JP2007332416A5 - - Google Patents

Download PDF

Info

Publication number
JP2007332416A5
JP2007332416A5 JP2006164602A JP2006164602A JP2007332416A5 JP 2007332416 A5 JP2007332416 A5 JP 2007332416A5 JP 2006164602 A JP2006164602 A JP 2006164602A JP 2006164602 A JP2006164602 A JP 2006164602A JP 2007332416 A5 JP2007332416 A5 JP 2007332416A5
Authority
JP
Japan
Prior art keywords
acid
stainless steel
weight
electrolytic
propanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006164602A
Other languages
Japanese (ja)
Other versions
JP2007332416A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006164602A priority Critical patent/JP2007332416A/en
Priority claimed from JP2006164602A external-priority patent/JP2007332416A/en
Publication of JP2007332416A publication Critical patent/JP2007332416A/en
Publication of JP2007332416A5 publication Critical patent/JP2007332416A5/ja
Pending legal-status Critical Current

Links

Description

ステンレス鋼の電解研磨法に用いる電解液Electrolyte used for electrolytic polishing of stainless steel

この発明は、ステンレス鋼の溶接後の焼け取り等のために行われるステンレス鋼表面に対する電解研磨で使用する電解液の組成に関するものである。   The present invention relates to the composition of an electrolytic solution used in electrolytic polishing of a stainless steel surface performed for burning off after welding of stainless steel.

金属加工法として金属を電解液と接触させながら直流又は交流電圧を印加して加工する電解加工が広く用いられており、ステンレス鋼においても、例えばステンレス鋼の溶接後の焼け取り部分を表面研磨する方法として電解加工による電解研磨法が行なわれている。   As a metal processing method, electrolytic processing is widely used in which a metal is processed by applying a direct current or an alternating voltage while being in contact with an electrolytic solution. In stainless steel, for example, the burnt portion after welding of stainless steel is subjected to surface polishing. As a method, an electrolytic polishing method by electrolytic processing is performed.

また、金属と電解液を接触させる方法も、電解液に被研磨材となる金属(ワーク)を浸漬させる浸漬式や、電極とワークの間に天然または合成の不織布を置いた簡易式がある。   In addition, there are a method of bringing a metal into contact with an electrolytic solution, a dipping method in which a metal (workpiece) to be polished is immersed in the electrolytic solution, and a simple method in which a natural or synthetic nonwoven fabric is placed between the electrode and the workpiece.

現在まで使用されてきた電解液としては、交流、直流、交直重畳にかかわらず、また、浸漬式、簡易式等の方式を問わず、硫酸、燐酸、クエン酸、酒石酸、シュウ酸、リンゴ酸、酢酸、グルコン酸、グリコール酸、コハク酸、フッ化水素酸もしくはそれらのアンモニウム、カリウム、ナトリウム塩の一種もしくは二種以上の塩を配合したものを電解液として利用してきた(例えば、特許文献1、特許文献2参照)。
特許第3484525号公報 特開2003−82495号公報
As an electrolytic solution that has been used up to now, regardless of alternating current, direct current, AC / DC superposition, and regardless of methods such as immersion, simple, etc., sulfuric acid, phosphoric acid, citric acid, tartaric acid, oxalic acid, malic acid, Acetic acid, gluconic acid, glycolic acid, succinic acid, hydrofluoric acid or their ammonium, potassium, sodium salts have been used as an electrolyte solution (for example, Patent Document 1, Patent Document 2).
Japanese Patent No. 3484525 JP 2003-82495 A

しかし、上記従来の電解液を用いたものでは電解後、特にオーステナイト系ステンレス鋼では孔食などの腐食がおきる危険性があった。   However, in the case of using the above-described conventional electrolyte, there is a risk that corrosion such as pitting corrosion occurs after electrolysis, particularly in austenitic stainless steel.

また、特許文献1にあるように、非酸化性の酸のナトリウム塩、アンモニウム塩、カリウム塩に水溶性フッ化物を添加して表面にフッ化不動態膜を形成させるような方法が考案されているが、処理後の美観の問題やフェライト系ステンレス鋼に使用して塩水噴霧試験を行った場合に全面腐食を増大させる危険性があった。   Further, as disclosed in Patent Document 1, a method has been devised in which a water-soluble fluoride is added to a sodium salt, ammonium salt, or potassium salt of a non-oxidizing acid to form a fluorinated passive film on the surface. However, there is a risk of increasing the overall corrosion when the salt spray test is performed using ferritic stainless steel and the problem of aesthetics after the treatment.

そこで、上記のような課題を解決し、どのような鋼種のステンレスでも上記の課題をもっと効果的に解決できる様な電解液を得るべく種々の材料を検討することによって本発明に至ったものである。   Therefore, the present invention has been accomplished by solving various problems in order to obtain an electrolytic solution that can solve the above problems more effectively with any steel type. is there.

上記の課題を解決するため、請求項1の発明は、1重量%以上の燐酸、クエン酸、酒石酸、シュウ酸、リンゴ酸、酢酸、グルコン酸、グリコール酸、コハク酸などステンレス鋼に非酸化性に働く酸、硫酸およびフッ酸からなる群から選ばれた1種または2種以上の水溶液に、1重量%以上の2−アミノ−2−メチル−1−プロパノールを添加したものを主成分とするステンレス鋼の電解研磨法に用いる電解液である。   In order to solve the above problems, the invention of claim 1 is non-oxidizing to stainless steel such as 1% by weight or more of phosphoric acid, citric acid, tartaric acid, oxalic acid, malic acid, acetic acid, gluconic acid, glycolic acid and succinic acid. Mainly composed of one or two or more aqueous solutions selected from the group consisting of acid, sulfuric acid, and hydrofluoric acid, and 1 wt% or more of 2-amino-2-methyl-1-propanol It is an electrolyte used for the electrolytic polishing method of stainless steel.

この発明の電解液は、ステンレス鋼の電解研磨において交流及び直流及び交直重畳で使用できると共に、どのような鋼種のステンレスでも耐食性と処理後の美観を向上させることができ経済的である。   The electrolytic solution of the present invention can be used by alternating current, direct current, and AC / DC superposition in electrolytic polishing of stainless steel, and is economical because it can improve the corrosion resistance and the aesthetic appearance after processing in any stainless steel.

電極の先の不織布に、(1)10重量%のピロリン酸ナトリウム水溶液、(2)10重量%のピロリン酸に8重量%の2−アミノ−2−メチル−1−プロパノールを添加した水溶液を、それぞれ電解液として染み込ませ、オーステナイト系ステンレス鋼であるSUS304(30mm×90mm×1.6mm)に押し当て20Vの交流電流を印加した後、表面の状態を比較してみた。   To the non-woven fabric at the tip of the electrode, (1) an aqueous solution of 10% by weight sodium pyrophosphate, (2) an aqueous solution obtained by adding 8% by weight of 2-amino-2-methyl-1-propanol to 10% by weight of pyrophosphoric acid, Each was soaked as an electrolytic solution, pressed against SUS304 (30 mm × 90 mm × 1.6 mm), which is an austenitic stainless steel, and an alternating current of 20 V was applied, and then the surface states were compared.

尚、表面状態の比較後、オーステナイト系ステンレスであるSUS304(30mm×90mm×1.6mm)の試験片は6重量%の塩化第二鉄水溶液に浸漬し24時間後の重量減を計測した。   In addition, after the comparison of the surface state, a test piece of SUS304 (30 mm × 90 mm × 1.6 mm), which is an austenitic stainless steel, was immersed in a 6% by weight ferric chloride aqueous solution, and the weight loss after 24 hours was measured.

(1)10重量%のピロリン酸ナトリウム水溶液の試験片の減少率は、2.1重量%であったが、(2)10重量%のピロリン酸に2−アミノ−2−メチル−1−プロパノールを添加した水溶液を電解液として処理した試験片では僅か1.5%にすぎなかった。   (1) The decrease rate of the test piece of 10% by weight sodium pyrophosphate aqueous solution was 2.1% by weight, but (2) 2-amino-2-methyl-1-propanol was added to 10% by weight pyrophosphate. It was only 1.5% in the test piece which processed the aqueous solution which added A as an electrolyte solution.

また、2−アミノ−2−メチル−1−プロパノールの量は多くするほど好結果がでたので、請求項1にあるように、1重量%以上の燐酸、クエン酸、酒石酸、シュウ酸、リンゴ酸、酢酸、グルコン酸、グリコール酸、コハク酸などステンレス鋼に非酸化性に働く酸、硫酸およびフッ酸からなる群から選ばれた1種もしくは2種以上の水溶液に、1重量%以上の2−アミノ−2−メチル−1−プロパノールを添加すれば、耐孔食性が飛躍的に向上する事が分かった。また、フェライト系ステンレス鋼に対する塩水噴霧試験においても同様の防錆作用がある事がわかった。   Further, as the amount of 2-amino-2-methyl-1-propanol was increased, good results were obtained. Therefore, as described in claim 1, 1% by weight or more of phosphoric acid, citric acid, tartaric acid, oxalic acid, apple 1% or more of 2% by weight in one or more aqueous solutions selected from the group consisting of acids, acetic acid, gluconic acid, glycolic acid, succinic acid, etc. It has been found that the addition of -amino-2-methyl-1-propanol dramatically improves the pitting corrosion resistance. In addition, it was found that the same rust preventive action was also obtained in a salt spray test on ferritic stainless steel.

Claims (1)

1重量%以上の燐酸、クエン酸、酒石酸、シュウ酸、リンゴ酸、酢酸、グルコン酸、グリコール酸、コハク酸などステンレス鋼に非酸化性に働く酸、硫酸およびフッ酸からなる群から選ばれた1種または2種以上の水溶液に、1重量%以上の2−アミノ−2−メチル−1−プロパノールを添加したものを主成分とすることを特徴とするステンレス鋼の電解研磨法に用いる電解液。   1% by weight or more of phosphoric acid, citric acid, tartaric acid, oxalic acid, malic acid, acetic acid, gluconic acid, glycolic acid, succinic acid, etc. Electrolyte used for electrolytic polishing of stainless steel, characterized by comprising as a main component one or two or more aqueous solutions to which 1% by weight or more of 2-amino-2-methyl-1-propanol is added .
JP2006164602A 2006-06-14 2006-06-14 Electrolytic solution for use in electropolishing process for stainless steel Pending JP2007332416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164602A JP2007332416A (en) 2006-06-14 2006-06-14 Electrolytic solution for use in electropolishing process for stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164602A JP2007332416A (en) 2006-06-14 2006-06-14 Electrolytic solution for use in electropolishing process for stainless steel

Publications (2)

Publication Number Publication Date
JP2007332416A JP2007332416A (en) 2007-12-27
JP2007332416A5 true JP2007332416A5 (en) 2009-07-30

Family

ID=38932168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164602A Pending JP2007332416A (en) 2006-06-14 2006-06-14 Electrolytic solution for use in electropolishing process for stainless steel

Country Status (1)

Country Link
JP (1) JP2007332416A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409390B (en) * 2011-12-08 2015-02-04 北京七星华创电子股份有限公司 Soft magnetic stainless steel electrochemical polishing solution and method
JP5897406B2 (en) * 2012-05-28 2016-03-30 株式会社石飛製作所 Electrolytic solution for electropolishing
JP5914265B2 (en) * 2012-08-31 2016-05-11 株式会社タセト Electrolyte
JP7177426B2 (en) * 2017-12-28 2022-11-24 株式会社日本科学エンジニアリング Electropolishing liquid for stainless steel
JP7177425B2 (en) * 2017-12-28 2022-11-24 株式会社日本科学エンジニアリング Electropolishing liquid for stainless steel
CN108118386A (en) * 2017-12-29 2018-06-05 重庆全茂合渝科技有限公司 A kind of motorcycle fork axis electrolytic polishing process
CN114152638A (en) * 2021-11-29 2022-03-08 宁波江丰电子材料股份有限公司 Sample preparation method for MoNb target EBSD detection

Similar Documents

Publication Publication Date Title
JP2007332416A5 (en)
JP2007332416A (en) Electrolytic solution for use in electropolishing process for stainless steel
KR102572078B1 (en) Passivation Surface Treatment of Stainless Steel
WO2011063353A3 (en) Electrolyte solution and electropolishing methods
JP5897717B2 (en) Pickling of stainless steel in an oxidative electrolytic acid bath
JP2007231413A (en) Electrolytic solution to be used for electrolytic polishing method for stainless steel
JP3484525B2 (en) Stainless steel surface cleaning and passivation treatment method
JP2007277682A (en) Electrolytic solution used for electrolytic polishing method on stainless steel
JP2017160484A (en) Agent for removing weldment burnt deposit for electrolytic polishing and electrolytic polishing method
JP5650860B1 (en) Scale remover for stainless steel welds
JP2011208183A (en) Method for improving surface of stainless steel
CN103866336A (en) Rust prevention method for stainless steel product
JP5914255B2 (en) Electrolyte
JP4500596B2 (en) Neutral electropolishing liquid composition for descaling of stainless steel surface and method for treating stainless steel surface
JP5893066B2 (en) Neutral electrolyte for stainless steel and electrolysis method
JP4320023B2 (en) Metal surface treatment aqueous solution and metal surface treatment method using the aqueous solution
JPS61207600A (en) Electrolytic descaling agent and descaling method for stainless steel
JP5755508B2 (en) Electropolishing liquid for stainless steel and stainless steel
JP4678612B2 (en) Surface-modified stainless steel and processing method for surface-modified stainless steel
JP3038249B2 (en) Anodizing treatment method for metal surface
JPS6324098A (en) Method for removing scale formed by welding of alloy steel
JPH0127160B2 (en)
JP2005042177A (en) Electrolytic polishing method for stainless steel increasing its corrosion resistance
TWI527938B (en) Rapidly electrolytic rust removal method
JP2005213550A (en) Electrolytic polishing method for stainless steel increasing its corrosion resistance