JP2015182936A - High-purity boron and production method thereof - Google Patents

High-purity boron and production method thereof Download PDF

Info

Publication number
JP2015182936A
JP2015182936A JP2014062648A JP2014062648A JP2015182936A JP 2015182936 A JP2015182936 A JP 2015182936A JP 2014062648 A JP2014062648 A JP 2014062648A JP 2014062648 A JP2014062648 A JP 2014062648A JP 2015182936 A JP2015182936 A JP 2015182936A
Authority
JP
Japan
Prior art keywords
boron
mass
active metal
concentration
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014062648A
Other languages
Japanese (ja)
Other versions
JP6177173B2 (en
Inventor
雅博 高畑
Masahiro Takahata
雅博 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014062648A priority Critical patent/JP6177173B2/en
Publication of JP2015182936A publication Critical patent/JP2015182936A/en
Application granted granted Critical
Publication of JP6177173B2 publication Critical patent/JP6177173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method which enables production of high-purity simple boron through simple procedures.SOLUTION: A method of producing simple boron by reducing boric acid anhydride (BO) with an active metal includes a step 1 of mixing boric acid anhydride with an active metal, a step 2 of sintering the resultant mixture at 200-550°C for 1-5 h and a step 3 of raising the temperature of the resultant sintered body to a temperature at least 50°C higher than the melting point of the active metal and effective for the reduction reaction and carrying out the reduction reaction for 0.5-2.0 h.

Description

本発明は単体ホウ素の製造方法に関する。   The present invention relates to a method for producing simple boron.

ホウ素(B)は周期律表で第III属に属する半導体元素で、ガラスの原料、防腐剤、研磨剤、医薬品、金属製錬における脱酸剤、合金添加剤、高融点金属ホウ化物の原料に用いられる。また、高純度のホウ素は特に半導体基板のドーピング剤やTMR(tunnel Magneto-Resistance)素子の強磁性層に用いられるCo−Fe−Bスパッタリングターゲットの材料等として重要である。   Boron (B) is a semiconductor element belonging to Group III in the periodic table, and is used as a raw material for glass, preservatives, abrasives, pharmaceuticals, deoxidizers in metal smelting, alloy additives, and refractory metal borides. Used. In addition, high-purity boron is particularly important as a dopant for a semiconductor substrate or a material for a Co—Fe—B sputtering target used for a ferromagnetic layer of a TMR (tunnel Magneto-Resistance) element.

ホウ素は融点2080℃、沸点2550℃と高いため精製が難しい物質であるものの、1808年にJ.J.Gay Lussac等が無水ホウ酸を鉄製容器内でカリウムにより還元して以来、種々の精製方法が提案されている。単体ホウ素の製法は大別すると以下の四種類となる。
(1)ホウ砂(Na247)、無水ホウ酸(B23)を活性金属で還元する。
(2)ホウ素のハロゲン化物を活性金属で還元する。
(3)塩化ホウ素を水素で還元する。
(4)溶融塩電解により陰極に析離させる。
Boron is a substance that has a high melting point of 2080 ° C. and a boiling point of 2550 ° C., which is difficult to purify. J. et al. Since Gay Lussac et al. Reduced boric anhydride with potassium in an iron vessel, various purification methods have been proposed. The process for producing simple boron is roughly divided into the following four types.
(1) Reduction of borax (Na 2 B 4 O 7 ) and boric anhydride (B 2 O 3 ) with an active metal.
(2) The boron halide is reduced with an active metal.
(3) The boron chloride is reduced with hydrogen.
(4) Deposit on the cathode by molten salt electrolysis.

ホウ素は高温で酸素や窒素と反応し易いほか、各種の金属と容易にホウ化物を作るので、いずれの方法によっても高純度のものを得ることが困難であるとされている(非特許文献1)。   Boron easily reacts with oxygen and nitrogen at high temperatures and easily forms borides with various metals, so that it is difficult to obtain high purity by any method (Non-patent Document 1). ).

(1)に記載のホウ酸を活性金属で還元する方法については、「マグネシウム還元法」(非特許文献2)が知られている。当該方法は以下の通りである。ホウ素鉱物にHClを反応させ、ホウ素をホウ酸の形で抽出する。ホウ酸には正ホウ酸(H3BO3)、メタホウ酸(HBO2)、ピロホウ酸(H247)の3種類がある。正ホウ酸を373Kに加熱すると脱水反応でメタホウ酸が生成し、413Kに加熱すると脱水反応と共に縮合反応も起こりピロホウ酸が生成する。メタホウ酸、ピロホウ酸を413K以上に加熱すると無水ホウ酸(B23)が生成する。B23に対してMgを加え、約1273Kに加熱して還元すると、純度が90〜92%の褐色の無定形ホウ素が得られる。 As a method for reducing boric acid described in (1) with an active metal, a “magnesium reduction method” (Non-patent Document 2) is known. The method is as follows. The boron mineral is reacted with HCl and boron is extracted in the form of boric acid. There are three types of boric acid: normal boric acid (H 3 BO 3 ), metaboric acid (HBO 2 ), and pyroboric acid (H 2 B 4 O 7 ). When normal boric acid is heated to 373K, metaboric acid is generated by a dehydration reaction, and when heated to 413K, a condensation reaction occurs along with the dehydration reaction to generate pyroboric acid. When metaboric acid and pyroboric acid are heated to 413 K or more, anhydrous boric acid (B 2 O 3 ) is generated. When Mg is added to B 2 O 3 and heated to about 1273 K for reduction, brown amorphous boron having a purity of 90 to 92% is obtained.

得られたホウ素の化学的純度を更に上げる方法として、非特許文献2には「帯域精製法」が記載されている。これは、ホウ素原料棒を不活性ガス中で高周波を用いて加熱、あるいは真空中で電子ビームを用いて加熱して溶融して精製するという方法である。その他、「電解精製法」も採用できることが記載されている。   As a method for further increasing the chemical purity of the obtained boron, Non-Patent Document 2 describes a “zone purification method”. This is a method in which a boron raw material rod is heated in an inert gas using a high frequency, or heated by using an electron beam in a vacuum to be melted and purified. In addition, it is described that an “electrolytic purification method” can also be employed.

明石和夫、江上一郎、「溶融塩電解法による単体ボロンの製造」、東京大学生産技術研究所、生産研究 15(11), p427-435, 1963年Kazuo Akashi and Ichiro Egami, “Manufacture of simple boron by molten salt electrolysis”, Institute of Industrial Science, University of Tokyo, Production Research 15 (11), p427-435, 1963 、宍戸統悦、岡田繁、「ホウ素・ホウ化物の製造方法」、“ホウ素・ホウ化物および関連物質の基礎と応用”、シーエムシー出版、p153-155、2008年, Toshiaki Shishido, Shigeru Okada, "Methods for producing boron and borides", "Basics and applications of boron and borides and related substances", CMC Publishing, p153-155, 2008

従来、ホウ砂(Na247)や無水ホウ酸(B23)を活性金属で還元する方法では高純度のホウ素を得ることは困難であり、高純度のホウ素を得るには帯域溶融法等の複雑な操作が必要であり、コスト高となっていた。また、純度にも改善の余地が見られる。そこで、本発明は高純度の単体ホウ素を簡素な手順で製造可能な方法を提供することを課題とする。また、本発明は従来の製法では達成されていない高純度のホウ素を提供することを別の課題とする。 Conventionally, it has been difficult to obtain high-purity boron by a method of reducing borax (Na 2 B 4 O 7 ) or boric anhydride (B 2 O 3 ) with an active metal, and to obtain high-purity boron. A complicated operation such as a zone melting method is required, and the cost is high. There is also room for improvement in purity. Then, this invention makes it a subject to provide the method which can manufacture a high purity simple substance boron with a simple procedure. Another object of the present invention is to provide high-purity boron that has not been achieved by conventional manufacturing methods.

本発明者は上記課題を解決すべく鋭意検討を重ねたところ、無水ホウ酸(B23)を活性金属で還元する際、予め低温度で焼結工程を行うことで無水ホウ酸(B23)と活性金属の密着性が向上し、その後の還元反応が促進することを見出した。 The present inventor has conducted extensive studies to solve the above-mentioned problems. As a result, when reducing boric anhydride (B 2 O 3 ) with an active metal, a boric anhydride (B It was found that the adhesion between 2 O 3 ) and the active metal was improved and the subsequent reduction reaction was promoted.

上記の知見を基礎として完成した本発明は一側面において、無水ホウ酸(B23)を活性金属で還元することにより単体ホウ素を製造する方法であって、前記無水ホウ酸と活性金属を混合する工程1と、次いで、得られた混合物を200〜550℃の温度で1〜5時間焼結する工程2と、次いで、得られた焼結体を活性金属の融点から50℃以上高い温度に昇温して0.5〜2.0時間還元反応を行う工程3とを含む方法である。 The present invention completed on the basis of the above knowledge is, in one aspect, a method for producing simple boron by reducing boric anhydride (B 2 O 3 ) with an active metal, wherein the boric anhydride and the active metal are combined. Step 1 for mixing, Step 2 for sintering the obtained mixture at a temperature of 200 to 550 ° C. for 1 to 5 hours, and a temperature higher than the melting point of the active metal by 50 ° C. or more And a step 3 in which the reduction reaction is carried out for 0.5 to 2.0 hours.

本発明に係る方法の一実施形態においては、活性金属が単体カルシウム及び単体マグネシウムから選択される。   In one embodiment of the method according to the invention, the active metal is selected from elemental calcium and elemental magnesium.

本発明に係る方法の別の一実施形態においては、活性金属が単体カルシウムであり、還元反応を889〜1039℃で行う。   In another embodiment of the method according to the invention, the active metal is elemental calcium and the reduction reaction is carried out at 889-1039 ° C.

本発明に係る方法の更に別の一実施形態においては、活性金属が単体マグネシウムであり、還元反応を699〜849℃で行う。   In yet another embodiment of the method according to the invention, the active metal is elemental magnesium and the reduction reaction is carried out at 699-849 ° C.

本発明に係る方法の更に別の一実施形態においては、工程2及び工程3をグラファイト製の坩堝内で実施する。   In a further embodiment of the method according to the invention, steps 2 and 3 are carried out in a graphite crucible.

本発明は別の一側面において、不純物であるNa、Mg、Al、Si、Ca及びFeの合計濃度が5質量ppm以下である単体ホウ素である。   In another aspect, the present invention provides elemental boron in which the total concentration of impurities Na, Mg, Al, Si, Ca, and Fe is 5 mass ppm or less.

本発明に係る単体ホウ素の一実施形態においては、Naの濃度が0.1質量ppm未満である。   In one embodiment of elemental boron according to the present invention, the concentration of Na is less than 0.1 ppm by mass.

本発明に係る単体ホウ素の別の一実施形態においては、Mgの濃度が0.1質量ppm未満である。   In another embodiment of the elemental boron according to the present invention, the Mg concentration is less than 0.1 mass ppm.

本発明に係る単体ホウ素の更に別の一実施形態においては、Alの濃度が0.5質量ppm以下である。   In still another embodiment of the elemental boron according to the present invention, the concentration of Al is 0.5 mass ppm or less.

本発明に係る単体ホウ素の更に別の一実施形態においては、Siの濃度が1.0質量ppm以下である。   In still another embodiment of the elemental boron according to the present invention, the concentration of Si is 1.0 mass ppm or less.

本発明に係る単体ホウ素の更に別の一実施形態においては、Caの濃度が0.5質量ppm未満である。   In still another embodiment of the elemental boron according to the present invention, the concentration of Ca is less than 0.5 ppm by mass.

本発明に係る単体ホウ素の更に別の一実施形態においては、Li、Be、F、Na、Mg、P、Cl、K、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Br、Rb、Sr、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、I、Cs、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、Uの各濃度が検出限界未満である。   In yet another embodiment of the elemental boron according to the present invention, Li, Be, F, Na, Mg, P, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Each concentration of Th and U is below the detection limit.

本発明に係る単体ホウ素の更に別の一実施形態においては、Cの濃度が200質量ppm以下である。   In still another embodiment of the elemental boron according to the present invention, the concentration of C is 200 ppm by mass or less.

本発明に係る単体ホウ素の更に別の一実施形態においては、Oの濃度が300質量ppm以下である。   In still another embodiment of the elemental boron according to the present invention, the concentration of O is 300 mass ppm or less.

本発明によれば、無水ホウ酸(B23)を活性金属で還元する方法によって単体ホウ素を製造する際に、帯域溶融法等の複雑な操作を実施することなく、格段に純度の高い単体ホウ素が得られる。本発明にかかる単体ホウ素は、例えば、高純度が要求される電子デバイス材料として有用である。 According to the present invention, when producing simple boron by a method of reducing boric anhydride (B 2 O 3 ) with an active metal, the purity is remarkably high without performing a complicated operation such as a zone melting method. Single boron is obtained. The simple boron according to the present invention is useful, for example, as an electronic device material that requires high purity.

本発明に係る単体ホウ素の製造方法のフロー図の一例を示す。An example of the flowchart of the manufacturing method of the simple substance boron concerning this invention is shown. 本発明に係る単体ホウ素の製造方法を実施する際の昇温プロファイルの一例を示す。An example of the temperature rising profile at the time of implementing the manufacturing method of the elemental boron which concerns on this invention is shown.

本発明は、一側面において、無水ホウ酸(B23)を活性金属で還元することにより単体ホウ素を製造する方法を提供する。本発明に係る単体ホウ素製造方法の一実施形態において、前記無水ホウ酸と活性金属を混合する工程1と、次いで、得られた混合物を200〜550℃の温度で1〜5時時間焼結する工程2と、次いで、得られた焼結体を活性金属の融点から50℃以上高い温度に昇温して0.5〜2時間還元反応を行う工程3とを含む。 In one aspect, the present invention provides a method for producing elemental boron by reducing boric anhydride (B 2 O 3 ) with an active metal. In one embodiment of the simple boron production method according to the present invention, Step 1 of mixing boric anhydride and active metal, and then sintering the resulting mixture at a temperature of 200 to 550 ° C. for 1 to 5 hours. Step 2 and then Step 3 in which the obtained sintered body is heated to a temperature higher by 50 ° C. or more than the melting point of the active metal and subjected to a reduction reaction for 0.5 to 2 hours.

原料となる無水ホウ酸は、高純度の単体ホウ素を得る観点からは、できる限り高純度のものを使用することが好ましい。そのため、ガス成分であるC、N、O、S及びHを除く純度が99.9質量%(3N)以上のものを使用することが好ましく、99.99質量%(4N)以上のものを使用することがより好ましく、99.999質量%(5N)以上のものを使用することが更により好ましい。ここでいう純度は、GDMS(Glow Discharge Mass Spectrometry)法により測定された不純物濃度から算出した値とする。   From the viewpoint of obtaining high purity simple boron, it is preferable to use as high purity boric anhydride as the raw material as possible. Therefore, it is preferable to use those having a purity of 99.9% by mass (3N) or higher, excluding C, N, O, S and H which are gas components, and those having 99.99% by mass (4N) or higher are used. It is more preferable to use 99.999 mass% (5N) or more. The purity here is a value calculated from the impurity concentration measured by a GDMS (Glow Discharge Mass Spectrometry) method.

使用する無水ホウ酸の形状は特に制限はないが、粉末形状であることが好ましく、活性金属と均一に混合しやすくなる。例えば、D50(累積重量粒度分布で累積値が50%となる粒度)が100〜200μm程度の粉末を使用すればよい。   The form of boric anhydride to be used is not particularly limited, but is preferably a powder form, which facilitates uniform mixing with the active metal. For example, a powder having a D50 (particle size with a cumulative weight particle size distribution with a cumulative value of 50%) of about 100 to 200 μm may be used.

還元剤となる活性金属としては、上記無水ホウ酸に対して還元作用を有するものであれば特に制限は無いが、例えば、単体Ca、単体Mg、単体Ti、単体Li、単体Na、単体K、単体Rb、単体Be、単体Sr、単体Ba、単体Zr、単体Hf、単体希土類(単体Sc、単体Y、単体La、単体Ce、単体Pr、単体Nd、単体Pm、単体Sm、単体Eu、単体Gd、単体Tb、単体Dy、単体Ho、単体Er、単体Tm、単体Yb、単体Lu)、単体Zn、単体Alが挙げられる。これらの中でも、還元剤との分離が容易である点や経済性の観点からは、単体Ca、単Zn及び単体Mgが好ましい。これらは単独で使用することもでき、二種類以上を組み合わせて使用することもできる。   The active metal serving as a reducing agent is not particularly limited as long as it has a reducing action on the boric anhydride. For example, simple substance Ca, simple substance Mg, simple substance Ti, simple substance Li, simple substance Na, simple substance K, Single Rb, Single Be, Single Sr, Single Ba, Single Zr, Single Hf, Single Rare Earth (Single Sc, Single Y, Single La, Single Ce, Single Pr, Single Nd, Single Pm, Single Sm, Single Eu, Single Gd , Simple substance Tb, simple substance Dy, simple substance Ho, simple substance Er, simple substance Tm, simple substance Yb, simple substance Lu), simple substance Zn, and simple substance Al. Among these, simple Ca, simple Zn and simple Mg are preferable from the viewpoint of easy separation from the reducing agent and economical efficiency. These can also be used independently and can also be used in combination of 2 or more types.

高純度の単体ホウ素を得る観点からは、活性金属もできる限り高純度のものを使用することが好ましい。そのため、ガス成分であるC、N、O、S及びHを除く純度が99.9質量%(3N)以上のものを使用することが好ましく、99.99質量%(4N)以上のものを使用することがより好ましく、99.999質量%(5N)以上のものを使用することが更により好ましい。ここでいう純度は、GDMS(Glow Discharge Mass Spectrometry)法により測定された不純物濃度から算出した値とする。   From the viewpoint of obtaining high-purity elemental boron, it is preferable to use an active metal having a purity as high as possible. Therefore, it is preferable to use those having a purity of 99.9% by mass (3N) or higher, excluding C, N, O, S and H which are gas components, and those having 99.99% by mass (4N) or higher are used. It is more preferable to use 99.999 mass% (5N) or more. The purity here is a value calculated from the impurity concentration measured by a GDMS (Glow Discharge Mass Spectrometry) method.

使用する活性金属の形状は特に制限はないが、粉末形状であるのが無水ホウ酸と均一に混合しやすく、好ましい。例えば、D50(累積重量粒度分布で累積値が50%となる粒度)が10mm以下程度、典型的にはD50が5〜9mm程度の粒度の粉末を使用すればよい。   The form of the active metal to be used is not particularly limited, but a powder form is preferable because it can be easily mixed with boric anhydride evenly. For example, a powder having a particle size with a D50 (particle size with a cumulative weight particle size distribution with a cumulative value of 50%) of about 10 mm or less, typically with a D50 of about 5 to 9 mm may be used.

工程1では、前記無水ホウ酸と活性金属を混合する。混合方法に特段の制限はないが、コンタミネーション防止の観点から、Ar等の不活性雰囲気下で混合を行うことや、少なくとも混合物と接触する表面がpBN、Ta、グラファイト、表面が平滑な緻密質石英、表面が平滑な緻密質アルミナなど、原料と反応せず、コンタミの要因を発生しにくい耐熱性材料でできた容器内、典型的に全体がこれらの材料でできた容器内で混合することが好ましい。また、典型的には粉末状の酸化ホウ素と粉末状の活性金属を混合することで行うことができる。また、還元反応が促進されやすいので、撹拌などによって均一な混合物を作製することが好ましい。   In step 1, the boric anhydride and the active metal are mixed. Although there is no particular limitation on the mixing method, from the viewpoint of preventing contamination, mixing is performed in an inert atmosphere such as Ar, or at least the surface in contact with the mixture is pBN, Ta, graphite, and the surface is a dense dense surface. Mix in a container made of a heat-resistant material that does not react with the raw materials, such as quartz or dense alumina with a smooth surface and does not easily cause contamination, typically in a container made entirely of these materials. Is preferred. Moreover, it can typically carry out by mixing a powdery boron oxide and a powdery active metal. Further, since the reduction reaction is easily promoted, it is preferable to prepare a uniform mixture by stirring or the like.

また、両者の混合は反応当量に対して還元剤の量を若干過小にして行うことが純度の高い単体ホウ素を得る観点から好ましい。具体的には、CaまたはMgの物質量を反応当量に対して0.80倍〜0.98倍とすることが好ましく、0.9倍〜0.95倍とすることがより好ましい。   Moreover, it is preferable from the viewpoint of obtaining simple boron having a high purity that the mixing of both is performed with the amount of the reducing agent slightly less than the reaction equivalent. Specifically, the amount of Ca or Mg is preferably 0.80 to 0.98 times, more preferably 0.9 to 0.95 times the reaction equivalent.

工程2では、工程1で得られた混合物を焼結する。焼結することによって、無水ホウ酸と活性金属の密着性が向上し、その後の還元反応が促進されるという効果が得られ、純度の高い単体ホウ素を高い収量で製造することを可能にする。また、歩留まりの向上にも寄与する。焼結温度が低すぎると進行しないことから、焼結は混合物を180℃以上に加熱して実施する必要がある。焼結温度は180℃以上が好ましく、200℃以上がより好ましい。一方、焼結温度が高すぎると活性金属の揮発が促進され、有効な焼結体が得られないことから、焼結は混合物を650℃以下として実施する必要があり、600℃以下とするのが好ましく、550℃以下とするのがより好ましい。   In step 2, the mixture obtained in step 1 is sintered. By sintering, the adhesion between boric anhydride and the active metal is improved, and the subsequent reduction reaction is promoted. This makes it possible to produce single boron having a high purity in a high yield. It also contributes to improving yield. Since sintering does not proceed if the sintering temperature is too low, sintering must be performed by heating the mixture to 180 ° C. or higher. The sintering temperature is preferably 180 ° C. or higher, more preferably 200 ° C. or higher. On the other hand, if the sintering temperature is too high, volatilization of the active metal is promoted, and an effective sintered body cannot be obtained. Is preferable, and it is more preferable to set it as 550 degrees C or less.

また、焼結時間は、短すぎると焼結が十分に進行しないことから、1時間以上とするべきであり、1.5時間以上とするのが好ましい。一方で、焼結時間が長すぎると活性金属が揮発してしまうことから、5時間以下とするべきであり、4時間以下とするのが好ましい。   Moreover, since sintering will not fully advance when sintering time is too short, it should be 1 hour or more, and it is preferable to set it as 1.5 hours or more. On the other hand, if the sintering time is too long, the active metal volatilizes, so it should be 5 hours or less, and preferably 4 hours or less.

ここで、焼結時間とは、混合物が200〜550℃の温度範囲に滞在する時間を指す。従って、保持温度に到達する前後で当該温度範囲に滞在している場合は、その時間も考慮する。例えば、図2に示す昇温プロファイルの例においては、「Ca」のラインは昇温を開始してから32分後に200℃に到達し、その後、550℃まで昇温し、550℃で1時間保持された後、昇温を開始してから2時間30分後に更に温度上昇を示す。この場合、200〜550℃の温度範囲には合計で1時間58分滞在することから、焼結時間は1時間58分と計算される。また、「Mg」のラインは昇温を開始してから30分後に200℃に到達し、その後、200℃で1時間30分保持された後、更に昇温し、550℃の温度を超えるのに2時間2分かかるので、200〜550℃の温度範囲には合計で約3.5時間滞在することから、焼結時間は3時間32分である。   Here, the sintering time refers to the time during which the mixture stays in the temperature range of 200 to 550 ° C. Therefore, when staying in the temperature range before and after reaching the holding temperature, the time is also taken into consideration. For example, in the example of the temperature rise profile shown in FIG. 2, the “Ca” line reaches 200 ° C. 32 minutes after the start of the temperature rise, then rises to 550 ° C., and then at 550 ° C. for 1 hour. After being held, the temperature rises further after 2 hours and 30 minutes from the start of the temperature increase. In this case, since the total stay in the temperature range of 200 to 550 ° C. is 1 hour and 58 minutes, the sintering time is calculated as 1 hour and 58 minutes. In addition, the “Mg” line reaches 200 ° C. 30 minutes after the start of the temperature rise, and after that, after being held at 200 ° C. for 1 hour 30 minutes, the temperature is further raised to exceed the temperature of 550 ° C. Since it takes 2 hours and 2 minutes, the total temperature stays in the temperature range of 200 to 550 ° C. for about 3.5 hours, so the sintering time is 3 hours and 32 minutes.

また、焼結時に留意すべき事項としては、コンタミネーションを防止するために、Ar等の不活性雰囲気下で焼結を行うことや、少なくとも混合物と接触する表面がpBN、Ta、グラファイトなどのコンタミの要因を発生しにくい材料でできた焼結容器、典型的に全体がこれらの材料でできた焼結容器内で焼結することが好ましい。   In addition, as a matter to be noted during sintering, sintering is performed in an inert atmosphere such as Ar in order to prevent contamination, and at least the surface in contact with the mixture is contaminated with pBN, Ta, graphite, or the like. It is preferable to sinter in a sintering vessel made of a material that does not easily cause these factors, typically in a sintering vessel made entirely of these materials.

工程3では、得られた焼結体を還元して単体ホウ素を生成する。このときの還元反応は、例えば、還元剤として単体Caを用いたときは、B23+3Ca→2B+3CaOと表すことができる。還元反応を実施する際の混合物の温度は活性金属の種類に応じて異なるが、活性金属の融点から50〜200℃高い温度とすることが好ましく、活性金属の融点から70〜160℃高い温度とすることがより好ましい。この範囲よりも低温だと還元反応が十分に進行せず、また、この範囲よりも高温だと活性金属の揮発量が多くなって還元反応が進行しにくくなる他、容器内圧の上昇につながり危険である。還元反応の促進や安全性の観点から還元反応時の容器内の圧力は300〜500torr(弱減圧雰囲気)とすることが好ましい。例えば、活性金属として単体Caを使用するときは、還元反応は889〜1039℃で行うのが好ましく、899〜999℃で行うのがより好ましい。また、活性金属として単体Mgを使用するときは、還元反応は699〜849℃で行うのが好ましく、719〜809℃で行うのがより好ましい。 In step 3, the obtained sintered body is reduced to generate simple boron. The reduction reaction at this time can be expressed, for example, as B 2 O 3 + 3Ca → 2B + 3CaO when simple substance Ca is used as the reducing agent. Although the temperature of the mixture at the time of carrying out the reduction reaction varies depending on the type of active metal, it is preferably 50 to 200 ° C. higher than the melting point of the active metal, and 70 to 160 ° C. higher than the melting point of the active metal. More preferably. If the temperature is lower than this range, the reduction reaction does not proceed sufficiently. If the temperature is higher than this range, the volatilization amount of the active metal increases and the reduction reaction does not proceed easily. It is. From the viewpoint of promoting the reduction reaction and safety, the pressure in the container during the reduction reaction is preferably 300 to 500 torr (weakly reduced pressure atmosphere). For example, when elemental Ca is used as the active metal, the reduction reaction is preferably performed at 889 to 1039 ° C., more preferably at 899 to 999 ° C. Moreover, when using single-piece | unit Mg as an active metal, it is preferable to perform a reductive reaction at 699-849 degreeC, and it is more preferable to carry out at 719-809 degreeC.

還元反応時間は短すぎると還元が十分に進行しない一方で、長すぎると生成したBと還元材が反応して出来た酸化物からの汚染が増す可能性があることから、0.5〜2.0時間が好ましく、1.0〜1.5時間がより好ましい。ここで、本発明における還元反応時間とは混合物の温度が活性金属の融点から50℃以上高い温度領域に滞在している時間を指す。   When the reduction reaction time is too short, the reduction does not proceed sufficiently. On the other hand, when the reduction reaction time is too long, contamination from the oxide formed by the reaction between the produced B and the reducing material may increase. 0.0 hours are preferable, and 1.0 to 1.5 hours are more preferable. Here, the reduction reaction time in the present invention refers to the time during which the temperature of the mixture stays in a temperature region higher than the melting point of the active metal by 50 ° C. or more.

例えば、図2に示す昇温プロファイルの例においては、「Ca」のラインは昇温を開始してからCaの融点である839℃から50℃高い889℃に到達するのが昇温開始してから3時間28分後であり、その後、900℃まで昇温したのちに1時間保持されて、炉冷され、再び889℃に戻るのが昇温開始してから4時間32分後である。この場合、上述した還元反応時間の定義から、還元反応時間は1時間4分と計算される。「Mg」のラインは昇温を開始してからMgの融点である649℃から50℃高い699℃に到達するのが昇温開始してから4時間54分後であり、その後、800℃まで昇温したのちに1時間保持されて、炉冷され、再び699℃に戻るのが昇温開始してから6時間49分後である。この場合、上述した還元反応時間の定義から、還元反応時間は1時間55分と計算される。   For example, in the example of the temperature rise profile shown in FIG. 2, the temperature rise of the “Ca” line starts at 889 ° C., which is 50 ° C. higher than 839 ° C., which is the melting point of Ca. After 3 hours and 28 minutes, the temperature was raised to 900 ° C., held for 1 hour, cooled in the furnace, and returned to 889 ° C. again after 4 hours and 32 minutes from the start of the temperature rise. In this case, from the definition of the reduction reaction time described above, the reduction reaction time is calculated as 1 hour 4 minutes. In the “Mg” line, the temperature reaches 699 ° C., which is 50 ° C. higher than the melting point of Mg after 649 ° C., 4 hours and 54 minutes after the temperature starts, and then reaches 800 ° C. After the temperature rises, it is held for 1 hour, cooled in the furnace, and returned to 699 ° C. again after 6 hours 49 minutes from the start of the temperature rise. In this case, from the above-described definition of the reduction reaction time, the reduction reaction time is calculated as 1 hour 55 minutes.

また、還元反応もコンタミネーション防止の観点から焼結反応と同様の材質をもつ容器で実施することが望ましい。   Further, the reduction reaction is preferably carried out in a container having the same material as the sintering reaction from the viewpoint of preventing contamination.

焼結工程から還元工程への移行は温度を低下させることなく、連続的に実施することが好ましい。焼結工程の後、いったん室温まで低下させたり、反応容器から取り出したりすると、生産効率が落ちる他、予期せぬ副反応やコンタミネーションが起きる可能性があるからである。移行時の昇温速度は遅すぎると還元反応進行前に還元材の揮発が起きてしまい歩留まりの低下を招くことがある一方で、早すぎると原料やルツボが充分に加熱されずに反応が進行しない可能性があることから、1〜30℃/minとするのが好ましく、5〜30℃/minとするのがより好ましい。   The transition from the sintering process to the reduction process is preferably carried out continuously without lowering the temperature. This is because once the temperature is lowered to room temperature after the sintering step or taken out from the reaction vessel, production efficiency is reduced and unexpected side reactions and contamination may occur. If the rate of temperature rise at the time of transition is too slow, the reducing material may volatilize before the reduction reaction proceeds, leading to a decrease in yield, whereas if it is too early, the reaction proceeds without the raw material or crucible being sufficiently heated. Therefore, it is preferably 1 to 30 ° C./min, more preferably 5 to 30 ° C./min.

本発明によれば、上述した製造方法を採用することで、帯域溶融法等の複雑な操作を実施することなく、高純度の単体ホウ素を得ることができ、原料純度、熱処理条件、コンタミネーション防止を厳密に制御した好ましい製造条件によれば、不純物であるNa、Mg、Al、Si、Ca及びFeの合計濃度が5質量ppm以下である単体ホウ素を得ることができ、好ましくは当該合計濃度が3質量ppm以下である単体ホウ素を得ることができ、より好ましくは当該合計濃度が2質量ppm以下である単体ホウ素を得ることができる。   According to the present invention, by adopting the above-described manufacturing method, high purity single boron can be obtained without performing complicated operations such as zone melting method, raw material purity, heat treatment conditions, and contamination prevention. According to the preferable production conditions in which the concentration is strictly controlled, it is possible to obtain elemental boron in which the total concentration of impurities Na, Mg, Al, Si, Ca and Fe is 5 mass ppm or less, and preferably the total concentration is Single boron having 3 mass ppm or less can be obtained, and more preferably, single boron having a total concentration of 2 mass ppm or less can be obtained.

本発明により製造された単体ホウ素の一実施形態によれば、Naの濃度が0.1質量ppm未満である。   According to one embodiment of elemental boron produced according to the present invention, the concentration of Na is less than 0.1 ppm by weight.

本発明により製造された単体ホウ素の一実施形態によれば、Mgの濃度が0.1質量ppm未満である。   According to one embodiment of elemental boron produced according to the present invention, the concentration of Mg is less than 0.1 ppm by weight.

本発明により製造された単体ホウ素の一実施形態によれば、Alの濃度が0.5質量ppm以下である。   According to one embodiment of the elemental boron produced according to the present invention, the concentration of Al is 0.5 mass ppm or less.

本発明により製造された単体ホウ素の一実施形態によれば、Siの濃度が1.0質量ppm以下である。   According to one embodiment of the elemental boron produced according to the present invention, the concentration of Si is 1.0 mass ppm or less.

本発明により製造された単体ホウ素の一実施形態によれば、Caの濃度が0.5質量ppm未満である。   According to one embodiment of the elemental boron produced according to the present invention, the concentration of Ca is less than 0.5 ppm by mass.

本発明により製造された単体ホウ素の一実施形態によれば、Li、Be、F、Na、Mg、P、Cl、K、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Br、Rb、Sr、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、I、Cs、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、Uの各濃度が検出限界未満である。各元素の検出限界値は実施例に記載の表5中に示す。   According to one embodiment of elemental boron produced according to the present invention, Li, Be, F, Na, Mg, P, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Each concentration of Th and U is below the detection limit. The detection limit value of each element is shown in Table 5 described in the examples.

また、本発明に係る単体ホウ素は一実施形態において、Cの濃度を200質量ppm以下とすることができ、好ましくは150質量ppm以下とすることができ、より好ましくは100質量ppm以下とすることができ、例えば50〜200質量ppmとすることができ、典型的には90〜150質量ppmとすることができる。   In one embodiment, the elemental boron according to the present invention can have a C concentration of 200 ppm by mass or less, preferably 150 ppm by mass or less, more preferably 100 ppm by mass or less. For example, it can be 50-200 mass ppm, and typically can be 90-150 mass ppm.

また、本発明に係る単体ホウ素は一実施形態において、Oの濃度を300質量ppm以下とすることができ、好ましくは200質量ppm以下とすることができ、より好ましくは100質量ppm以下とすることができ、例えば50〜300質量ppmとすることができ、典型的には80〜200質量ppmとすることができる。   In addition, in one embodiment, the elemental boron according to the present invention can have an O concentration of 300 ppm by mass or less, preferably 200 ppm by mass or less, more preferably 100 ppm by mass or less. For example, 50 to 300 ppm by mass, and typically 80 to 200 ppm by mass.

本発明においては、ガス成分(C、N、O、S、H)以外の不純物濃度はGDMS(Glow Discharge Mass Spectrometry)法により測定することとする。酸素(O)、窒素(N)及び水素(H)の濃度は、不活性ガス融解―赤外線吸収法(実施例ではLECO社製のTCH−600を用いた。)よって測定する。炭素(C)及び硫黄(S)の濃度は、燃焼-赤外線吸収法(実施例ではLECO社製CS−444を用いた。)によって測定する。   In the present invention, impurity concentrations other than gas components (C, N, O, S, H) are measured by a GDMS (Glow Discharge Mass Spectrometry) method. The concentrations of oxygen (O), nitrogen (N) and hydrogen (H) are measured by inert gas melting-infrared absorption method (in the examples, TCH-600 manufactured by LECO was used). The concentration of carbon (C) and sulfur (S) is measured by a combustion-infrared absorption method (in the examples, LE-CO CS-444 was used).

高純度のホウ素は例えばケイ素半導体のドーピング剤やTMR素子の強磁性層に用いられるCo−Fe−Bスパッタリングターゲットの材料等として利用することができる。   High-purity boron can be used, for example, as a dopant for a silicon semiconductor or a material for a Co—Fe—B sputtering target used for a ferromagnetic layer of a TMR element.

以下、本発明及びその利点をよく理解するための実施例を示すが、本発明はこれらの実施例に限定されるものではない。
なお、ガス成分元素である炭素(C)、窒素(N)、酸素(O)、水素(O)及び硫黄(S)を除き、各元素濃度の分析値はGDMS(Glow Discharge Mass Spectrometry)法(V.G.Scientific社製 VG−9000)によって分析し、また、ガス成分元素の分析には酸素(O)、窒素(N)及び水素(H)についてLECO社製の酸素窒素分析装置(型式TCH−600)を、炭素(C)及び硫黄(S)についてLECO社製の炭素硫黄分析装置(型式CS−444)を使用した。
Examples for better understanding of the present invention and its advantages will be described below, but the present invention is not limited to these examples.
Except for carbon (C), nitrogen (N), oxygen (O), hydrogen (O), and sulfur (S), which are gas component elements, the analytical value of each element concentration is a GDMS (Glow Discharge Mass Spectrometry) method ( V. G. Scientific VG-9000), and for the analysis of gas component elements, oxygen (O), nitrogen (N) and hydrogen (H) were analyzed by LECO oxygen nitrogen analyzer (model TCH). -600) for carbon (C) and sulfur (S) using a carbon sulfur analyzer (model CS-444) manufactured by LECO.

(比較例1:焼結工程無し)
市販品でガス成分であるC、N、O、S及びHを除く純度が99.9質量%の無水ホウ酸の粉末(粒径:D50=150μm)を1000gと、反応当量の0.95倍となる1641gの社内で精製したガス成分であるC、N、O、S及びHを除く純度が99.9質量%の単体カルシウムの粉末(粒径:D50=5〜9mm)とをAr置換したグローブボックス内で均一となるように撹拌して混合した後、得られた混合物をグラファイト製の坩堝に装入した。坩堝内はAr雰囲気下として、昇温速度7.5℃/minで900℃まで加熱し、当該温度を1.0時間維持し、還元反応を行った。還元反応後は、Ar雰囲気を保持しながら炉冷した。この際の焼結時間は、先述した定義によれば約47分であった。この際の還元反応時間は先述した定義によれば1時間4分であった。不純物を塩酸に溶解した後、濾過及び純水により洗浄することで得られた単体ホウ素は244gであり、後述する発明例と比べ歩留まりが低かった。表1に、原料として使用した無水ホウ酸及び単体カルシウム、並びに製造された単体ホウ素の不純物元素の分析結果を示す。還元剤のCaが65質量ppmと多く残留し、B23との反応せずにルツボ材とCaが反応してしまうことにより、ルツボ材であるCによる汚染を受けていた。その結果、C濃度が540質量ppmとなった。また、焼結が不十分であることから、原料のB23の還元が不十分となり、Oが2500質量ppmと高くなっていた。
(Comparative example 1: no sintering process)
1000 g of boric anhydride powder (particle size: D50 = 150 μm) with a purity of 99.9% by mass, excluding C, N, O, S and H, which are commercially available gas components, 0.95 times the reaction equivalent 1641 g of in-house purified gas components C, N, O, S, and H, which are 99.9% by mass of pure calcium powder (particle size: D50 = 5-9 mm), were substituted with Ar. After stirring and mixing so as to be uniform in the glove box, the obtained mixture was charged into a graphite crucible. The inside of the crucible was placed in an Ar atmosphere and heated to 900 ° C. at a temperature rising rate of 7.5 ° C./min, and the temperature was maintained for 1.0 hour to carry out a reduction reaction. After the reduction reaction, the furnace was cooled while maintaining the Ar atmosphere. The sintering time at this time was about 47 minutes according to the definition described above. The reduction reaction time at this time was 1 hour 4 minutes according to the definition described above. After dissolving the impurities in hydrochloric acid, the amount of simple boron obtained by filtration and washing with pure water was 244 g, which was lower in yield than the invention examples described later. Table 1 shows the analysis results of impurity elements of boric anhydride and simple calcium used as raw materials, and simple boron produced. Reductant Ca remained as much as 65 mass ppm, and the crucible material and Ca reacted without reacting with B 2 O 3 , so that the crucible material C was contaminated. As a result, the C concentration became 540 mass ppm. Further, since the sintering is insufficient, the reduction of the material of B 2 O 3 is insufficient, O was as high as 2500 mass ppm.

Figure 2015182936
Figure 2015182936

(比較例2:還元剤Mg焼結工程無し)
市販品でガス成分であるC、N、O、S及びHを除く純度が99.9質量%の無水ホウ酸の粉末(粒径:D50=150μm)を1000gと、反応当量の0.95倍となる995gの社内で精製したガス成分であるC、N、O、S及びHを除く純度が99.9質量%の単体マグネシウムの粉末(粒径:D50=5〜9mm)とをAr置換したグローブボックス内で均一となるように撹拌して混合した後、得られた混合物をグラファイト製の坩堝に装入した。坩堝内はAr雰囲気下として、昇温速度7.5℃/minで800℃まで加熱し、当該温度を1.0時間維持し、還元反応を行った。還元反応後は、Ar雰囲気を保持しながら炉冷した。この際の焼結時間は、先述した定義によれば約47分であった。この際の還元反応時間は先述した定義によれば1時間33分であった。不純物を塩酸に溶解した後、濾過及び純水により洗浄することで得られた単体ホウ素は238gであり、後述する発明例と比べ歩留まりが低い。表2に、原料として使用した無水ホウ酸及び単体マグネシウム、並びに製造された単体ホウ素の不純物元素の分析結果を示す。還元剤のMgが74質量ppmと多く残留し、B23との反応せずにルツボ材とMgが反応してしまうことにより、ルツボ材であるCによる汚染を受けていた。その結果、C濃度が450質量ppmとなった。また、焼結が不十分であることから、原料のB23の還元が不十分となり、Oが3200質量ppmと高くなっていた。
(Comparative Example 2: No reducing agent Mg sintering step)
1000 g of boric anhydride powder (particle size: D50 = 150 μm) with a purity of 99.9% by mass, excluding C, N, O, S and H, which are commercially available gas components, 0.95 times the reaction equivalent 995 g of in-house refined gas components C, N, O, S and H excluding 99.9% by mass of pure magnesium powder (particle size: D50 = 5 to 9 mm) substituted with Ar After stirring and mixing so as to be uniform in the glove box, the obtained mixture was charged into a graphite crucible. The inside of the crucible was placed in an Ar atmosphere and heated to 800 ° C. at a temperature increase rate of 7.5 ° C./min, and the temperature was maintained for 1.0 hour to carry out a reduction reaction. After the reduction reaction, the furnace was cooled while maintaining the Ar atmosphere. The sintering time at this time was about 47 minutes according to the definition described above. The reduction reaction time at this time was 1 hour 33 minutes according to the definition described above. After dissolving the impurities in hydrochloric acid, the amount of simple boron obtained by filtration and washing with pure water is 238 g, which is lower in yield than the invention examples described later. Table 2 shows the analysis results of impurity elements of boric anhydride and simple magnesium used as raw materials, and simple boron produced. A large amount of Mg as a reducing agent remained at 74 ppm by mass, and the crucible material and Mg reacted without reacting with B 2 O 3 , thereby being contaminated by C as the crucible material. As a result, the C concentration was 450 mass ppm. Further, since the sintering is insufficient, the reduction of the material of B 2 O 3 is insufficient, O was as high as 3200 mass ppm.

Figure 2015182936
Figure 2015182936

(発明例1)
市販品でガス成分であるC、N、O、S及びHを除く純度が99.9質量%の無水ホウ酸の粉末(粒径:D50=150μm)を1000gと、反応当量の0.95倍となる1641gの社内で精製したガス成分であるC、N、O、S及びHを除く純度が99.9質量%の単体カルシウムの粉末(粒径:5〜9mmの範囲)とをAr置換したグローブボックス内で均一となるように撹拌して混合した後、得られた混合物をグラファイト製の坩堝に装入した。坩堝内はAr雰囲気下として、昇温速度6.1℃/minで550℃まで加熱し、当該温度を1時間維持して焼結した後、昇温速度5.83℃/minで900℃まで加熱し、1時間保持して還元反応を行った。このときの昇温プロファイルを図2(グラフ中、「Ca」の線を参照。)に示す。還元反応後は、Ar雰囲気を保持しながら炉のヒーター電源を切り炉冷した。この際の焼結時間は、先述した定義によれば1時間58分であった。この際の還元反応時間は、先述した定義によれば1時間4分であった。不純物を塩酸に溶解した後、濾過及び純水により洗浄することで得られた単体ホウ素は295gであった。表3に、原料として使用した無水ホウ酸及び単体カルシウム、並びに製造された単体ホウ素の不純物元素の分析結果を示す。得られた単体ホウ素は、比較例1に比べて純度が格段に高くなった。
(Invention Example 1)
1000 g of boric anhydride powder (particle size: D50 = 150 μm) with a purity of 99.9% by mass, excluding C, N, O, S and H, which are commercially available gas components, 0.95 times the reaction equivalent 1641 g of in-house purified gas components C, N, O, S, and H excluding 99.9% by mass of pure calcium powder (particle size: in the range of 5 to 9 mm) were replaced with Ar. After stirring and mixing so as to be uniform in the glove box, the obtained mixture was charged into a graphite crucible. The inside of the crucible is in an Ar atmosphere, heated to 550 ° C. at a temperature rising rate of 6.1 ° C./min, maintained at that temperature for 1 hour, and then sintered to 900 ° C. at a temperature rising rate of 5.83 ° C./min. The reduction reaction was carried out by heating and holding for 1 hour. The temperature rising profile at this time is shown in FIG. 2 (refer to the “Ca” line in the graph). After the reduction reaction, the heater power of the furnace was turned off and the furnace was cooled while maintaining the Ar atmosphere. The sintering time at this time was 1 hour 58 minutes according to the definition described above. The reduction reaction time at this time was 1 hour 4 minutes according to the definition described above. After dissolving the impurities in hydrochloric acid, 295 g of simple boron obtained by filtration and washing with pure water was obtained. Table 3 shows the analysis results of impurity elements of boric anhydride and simple calcium used as raw materials, and simple boron produced. The obtained single boron was remarkably higher in purity than Comparative Example 1.

Figure 2015182936
Figure 2015182936

(発明例2)
市販品でガス成分であるC、N、O、S及びHを除く純度が99.9質量%の無水ホウ酸の粉末(粒径:D50=150μm)を1000gと、反応当量の0.95倍となる995gの社内で精製したガス成分であるC、N、O、S及びHを除く純度が99.9質量%の単体マグネシウムの粉末(粒径:5〜9mmの範囲)とを、Ar置換したグローブボックス内で撹拌して均一となるように混合した後、得られた混合物をグラファイト製の坩堝に装入した。坩堝内はAr雰囲気下として、昇温速度400℃/hで200℃まで加熱し、当該温度で1時間30分維持して焼結した後、昇温速度171℃/h(2.85℃/min)で800℃まで加熱し、当該温度で1時間維持して還元反応を行った。このときの昇温プロファイルを図2(グラフ中、「Mg」の線を参照。)に示す。還元反応後は、Ar雰囲気を保持しながら炉のヒーター電源を切り、炉冷した。この際の焼結時間は、先述した定義によれば3時間32分であった。この際の還元反応時間は、先述した定義によれば1時間55分であった。不純物を塩酸に溶解した後、濾過及び純水により洗浄することで得られた単体ホウ素は295gであった。表4に、原料として使用した無水ホウ酸及び単体マグネシウム、並びに製造された単体ホウ素の不純物元素の分析結果を示す。得られた単体ホウ素は、比較例1に比べて純度が格段に上昇した。
(Invention Example 2)
1000 g of boric anhydride powder (particle size: D50 = 150 μm) with a purity of 99.9% by mass, excluding C, N, O, S and H, which are commercially available gas components, 0.95 times the reaction equivalent 995 g of in-house refined gas components C, N, O, S, and H with a purity of 99.9% by mass excluding C, N, O, S, and H (particle size: in the range of 5-9 mm) were replaced with Ar After stirring and mixing in a glove box, the resulting mixture was charged into a graphite crucible. The inside of the crucible was placed in an Ar atmosphere, heated to 200 ° C. at a heating rate of 400 ° C./h, maintained at that temperature for 1 hour and 30 minutes, sintered, and then heated at a heating rate of 171 ° C./h (2.85 ° C./h). min) to 800 ° C. and maintained at the temperature for 1 hour to carry out a reduction reaction. The temperature rise profile at this time is shown in FIG. 2 (see the “Mg” line in the graph). After the reduction reaction, the heater power of the furnace was turned off and the furnace was cooled while maintaining the Ar atmosphere. The sintering time at this time was 3 hours and 32 minutes according to the definition described above. The reduction reaction time at this time was 1 hour 55 minutes according to the above-mentioned definition. After dissolving the impurities in hydrochloric acid, 295 g of simple boron obtained by filtration and washing with pure water was obtained. Table 4 shows analysis results of impurity elements of boric anhydride and simple magnesium used as raw materials and simple boron produced. The purity of the obtained elemental boron was significantly increased as compared with Comparative Example 1.

Figure 2015182936
Figure 2015182936

(検出限界)
各元素の検出限界を表5に示す。

Figure 2015182936
(Detection limit)
Table 5 shows the detection limit of each element.
Figure 2015182936

Claims (14)

無水ホウ酸(B23)を活性金属で還元することにより単体ホウ素を製造する方法であって、前記無水ホウ酸と活性金属を混合する工程1と、次いで、得られた混合物を200〜550℃の温度で1〜5時間焼結する工程2と、次いで、得られた焼結体を活性金属の融点から50℃以上高い温度に昇温して0.5〜2.0時間還元反応を行う工程3とを含む方法。 A method for producing elemental boron by reducing boric anhydride (B 2 O 3 ) with an active metal, wherein Step 1 of mixing the boric anhydride and the active metal, and then the resulting mixture is 200- Step 2 of sintering at a temperature of 550 ° C. for 1 to 5 hours, and then reducing the temperature of the obtained sintered body to a temperature higher than the melting point of the active metal by 50 ° C. or more for 0.5 to 2.0 hours And performing step 3. 活性金属が単体カルシウム及び単体マグネシウムから選択される1種又は2種である請求項1に記載の方法。   The method according to claim 1, wherein the active metal is one or two selected from elemental calcium and elemental magnesium. 活性金属が単体カルシウムであり、還元反応を889〜1039℃で行う請求項1に記載の方法。   The process according to claim 1, wherein the active metal is elemental calcium and the reduction reaction is carried out at 889-1039 ° C. 活性金属が単体マグネシウムであり、還元反応を699〜849℃で行う請求項1に記載の方法。   The process according to claim 1, wherein the active metal is elemental magnesium and the reduction reaction is carried out at 699-849 ° C. 工程2及び工程3をグラファイト製の坩堝内で実施する請求項1〜4のいずれか一項に記載の方法。   The method as described in any one of Claims 1-4 which implements the process 2 and the process 3 in the crucible made from a graphite. 不純物であるNa、Mg、Al、Si、Ca及びFeの合計濃度が5質量ppm以下である単体ホウ素。   Elementary boron whose total concentration of impurities Na, Mg, Al, Si, Ca and Fe is 5 mass ppm or less. Naの濃度が0.1質量ppm未満である請求項6に記載の単体ホウ素。   The elemental boron according to claim 6, wherein the concentration of Na is less than 0.1 ppm by mass. Mgの濃度が0.1質量ppm未満である請求項6又は7に記載の単体ホウ素。   The elemental boron according to claim 6 or 7, wherein the Mg concentration is less than 0.1 ppm by mass. Alの濃度が0.5質量ppm以下である請求項6〜8の何れか一項に記載の単体ホウ素。   The elemental boron according to any one of claims 6 to 8, wherein the concentration of Al is 0.5 ppm by mass or less. Siの濃度が1.0質量ppm以下である請求項6〜9の何れか一項に記載の単体ホウ素。   The elemental boron according to any one of claims 6 to 9, wherein the concentration of Si is 1.0 mass ppm or less. Caの濃度が0.5質量ppm未満である請求項6〜10の何れか一項に記載の単体ホウ素。   The elemental boron according to any one of claims 6 to 10, wherein the concentration of Ca is less than 0.5 ppm by mass. Li、Be、F、Na、Mg、P、Cl、K、Ca、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Br、Rb、Sr、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、I、Cs、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、Uの各濃度が検出限界未満である請求項6〜11の何れか一項に記載の単体ホウ素。 Li, Be, F, Na, Mg, P, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, The concentrations of Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Th, and U are below the detection limit. The simple substance boron as described in any one of 11. Cの濃度が200質量ppm以下である請求項6〜12の何れか一項に記載の単体ホウ素。   The elemental boron according to any one of claims 6 to 12, wherein the concentration of C is 200 mass ppm or less. Oの濃度が300質量ppm以下である請求項6〜13の何れか一項に記載の単体ホウ素。   The elemental boron according to any one of claims 6 to 13, wherein the concentration of O is 300 mass ppm or less.
JP2014062648A 2014-03-25 2014-03-25 High purity boron and method for producing the same Active JP6177173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062648A JP6177173B2 (en) 2014-03-25 2014-03-25 High purity boron and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062648A JP6177173B2 (en) 2014-03-25 2014-03-25 High purity boron and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015182936A true JP2015182936A (en) 2015-10-22
JP6177173B2 JP6177173B2 (en) 2017-08-09

Family

ID=54349889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062648A Active JP6177173B2 (en) 2014-03-25 2014-03-25 High purity boron and method for producing the same

Country Status (1)

Country Link
JP (1) JP6177173B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078125A1 (en) * 2017-10-17 2019-04-25 株式会社トクヤマ Boron structure and boron powder
CN114275794A (en) * 2022-02-09 2022-04-05 山东重山光电材料股份有限公司 Preparation method of high-purity boric acid
CN116904839A (en) * 2023-09-12 2023-10-20 内蒙古永磊材料科技有限公司 High-purity ferroboron and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB833706A (en) * 1956-10-18 1960-04-27 United States Borax Chem Production of elementary boron by magnesium reduction
JPS6476909A (en) * 1987-09-18 1989-03-23 Mitsubishi Metal Corp High-purity spherical particle of si-b alloy and production thereof
JPH02164711A (en) * 1988-10-11 1990-06-25 Ethyl Corp Manufacture of high-purity boron
JPH0558621A (en) * 1991-09-04 1993-03-09 Japan Metals & Chem Co Ltd Production of amorphous boron powder
JP2002284518A (en) * 2001-03-27 2002-10-03 Japan Science & Technology Corp Boron crystal, boron compound crystal, and method for manufacturing them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB833706A (en) * 1956-10-18 1960-04-27 United States Borax Chem Production of elementary boron by magnesium reduction
JPS6476909A (en) * 1987-09-18 1989-03-23 Mitsubishi Metal Corp High-purity spherical particle of si-b alloy and production thereof
JPH02164711A (en) * 1988-10-11 1990-06-25 Ethyl Corp Manufacture of high-purity boron
JPH0558621A (en) * 1991-09-04 1993-03-09 Japan Metals & Chem Co Ltd Production of amorphous boron powder
JP2002284518A (en) * 2001-03-27 2002-10-03 Japan Science & Technology Corp Boron crystal, boron compound crystal, and method for manufacturing them

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078125A1 (en) * 2017-10-17 2019-04-25 株式会社トクヤマ Boron structure and boron powder
KR20200068662A (en) * 2017-10-17 2020-06-15 가부시키가이샤 도쿠야마 Boron structure and boron powder
JPWO2019078125A1 (en) * 2017-10-17 2020-11-05 株式会社トクヤマ Boron structure and boron powder
JP7089533B2 (en) 2017-10-17 2022-06-22 株式会社トクヤマ Boron structure and boron powder
KR102614601B1 (en) * 2017-10-17 2023-12-14 가부시키가이샤 도쿠야마 Boron structures and boron powder
CN114275794A (en) * 2022-02-09 2022-04-05 山东重山光电材料股份有限公司 Preparation method of high-purity boric acid
CN116904839A (en) * 2023-09-12 2023-10-20 内蒙古永磊材料科技有限公司 High-purity ferroboron and preparation method thereof
CN116904839B (en) * 2023-09-12 2023-11-24 内蒙古永磊材料科技有限公司 High-purity ferroboron and preparation method thereof

Also Published As

Publication number Publication date
JP6177173B2 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
Beaudry et al. Preparation and basic properties of the rare earth metals
JP5327409B2 (en) Recovery method of rare earth elements
CN103328663B (en) The manufacture method of highly pure lanthanum, highly pure lanthanum, comprise highly pure lanthanum sputtering target and take highly pure lanthanum as the metal gate film of main component
JP6406675B2 (en) Zinc recovery method from electric furnace steelmaking dust and zinc recovery device from electric furnace steelmaking dust
Bian et al. Extraction of rare earth elements from permanent magnet scraps by FeO–B 2 O 3 flux treatment
TW201315820A (en) Process for producing high-purity lanthanum, high-purity lanthanum, sputtering target comprising high-purity lanthanum, and metal gate film comprising high-purity lanthanum as main component
JP5497913B2 (en) Method for producing high purity lanthanum
JP6177173B2 (en) High purity boron and method for producing the same
Gupta et al. Oxide reduction processes in the preparation of rare-earth metals
KR101512949B1 (en) High-purity calcium and method of producing the same
CN111945000A (en) Metal purification method
JP6492657B2 (en) Recovery method of rare earth elements
Velashjerdi et al. Novel synthesis of ZrB2 powder by low temperature direct molten salt reaction
JP2015189996A (en) High-purity strontium and production method thereof
JP6281261B2 (en) Method for reducing boron content of rare earth oxides containing boron
JP6616756B2 (en) Method for purifying silicon carbide powder
JP6347225B2 (en) Recovery method of rare earth elements
JP2005519843A (en) Method for producing zirconium diboride powder
JPS61157646A (en) Manufacture of rare earth metal alloy
JP2015101493A (en) Conductive zinc oxide powder and method for producing the same
JP7067196B2 (en) Method for producing rare earth element oxalate
JP2014189837A (en) Method for manufacturing high-purity neodymium, high-purity neodymium, sputtering target comprising high-purity neodymium, and rare earth magnet using high-purity neodymium as component
Morsi et al. Start-up slags for producing magnesium from dolomite ore in a Magnethermic reactor
JP6179699B1 (en) Method for separating both from an alloy containing Dy and Tb
Tripathy et al. Preparation of high purity vanadium metal by silicothermic reduction of oxides followed by electrorefining in a fused salt bath

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170711

R150 Certificate of patent or registration of utility model

Ref document number: 6177173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250