 hours.

実施例3と同じ電解液を用いて直流電源に接続し、数秒から数十秒間、浸漬電解処理を施したものについて、応力腐食割れの試験を行ったところ、5時間後においても割れは発生しなかった。  When the same electrolytic solution as in Example 3 was connected to a DC power source and subjected to immersion electrolytic treatment for several seconds to several tens of seconds, a stress corrosion cracking test was conducted, and cracking occurred even after 5 hours. There wasn't.

実施例6(比較例)Example 6 (comparative example)

市販されている電解液との比較を見るため、硝フッ酸溶液Aに浸漬処理した試験片と酸性のB電解液について、交直重乗電流からなる電源器に接続し、試験片について前記電解液を浸したモップにより、摺動しながら移動し電解処理を行った後、応力腐食割れ試験を行った結果では、Aについては、50分後に微小な割れが見られ、B電解液については60分後に幅方向一面に割れが見られた。
図5に硝フッ酸処理Aの場合の応力腐食割れの顕微鏡写真を示す。
In order to see a comparison with a commercially available electrolytic solution, the test piece immersed in the nitric hydrofluoric acid solution A and the acidic B electrolytic solution were connected to a power supply unit consisting of an AC / DC current, and the electrolytic solution was used for the test piece. As a result of conducting a stress corrosion cracking test after moving by sliding with a mop soaked in the water and performing an electrolytic treatment, a minute crack is seen after 50 minutes for A and 60 minutes for the B electrolyte. Later, cracks were seen on one side in the width direction.
FIG. 5 shows a photomicrograph of stress corrosion cracking in the case of nitric hydrofluoric acid treatment A.

上記は、耐食性、特に応力腐食割れについて説明したが、応力腐食割れに関係していると考えらてれる、塩素による耐孔食性について試験を行ったところ、説明は省略するが耐応力腐食割れと同様、耐孔食性についても大きな効果があることが分かった。  The above is about corrosion resistance, especially stress corrosion cracking, but when tested for pitting corrosion resistance by chlorine, which is thought to be related to stress corrosion cracking, explanation is omitted but stress corrosion cracking Similarly, it was found that pitting corrosion resistance has a great effect.

以上の通り、本実施例に係るステンレス鋼の表面改質による耐応力腐食割れについては、いずれの電解液の場合も、従来示されることのなかった顕著な効果があることが分かった。  As described above, it has been found that the stress corrosion cracking due to the surface modification of the stainless steel according to the present example has a remarkable effect that has not been conventionally shown in any of the electrolytic solutions.

上述の発明は、ステンレス鋼を表面改質することによって、1ランク以上の耐食性を待たせ、応力腐食割れを防止することができるので、厳しい環境にさらされる原子力発電プラントや化学プラント等の配管等に利用できる。  In the above-mentioned invention, by modifying the surface of stainless steel, the corrosion resistance of one rank or more can be waited and stress corrosion cracking can be prevented. Therefore, piping of nuclear power plants and chemical plants exposed to severe environments, etc. Available to:

本発明の実施例1に係る未処理の試験片について、応力腐食割れ試験1時間20分経過後の割れの状況を示す顕微鏡写真である。It is a microscope picture which shows the condition of the crack after 1 hour 20 minutes progress about the stress corrosion cracking test about the untreated test piece which concerns on Example 1 of this invention. 本発明の実施例1に係る電解処理後の試験片について、応力腐食割れ試験3時間30分後における微小割れの状態を表す顕微鏡写真である。It is a microscope picture showing the state of a microcrack after the stress corrosion cracking test 3 hours 30 minutes about the test piece after the electrolytic treatment which concerns on Example 1 of this invention. 本発明の実施例2に係る未処理の試験片について応力腐食割れ試験3.5時間後の割れを示す顕微鏡写真である。It is a microscope picture which shows the crack after the stress corrosion cracking test 3.5 hours about the untreated test piece which concerns on Example 2 of this invention. 本発明の実施例3に係る電解処理後の試験片について、応力腐食割れ試験5時間後においても割れが発生していない状況を示す顕微鏡写真である。It is a microscope picture which shows the condition where the crack has not generate | occur | produced about the test piece after the electrolytic treatment which concerns on Example 3 of this invention even after the stress corrosion cracking test 5 hours. 実施例6(比較例)に係る硝フッ酸溶液Aについて、応力腐食割れ試験50分経過後の微小割れを示す顕微鏡写真である。It is a microscope picture which shows the micro crack after the stress corrosion cracking test 50-minute progress about the nitric-hydrofluoric-acid solution A which concerns on Example 6 (comparative example).

Claims (2)

ステンレス鋼の表層部に対し、0.05〜2.0Wt%のホウ酸水溶液又は0.05〜2.0Wt%のホウ酸水溶液に0.05〜2.0Wt%のフッ酸水溶液を加えた混合液を用いて電解処理を行い、該ステンレス鋼の表層部に対し、ホウ素又はホウ素とフッ素若しくはこれらと酸素とをイオン状で拡散、浸透させることにより、含ホウ素又は含ホウ素とフッ素若しくはこれらの酸素系被膜層を形成させ、耐食性特に応力腐食割れを防止せしめたことを特徴とする表面改質ステンレス鋼 Mixing 0.05 to 2.0 Wt% boric acid aqueous solution or 0.05 to 2.0 Wt% boric acid aqueous solution with 0.05 to 2.0 Wt% hydrofluoric acid aqueous solution to the surface layer of stainless steel Electrolytic treatment is performed using a liquid, and boron or boron and fluorine or these and oxygen are diffused and permeated into the surface layer portion of the stainless steel in an ionic state, thereby boron-containing or boron-containing and fluorine or oxygen thereof. Surface-modified stainless steel characterized in that it has a coating layer to prevent corrosion resistance, especially stress corrosion cracking 請求項1記載の表面改質ステンレス鋼の処理方法であって、ステンレス鋼を直流の陽極に又は交流の一極に、若しくは直流に交流を重ね合わせた交直重乗電流の陽極側に接続し、他の導電性対極との間に0.05〜2.0Wt%のホウ酸水溶液単独又は0.05〜2.0Wt%のホウ酸に0.05〜2.0Wt%のフッ酸を加えた混合水溶液又は有機酸あるいは無機酸若しくはその水溶性塩類に0.05〜2.0Wt%のホウ酸又は0.05〜2.0Wt%のホウ酸と0.05〜2.0Wt%のフッ酸若しくはそのナトリウム、カリウム、アンモニウム塩の一種若しくは二種以上を配合添加した溶液を電解液とし、ステンレス鋼を電解処理することによりステンレス鋼表層部に含ホウ素又は含ホウ素とフッ素若しくはこれらの酸素系被膜層を形成させることを特徴とする表面改質ステンレス鋼の処理方法。It is a processing method of the surface-modified stainless steel according to claim 1, wherein the stainless steel is connected to a direct current anode or an alternating current pole, or to an anode side of an AC / DC current obtained by superimposing alternating current on direct current, 0.05 to 2.0 Wt% boric acid aqueous solution alone or 0.05 to 2.0 Wt% boric acid added with 0.05 to 2.0 Wt% hydrofluoric acid between other conductive counter electrodes 0.05-2.0 Wt% boric acid or 0.05-2.0 Wt% boric acid and 0.05-2.0 Wt% hydrofluoric acid or its aqueous solution or organic acid or inorganic acid or water-soluble salt thereof A solution in which one or more of sodium, potassium and ammonium salts are mixed and added is used as an electrolytic solution, and stainless steel is subjected to electrolytic treatment to form boron-containing or boron-containing and fluorine or an oxygen-based coating layer thereof on the stainless steel surface layer. Treatment method for the surface modification of stainless steel, which comprises causing made.
JP2008336144A 2008-12-18 2008-12-18 Surface-modified stainless steel and processing method for surface-modified stainless steel Active JP4678612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008336144A JP4678612B2 (en) 2008-12-18 2008-12-18 Surface-modified stainless steel and processing method for surface-modified stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008336144A JP4678612B2 (en) 2008-12-18 2008-12-18 Surface-modified stainless steel and processing method for surface-modified stainless steel

Publications (2)

Publication Number Publication Date
JP2010189666A JP2010189666A (en) 2010-09-02
JP4678612B2 true JP4678612B2 (en) 2011-04-27

Family

ID=42816014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008336144A Active JP4678612B2 (en) 2008-12-18 2008-12-18 Surface-modified stainless steel and processing method for surface-modified stainless steel

Country Status (1)

Country Link
JP (1) JP4678612B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193749A (en) * 2016-04-20 2017-10-26 勝規 瀬川 Electrolytic solution for descaling of stainless steel and descaling method
CN110983346A (en) * 2019-12-25 2020-04-10 湖北中烟工业有限责任公司 Cleaning method for stainless steel fresh tobacco shred box

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602695A (en) * 1983-06-17 1985-01-08 Hitachi Ltd Power plant
JPH04193998A (en) * 1990-11-27 1992-07-14 Sawa Mekki Kogyo Kk High-speed anodization method by repeated instantaneous current application
JP2003147588A (en) * 2001-11-05 2003-05-21 National Institute Of Advanced Industrial & Technology Surface coating layer by iron and steel and surface treatment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602695A (en) * 1983-06-17 1985-01-08 Hitachi Ltd Power plant
JPH04193998A (en) * 1990-11-27 1992-07-14 Sawa Mekki Kogyo Kk High-speed anodization method by repeated instantaneous current application
JP2003147588A (en) * 2001-11-05 2003-05-21 National Institute Of Advanced Industrial & Technology Surface coating layer by iron and steel and surface treatment method

Also Published As

Publication number Publication date
JP2010189666A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5145083B2 (en) Method for electrolytic polishing of titanium
JP6694693B2 (en) How to treat stainless steel parts
WO2014103703A1 (en) Passivation method for stainless steel
JP2016000857A (en) Passivation method of stainless steel
RU2583500C2 (en) Etching of stainless steel in oxidative electrolytic bath with acid
JP3484525B2 (en) Stainless steel surface cleaning and passivation treatment method
JP6167411B2 (en) Surface modification treatment method of stainless steel with excellent resistance to chlorine pitting corrosion, overall corrosion resistance and rust prevention
EP3106544A2 (en) Continuous trivalent chromium plating method
JP4678612B2 (en) Surface-modified stainless steel and processing method for surface-modified stainless steel
JP2007332416A (en) Electrolytic solution for use in electropolishing process for stainless steel
JP2007332416A5 (en)
Brajković et al. Influence of surface treatment on corrosion resistance of Cr-Ni steel
JP2017160484A (en) Agent for removing weldment burnt deposit for electrolytic polishing and electrolytic polishing method
JP2007231413A (en) Electrolytic solution to be used for electrolytic polishing method for stainless steel
JP4218000B2 (en) Stainless steel having fluorine-containing or fluorine-containing / oxygen-based coating layer formed thereon and method for producing the same
JP2007277682A (en) Electrolytic solution used for electrolytic polishing method on stainless steel
JP5755508B2 (en) Electropolishing liquid for stainless steel and stainless steel
JPH0548318B2 (en)
JP4403227B2 (en) Metal oxide film or rust removal water, Metal oxide film or rust removal method using the oxide film or rust removal water
JP5747268B2 (en) Stress corrosion cracking preventive maintenance or life extension processing method for stainless steel plant, equipment, etc.
JP2014043596A (en) Electrolytic solution
TW201311945A (en) Descaling method for stainless steel
JP2020109217A (en) Treatment method of stainless steel component
EP2679705A1 (en) Electrolytic stripping
KR102553114B1 (en) Method for forming a metal coating

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100701

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Ref document number: 4678612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250