JP2015101493A - Conductive zinc oxide powder and method for producing the same - Google Patents

Conductive zinc oxide powder and method for producing the same Download PDF

Info

Publication number
JP2015101493A
JP2015101493A JP2013241459A JP2013241459A JP2015101493A JP 2015101493 A JP2015101493 A JP 2015101493A JP 2013241459 A JP2013241459 A JP 2013241459A JP 2013241459 A JP2013241459 A JP 2013241459A JP 2015101493 A JP2015101493 A JP 2015101493A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide powder
aluminum
powder
conductive zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013241459A
Other languages
Japanese (ja)
Other versions
JP6201680B2 (en
Inventor
篤史 大野
Atsushi Ono
篤史 大野
信一 坂田
Shinichi Sakata
信一 坂田
浩 小田
Hiroshi Oda
浩 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2013241459A priority Critical patent/JP6201680B2/en
Publication of JP2015101493A publication Critical patent/JP2015101493A/en
Application granted granted Critical
Publication of JP6201680B2 publication Critical patent/JP6201680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an easy method for producing a conductive zinc oxide powder in which aluminum is solid-solved and which has a low volume resistivity and is reduced deterioration thereof with time, and to provide a new conductive zinc oxide powder obtained by the production method in which aluminum is solid solved.SOLUTION: There is provided: a method for producing a conductive zinc oxide powder by mixing a zinc oxide powder and an Al-N-H-based alloy having an imide group and/or an amide group, followed by firing at a temperature range of 900 to 1200°C in an inert atmosphere; and a conductive zinc oxide powder in which aluminum and nitrogen are solid-solved.

Description

本発明は、導電性酸化亜鉛粉末の簡便な製造方法、およびその簡便な製造方法で得られる、体積抵抗率が低く、体積抵抗率の経時劣化が少ない導電性酸化亜鉛粉末に関する。   The present invention relates to a simple method for producing a conductive zinc oxide powder, and to a conductive zinc oxide powder obtained by the simple production method and having a low volume resistivity and little deterioration of the volume resistivity with time.

現在、太陽電池などに用いられる透明電極膜の殆どにはアンチモンが固溶した酸化インジウムが用いられている。しかし、希少金属のインジウムを用いることによる費用の問題とアンチモンを用いることによる人体への影響を考慮し、費用・安全性の観点から、アンチモンが固溶した酸化インジウムに代わる透明電極膜用の材料が探索されてきた。   Currently, indium oxide in which antimony is dissolved is used for most of the transparent electrode films used in solar cells and the like. However, considering the cost problems caused by the use of rare metal indium and the effects on the human body due to the use of antimony, from the viewpoint of cost and safety, materials for transparent electrode films that replace indium oxide in which antimony is dissolved Has been explored.

このような背景から、現在では透明電極膜用の材料として、アルミニウムが固溶した酸化亜鉛が注目されている。酸化亜鉛が、人体に対する危険性が低く、安価で、透明電極膜として好ましいバンドギャップを有することと、アルミニウムが、亜鉛に近いイオン半径を持っているため酸化亜鉛の亜鉛サイトに置換固溶しやすく、また安価であることからである。   From such a background, zinc oxide in which aluminum is dissolved is now attracting attention as a material for the transparent electrode film. Zinc oxide has low risk to the human body, is inexpensive, has a favorable band gap as a transparent electrode film, and aluminum has an ionic radius close to that of zinc. Because it is cheap.

透明電極膜は、一般的には、焼結体ターゲットを用いたスパッタリング法による成膜によって形成される。導電性が良好な透明電極膜を得るには、導電性が良好な焼結体ターゲットが必要であり、そのためには、導電性が良好な粉末が必要である。そこで、アルミニウムが固溶した導電性酸化亜鉛粉末の導電性をはじめとする諸特性を向上させる研究が、近年盛んに行われている。   The transparent electrode film is generally formed by film formation by a sputtering method using a sintered body target. In order to obtain a transparent electrode film with good conductivity, a sintered body target with good conductivity is required, and for this purpose, powder with good conductivity is required. Therefore, researches for improving various properties such as conductivity of conductive zinc oxide powder in which aluminum is dissolved are actively conducted in recent years.

アルミニウムが固溶した導電性酸化亜鉛粉末は、通常、水溶性亜鉛化合物と固溶剤の水溶性の化合物との混合液を水酸化アルカリまたは炭酸アルカリなどの水溶液で中和し共沈析出物を得て、得られた共沈析出物を洗浄、乾燥後、還元雰囲気中で加熱焼成する方法によって製造される。   Conductive zinc oxide powder in which aluminum is dissolved is usually obtained by neutralizing a mixed solution of a water-soluble zinc compound and a water-soluble compound of a solid solvent with an aqueous solution such as alkali hydroxide or alkali carbonate to obtain a coprecipitate precipitate. Then, the obtained coprecipitate precipitate is washed, dried, and then heated and fired in a reducing atmosphere.

例えば特許文献1には、次のような、アルミニウムが固溶した導電性酸化亜鉛粉末の製造方法が記載されている。はじめに、酸化亜鉛粉末と、崩壊剤として作用する重炭酸水素アンモニウム粉末とを水溶液中で反応させて塩基性炭酸亜鉛を生成させ、得られた塩基性炭酸亜鉛を熟成することにより結晶成長させる。次に、結晶成長させた塩基性炭酸亜鉛の水分散液と、硫酸アルミニウム水溶液とを混合して熟成し、生成した固形物を濾取する。そして、得られた固形物を乾燥し、仮焼した後に、更に水素雰囲気下で還元焼成し、得られた焼成物を解砕して導電性酸化亜鉛粉末を製造する方法である。   For example, Patent Document 1 describes a method for producing a conductive zinc oxide powder in which aluminum is dissolved as follows. First, a zinc oxide powder and an ammonium bicarbonate powder acting as a disintegrant are reacted in an aqueous solution to produce basic zinc carbonate, and the resulting basic zinc carbonate is aged to grow crystals. Next, an aqueous dispersion of basic zinc carbonate that has been crystal-grown and an aqueous aluminum sulfate solution are mixed and aged, and the resulting solid matter is collected by filtration. Then, after the obtained solid is dried and calcined, it is further reduced and fired in a hydrogen atmosphere, and the obtained fired product is crushed to produce a conductive zinc oxide powder.

また、特許文献2には、次のような、アルミニウムが固溶した導電性酸化亜鉛粉末の製造方法が記載されている。はじめに、崩壊剤として作用する炭酸ナトリウムの水溶液に、硫酸亜鉛および硫酸アルミニウムの水溶液を徐々に滴下して反応させ、沈殿物を生成させる。次に、生成した沈殿物を洗浄した後、固液分離により沈殿物を分離し、乾燥する。そして、乾燥した沈殿物を粉砕した後、水素ガスおよび水蒸気を含む還元雰囲気中で焼成し、得られた凝集体を粉砕して導電性酸化亜鉛粉末を製造する方法である。   Patent Document 2 describes the following method for producing a conductive zinc oxide powder in which aluminum is dissolved. First, an aqueous solution of zinc sulfate and aluminum sulfate is gradually dropped and reacted with an aqueous solution of sodium carbonate that acts as a disintegrant to form a precipitate. Next, after the produced precipitate is washed, the precipitate is separated by solid-liquid separation and dried. Then, after the dried precipitate is pulverized, it is fired in a reducing atmosphere containing hydrogen gas and water vapor, and the resulting aggregate is pulverized to produce a conductive zinc oxide powder.

また、特許文献3には、硫酸アルミニウム、硝酸アルミニウムまたは塩化アルミニウムを賦活剤(アルミニウム源)に用いた、次のような、アルミニウムが固溶した導電性酸化亜鉛粉末の製造方法が記載されている。はじめに、これらアルミニウム源のいずれかを溶解させた水溶液と、崩壊剤として作用する重炭酸アンモニウム、炭酸アンモニウム、尿素、または硝酸アンモニウムを溶解させた水溶液とを混合する。得られた混合液を酸化亜鉛の水分散液に投入し、昇温した後、アエロジルを加えて撹拌する。撹拌終了後に濾過・水洗し、乾燥後、還元雰囲気中で加熱処理して、導電性酸化亜鉛粉末を製造する方法である。   Patent Document 3 describes a method for producing a conductive zinc oxide powder in which aluminum is dissolved as follows, using aluminum sulfate, aluminum nitrate or aluminum chloride as an activator (aluminum source). . First, an aqueous solution in which any one of these aluminum sources is dissolved is mixed with an aqueous solution in which ammonium bicarbonate, ammonium carbonate, urea, or ammonium nitrate acting as a disintegrant is dissolved. The obtained mixed liquid is put into an aqueous dispersion of zinc oxide, and after raising the temperature, Aerosil is added and stirred. This is a method for producing a conductive zinc oxide powder by filtering, washing with water after completion of stirring, drying and then heat-treating in a reducing atmosphere.

特許第4393460号公報Japanese Patent No. 4393460 特開2012−62219号公報JP 2012-62219 A 特開平1−126228号公報JP-A-1-126228 特許第2707325号公報Japanese Patent No. 2707325

Lithium aluminum amide, LiAl(NH2)4 - preparationn, x-ray study, IR spectrum, and thermal decomposition Zeitschrift fuer Anorganische und Allgemeine Chemie (1985), 531, 125-39.Lithium aluminum amide, LiAl (NH2) 4-preparationn, x-ray study, IR spectrum, and thermal decomposition Zeitschrift fuer Anorganische und Allgemeine Chemie (1985), 531, 125-39. Optical investigations on the annealing behavior of gallium‐ and nitrogen-implanted ZnO, JOUNAL of APPLIED PHYSICS, VOLUME 95,NUMBER 7Optical investigations on the annealing behavior of gallium‐ and nitrogen-implanted ZnO, JOUNAL of APPLIED PHYSICS, VOLUME 95, NUMBER 7

以上のように、アルミニウムが固溶した導電性酸化亜鉛粉末の製造は、通常、亜鉛塩とアルミニウム塩の溶液を調製する工程、崩壊剤を用いて亜鉛の結晶を崩壊する工程、亜鉛とアルミニウムを含む沈殿物を生成させる工程、得られた沈殿物を洗浄する工程、洗浄後の沈殿物を乾燥する工程、および乾燥後の沈殿物を焼成する工程を必要とする。亜鉛にアルミニウムを固溶しやすくするための崩壊剤を必要とすること、従来のアルミニウム源が酸化亜鉛との反応性が低く、反応を促進するための助剤を必要とすること、アルミニウム源と亜鉛源を均一に混合するため水溶液中での混合が必須で、その後の水洗・乾燥などの工程を必要とすること、焼成の雰囲気に還元性ガスを用いる必要があることなどから、通常、アルミニウムが固溶した酸化亜鉛粉末の製造工程は複雑で、その製造には時間とコストを要している。   As described above, the production of a conductive zinc oxide powder in which aluminum is dissolved is usually a step of preparing a solution of a zinc salt and an aluminum salt, a step of disintegrating zinc crystals using a disintegrant, and zinc and aluminum. The process which produces | generates the deposit containing, the process of wash | cleaning the obtained precipitate, the process of drying the precipitate after washing | cleaning, and the process of baking the precipitate after drying are required. That a disintegrating agent is required to facilitate dissolution of aluminum in zinc, that the conventional aluminum source has low reactivity with zinc oxide, and that an auxiliary agent is required to accelerate the reaction, In order to mix the zinc source uniformly, mixing in an aqueous solution is essential, and subsequent steps such as washing and drying are required, and reducing gas must be used for the firing atmosphere. The manufacturing process of zinc oxide powder in which is dissolved is complicated, and its manufacturing requires time and cost.

また、以上のような従来の製造方法により製造された、アルミニウムが固溶した従来の導電性酸化亜鉛粉末は、そのままでは、室温の大気雰囲気下では体積抵抗率が時間経過と共に大きくなるという特性上の課題も有している。従来のアルミニウムが固溶した導電性酸化亜鉛粉末の体積抵抗率が経時変化する原因として考えられるのは酸素欠損である。従来の導電性酸化亜鉛粉末は、還元性ガス雰囲気中で焼成して製造されることに起因して、酸素欠損を持つため、アルミニウムの固溶による導電機構以外に、酸素欠損による導電機構を有する。導電性酸化亜鉛粉末の酸素欠損は、室温であっても大気暴露によって減少しやすいので、従来の導電性酸化亜鉛粉末の体積抵抗率は大気雰囲気下で時間経過と共に高くなると考えられる。   In addition, the conventional conductive zinc oxide powder produced by the conventional manufacturing method as described above, in which aluminum is dissolved, as it is, has a characteristic that the volume resistivity increases with time in an air atmosphere at room temperature. It also has the problem of. It is oxygen deficiency that can be considered as a cause of the time-dependent change in volume resistivity of conductive zinc oxide powder in which conventional aluminum is dissolved. Conventional conductive zinc oxide powder has an oxygen deficiency due to being manufactured by firing in a reducing gas atmosphere, and therefore has a conduction mechanism due to oxygen deficiency in addition to a conduction mechanism due to solid solution of aluminum. . Since the oxygen deficiency of the conductive zinc oxide powder is likely to be reduced by exposure to the atmosphere even at room temperature, the volume resistivity of the conventional conductive zinc oxide powder is considered to increase with time in the air atmosphere.

このような体積抵抗率の経時劣化を抑制する方法として、特許文献4には、金属の水溶性金属化合物を含有する溶液とアルカリ性水溶液との反応を、反応系のpHが6〜12.5の範囲の所定のpH値になるように両溶液を並行添加して、生成した共沈物を還元雰囲気中で焼成する、アルミニウムが固溶した酸化亜鉛粉末の製造方法が開示されている。この製造方法は、酸化亜鉛へのアルミニウムの固溶割合を大きくできるので、導電性への酸素欠損の影響を相対的に低減させることができ、体積抵抗率の経時劣化の抑制に一定の効果があると考えられる。しかし、原料溶液のpHを厳密に調整しながら混合することが必要で、この製造工程は、複雑なことに加えて、管理が困難な工程となる。   As a method for suppressing such deterioration of volume resistivity over time, Patent Document 4 discloses a reaction between a solution containing a metal water-soluble metal compound and an alkaline aqueous solution, wherein the pH of the reaction system is 6 to 12.5. A method for producing zinc oxide powder in which aluminum is dissolved is disclosed, in which both solutions are added in parallel so as to have a predetermined pH value in the range, and the resulting coprecipitate is fired in a reducing atmosphere. Since this manufacturing method can increase the solid solution ratio of aluminum in zinc oxide, it can relatively reduce the influence of oxygen deficiency on conductivity, and has a certain effect on suppressing the temporal deterioration of volume resistivity. It is believed that there is. However, it is necessary to mix while strictly adjusting the pH of the raw material solution, and this manufacturing process is complicated and difficult to manage.

従来、アルミニウムが固溶した酸化亜鉛粉末が、以上のような複雑な工程によって製造されているのは、簡便な方法、例えば、酸化亜鉛と、従来のアルミニウム源とを混合し焼成する方法では、実用的な導電性酸化亜鉛粉末を得ることができないからである。従来のアルミニウム源を用いる以上、このような簡便な方法で得られる導電性酸化亜鉛粉末は、実用に足る低い体積抵抗率を示さないか、あるいは室温の大気雰囲気下でも時間経過に伴う体積抵抗率の上昇が特に顕著になる。酸化亜鉛と従来のアルミニウム源とを混合し焼成するだけの簡便な製造方法では、得られる酸化亜鉛粉末にアルミニウムを固溶させることが困難であることに加えて、特に酸素欠損が生じやすいからと推察される。場合によっては、酸素欠損のみがキャリアーとなって、得られる導電性酸化亜鉛粉末が、製造直後に一時的に低い体積抵抗率を示すこともあるが、大気雰囲気では、時間経過により酸素欠損が徐々に減少し、体積抵抗率が高くなるものと推察される。   Conventionally, zinc oxide powder in which aluminum is dissolved is manufactured by the complicated process as described above. For example, in a simple method, for example, a method of mixing and baking zinc oxide and a conventional aluminum source, This is because a practical conductive zinc oxide powder cannot be obtained. As long as a conventional aluminum source is used, the conductive zinc oxide powder obtained by such a simple method does not exhibit a practically low volume resistivity, or volume resistivity over time even in an air atmosphere at room temperature. The rise is particularly noticeable. In a simple manufacturing method in which zinc oxide and a conventional aluminum source are simply mixed and fired, it is difficult to dissolve aluminum in the obtained zinc oxide powder, and oxygen deficiency is particularly likely to occur. Inferred. In some cases, only oxygen vacancies serve as carriers, and the resulting conductive zinc oxide powder may temporarily exhibit a low volume resistivity immediately after production. However, in the air atmosphere, oxygen vacancies gradually disappear over time. It is estimated that the volume resistivity increases and the volume resistivity increases.

そこで本発明は、体積抵抗率が低く、その経時劣化が少ない、アルミニウムが固溶した導電性酸化亜鉛粉末の簡便な製造方法と、その製造方法により得られる、新規な、アルミニウムが固溶した酸化亜鉛粉末を提供することを目的とする。   Accordingly, the present invention provides a simple method for producing a conductive zinc oxide powder having a low volume resistivity and little deterioration over time, and a solid solution of aluminum, and a novel aluminum solid solution oxidation obtained by the production method. An object is to provide zinc powder.

以上の課題に鑑みて、本発明者らは鋭意検討した結果、アルミニウム源としてイミド基および/またはアミド基を含有するAl−N−H系化合物粉末を用いると、酸化亜鉛粉末とアルミニウムイミド粉末とを混合し、不活性雰囲気中で焼成する簡便な製造方法によっても、すなわち、崩壊剤や複雑な工程を必要としない製造方法によっても、多くのアルミニウムを酸化亜鉛に固溶でき、体積抵抗率が低い導電性酸化亜鉛粉末を製造できることを突き止めた。さらに、この製造方法により得られた、アルミニウムが固溶した酸化亜鉛粉末は、特定の割合の窒素も併せて固溶した、新規な導電性酸化亜鉛粉末であり、体積抵抗率の経時変化が極めて少ないことを突き止め、本発明にいたった。   In view of the above problems, the present inventors have conducted intensive studies. As a result, when an Al—N—H compound powder containing an imide group and / or an amide group is used as an aluminum source, zinc oxide powder and aluminum imide powder are used. Even with a simple manufacturing method that mixes and fires in an inert atmosphere, that is, a manufacturing method that does not require a disintegrant or a complicated process, a large amount of aluminum can be dissolved in zinc oxide, and the volume resistivity can be reduced. It has been found that low conductive zinc oxide powder can be produced. Furthermore, the zinc oxide powder in which aluminum is solid solution obtained by this production method is a novel conductive zinc oxide powder in which a specific proportion of nitrogen is also solid dissolved, and the volume resistivity changes with time. I found out that there was little, and came to the present invention.

すなわち本発明は、酸化亜鉛粉末とイミド基および/またはアミド基を含有するAl−N−H系化合物粉末とを混合し、不活性雰囲気中、900〜1200℃の範囲で焼成することを特徴とする導電性酸化亜鉛粉末の製造方法に関する。   That is, the present invention is characterized in that zinc oxide powder and Al—N—H compound powder containing imide group and / or amide group are mixed and fired in the range of 900 to 1200 ° C. in an inert atmosphere. The present invention relates to a method for producing conductive zinc oxide powder.

また本発明は、前記酸化亜鉛粉末と該酸化亜鉛粉末に対して、アルミニウム換算で0.5mol%〜10mol%の割合の、イミド基および/またはアミド基を含有するAl−N−H系化合物粉末とを混合することを特徴とする前記導電性酸化亜鉛粉末の製造方法に関する。   The present invention also provides an Al—N—H-based compound powder containing an imide group and / or an amide group in a ratio of 0.5 mol% to 10 mol% in terms of aluminum based on the zinc oxide powder and the zinc oxide powder. It is related with the manufacturing method of the said electroconductive zinc oxide powder characterized by mixing these.

また本発明は、前記酸化亜鉛粉末と該酸化亜鉛粉末に対して、アルミニウム換算で2mol%〜10mol%の割合の、前記イミド基および/またはアミド基を含有するAl−N−H系化合物粉末とを混合することを特徴とする前記導電性酸化亜鉛粉末の製造方法に関する。   In addition, the present invention provides the zinc oxide powder and an Al—N—H-based compound powder containing the imide group and / or amide group at a ratio of 2 mol% to 10 mol% in terms of aluminum based on the zinc oxide powder. It is related with the manufacturing method of the said electroconductive zinc oxide powder characterized by mixing.

また本発明は、前記イミド基および/またはアミド基を含有するAl−N−H系化合物粉末の炭素不純物濃度が質量基準で2%以下であることを特徴とする前記導電性酸化亜鉛粉末の製造方法に関する。   The present invention also provides the production of the conductive zinc oxide powder, wherein the carbon impurity concentration of the Al—N—H compound powder containing the imide group and / or amide group is 2% or less on a mass basis. Regarding the method.

また本発明は、アルミニウムおよび窒素が固溶していることを特徴とする導電性酸化亜鉛粉末に関する。   The present invention also relates to a conductive zinc oxide powder characterized by solid solution of aluminum and nitrogen.

また本発明は、アルミニウムが、酸化亜鉛に対して0.01質量%〜1.00質量%の割合で固溶していることを特徴とする前記導電性酸化亜鉛粉末に関する。   The present invention also relates to the conductive zinc oxide powder, wherein aluminum is dissolved in a proportion of 0.01% by mass to 1.00% by mass with respect to zinc oxide.

また本発明は、窒素が、酸化亜鉛に対して0.02〜0.40質量%の割合で固溶していることを特徴とする前記導電性酸化亜鉛粉末に関する。   The present invention also relates to the conductive zinc oxide powder, wherein nitrogen is solid-dissolved in a proportion of 0.02 to 0.40% by mass with respect to zinc oxide.

また本発明は、アルミニウムが、酸化亜鉛に対して0.3質量%〜1.00質量%の割合で固溶し、窒素が、酸化亜鉛に対して0.1質量%〜0.40質量%の割合で固溶していることを特徴とする前記導電性酸化亜鉛粉末に関する。   In the present invention, aluminum is solid-solved in a proportion of 0.3% to 1.00% by mass with respect to zinc oxide, and nitrogen is 0.1% to 0.40% by mass with respect to zinc oxide. It is related with the said electroconductive zinc oxide powder characterized by the above-mentioned.

また本発明は、比表面積が3.00m/g〜5.00m/gであり、体積抵抗率が100Ω・cm以下であることを特徴とする前記導電性酸化亜鉛粉末に関する。 The present invention has a specific surface area of 3.00m 2 /g~5.00m 2 / g, related to the electroconductive zinc oxide powder, wherein a volume resistivity of not more than 100 [Omega · cm.

本発明によれば、体積抵抗率が低く、その経時変化が少ない、実用的な、アルミニウムが固溶した導電性酸化亜鉛粉末の簡便な製造方法を提供することができる。また、その製造方法により得られる、アルミニウムと窒素とが共に固溶した新規な導電性酸化亜鉛粉末を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the simple manufacturing method of the electroconductive zinc oxide powder with which the volume resistivity is low and there are few the time-dependent changes with which aluminum was dissolved can be provided. Moreover, the novel electroconductive zinc oxide powder in which both aluminum and nitrogen obtained by the manufacturing method can be provided.

実施例1〜4の導電性酸化亜鉛粉末のX線回折図である。It is an X-ray diffraction pattern of the electroconductive zinc oxide powder of Examples 1-4. 実施例1の導電性酸化亜鉛粉末のNMRスペクトル図である。2 is an NMR spectrum diagram of the conductive zinc oxide powder of Example 1. FIG. 実施例1の導電性酸化亜鉛粉末のラマンスペクトル図である。2 is a Raman spectrum diagram of conductive zinc oxide powder of Example 1. FIG. 比較例2で得られた、焼成後の坩堝の固着物のX線回折図である。4 is an X-ray diffraction pattern of a fixed material of a crucible after firing, obtained in Comparative Example 2. FIG. 比較例3〜6の導電性酸化亜鉛粉末のX線回折図である。It is an X-ray diffraction pattern of the electroconductive zinc oxide powder of Comparative Examples 3-6. 比較例3の導電性酸化亜鉛粉末のNMRスペクトル図である。4 is an NMR spectrum diagram of conductive zinc oxide powder of Comparative Example 3. FIG. 比較例3の導電性酸化亜鉛粉末のラマンスペクトル図である。4 is a Raman spectrum diagram of conductive zinc oxide powder of Comparative Example 3. FIG. 比較例4の導電性酸化亜鉛粉末のNMRスペクトル図である。4 is an NMR spectrum diagram of a conductive zinc oxide powder of Comparative Example 4. FIG. 比較例4の導電性酸化亜鉛粉末のラマンスペクトル図である。6 is a Raman spectrum diagram of conductive zinc oxide powder of Comparative Example 4. FIG. 比較例5の導電性酸化亜鉛粉末のNMRスペクトル図である。6 is an NMR spectrum diagram of conductive zinc oxide powder of Comparative Example 5. FIG. 比較例5の導電性酸化亜鉛粉末のラマンスペクトル図である。6 is a Raman spectrum diagram of conductive zinc oxide powder of Comparative Example 5. FIG. 比較例6の導電性酸化亜鉛粉末のNMRスペクトル図である。4 is an NMR spectrum diagram of conductive zinc oxide powder of Comparative Example 6. FIG. 比較例6の導電性酸化亜鉛粉末のラマンスペクトル図である。6 is a Raman spectrum diagram of conductive zinc oxide powder of Comparative Example 6. FIG. 実施例1、比較例3〜6の導電性酸化亜鉛粉末の蛍光スペクトル図である。It is a fluorescence spectrum figure of the electroconductive zinc oxide powder of Example 1 and Comparative Examples 3-6.

はじめに、本発明の導電性酸化亜鉛粉末の製造方法について説明する。   First, the manufacturing method of the electroconductive zinc oxide powder of this invention is demonstrated.

本発明の導電性酸化亜鉛粉末の製造方法は、酸化亜鉛粉末と、イミド基および/またはアミド基を含有するAl−N−H系化合物粉末(以下、Al−N−H系化合物粉末と記す)とを混合し、不活性雰囲気中、900〜1200℃の範囲で焼成する導電性酸化亜鉛粉末の製造方法である。   The method for producing a conductive zinc oxide powder of the present invention includes a zinc oxide powder and an Al—N—H compound powder containing an imide group and / or an amide group (hereinafter referred to as an Al—N—H compound powder). Are mixed and fired in the range of 900 to 1200 ° C. in an inert atmosphere.

本発明に用いる酸化亜鉛粉末は特に限定されるものではなく、例えば、亜鉛を溶融させ蒸発させて気相で酸化させるフランス法、亜鉛鉱石を仮焼し還元した後酸化するアメリカ法等の、公知の方法によって製造された酸化亜鉛粉末を使用することができる。特に好ましいのはフランス法により製造された酸化亜鉛粉末を使用することである。フランス法で製造された酸化亜鉛粉末はアメリカ法で製造された酸化亜鉛粉末に比べて、粒径が均一であり、また純度も高いからである。   The zinc oxide powder used in the present invention is not particularly limited. For example, the French method in which zinc is melted and evaporated to be oxidized in the gas phase, the American method in which zinc ore is calcined and reduced and then oxidized is known. Zinc oxide powder produced by the above method can be used. Particular preference is given to using zinc oxide powder produced by the French method. This is because the zinc oxide powder produced by the French method has a uniform particle size and higher purity than the zinc oxide powder produced by the American method.

本発明に用いるAl−N−H系化合物粉末は、Al元素、N元素、H元素からなり、イミド基(−NH)および/またはアミド基(−NH)を含有し、これらの置換基が、アルミニウム原子に一つ以上結合している化合物からなる粉末である。本発明に用いるAl−N−H系化合物粉末は、イミド基および/またはアミド基を含有していれば、これら以外の基を含有していても良い。例えば、イミド基のみを持つAl(NH)、アミド基のみをもつAl(NH)に加えて、Al(C)(NH)のような化合物であっても良い。また、イミド基とアミド基のいずれもがアルミニウム原子に一つ以上結合していれば、イミド基とアミド基とを共に含有する化合物でも良い。 The Al—N—H-based compound powder used in the present invention is composed of an Al element, an N element, and an H element, and contains an imide group (—NH) and / or an amide group (—NH 2 ). A powder composed of a compound bonded to one or more aluminum atoms. The Al—N—H compound powder used in the present invention may contain groups other than these as long as it contains an imide group and / or an amide group. For example, Al 2 (NH) 3 having only an imide group, in addition to Al (NH) 3 with only amide group may be a compound such as Al (C 2 H 5) ( NH). A compound containing both an imide group and an amide group may be used as long as at least one of the imide group and the amide group is bonded to an aluminum atom.

本発明に用いるAl−N−H系化合物粉末として特に好ましいのは、密閉した反応容器中において、トリエチルアルミニウム(Al(C)ヘキサン(C14)溶液とアンモニアとを、デカン(C1022)溶媒で反応させた後、デカンを留去することにより得られるAl−N−CH系化合物粉末を、アンモニア流通下で加熱して得られる、イミド基を含有するAl−N−H系化合物粉末である。ここで、Al−N−CH系化合物粉末とは、アルミニウム原子に結合した一つ以上のイミド基、および、アルミニウム原子に結合した一つ以上のエチル基を含有する化合物の粉末である。この方法によって得られるAl−N−H系化合物粉末は、炭素不純物、金属不純物、酸素不純物の混入量が少ないので、アルミニウム源として用いることで、高純度な導電性酸化亜鉛粉末が得られる。このような導電性酸化亜鉛粉末を用いれば、高純度なターゲット焼結体が得られるので、特に透明性の良好な透明電極膜を形成することができる。 Particularly preferred as the Al—N—H compound powder used in the present invention is a triethylaluminum (Al (C 2 H 5 ) 3 ) hexane (C 6 H 14 ) solution and ammonia in a sealed reaction vessel. After reacting with a decane (C 10 H 22 ) solvent, the Al—N—CH-based compound powder obtained by distilling off decane is heated under an ammonia stream, and the Al— containing an imide group is obtained. N—H compound powder. Here, the Al—N—CH-based compound powder is a powder of a compound containing one or more imide groups bonded to aluminum atoms and one or more ethyl groups bonded to aluminum atoms. Since the Al—N—H compound powder obtained by this method has a small amount of carbon impurities, metal impurities, and oxygen impurities, it can be used as an aluminum source to obtain high-purity conductive zinc oxide powder. If such a conductive zinc oxide powder is used, a high-purity target sintered body can be obtained, so that a transparent electrode film having particularly good transparency can be formed.

本発明において、酸化亜鉛粉末とAl−N−H系化合物粉末との混合割合は、酸化亜鉛粉末に対して、Al−N−H系化合物粉末の割合がアルミニウム換算で0.5mol%〜10mol%であることが好ましい。酸化亜鉛粉末に対するAl−N−H系化合物粉末の割合がアルミニウム換算で0.5mol%以上の場合は、酸化亜鉛に対するアルミニウムの固溶割合を大きくでき、得られる導電性酸化亜鉛粉末の体積抵抗率がより低くなる。また、酸化亜鉛粉末に対するAl−N−H系化合物粉末の割合が10mol%以下の場合は、例えば、一般式:ZnAlで表される化合物のような導電性の低い化合物が生成しにくいので、得られる導電性酸化亜鉛粉末の体積抵抗率が低くなりやすい。酸化亜鉛粉末とAl−N−H系化合物粉末との混合割合は、Al−N−H系化合物粉末の割合がアルミニウム換算で2mol%〜10mol%であることがさらに好ましく、6mol%〜10mol%であることが特に好ましい。酸化亜鉛粉末とAl−N−H系化合物粉末との混合割合が、Al−N−H系化合物粉末の割合がアルミニウム換算で6mol%〜10mol%の範囲である場合は、特に体積抵抗率が低く、特に体積抵抗率の経時変化が少ない導電性酸化亜鉛粉末を得ることができる。 In the present invention, the mixing ratio of the zinc oxide powder and the Al—N—H compound powder is such that the ratio of the Al—N—H compound powder is 0.5 mol% to 10 mol% in terms of aluminum with respect to the zinc oxide powder. It is preferable that When the ratio of Al—N—H compound powder to zinc oxide powder is 0.5 mol% or more in terms of aluminum, the solid solution ratio of aluminum to zinc oxide can be increased, and the volume resistivity of the resulting conductive zinc oxide powder Is lower. Further, when the ratio of the Al—N—H compound powder to the zinc oxide powder is 10 mol% or less, for example, a compound having low conductivity such as a compound represented by the general formula: ZnAl 2 O 4 is hardly generated. Therefore, the volume resistivity of the obtained conductive zinc oxide powder tends to be low. The mixing ratio of zinc oxide powder and Al—N—H compound powder is more preferably 2 mol% to 10 mol% in terms of aluminum, and 6 mol% to 10 mol%. It is particularly preferred. The volume resistivity is particularly low when the mixing ratio of the zinc oxide powder and the Al—N—H compound powder is such that the ratio of the Al—N—H compound powder is in the range of 6 mol% to 10 mol% in terms of aluminum. In particular, it is possible to obtain a conductive zinc oxide powder with little change in volume resistivity with time.

Al−N−H系化合物粉末の炭素不純物濃度は、質量基準で2%以下であることが好ましい。Al−N−H系化合物粉末の炭素不純物濃度が質量基準で2%以下であれば、炭素不純物濃度が特に低い導電性酸化亜鉛粉末が得られる。このような導電性酸化亜鉛粉末を用いれば、炭素不純物濃度が特に低いターゲット焼結体が得られるので、特に透明性の良好な透明電極膜を形成することができる。   The carbon impurity concentration of the Al—N—H-based compound powder is preferably 2% or less on a mass basis. When the carbon impurity concentration of the Al—N—H compound powder is 2% or less on a mass basis, a conductive zinc oxide powder having a particularly low carbon impurity concentration can be obtained. If such a conductive zinc oxide powder is used, a target sintered body having a particularly low carbon impurity concentration can be obtained, so that a transparent electrode film having particularly good transparency can be formed.

上述の酸化亜鉛粉末と、上述のAl−N−H系化合物粉末とを、不活性雰囲気中において所望の質量を量り取り混合する。混合の方法は特に限定されるものではないが、好ましくは、ポット内を窒素で置換したミキサーミル、振動ミル等の乾式のミルにより、窒素雰囲気中で混合する方法である。   The above-described zinc oxide powder and the above-mentioned Al—N—H-based compound powder are weighed and mixed in an inert atmosphere. The mixing method is not particularly limited, but is preferably a method of mixing in a nitrogen atmosphere by a dry mill such as a mixer mill or a vibration mill in which the pot is replaced with nitrogen.

以上の方法で混合して得られた混合粉末を不活性雰囲気中、900℃〜1200℃の範囲で焼成することにより、本発明の導電性酸化亜鉛粉末を得る。混合粉末中のAl−N−H系化合物粉末の酸化を抑制するために、混合粉末を不活性雰囲気中、好ましくは窒素雰囲気中で焼成する。焼成炉としては、不活性雰囲気中での焼成が可能な抵抗加熱式の電気炉、誘導加熱式の電気炉等を用いることができ、通常は窒化ホウ素坩堝に収容した混合粉末を、これらの電気炉を用いて不活性雰囲気中、好ましくは窒素雰囲気中で焼成する。焼成温度が900℃よりも低いと、焼成後の酸化亜鉛粉末にアルミニウムが殆ど固溶しないため、得られる導電性酸化亜鉛粉末の体積抵抗率は高くなる。また、焼成温度は1200℃より高くできない。1200℃より高い温度で、酸化亜鉛およびAl−N−H系化合物のいずれとも反応せず、いずれをも変質させない坩堝がないからである。1200℃より高い温度では、窒化ホウ素坩堝は酸化亜鉛と反応し、炭素坩堝は酸化亜鉛を還元して亜鉛に変え、他の酸化物製の坩堝や高融点金属製の坩堝は、Al−N−H系化合物と反応する。   The mixed powder obtained by mixing by the above method is baked in the range of 900 ° C. to 1200 ° C. in an inert atmosphere to obtain the conductive zinc oxide powder of the present invention. In order to suppress oxidation of the Al—N—H compound powder in the mixed powder, the mixed powder is fired in an inert atmosphere, preferably in a nitrogen atmosphere. As the firing furnace, a resistance heating type electric furnace, an induction heating type electric furnace, or the like that can be fired in an inert atmosphere can be used. Usually, a mixed powder contained in a boron nitride crucible is used as the electric furnace. Baking in an inert atmosphere, preferably in a nitrogen atmosphere, using a furnace. When the firing temperature is lower than 900 ° C., aluminum hardly dissolves in the fired zinc oxide powder, and thus the volume resistivity of the obtained conductive zinc oxide powder becomes high. Also, the firing temperature cannot be higher than 1200 ° C. This is because there is no crucible that does not react with either zinc oxide or Al—N—H-based compounds at a temperature higher than 1200 ° C., and neither of them changes in quality. At temperatures higher than 1200 ° C., the boron nitride crucible reacts with zinc oxide, the carbon crucible reduces zinc oxide to zinc, and other oxide crucibles and refractory metal crucibles are Al—N— Reacts with H compounds.

アルミニウム源として、Al−N−H系化合物粉末を用いると、重炭酸水素アンモニウムに代表されるような崩壊剤を用いなくても、酸化亜鉛粉末とAl−N−H系化合物粉末とを混合して、不活性雰囲気中、900〜1200℃の範囲で焼成するだけの方法によって、酸化亜鉛粉末に、実用的な体積抵抗率を発現できる割合のアルミニウムを固溶させることができる。つまり、崩壊剤を酸化亜鉛に反応させるための、溶液中での撹拌、濾過、乾燥などの処理を行わなくても、原料粉末を混合して焼成するだけの方法によって、酸化亜鉛粉末に、実用的な体積抵抗率を発現できる割合のアルミニウムを固溶させることができる。このような簡便な方法で、酸化亜鉛粉末にアルミニウム固溶させることができるのは、焼成時の高温下で、Al−N−H系化合物粉末からイミド基またはアミド基が脱離する際に発生するアンモニアによって、気相中であっても酸化亜鉛の構造が崩壊し、それと同時に、イミド基またはアミド基の脱離によって生じたアルミニウムが、その崩壊した部位へ供給されることにより、酸化亜鉛粉末へのアルミニウムの固溶が促進されているからと考えられる。   When an Al—N—H compound powder is used as the aluminum source, the zinc oxide powder and the Al—N—H compound powder can be mixed without using a disintegrant represented by ammonium bicarbonate. Thus, aluminum in a proportion capable of expressing a practical volume resistivity can be dissolved in the zinc oxide powder by a method of merely firing in the range of 900 to 1200 ° C. in an inert atmosphere. In other words, the zinc oxide powder can be put to practical use by simply mixing and firing the raw material powder without the need to perform stirring, filtration, drying, etc. in the solution to react the disintegrant with zinc oxide. A ratio of aluminum capable of exhibiting a specific volume resistivity can be dissolved. This simple method allows aluminum to be dissolved in zinc oxide powder when the imide group or amide group is desorbed from the Al—N—H compound powder at a high temperature during firing. The structure of zinc oxide collapses even in the gas phase due to ammonia, and at the same time, aluminum generated by elimination of the imide group or amide group is supplied to the collapsed part, so that the zinc oxide powder This is thought to be because the solid solution of aluminum is promoted.

また、酸化亜鉛粉末とAl−N−H系化合物粉末とからなる混合粉末を、不活性雰囲気中、900〜1200℃の範囲で焼成すると、アルミニウムと窒素とが共に固溶した、新規な導電性酸化亜鉛粉末を得ることができる。   In addition, when a mixed powder composed of zinc oxide powder and Al—N—H compound powder is fired in an inert atmosphere in the range of 900 to 1200 ° C., novel conductivity is obtained in which both aluminum and nitrogen are dissolved. Zinc oxide powder can be obtained.

酸化亜鉛粉末とAl−N−H系化合物粉末とからなる混合粉末を、不活性雰囲気中、900〜1200℃の範囲で焼成すると、酸化亜鉛に、アルミニウムと窒素がともに固溶するのは、焼成時の高温下で、Al−N−H系化合物粉末からイミド基またはアミド基が脱離する際に発生するアンモニアによって酸化亜鉛の構造が崩壊した際に、そのアンモニアから脱離した窒素が、構造が崩壊した酸化亜鉛にアルミニウムとともに供給され、酸化亜鉛にアルミニウムと窒素が同時に固溶する、本発明特有の反応が起こるためと考えられるが、そのメカニズムは明らかではない。   When a mixed powder composed of zinc oxide powder and Al—N—H-based compound powder is fired in the range of 900 to 1200 ° C. in an inert atmosphere, both aluminum and nitrogen are dissolved in zinc oxide. When the structure of zinc oxide collapses due to ammonia generated when the imide group or amide group is desorbed from the Al—N—H-based compound powder at a high temperature, the nitrogen desorbed from the ammonia is It is thought that this is because a reaction peculiar to the present invention occurs in which aluminum and nitrogen are simultaneously dissolved in zinc oxide and aluminum and nitrogen are simultaneously dissolved in zinc oxide, but the mechanism is not clear.

次に、上述した本発明の製造方法で得られる本発明の導電性酸化亜鉛粉末について説明する。   Next, the conductive zinc oxide powder of the present invention obtained by the production method of the present invention described above will be described.

本発明の導電性酸化亜鉛粉末は、アルミニウムおよび窒素が固溶していることを特徴とする、体積抵抗率の経時変化が極めて少ない新規な導電性酸化亜鉛粉末である。そして、酸化亜鉛にアルミニウムだけでなく窒素が固溶していることが、本発明の導電性酸化亜鉛粉末の体積抵抗率が殆ど経時変化しない理由であると推察される。酸化亜鉛は還元されやすい酸化物であり、焼成時の雰囲気が不活性雰囲気であっても、還元性雰囲気ほどではないものの、焼成時に、酸化亜鉛からは多少の酸素の脱離が生じると考えられる。しかし、本発明においては、焼成時に、酸素の脱離により生じた格子空孔に窒素が固溶して、見かけ上酸素欠損が殆どない、すなわち格子空孔が殆どない酸化亜鉛が得られると推察される。   The electrically conductive zinc oxide powder of the present invention is a novel electrically conductive zinc oxide powder in which aluminum and nitrogen are solid-dissolved and the change in volume resistivity with time is very small. And it is guessed that the volume resistivity of the electroconductive zinc oxide powder of this invention hardly changes with time that not only aluminum but solid nitrogen is dissolved in zinc oxide. Zinc oxide is an oxide that is easily reduced. Even if the atmosphere during firing is an inert atmosphere, it is not as much as a reducing atmosphere, but it is considered that some oxygen is released from zinc oxide during firing. . However, in the present invention, it is presumed that, during firing, nitrogen is dissolved in lattice vacancies generated by desorption of oxygen, and apparently there is obtained zinc oxide having almost no oxygen vacancies, that is, almost no lattice vacancies. Is done.

また、酸化亜鉛にn型のドーパントであるアルミニウムと、p型のドーパントである窒素が同時に固溶していることが、本発明の導電性酸化亜鉛粉末の結晶構造の安定性を高め、さらに、本発明の導電性酸化亜鉛粉末の体積抵抗率の経時変化を抑制していると推察される。本発明の導電性酸化亜鉛粉末においては、n型ドーパントのアルミニウムイオンとp型ドーパントの窒素イオンとが共に固溶していることにより、双方のイオンのクーロン引力によって静電的相互作用利得が得られ、格子エネルギーの増大が抑制されて、結晶構造の安定性が高くなっていると考えられる。これによって、ドーパントの化学状態などの僅かな変化も抑制され、本発明の導電性酸化亜鉛粉末の体積抵抗率は、殆ど経時変化しないものと推察される。   Further, the fact that aluminum which is an n-type dopant and nitrogen which is a p-type dopant are simultaneously dissolved in zinc oxide increases the stability of the crystal structure of the conductive zinc oxide powder of the present invention, It is presumed that the time-dependent change in volume resistivity of the conductive zinc oxide powder of the present invention is suppressed. In the conductive zinc oxide powder of the present invention, since the aluminum ion of the n-type dopant and the nitrogen ion of the p-type dopant are both in solid solution, an electrostatic interaction gain is obtained by the Coulomb attractive force of both ions. It is considered that the increase in lattice energy is suppressed and the stability of the crystal structure is enhanced. As a result, slight changes such as the chemical state of the dopant are also suppressed, and it is presumed that the volume resistivity of the conductive zinc oxide powder of the present invention hardly changes with time.

本発明の導電性酸化亜鉛粉末において、アルミニウムは、酸化亜鉛に対して0.01質量%〜1.00質量%の割合で固溶していることが好ましい。アルミニウムの酸化亜鉛に対する固溶割合がこの範囲であれば、体積抵抗率が100Ω・cm以下の導電性酸化亜鉛粉末を得ることができる。   In the conductive zinc oxide powder of the present invention, it is preferable that aluminum is dissolved in a proportion of 0.01% by mass to 1.00% by mass with respect to zinc oxide. When the solid solution ratio of aluminum to zinc oxide is within this range, a conductive zinc oxide powder having a volume resistivity of 100 Ω · cm or less can be obtained.

本発明の導電性酸化亜鉛粉末において、窒素は、酸化亜鉛に対して0.02質量%〜0.40質量%の割合で固溶していることが好ましい。窒素の酸化亜鉛に対する固溶割合がこの範囲であれば、導電性酸化亜鉛粉末の体積抵抗率が大きくならず、体積抵抗率の経時変化(体積抵抗率が時間経過と共に大きくなること)を抑制することができる。さらには、アルミニウムが、酸化亜鉛に対して0.3質量%〜1.00質量%の割合で固溶し、窒素が酸化亜鉛に対して0.1質量%〜0.40質量%の割合で固溶していることが好ましい。   In the conductive zinc oxide powder of the present invention, nitrogen is preferably dissolved in a proportion of 0.02% by mass to 0.40% by mass with respect to zinc oxide. When the solid solution ratio of nitrogen to zinc oxide is within this range, the volume resistivity of the conductive zinc oxide powder is not increased, and the change in volume resistivity with time (the volume resistivity increases with time) is suppressed. be able to. Furthermore, aluminum is solid-solved at a rate of 0.3% to 1.00% by mass with respect to zinc oxide, and nitrogen is at a rate of 0.1% to 0.40% by mass with respect to zinc oxide. It is preferable that it is dissolved.

また本発明の導電性酸化亜鉛粉末は、比表面積が3.00m/g〜5.00m/gであり、体積抵抗率が100Ω・cm以下であることが好ましい。比表面積が3.00m/gより小さいと成型が難しくなり、透明導電膜の成膜に用いる際の焼結体ターゲットの作製が困難になる。また、比表面積が5.00m/gより大きいと、体積抵抗率が目的とする100Ω・cm以下にならない場合があるからである。 The electroconductive zinc oxide powder of the present invention has a specific surface area of 3.00m 2 /g~5.00m 2 / g, it preferably has a volume resistivity of not more than 100 [Omega · cm. When the specific surface area is less than 3.00 m 2 / g, molding becomes difficult, and it becomes difficult to produce a sintered compact target when used for forming a transparent conductive film. Further, if the specific surface area is larger than 5.00 m 2 / g, the volume resistivity may not be the target of 100 Ω · cm or less.

以下、実施例および比較例を挙げて本発明を具体的に説明するが、これらは本発明を限定するものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, these do not limit this invention.

(導電性酸化亜鉛粉末の比表面積の測定方法)
本発明の導電性酸化亜鉛粉末の比表面積は、粉末をガラス製のセルに充填して、島津-マイクロメリティックス製フローソーブIII2310装置により測定した。
(Measurement method of specific surface area of conductive zinc oxide powder)
The specific surface area of the conductive zinc oxide powder of the present invention was measured with a Flowsorb III 2310 apparatus manufactured by Shimadzu-Micromeritics after the powder was filled in a glass cell.

(導電性酸化亜鉛粉末におけるアルミニウムの固溶割合の測定方法)
本発明の導電性酸化亜鉛粉末におけるアルミニウムの固溶割合は、以下に説明する方法によって測定した。
(Measurement method of aluminum solid solution ratio in conductive zinc oxide powder)
The solid solution ratio of aluminum in the conductive zinc oxide powder of the present invention was measured by the method described below.

本発明の導電性酸化亜鉛粉末に固溶しているアルミニウムの割合は、アルミニウムの固体NMR分析(固体核磁気共鳴分光分析)により得られた導電性酸化亜鉛粉末中の全アルミニウムに対する酸化亜鉛に固溶したアルミニウムの割合と、ICP−AES(誘導結合プラズマを利用した発光分析)により得られた、導電性酸化亜鉛粉末中のアルミニウムの含有割合とを乗じることにより算出した。以下、具体的に説明する。   The proportion of aluminum dissolved in the conductive zinc oxide powder of the present invention is determined by the solid oxide in the total amount of aluminum in the conductive zinc oxide powder obtained by solid state NMR analysis (solid nuclear magnetic resonance spectroscopy) of aluminum. It calculated by multiplying the ratio of the melted aluminum and the content ratio of aluminum in the conductive zinc oxide powder obtained by ICP-AES (luminescence analysis using inductively coupled plasma). This will be specifically described below.

本発明の導電性酸化亜鉛粉末および比較例の酸化亜鉛粉末を、硝酸、フッ化水素酸、硫酸で加熱溶解し、得られた溶液を、エスアイアイ・ナノテクノロジー製SPS5100型のICP発光分析装置を用いたICP発光分析に供して、導電性酸化亜鉛粉末中の全アルミニウムの含有割合を測定した。また、本発明の導電性酸化亜鉛粉末および比較例の酸化亜鉛粉末を、日本電子製JNM−ECA400型FT−NMR装置を用いた固体NMR分析に供して、得られたNMRスペクトルにおける、アルミニウムに由来する全てのピークの面積に対する、酸化亜鉛に固溶したアルミニウムに由来するピークの面積の割合から、(導電性)酸化亜鉛粉末中の全アルミニウムに対する、酸化亜鉛に固溶したアルミニウムの割合を求めた。   The conductive zinc oxide powder of the present invention and the zinc oxide powder of the comparative example were heated and dissolved with nitric acid, hydrofluoric acid, and sulfuric acid, and the resulting solution was converted to an SPS5100 type ICP emission spectrometer manufactured by SII Nanotechnology. It used for the ICP emission analysis used, and measured the content rate of the total aluminum in electroconductive zinc oxide powder. In addition, the conductive zinc oxide powder of the present invention and the zinc oxide powder of the comparative example were subjected to solid state NMR analysis using a JNM-ECA400 type FT-NMR apparatus manufactured by JEOL, and derived from aluminum in the obtained NMR spectrum. The ratio of the aluminum dissolved in zinc oxide to the total aluminum in the (conductive) zinc oxide powder was determined from the ratio of the peak area derived from aluminum dissolved in zinc oxide to the area of all peaks. .

以上のようにして得られた導電性酸化亜鉛粉末中のアルミニウム含有割合と、導電性酸化亜鉛粉末中の全アルミニウムに対する酸化亜鉛に固溶したアルミニウムの割合とを乗じることにより、本発明の導電性酸化亜鉛粉末および比較例の酸化亜鉛粉末に固溶しているアルミニウムの割合を算出した。   By multiplying the aluminum content in the conductive zinc oxide powder obtained as described above and the ratio of aluminum dissolved in zinc oxide to the total aluminum in the conductive zinc oxide powder, the conductivity of the present invention is obtained. The proportion of aluminum dissolved in the zinc oxide powder and the zinc oxide powder of the comparative example was calculated.

(導電性酸化亜鉛粉末における窒素の固溶割合の測定方法)
本発明の導電性酸化亜鉛粉末における窒素の固溶割合は、以下に説明する方法によって測定した。
(Measurement method of solid solution ratio of nitrogen in conductive zinc oxide powder)
The solid solution ratio of nitrogen in the conductive zinc oxide powder of the present invention was measured by the method described below.

はじめに、日本分光株式会社製レーザーラマン分光装置を用いたラマン分光分析により得られた本発明の導電性酸化亜鉛粉末のラマンスペクトルに、酸化亜鉛への窒素の固溶に由来するピークが存在することを確認した。次いで、本発明の導電性酸化亜鉛粉末を黒鉛坩堝に投入して、LECO社製酸素・窒素・水素分析装置TCH600を用いて加熱し融解し、融解した試料から発生した窒素を前記分析装置に備わる熱伝導度検出器によって定量することで、本発明の導電性酸化亜鉛粉末の窒素含有割合を測定した。また、上述の(導電性酸化亜鉛粉末におけるアルミニウムの固溶割合の測定方法)にて説明した、固体NMR分析により得られたNMRスペクトルに、窒化アルミニウムの生成を示す、4配位の窒素に由来する100ppm周辺のピークが存在しないことを全ての実施例において確認した。以上により、TCH600により検出された窒素の全てが、本発明の導電性酸化亜鉛粉末に固溶している窒素に由来することが確認されたので、TCH600により測定された窒素含有量を、窒素の固溶割合として確定した。   First, the Raman spectrum of the conductive zinc oxide powder of the present invention obtained by Raman spectroscopic analysis using JASCO Corporation laser Raman spectrometer has a peak derived from the solid solution of nitrogen in zinc oxide. It was confirmed. Next, the conductive zinc oxide powder of the present invention is put into a graphite crucible, heated and melted using a LECO oxygen / nitrogen / hydrogen analyzer TCH600, and the nitrogen generated from the melted sample is provided in the analyzer. The nitrogen content ratio of the conductive zinc oxide powder of the present invention was measured by quantifying with a thermal conductivity detector. In addition, the NMR spectrum obtained by solid-state NMR analysis described in the above (Method for measuring the solid solution ratio of aluminum in conductive zinc oxide powder) is derived from 4-coordinate nitrogen indicating the formation of aluminum nitride. It was confirmed in all Examples that there was no peak around 100 ppm. From the above, it has been confirmed that all of the nitrogen detected by TCH600 is derived from nitrogen dissolved in the conductive zinc oxide powder of the present invention. The solid solution ratio was determined.

(導電性酸化亜鉛粉末の体積抵抗率の測定方法)
本発明の導電性酸化亜鉛粉末を、断面積がπcmのテフロン(登録商標)製の内径20mmの円筒形の型に充填して、10MPaの圧力を加えて、円板状の圧粉体に成形した。得られた圧粉体について、市販のマルチメーターを用いて室温で体積抵抗率を測定し、その値を本発明の導電性酸化亜鉛粉末の体積抵抗率とした。製造直後の各導電性酸化亜鉛粉末の体積抵抗率を測定する場合は、製造時の雰囲気が保たれた高周波誘導炉から取り出して24時間経過する前に各導電性酸化亜鉛粉末の体積抵抗率の測定を行った。
(Measurement method of volume resistivity of conductive zinc oxide powder)
The conductive zinc oxide powder of the present invention is filled into a cylindrical mold with an inner diameter of 20 mm made of Teflon (registered trademark) having a cross-sectional area of π cm 2 , and a pressure of 10 MPa is applied to form a disk-shaped green compact. Molded. About the obtained green compact, the volume resistivity was measured at room temperature using the commercially available multimeter, and the value was made into the volume resistivity of the electroconductive zinc oxide powder of this invention. When measuring the volume resistivity of each conductive zinc oxide powder immediately after production, the volume resistivity of each conductive zinc oxide powder is taken out of the high frequency induction furnace in which the atmosphere during production is maintained and 24 hours have passed. Measurements were made.

(導電性酸化亜鉛粉末の体積抵抗率の経時変化の評価方法)
製造直後の導電性酸化亜鉛粉末4gを、温度25℃、湿度50%の大気雰囲気下で、容量10gのポリエチレン製の袋(チャック付)に収容し、チャックを閉めた状態で、温度25℃、湿度50%を保持した大気雰囲気下で保存した。製造直後より30日経過後および210日経過後に、(導電性酸化亜鉛粉末の体積抵抗率の測定方法)で説明した方法と同様の方法で導電性酸化亜鉛粉末の体積抵抗率を測定し、製造直後の体積抵抗率と比較した。
(Evaluation method of change with time of volume resistivity of conductive zinc oxide powder)
4 g of the conductive zinc oxide powder immediately after production is contained in a polyethylene bag (with a chuck) having a capacity of 10 g in an air atmosphere at a temperature of 25 ° C. and a humidity of 50%. It preserve | saved in the atmospheric condition holding 50% of humidity. After 30 days and 210 days from immediately after production, the volume resistivity of the conductive zinc oxide powder is measured by the same method as described in (Method for measuring volume resistivity of conductive zinc oxide powder). The volume resistivity was compared.

(製造例)
本発明に係るAl−N−H系化合物粉末としては、以下の方法にて製造したAl(NH)粉末を用いた。
(Production example)
As the Al—N—H compound powder according to the present invention, Al 2 (NH) 3 powder produced by the following method was used.

容量1000mLのガラス製三口フラスコに、ガス導入用三方コック、温度計用さや管、留分を受ける、容量500mLの二つ口ナスフラスコと組み合わせた分留管を設置した。これらの器具は130℃のオーブンで事前に充分乾燥し、更に組み立てた後に真空下でホットブラスターにより加熱して、内壁表面に付着した水分を除去した。こうして乾燥し、内部をNガス雰囲気に保持して密閉した装置を同じくN雰囲気のグローブボックスに入れた。グローブボックス出口ガスの酸素濃度と露点を測定し、酸素と水分が少ない雰囲気であることを確認した後、200mLのトリエチルアルミニウムへキサン溶液(和光純薬製、トリエチルアルミニウム濃度:1mol/L)を前記の容量1000mLのガラス製三口フラスコに導入した。次いでデカン(水分10ppm以下)200mLを導入し、充分に混合した後、ガラス装置全体を密閉状態に保持してグローブボックスから取り出した。 A three-way faucet for introducing gas, a sheath for a thermometer, and a fractionation tube combined with a two-necked eggplant flask with a capacity of 500 mL were installed in a glass three-neck flask having a capacity of 1000 mL. These instruments were sufficiently dried in an oven at 130 ° C. in advance, and further assembled, and then heated with a hot blaster under vacuum to remove moisture adhering to the inner wall surface. The apparatus thus dried and sealed with the inside kept in an N 2 gas atmosphere was placed in a glove box having the same N 2 atmosphere. After measuring the oxygen concentration and dew point of the glove box outlet gas and confirming that the atmosphere is low in oxygen and moisture, 200 mL of triethylaluminum hexane solution (manufactured by Wako Pure Chemical Industries, Ltd., triethylaluminum concentration: 1 mol / L) was added. Was introduced into a glass three-necked flask having a volume of 1000 mL. Next, 200 mL of decane (moisture of 10 ppm or less) was introduced and mixed well, and then the entire glass apparatus was kept sealed and taken out from the glove box.

容量1000mLのガラス製三口フラスコをオイルバスによって加熱しながら、内部のトリエチルアルミニウム溶液中にアンモニアガスをバブリングした。アンモニアガス供給の流量は100mL/分(25℃、常圧)であり、内部液はマグネチックスターラーで攪拌した。まず、オイルバス温度を120℃に保ち、反応混合物中のヘキサンを留去して、分留管に接続した、容量500mLの二つ口ナスフラスコに受けた。ヘキサンの留去が終了した後、オイルバス温度を180℃に上げると、白色沈殿が析出し始め、反応の進行が確認された。こうしてアンモニアガスを継続して供給しながらオイルバス温度180℃(フラスコ内のスラリー液温度170℃)で4時間反応を行った。   While heating a 1000 mL glass three-necked flask with an oil bath, ammonia gas was bubbled into the triethylaluminum solution inside. The flow rate of the ammonia gas supply was 100 mL / min (25 ° C., normal pressure), and the internal liquid was stirred with a magnetic stirrer. First, the oil bath temperature was maintained at 120 ° C., hexane in the reaction mixture was distilled off, and the mixture was received in a 500 mL two-necked eggplant flask connected to a fractionating tube. After the distillation of hexane was completed, when the oil bath temperature was raised to 180 ° C., a white precipitate began to precipitate, confirming the progress of the reaction. The reaction was carried out for 4 hours at an oil bath temperature of 180 ° C. (slurry temperature in the flask: 170 ° C.) while continuously supplying ammonia gas.

次にオイルバス温度を200℃に上げ、生成した白色沈殿を含有するスラリーからデカンを留去した。デカンの留去操作においても、アンモニアガスは継続して供給した。次いでアンモニアガスの供給を止め、装置全体を密閉状態としてグローブボックスに入れ、主として(C)Al(NH)からなる白色固体15.16gを回収した。白色固体中のAl量は、CyDTA-亜鉛逆滴定法(JIS R1675:2007準拠)により37.8質量%と分析され、N量は、直接分解−水蒸気蒸留−中和滴定法(JIS R1675:2007準拠)により19.9質量%と分析された。またこの白色固体を少量採取し、水/プロパノール混合液によって加水分解させた。発生したガスを捕集してガスクロマトグラフィーによって分析し、絶対検量線法により定量したところ、白色固体1gあたり12.4mmolのエタンが検出され、白色固体中のエチル基とAlのモル比はエチル基/Al=0.89(モル/モル)と計算された。これらの値は、前記組成式(C)Al(NH)における理論値(Al:38.0質量%、N:19.7質量%、エチル基/Al=1)とよく一致している。一方、白色固体中のIRスペクトルの測定から、3263cm−1と1554cm−1にN−H結合に帰属されるピークが検出された。また、本固体の1H−NMR測定を日本電子製ECA−400型により行ったところ、δ0.72ppmの位置に頂点を持つブロードなシグナルが観察された(外部基準物質:トリメチルシリルプロパン酸塩重水溶液)。これらはエチル基及びイミド基上のHに由来すると考えられる。 Next, the oil bath temperature was raised to 200 ° C., and decane was distilled off from the slurry containing the produced white precipitate. Ammonia gas was continuously supplied during the decane distillation operation. Next, the supply of ammonia gas was stopped, and the entire apparatus was sealed and placed in a glove box to recover 15.16 g of a white solid mainly composed of (C 2 H 5 ) Al (NH). The amount of Al in the white solid was analyzed to be 37.8% by mass by CyDTA-zinc back titration method (based on JIS R1675: 2007), and the amount of N was determined by direct decomposition-steam distillation-neutralization titration method (JIS R1675: 2007). 19.9% by mass). A small amount of this white solid was collected and hydrolyzed with a water / propanol mixture. The generated gas was collected, analyzed by gas chromatography, and quantified by the absolute calibration curve method. As a result, 12.4 mmol of ethane was detected per 1 g of the white solid, and the molar ratio of ethyl group to Al in the white solid was ethyl. Calculated as group / Al = 0.89 (mol / mol). These values agree well with the theoretical values (Al: 38.0% by mass, N: 19.7% by mass, ethyl group / Al = 1) in the composition formula (C 2 H 5 ) Al (NH). Yes. On the other hand, the measurement of the IR spectrum of the white in a solid, a peak attributed to N-H bonds to 3263cm -1 and 1554cm -1 were detected. Further, when 1H-NMR measurement of this solid was carried out by ECA-400 type manufactured by JEOL, a broad signal having an apex at a position of δ 0.72 ppm was observed (external reference material: trimethylsilylpropanoate heavy aqueous solution). . These are believed to originate from H on the ethyl and imide groups.

グローブボックス内にて、上記で合成した白色固体6.17gを両末端に三方コックを設置した内径17mmのU字型ガラス管に充填した。この三方コック及びガラス管は、前記の有機アルミニウム化合物溶液とアンモニアの反応に用いたガラス器具と同様の方法で乾燥したものである。このガラス管にヒーターを取り付け、アンモニアガスを片方のコックから供給し、もう片方のコックから排出させながら白色固体充填層を加熱した。この時のアンモニアガス供給の流量は100mL/分(25℃、常圧)、ヒーター温度は240℃であり、供給アンモニアの空塔速度は1.3cm/sである。6時間後に加熱を終了し、グローブボックス内にてAl(NH)からなる白色固体を回収した。収量は4.26gであり、処理前後での質量変化率は69.0%で、下記の反応式、式(1)に基づく固形成分の質量変化率の理論値69.7%と良い一致を示した。
2(C)Al(NH)+NH→Al(NH)+2C (1)
In the glove box, 6.17 g of the white solid synthesized above was filled into a U-shaped glass tube having an inner diameter of 17 mm with a three-way cock installed at both ends. The three-way cock and the glass tube are dried by the same method as the glass apparatus used for the reaction of the organoaluminum compound solution and ammonia. A heater was attached to the glass tube, and the white solid packed layer was heated while ammonia gas was supplied from one cock and discharged from the other cock. At this time, the flow rate of ammonia gas supply is 100 mL / min (25 ° C., normal pressure), the heater temperature is 240 ° C., and the superficial velocity of the supplied ammonia is 1.3 cm / s. Heating was terminated after 6 hours, and a white solid composed of Al 2 (NH) 3 was collected in the glove box. The yield is 4.26 g, and the mass change rate before and after the treatment is 69.0%, which is in good agreement with the theoretical value 69.7% of the solid component mass change rate based on the following reaction formula, formula (1). Indicated.
2 (C 2 H 5 ) Al (NH) + NH 3 → Al 2 (NH) 3 + 2C 2 H 6 (1)

CyDTA-亜鉛逆滴定法によって求めたAl濃度は55.8質量%であった(組成式Al(NH)での計算値:54.5質量%)。また、IRスペクトルの測定から、3227cm−1と1539cm−1にN−H結合に帰属されるピークが検出された。この白色固体を少量採取し、水/プロパノール混合液によって加水分解させ、発生したガスを捕集してガスクロマトグラフィーによって分析したところ、検出されるエタン量は白色固体1gあたり0.52mmolと僅かであった。これらの結果から、白色固体中のエチル基とAlのモル比はエチル基/Al=0.03(モル/モル)であり、白色固体中の炭素不純物濃度は1.2質量%と算出された。また、不純物酸素量をLECO社製TCH−600型酸素・窒素・水素分析装置を用いて赤外線吸収法により分析すると1.4質量%であった。蛍光X線分析により金属不純物を調べたところ、金属成分中のAl濃度は99.7質量%であり、実質的に金属不純物は存在しなかった。島津-マイクロメリティックス製フローソーブIII2310を使用し、BET1点法で比表面積を測定したところ、868m/gであった。また、本固体の1H−NMR測定を日本電子製ECA−400型により行ったところ、δ0.97ppmの位置に頂点を持つブロードなシグナルが観察された(外部基準物質:トリメチルシリルプロパン酸塩重水溶液)。これはイミド基上のHに由来すると考えられる。 The Al concentration determined by the CyDTA-zinc back titration method was 55.8% by mass (calculated value with composition formula Al 2 (NH) 3 : 54.5% by mass). From the IR spectrum measurement, peaks attributed to N—H bonds were detected at 3227 cm −1 and 1539 cm −1 . A small amount of this white solid was collected, hydrolyzed with a water / propanol mixture, and the generated gas was collected and analyzed by gas chromatography. The amount of ethane detected was as low as 0.52 mmol per 1 g of white solid. there were. From these results, the molar ratio of ethyl group to Al in the white solid was ethyl group / Al = 0.03 (mol / mol), and the carbon impurity concentration in the white solid was calculated to be 1.2% by mass. . The amount of impurity oxygen was 1.4% by mass when analyzed by an infrared absorption method using a TCH-600 type oxygen / nitrogen / hydrogen analyzer manufactured by LECO. When metal impurities were examined by fluorescent X-ray analysis, the Al concentration in the metal component was 99.7% by mass and substantially no metal impurities were present. When a specific surface area was measured by a BET one-point method using Shimadzu-Micromeritics Flowsorb III2310, it was 868 m 2 / g. Further, when 1H-NMR measurement of this solid was carried out by ECA-400 type manufactured by JEOL, a broad signal having an apex at a position of δ0.97 ppm was observed (external reference substance: trimethylsilylpropanoate heavy aqueous solution). . This is considered to originate from H on the imide group.

本生成物0.4708gをBN製るつぼに入れ、Nガス雰囲気下1600℃で2時間焼成すると0.3915gの粉末が得られた。XRD分析ではこの粉末はAlNと同定され、これ以外の結晶相は観測されなかった。元素分析結果も次の通りAlNと良い一致を示した;Al(CyDTA-亜鉛逆滴定法により測定):65.0質量%(計算値65.9質量%)、N(LECO社製TCH−600型酸素・窒素・水素分析装置を用いて電気伝導度法により測定):33.8質量%(計算値34.1質量%)。また、使用した原料に対する焼成後に回収した生成物の質量比率は83.2%であった。これは、下記の反応式、式(2)が定量的に進行していることを支持するものであり、焼成前の白色固体が組成式Al(NH)で表されることが確認できた。
Al(NH) → 2AlN + NH (2)
When 0.4708 g of this product was placed in a BN crucible and fired at 1600 ° C. for 2 hours in an N 2 gas atmosphere, 0.3915 g of powder was obtained. The powder was identified as AlN by XRD analysis, and no other crystal phase was observed. Elemental analysis results also showed good agreement with AlN as follows; Al (measured by CyDTA-zinc back titration method): 65.0 mass% (calculated value 65.9 mass%), N (LECO TCH-600 Measured by electrical conductivity method using a type oxygen / nitrogen / hydrogen analyzer): 33.8% by mass (calculated value 34.1% by mass). Moreover, the mass ratio of the product recovered after firing with respect to the used raw material was 83.2%. This supports that the following reaction formula, Formula (2), has progressed quantitatively, and it can be confirmed that the white solid before firing is represented by the composition formula Al 2 (NH) 3. It was.
Al 2 (NH) 3 → 2AlN + NH 3 (2)

(実施例1)
アルミニウム源として(製造例)で得られたAl(NH)粉末5molと、酸化亜鉛粉末(関東化学株式会社製NanoTek(登録商標))90molとを原料粉末として用い、次のように実施例1の導電性酸化亜鉛粉末を製造した。原料粉末の和が4gになるように原料粉末を秤量し、窒素雰囲気のグローブボックス内でナイロンボールと共にステンレスポット中に収容して、ポット内の窒素雰囲気が保たれるようにステンレスポットを密閉した。このステンレスポットを、Retsch製のミキサーミルを用いて、15Hzの振動数で、30分間振動して、原料粉末を混合した。窒素雰囲気のグローブボックス内で、ステンレスポットを開封し、得られた混合粉末をステンレスポットから取り出して、窒化ホウ素坩堝に収容した。さらに、その窒化ホウ素坩堝を黒鉛坩堝に収容して、高周波誘導炉を用いて、窒素雰囲気下で、1000℃/時間の昇温速度で室温から1000℃まで加熱し、1000℃で10分保持して、混合粉末を焼成した。焼成後の粉末を、アルミナ乳鉢とアルミナ乳棒を用いて解砕し、実施例1の導電性酸化亜鉛粉末を得た。
Example 1
As an aluminum source, 5 mol of Al 2 (NH) 3 powder obtained in (Production Example) and 90 mol of zinc oxide powder (NanoTek (registered trademark) manufactured by Kanto Chemical Co., Ltd.) were used as raw material powders. 1 conductive zinc oxide powder was produced. The raw material powder was weighed so that the sum of the raw material powder was 4 g, and was housed in a stainless steel pot together with a nylon ball in a nitrogen atmosphere glove box, and the stainless steel pot was sealed so that the nitrogen atmosphere in the pot was maintained. . The stainless steel pot was vibrated at a frequency of 15 Hz for 30 minutes using a Retsch mixer mill to mix the raw material powder. In a glove box in a nitrogen atmosphere, the stainless steel pot was opened, and the obtained mixed powder was taken out of the stainless steel pot and accommodated in a boron nitride crucible. Further, the boron nitride crucible is accommodated in a graphite crucible, heated from a room temperature to 1000 ° C. at a heating rate of 1000 ° C./hour in a nitrogen atmosphere using a high frequency induction furnace, and held at 1000 ° C. for 10 minutes. The mixed powder was fired. The fired powder was pulverized using an alumina mortar and an alumina pestle to obtain conductive zinc oxide powder of Example 1.

得られた実施例1の導電性酸化亜鉛粉末のX線回折分析の結果を図1に示す。図1からは、酸化亜鉛に由来する回折ピークが観察され、得られた粉末が酸化亜鉛からなることが確認された。   The result of the X-ray diffraction analysis of the obtained conductive zinc oxide powder of Example 1 is shown in FIG. From FIG. 1, a diffraction peak derived from zinc oxide was observed, and it was confirmed that the obtained powder was composed of zinc oxide.

次に、上述の(導電性酸化亜鉛粉末におけるアルミニウムの固溶割合の測定方法)で説明した方法により、得られた導電性酸化亜鉛粉末のアルミニウムの固溶割合を測定した。はじめに、固体NMR分析により、実施例1の導電性酸化亜鉛粉末のNMRスペクトルを得た。得られた実施例1の導電性酸化亜鉛粉末のNMRスペクトルを図2に示す。図2からは、酸化亜鉛へのアルミニウムの固溶を示す、200ppm周辺にピークを持つNMRスペクトルが観察され、実施例1の導電性酸化亜鉛粉末の酸化亜鉛にはアルミニウムが固溶していることが確認された。また、得られたNMRスペクトルから、アルミニウムに由来する全てのピークの面積に対する、酸化亜鉛に固溶したアルミニウムに由来するピークの面積の割合を計算し、実施例1の導電性酸化亜鉛粉末中の全アルミニウムに対する、酸化亜鉛に固溶したアルミニウムの割合を、28.29%と算出した。次いで、ICP発光分析により、実施例1の導電性酸化亜鉛粉末中の全アルミニウムの含有割合を測定した。ICP発光分析により得られた、実施例1の導電性酸化亜鉛粉末中の全アルミニウムの含有割合3.5質量%に、NMRスペクトルにより得られた、全アルミニウムに対する、酸化亜鉛に固溶したアルミニウムの割合28.29%を乗じて、実施例1の導電性酸化亜鉛粉末のアルミニウムの固溶割合を算出した。その結果は、表1に示す通り、0.990質量%であった。   Next, the solid solution ratio of aluminum in the obtained conductive zinc oxide powder was measured by the method described above (Method for measuring the solid solution ratio of aluminum in the conductive zinc oxide powder). First, the NMR spectrum of the conductive zinc oxide powder of Example 1 was obtained by solid state NMR analysis. The NMR spectrum of the conductive zinc oxide powder obtained in Example 1 is shown in FIG. From FIG. 2, an NMR spectrum having a peak around 200 ppm indicating the solid solution of aluminum in zinc oxide is observed, and aluminum is dissolved in the zinc oxide of the conductive zinc oxide powder of Example 1. Was confirmed. Further, from the obtained NMR spectrum, the ratio of the area of the peak derived from aluminum dissolved in zinc oxide to the area of all the peaks derived from aluminum was calculated, and in the conductive zinc oxide powder of Example 1 The ratio of aluminum dissolved in zinc oxide to the total aluminum was calculated as 28.29%. Subsequently, the content rate of the total aluminum in the electroconductive zinc oxide powder of Example 1 was measured by ICP emission analysis. The total aluminum content in the conductive zinc oxide powder of Example 1 obtained by ICP emission analysis was 3.5% by mass, and the total amount of aluminum dissolved in zinc oxide was obtained by NMR spectrum. By multiplying the ratio by 28.29%, the solid solution ratio of aluminum in the conductive zinc oxide powder of Example 1 was calculated. The result was 0.990 mass% as shown in Table 1.

また、(導電性酸化亜鉛粉末における窒素の固溶割合の測定方法)で説明した方法により、得られた導電性酸化亜鉛粉末の窒素の固溶割合を測定した。はじめに、ラマン分光分析により、実施例1の導電性酸化亜鉛粉末のラマンスペクトルを得た。得られた実施例1の導電性酸化亜鉛粉末のラマンスペクトルを図3に示す。図3からは、酸化亜鉛への窒素の固溶に由来する275cm−1、508cm−1、579cm−1、642cm−1付近のピーク(非特許文献1、2参照)が存在することが確認された。次いで、酸素・窒素・水素分析装置を用いて、実施例1の導電性酸化亜鉛粉末中の窒素の含有割合を測定した。また、実施例1の導電性酸化亜鉛粉末のアルミニウムの固溶割合の測定に用いたNMRスペクトルに、窒化アルミニウムの生成を示す100ppm付近のピークが存在しないことを確認した。実施例1の導電性酸化亜鉛粉末中の窒素は、酸化亜鉛に固溶するか、窒化アルミニウムを形成する以外には存在しえないことから、実施例1の導電性酸化亜鉛粉末においては、酸化亜鉛に固溶した以外の窒素は存在しないと断定し、酸素・窒素・水素分析装置を用いて得られた、実施例1の導電性酸化亜鉛粉末中の窒素の含有割合0.314質量%を、表1に示す通り、実施例1の導電性酸化亜鉛粉末の窒素の固溶割合とした。 Further, the solid solution ratio of nitrogen in the obtained conductive zinc oxide powder was measured by the method described in (Method for measuring the solid solution ratio of nitrogen in the conductive zinc oxide powder). First, the Raman spectrum of the conductive zinc oxide powder of Example 1 was obtained by Raman spectroscopy. The Raman spectrum of the obtained conductive zinc oxide powder of Example 1 is shown in FIG. From Figure 3, 275cm -1 derived from the dissolution of nitrogen into zinc oxide, 508cm -1, 579cm -1, it is confirmed that the 642 cm -1 around peaks (see Non-Patent Documents 1 and 2) are present It was. Next, the content ratio of nitrogen in the conductive zinc oxide powder of Example 1 was measured using an oxygen / nitrogen / hydrogen analyzer. Further, it was confirmed that there was no peak near 100 ppm indicating the formation of aluminum nitride in the NMR spectrum used for measuring the solid solution ratio of aluminum in the conductive zinc oxide powder of Example 1. Nitrogen in the conductive zinc oxide powder of Example 1 cannot exist except for forming a solid solution in zinc oxide or forming aluminum nitride. Therefore, in the conductive zinc oxide powder of Example 1, oxidation is not possible. It was determined that there was no nitrogen other than solid solution in zinc, and the content ratio of nitrogen in the conductive zinc oxide powder of Example 1 obtained using an oxygen / nitrogen / hydrogen analyzer was 0.314% by mass. As shown in Table 1, the solid solution ratio of nitrogen in the conductive zinc oxide powder of Example 1 was used.

実施例1の導電性酸化亜鉛粉末の比表面積を、島津製作所製フローソーブ2310を用いて測定した。その結果は、表1に示す通り、4.73m/gであった。 The specific surface area of the conductive zinc oxide powder of Example 1 was measured using a Flowsorb 2310 manufactured by Shimadzu Corporation. The result was 4.73 m 2 / g as shown in Table 1.

次に、実施例1の導電性酸化亜鉛粉末2gを、テフロン(登録商標)製の内径20mmの円筒に充填して10MPaの圧力で加圧成形し、得られた圧粉体の体積抵抗率を、室温で、東陽テクニカ社製「体積抵抗率測定装置」を用いて測定した。製造直後の実施例1の導電性酸化亜鉛粉末の、室温における体積抵抗率は、表1に示す通り、10.6Ω・cmであった。さらに実施例1の導電性酸化亜鉛粉末を、上述の(導電性酸化亜鉛粉末の体積抵抗率の経時変化の評価方法)で説明した方法により保存し、製造後30日経過させた。30日経過後の実施例1の導電性酸化亜鉛粉末についても、製造直後と同様の方法で体積抵抗率を測定した。30日経過後の実施例1の導電性酸化亜鉛粉末の体積抵抗率は、表1に示す通り、12.7Ω・cmであり、体積抵抗率の経時変化は殆どないことが確認された。   Next, 2 g of the conductive zinc oxide powder of Example 1 was filled in a 20 mm inner diameter cylinder made of Teflon (registered trademark) and pressure-molded at a pressure of 10 MPa, and the volume resistivity of the obtained green compact was determined. The measurement was performed at room temperature using a “volume resistivity measuring device” manufactured by Toyo Technica. As shown in Table 1, the volume resistivity at room temperature of the conductive zinc oxide powder of Example 1 immediately after production was 10.6 Ω · cm. Furthermore, the electroconductive zinc oxide powder of Example 1 was preserve | saved by the method demonstrated by the above-mentioned (Evaluation method of the time-dependent change of the volume resistivity of electroconductive zinc oxide powder), and 30 days passed after manufacture. Also about the electroconductive zinc oxide powder of Example 1 after 30-day progress, the volume resistivity was measured by the method similar to immediately after manufacture. As shown in Table 1, the volume resistivity of the conductive zinc oxide powder of Example 1 after 30 days was 12.7 Ω · cm, and it was confirmed that there was almost no change in volume resistivity with time.

また、実施例1の導電性酸化亜鉛粉末を製造直後から30日経過させた方法と同様にして、製造直後から210日経過させ、製造直後の体積抵抗率の測定と同様の方法で、210日経過後の実施例1の導電性酸化亜鉛粉末の体積抵抗率を測定した。210日経過後の実施例1の導電性酸化亜鉛粉末の体積抵抗率は、表1に示す通り、15.4Ω・cmであり、210日経過後でも、体積抵抗率の経時変化は殆どないことが確認された。   Further, in the same manner as the method in which the conductive zinc oxide powder of Example 1 was allowed to elapse for 30 days from immediately after production, 210 days had elapsed since immediately after production, and in the same manner as the measurement of volume resistivity immediately after production, 210 days passed. The volume resistivity of the conductive zinc oxide powder of Example 1 was measured. The volume resistivity of the conductive zinc oxide powder of Example 1 after 210 days was 15.4 Ω · cm as shown in Table 1, and it was confirmed that there was almost no change in volume resistivity with time even after 210 days. It was done.

また、実施例1の導電性酸化亜鉛粉末の蛍光スペクトルを測定し、格子空孔(酸素欠損)の有無を調べた。酸化亜鉛に格子空孔(酸素欠損)があれば、それに起因して格子空孔(酸素欠損)が埋まるまでの間は一時的に導電性を示すことがわかっているので、実施例1の導電性酸化亜鉛粉末が低い体積抵抗率を示すことが、アルミニウムの固溶に起因することを確認するためである。一般的に、酸化亜鉛中に格子空孔(酸素欠損)があれば、蛍光スペクトルの500nm付近にピークが現れることが知られている。日本分光株式会社製の蛍光分光光度計FP−6500を用いて、それに付帯する積分球内で、石英ガラス製の受光部を持つ粉末試料用ホルダに収容した実施例1の導電性酸化亜鉛粉末に320nmの光を照射し、実施例1の導電性酸化亜鉛粉末の蛍光スペクトルを測定した。その結果を、比較例3、4、5、6の導電性酸化亜鉛粉末の蛍光スペクトルと併せて図14に示す。比較例3、4、5、6の導電性酸化亜鉛粉末の蛍光スペクトルには500nm付近にピークが観察されたが、実施例1の導電性酸化亜鉛粉末の蛍光スペクトルには、500nm付近のピークが観察されなかった。実施例1の導電性酸化亜鉛粉末には格子空孔(酸素欠損)が殆どないことがわかり、その低い体積抵抗率は、酸化亜鉛にアルミニウムが固溶していることに起因していることが確認された。   In addition, the fluorescence spectrum of the conductive zinc oxide powder of Example 1 was measured to check for the presence of lattice vacancies (oxygen vacancies). If zinc oxide has lattice vacancies (oxygen vacancies), it is known that conductivity is temporarily exhibited until the lattice vacancies (oxygen vacancies) are filled. This is because it is confirmed that the zinc oxide powder exhibits a low volume resistivity due to the solid solution of aluminum. Generally, it is known that if there are lattice vacancies (oxygen vacancies) in zinc oxide, a peak appears in the vicinity of 500 nm of the fluorescence spectrum. Using the fluorescent spectrophotometer FP-6500 manufactured by JASCO Corporation, the conductive zinc oxide powder of Example 1 housed in a powder sample holder having a light-receiving portion made of quartz glass in an integrating sphere attached thereto. The fluorescence spectrum of the conductive zinc oxide powder of Example 1 was measured by irradiation with light of 320 nm. The results are shown in FIG. 14 together with the fluorescence spectra of the conductive zinc oxide powders of Comparative Examples 3, 4, 5, and 6. In the fluorescence spectra of the conductive zinc oxide powders of Comparative Examples 3, 4, 5, and 6, a peak was observed at around 500 nm, but in the fluorescence spectrum of the conductive zinc oxide powder of Example 1, a peak around 500 nm was observed. Not observed. It can be seen that the conductive zinc oxide powder of Example 1 has almost no lattice vacancies (oxygen vacancies), and the low volume resistivity is attributed to the solid solution of aluminum in zinc oxide. confirmed.

(実施例2)
原料粉末を、Al(NH)粉末1mol、および酸化亜鉛粉末98molとしたこと以外は実施例1と同様の方法によって、実施例2の導電性酸化亜鉛粉末を製造した。得られた実施例2の導電性酸化亜鉛粉末について、実施例1と同様の方法により、X線回折分析、比表面積の測定、アルミニウムの固溶割合の測定、および窒素の固溶割合の測定と製造直後、30日経過後および210日経過後の体積抵抗率の測定を行った。得られた実施例2の導電性酸化亜鉛粉末のX線回折分析の結果を図1に示す。X線回折分析の結果からは、図1に示す通り、酸化亜鉛に起因する回折ピークが観察され、得られた粉末が酸化亜鉛からなることがわかった。また、実施例2の導電性酸化亜鉛粉末の比表面積、アルミニウムの固溶割合、窒素の固溶割合と、製造直後、30日経過後および210日経過後の体積抵抗率を表1に示す。実施例2の導電性酸化亜鉛粉末の比表面積は、3.76m/g、アルミニウムの固溶割合は0.143質量%、窒素の固溶割合は0.030質量%であった。また、その体積抵抗率は、製造直後で54.9Ω・cm、30日経過後で65.4Ω・cm、210日経過後で84.8Ω・cmと、若干の経時変化はあるものの、210日経過後でも100Ω・cm以下の低い値に留まった。
(Example 2)
A conductive zinc oxide powder of Example 2 was produced in the same manner as in Example 1 except that the raw material powder was 1 mol of Al 2 (NH) 3 powder and 98 mol of zinc oxide powder. About the obtained conductive zinc oxide powder of Example 2, X-ray diffraction analysis, measurement of specific surface area, measurement of solid solution ratio of aluminum, and measurement of solid solution ratio of nitrogen were performed in the same manner as in Example 1. The volume resistivity was measured immediately after production, after 30 days and after 210 days. The result of the X-ray diffraction analysis of the obtained conductive zinc oxide powder of Example 2 is shown in FIG. From the result of X-ray diffraction analysis, as shown in FIG. 1, it was found that a diffraction peak due to zinc oxide was observed, and that the obtained powder was composed of zinc oxide. Table 1 shows the specific surface area of the conductive zinc oxide powder of Example 2, the solid solution ratio of aluminum, the solid solution ratio of nitrogen, and the volume resistivity immediately after production, after 30 days and after 210 days. The specific surface area of the conductive zinc oxide powder of Example 2 was 3.76 m 2 / g, the solid solution ratio of aluminum was 0.143 mass%, and the solid solution ratio of nitrogen was 0.030 mass%. The volume resistivity was 54.9 Ω · cm immediately after production, 65.4 Ω · cm after 30 days, and 84.8 Ω · cm after 210 days. It remained at a low value of 100 Ω · cm or less.

(実施例3)
原料粉末を、Al(NH)粉末3mol、および酸化亜鉛粉末94molとしたこと以外は、実施例1と同様の方法によって、実施例3の導電性酸化亜鉛粉末を製造した。得られた実施例3の導電性酸化亜鉛粉末について、実施例1と同様の方法により、X線回折分析、比表面積の測定、アルミニウムの固溶割合の測定、および窒素の固溶割合の測定と、製造直後、30日経過後および210日経過後の体積抵抗率の測定を行った。得られた実施例3の導電性酸化亜鉛粉末のX線回折分析の結果を図1に示す。X線回折分析の結果からは、図1に示す通り、酸化亜鉛に由来する回折ピークが観察され、得られた粉末が酸化亜鉛からなることがわかった。また、実施例3の導電性酸化亜鉛粉末の比表面積、アルミニウムの固溶割合、窒素の固溶割合と、製造直後、30日経過後および210日経過後の体積抵抗率を表1に示す。実施例3の導電性酸化亜鉛粉末の比表面積は、3.48m/g、アルミニウムの固溶割合は0.331質量%、窒素の固溶割合は0.130質量%であった。また、その体積抵抗率は、製造直後で17.7Ω・cm、30日経過後で17.3Ω・cm、210日経過後で14.0Ω・cmと、特に低い体積抵抗率を示し、210日経過後でも、その経時変化は殆どないことが確認された。
(Example 3)
A conductive zinc oxide powder of Example 3 was produced in the same manner as in Example 1 except that the raw material powder was 3 mol of Al 2 (NH) 3 powder and 94 mol of zinc oxide powder. About the obtained conductive zinc oxide powder of Example 3, X-ray diffraction analysis, measurement of specific surface area, measurement of solid solution ratio of aluminum, and measurement of solid solution ratio of nitrogen were performed in the same manner as in Example 1. The volume resistivity was measured immediately after production, after 30 days and after 210 days. The result of the X-ray diffraction analysis of the obtained conductive zinc oxide powder of Example 3 is shown in FIG. From the result of the X-ray diffraction analysis, as shown in FIG. 1, a diffraction peak derived from zinc oxide was observed, and it was found that the obtained powder was composed of zinc oxide. Table 1 shows the specific surface area of the conductive zinc oxide powder of Example 3, the solid solution ratio of aluminum, the solid solution ratio of nitrogen, and the volume resistivity immediately after production, after 30 days and after 210 days. The specific surface area of the conductive zinc oxide powder of Example 3 was 3.48 m 2 / g, the solid solution ratio of aluminum was 0.331 mass%, and the solid solution ratio of nitrogen was 0.130 mass%. The volume resistivity is 17.7 Ω · cm immediately after production, 17.3 Ω · cm after 30 days, 14.0 Ω · cm after 210 days, and particularly low volume resistivity, even after 210 days. It was confirmed that there was almost no change over time.

(実施例4)
混合粉末の焼成温度(焼成時の最高温度)を1100℃としたこと以外は、実施例1と同様の方法によって、実施例4の導電性酸化亜鉛粉末を製造した。得られた実施例4の導電性酸化亜鉛粉末について、実施例1と同様の方法により、X線回折分析、比表面積の測定、アルミニウムの固溶割合の測定、および窒素の固溶割合の測定と、製造直後、30日経過後および210日経過後の体積抵抗率の測定を行った。得られた実施例4の導電性酸化亜鉛粉末のX線回折分析の結果を図1に示す。X線回折分析の結果からは、図1に示す通り、酸化亜鉛に由来する回折ピークが観察され、得られた粉末が、酸化亜鉛からなることがわかった。実施例4の導電性酸化亜鉛粉末の比表面積、アルミニウムの固溶割合、窒素の固溶割合と、製造直後、30日経過後および210日経過後の体積抵抗率を表1に示す。実施例4の導電性酸化亜鉛粉末の比表面積は、3.80m/g、アルミニウムの固溶割合は0.408質量%、窒素の固溶割合は0.174質量%であった。また、その体積抵抗率は、製造直後で45.9Ω・cm、30日経過後で41.8Ω・cm、210日経過後で41.5Ω・cmと、100Ω・cm以下の低い体積抵抗率を示し、210日経過後でも、その経時変化は殆どないことが確認された。
Example 4
A conductive zinc oxide powder of Example 4 was produced in the same manner as in Example 1 except that the firing temperature of the mixed powder (maximum temperature during firing) was 1100 ° C. About the obtained conductive zinc oxide powder of Example 4, X-ray diffraction analysis, measurement of specific surface area, measurement of solid solution ratio of aluminum, and measurement of solid solution ratio of nitrogen were performed in the same manner as in Example 1. The volume resistivity was measured immediately after production, after 30 days and after 210 days. The result of the X-ray diffraction analysis of the obtained conductive zinc oxide powder of Example 4 is shown in FIG. From the results of X-ray diffraction analysis, as shown in FIG. 1, a diffraction peak derived from zinc oxide was observed, and it was found that the obtained powder was composed of zinc oxide. Table 1 shows the specific surface area of the conductive zinc oxide powder of Example 4, the solid solution ratio of aluminum, the solid solution ratio of nitrogen, and the volume resistivity immediately after production, after 30 days and after 210 days. The specific surface area of the conductive zinc oxide powder of Example 4 was 3.80 m 2 / g, the solid solution ratio of aluminum was 0.408 mass%, and the solid solution ratio of nitrogen was 0.174 mass%. The volume resistivity is 45.9 Ω · cm immediately after production, 41.8 Ω · cm after 30 days, 41.5 Ω · cm after 210 days, and a low volume resistivity of 100 Ω · cm or less. Even after 210 days, it was confirmed that there was almost no change over time.

(比較例1)
混合粉末の焼成温度を800℃としたこと以外は実施例1と同様の方法によって、比較例1の導電性酸化亜鉛粉末を製造した。得られた比較例1の導電性酸化亜鉛粉末について、実施例1と同様の方法により、X線回折分析、比表面積の測定、アルミニウムの固溶割合の測定、および窒素の固溶割合の測定と、製造直後、30日経過後および210日経過後の体積抵抗率の測定を行った。得られた比較例1の導電性酸化亜鉛粉末のX線回折分析の結果を図4に示す。X線回折分析の結果からは、図4に示す通り、酸化亜鉛に由来する回折ピークが観察され、得られた粉末が酸化亜鉛からなることがわかった。比較例1の導電性酸化亜鉛粉末の比表面積、アルミニウムの固溶割合、窒素の固溶割合と、製造直後、30日経過後および210日経過後の体積抵抗率を表1に示す。比較例1の導電性酸化亜鉛粉末の比表面積は、7.37m/g、アルミニウムの固溶割合は0質量%、窒素の固溶割合は1.21質量%であった。また、その体積抵抗率は、製造直後、30日経過後および210日経過後のいずれにおいても、測定装置の測定限界(1×10Ω・cm)を上回るほど高かった。
(Comparative Example 1)
A conductive zinc oxide powder of Comparative Example 1 was produced in the same manner as in Example 1 except that the firing temperature of the mixed powder was 800 ° C. About the obtained conductive zinc oxide powder of Comparative Example 1, by the same method as Example 1, X-ray diffraction analysis, measurement of specific surface area, measurement of solid solution ratio of aluminum, and measurement of solid solution ratio of nitrogen The volume resistivity was measured immediately after production, after 30 days and after 210 days. The result of the X-ray diffraction analysis of the obtained conductive zinc oxide powder of Comparative Example 1 is shown in FIG. From the results of X-ray diffraction analysis, as shown in FIG. 4, it was found that a diffraction peak derived from zinc oxide was observed, and the obtained powder was composed of zinc oxide. Table 1 shows the specific surface area of the conductive zinc oxide powder of Comparative Example 1, the solid solution ratio of aluminum, the solid solution ratio of nitrogen, and the volume resistivity immediately after production, after 30 days and after 210 days. The specific surface area of the conductive zinc oxide powder of Comparative Example 1 was 7.37 m 2 / g, the solid solution ratio of aluminum was 0 mass%, and the solid solution ratio of nitrogen was 1.21 mass%. Moreover, the volume resistivity was so high that it exceeded the measurement limit (1 × 10 8 Ω · cm) of the measuring apparatus immediately after production, after 30 days and after 210 days.

(比較例2)
混合粉末の焼成温度を1300℃としたこと以外は、実施例1と同様の方法によって混合粉末を焼成した。焼成後の比較例2の試料は窒化ホウ素坩堝と反応してガラス化し、窒化ホウ素坩堝の底に固着していた。この固着物を解砕し、X線回折分析を行った。得られた比較例2の導電性酸化亜鉛粉末のX線回折分析の結果を図4に示す。図4に示すように、酸化亜鉛に由来する回折ピークは観察されず、焼成温度を1300℃とした比較例2では酸化亜鉛粉末が得られなかった。
(Comparative Example 2)
The mixed powder was fired by the same method as in Example 1 except that the firing temperature of the mixed powder was 1300 ° C. The sample of Comparative Example 2 after firing reacted with the boron nitride crucible to vitrify, and was fixed to the bottom of the boron nitride crucible. The fixed matter was crushed and subjected to X-ray diffraction analysis. The result of the X-ray diffraction analysis of the obtained conductive zinc oxide powder of Comparative Example 2 is shown in FIG. As shown in FIG. 4, no diffraction peak derived from zinc oxide was observed, and no zinc oxide powder was obtained in Comparative Example 2 in which the firing temperature was 1300 ° C.

(比較例3)
アルミニウム源を硫酸アルミニウム(Al(SO)粉末とし、原料粉末を、硫酸アルミニウム粉末5mol、酸化亜鉛粉末90molとしたこと以外は、実施例1と同様の方法によって、比較例3の導電性酸化亜鉛粉末を製造した。得られた比較例3の導電性酸化亜鉛粉末について、実施例1と同様の方法により、X線回折分析、比表面積の測定、アルミニウムの固溶割合の測定、および窒素の固溶割合の測定と、製造直後、30日経過後および210日経過後の体積抵抗率の測定を行った。得られた比較例3の導電性酸化亜鉛粉末のX線回折分析の結果を図5に示す。X線回折分析の結果からは、図5に示す通り、酸化亜鉛に由来する回折ピークが観察された。図6に、得られた比較例3の導電性酸化亜鉛粉末のNMRスペクトルを示す。比較例3の導電性酸化亜鉛粉末のNMRスペクトルには、酸化亜鉛へのアルミニウムの固溶を示す200ppm周辺にピークが観察されるが、実施例1の導電性酸化亜鉛粉末のNMRスペクトルのそれと比較すると非常に小さなピークであった。図7に、比較例3の導電性酸化亜鉛粉末のラマンスペクトルを示す。比較例3の導電性酸化亜鉛粉末のラマンスペクトルには実施例1のような窒素の固溶ピークが観察されなかった。
(Comparative Example 3)
The conductivity of Comparative Example 3 was the same as that of Example 1, except that the aluminum source was aluminum sulfate (Al 2 (SO 4 ) 3 ) powder, and the raw material powder was 5 mol of aluminum sulfate powder and 90 mol of zinc oxide powder. Zinc oxide powder was produced. About the obtained conductive zinc oxide powder of Comparative Example 3, by the same method as Example 1, X-ray diffraction analysis, measurement of specific surface area, measurement of solid solution ratio of aluminum, and measurement of solid solution ratio of nitrogen The volume resistivity was measured immediately after production, after 30 days and after 210 days. The result of the X-ray diffraction analysis of the obtained conductive zinc oxide powder of Comparative Example 3 is shown in FIG. From the result of the X-ray diffraction analysis, as shown in FIG. 5, a diffraction peak derived from zinc oxide was observed. FIG. 6 shows the NMR spectrum of the conductive zinc oxide powder of Comparative Example 3 obtained. In the NMR spectrum of the conductive zinc oxide powder of Comparative Example 3, a peak is observed around 200 ppm indicating the solid solution of aluminum in zinc oxide, but it is compared with that of the NMR spectrum of the conductive zinc oxide powder of Example 1. It was a very small peak. In FIG. 7, the Raman spectrum of the electroconductive zinc oxide powder of the comparative example 3 is shown. In the Raman spectrum of the conductive zinc oxide powder of Comparative Example 3, no nitrogen solid solution peak as in Example 1 was observed.

比較例3の導電性酸化亜鉛粉末の比表面積、アルミニウムの固溶割合、窒素の固溶割合と、製造直後、30日経過後および210日経過後の体積抵抗率を表1に示す。比較例3の導電性酸化亜鉛粉末の比表面積は2.70m/g、アルミニウムの固溶割合は0.015質量%、窒素の固溶割合は0質量%であった。また、その体積抵抗率は、製造直後では37.9Ω・cmと低かったが、30日経過後では189.1Ω・cm、210日経過後では測定装置の測定限界(1×10Ω・cm)を上回るほど高くなり、著しく経時変化することが確認された。比較例3の導電性酸化亜鉛粉末は、実用的な導電性酸化亜鉛粉末ではないことが分かった。 Table 1 shows the specific surface area of the conductive zinc oxide powder of Comparative Example 3, the solid solution ratio of aluminum, the solid solution ratio of nitrogen, and the volume resistivity immediately after production, after 30 days and after 210 days. The specific surface area of the conductive zinc oxide powder of Comparative Example 3 was 2.70 m 2 / g, the solid solution ratio of aluminum was 0.015 mass%, and the solid solution ratio of nitrogen was 0 mass%. In addition, the volume resistivity was as low as 37.9 Ω · cm immediately after manufacture, but 189.1 Ω · cm after 30 days, and the measurement limit (1 × 10 8 Ω · cm) of the measuring device after 210 days. It was confirmed that the higher the value was, the remarkably changed with time. It turned out that the electroconductive zinc oxide powder of the comparative example 3 is not a practical electroconductive zinc oxide powder.

また、比較例3の導電性酸化亜鉛粉末の蛍光スペクトルを測定し、格子空孔(酸素欠損)の有無を調べた。実施例1と同様の方法で比較例3の導電性酸化亜鉛粉末の蛍光スペクトルを測定した。その結果を、実施例1、比較例4、5、6の導電性酸化亜鉛粉末の蛍光スペクトルと併せて図14に示す。実施例1の導電性酸化亜鉛粉末の蛍光スペクトルには、500nm付近にピークが観察されないのに対して、比較例3の導電性酸化亜鉛粉末の蛍光スペクトルには、他の比較例と同様に500nm付近にピークが観察された。比較例3の導電性酸化亜鉛粉末が、製造直後に、低い体積抵抗率を持ち、導電性を示し、その経時変化が著しいのは、比較例3の導電性酸化亜鉛粉末の導電性が、格子空孔(酸素欠損)に起因することによるからと推察される。   Further, the fluorescence spectrum of the conductive zinc oxide powder of Comparative Example 3 was measured to examine the presence or absence of lattice vacancies (oxygen vacancies). The fluorescence spectrum of the conductive zinc oxide powder of Comparative Example 3 was measured in the same manner as in Example 1. The results are shown in FIG. 14 together with the fluorescence spectra of the conductive zinc oxide powders of Example 1 and Comparative Examples 4, 5, and 6. In the fluorescence spectrum of the conductive zinc oxide powder of Example 1, no peak is observed in the vicinity of 500 nm, whereas in the fluorescence spectrum of the conductive zinc oxide powder of Comparative Example 3, it is 500 nm as in the other comparative examples. A peak was observed in the vicinity. The conductive zinc oxide powder of Comparative Example 3 has a low volume resistivity and exhibits electrical conductivity immediately after production, and the change over time is significant because the electrical conductivity of the conductive zinc oxide powder of Comparative Example 3 is a lattice. This is presumed to be due to vacancies (oxygen deficiency).

(比較例4)
アルミニウム源を硝酸アルミニウム(Al(NO)粉末とし、原料粉末を、硝酸アルミニウム粉末10mol、酸化亜鉛粉末90molとしたこと以外は、実施例1と同様の方法によって、比較例4の導電性酸化亜鉛粉末を製造した。得られた比較例4の導電性酸化亜鉛粉末について、実施例1と同様の方法により、X線回折分析、比表面積の測定、アルミニウムの固溶割合の測定、および窒素の固溶割合の測定と、製造直後、30日経過後および210日経過後の体積抵抗率の測定を行った。得られた比較例4の導電性酸化亜鉛粉末のX線回折分析の結果を図5に示す。X線回折分析の結果からは、図5に示す通り、酸化亜鉛に由来する回折ピークが観察された。図8に、比較例4の導電性酸化亜鉛粉末のNMRスペクトルを示す。比較例4の導電性酸化亜鉛粉末のNMRスペクトルには、酸化亜鉛へのアルミニウムの固溶を示す200ppm周辺のピークは観察されなかった。図9に、比較例4の導電性酸化亜鉛粉末のラマンスペクトルを示す。比較例4の導電性酸化亜鉛粉末のラマンスペクトルには窒素の固溶に由来するピークは観察されなかった。比較例4の導電性酸化亜鉛粉末の比表面積、アルミニウムの固溶割合、窒素の固溶割合と、製造直後、30日経過後および210日経過後の体積抵抗率を表1に示す。比較例4の導電性酸化亜鉛粉末の比表面積は1.97m/g、アルミニウムの固溶割合は0質量%、窒素の固溶割合は0.021質量%であった。また、その体積抵抗率は、製造直後でも200.7Ω・cmと高く、30日経過後では423.3Ω・cmとさらに高くなり、また210日経過後では測定装置の測定限界(1×10Ω・cm)を上回るほど高くなり、著しく経時変化することが確認された。
(Comparative Example 4)
The conductivity of Comparative Example 4 was the same as that of Example 1 except that the aluminum source was aluminum nitrate (Al (NO 3 ) 3 ) powder and the raw material powder was 10 mol of aluminum nitrate powder and 90 mol of zinc oxide powder. Zinc oxide powder was produced. About the obtained conductive zinc oxide powder of Comparative Example 4, by the same method as Example 1, X-ray diffraction analysis, measurement of specific surface area, measurement of solid solution ratio of aluminum, and measurement of solid solution ratio of nitrogen The volume resistivity was measured immediately after production, after 30 days and after 210 days. The result of the X-ray diffraction analysis of the obtained conductive zinc oxide powder of Comparative Example 4 is shown in FIG. From the result of the X-ray diffraction analysis, as shown in FIG. 5, a diffraction peak derived from zinc oxide was observed. FIG. 8 shows the NMR spectrum of the conductive zinc oxide powder of Comparative Example 4. In the NMR spectrum of the conductive zinc oxide powder of Comparative Example 4, a peak around 200 ppm indicating solid solution of aluminum in zinc oxide was not observed. In FIG. 9, the Raman spectrum of the electroconductive zinc oxide powder of the comparative example 4 is shown. In the Raman spectrum of the conductive zinc oxide powder of Comparative Example 4, no peak derived from nitrogen solid solution was observed. Table 1 shows the specific surface area of the conductive zinc oxide powder of Comparative Example 4, the solid solution ratio of aluminum, the solid solution ratio of nitrogen, and the volume resistivity immediately after production, after 30 days and after 210 days. The specific surface area of the conductive zinc oxide powder of Comparative Example 4 was 1.97 m 2 / g, the solid solution ratio of aluminum was 0 mass%, and the solid solution ratio of nitrogen was 0.021 mass%. In addition, the volume resistivity is as high as 200.7 Ω · cm even immediately after production, and is further increased to 423.3 Ω · cm after 30 days. Further, after 210 days, the measurement limit (1 × 10 8 Ω · cm It was confirmed that the value was higher as it exceeded (cm) and changed with time.

また、比較例4の導電性酸化亜鉛粉末の蛍光スペクトルを測定し、格子空孔(酸素欠損)の有無を調べた。実施例1と同様の方法で比較例3の導電性酸化亜鉛粉末の蛍光スペクトルを測定した。その結果を、実施例1、比較例3、5、6の導電性酸化亜鉛粉末の蛍光スペクトルと併せて図14に示す。実施例1の導電性酸化亜鉛粉末の蛍光スペクトルには、500nm付近にピークが観察されないのに対して、比較例4の導電性酸化亜鉛粉末の蛍光スペクトルには、他の比較例と同様に500nm付近にピークが観察された。比較例4の導電性酸化亜鉛粉末が、製造直後に、体積抵抗率が高いものの導電性を示し、その経時変化が著しいのは、比較例4の導電性酸化亜鉛粉末の導電性が、格子空孔(酸素欠損)に起因することによるからと推察される。   In addition, the fluorescence spectrum of the conductive zinc oxide powder of Comparative Example 4 was measured to check for the presence of lattice vacancies (oxygen vacancies). The fluorescence spectrum of the conductive zinc oxide powder of Comparative Example 3 was measured in the same manner as in Example 1. The results are shown in FIG. 14 together with the fluorescence spectra of the conductive zinc oxide powders of Example 1 and Comparative Examples 3, 5, and 6. In the fluorescence spectrum of the conductive zinc oxide powder of Example 1, no peak is observed in the vicinity of 500 nm, whereas the fluorescence spectrum of the conductive zinc oxide powder of Comparative Example 4 has a wavelength of 500 nm as in the other comparative examples. A peak was observed in the vicinity. The conductive zinc oxide powder of Comparative Example 4 exhibits a high volume resistivity immediately after production, and the change over time is remarkable because the conductivity of the conductive zinc oxide powder of Comparative Example 4 is lattice empty. This is presumed to be due to pores (oxygen deficiency).

(比較例5)
アルミニウム源を塩化アルミニウム(AlCl)粉末とし、原料粉末を、塩化アルミニウム粉末10mol、酸化亜鉛粉末90molとしたこと以外は、実施例1と同様の方法によって、比較例5の導電性酸化亜鉛粉末を製造した。得られた比較例5の導電性酸化亜鉛粉末について、実施例1と同様の方法により、X線回折分析、比表面積の測定、アルミニウムの固溶割合の測定、および窒素の固溶割合の測定と、製造直後、30日経過後および210日経過後の体積抵抗率の測定を行った。得られた比較例5の導電性酸化亜鉛粉末のX線回折分析の結果を図5に示す。X線回折分析の結果からは、図5に示す通り、酸化亜鉛に由来する回折ピークが観察された。図10に、比較例5の導電性酸化亜鉛粉末のNMRスペクトルを示す。比較例5の導電性酸化亜鉛粉末のNMRスペクトルには、酸化亜鉛へのアルミニウムの固溶を示す200ppm周辺のピークは観察されなかった。図11に、比較例5の導電性酸化亜鉛粉末のラマンスペクトルを示す。比較例5の導電性酸化亜鉛粉末のラマンスペクトルには、窒素の固溶に由来するピークは観察されなかった。比較例5の導電性酸化亜鉛粉末の比表面積、アルミニウムの固溶割合、および窒素の固溶割合と、製造直後、30日経過後および210日経過後の体積抵抗率を表1に示す。比較例5の導電性酸化亜鉛粉末の比表面積は2.32m/g、アルミニウムの固溶割合は0質量%、窒素の固溶割合も0質量%であった。また、その体積抵抗率は、製造直後では94.1Ω・cmと低かったが、30日経過後では191.0Ω・cmと高くなり、210日経過後では測定装置の測定限界(1×10Ω・cm)を上回るほど高くなって、経時変化することが確認された。
(Comparative Example 5)
The conductive zinc oxide powder of Comparative Example 5 was prepared in the same manner as in Example 1 except that the aluminum source was aluminum chloride (AlCl 3 ) powder and the raw material powder was 10 mol of aluminum chloride powder and 90 mol of zinc oxide powder. Manufactured. About the obtained conductive zinc oxide powder of Comparative Example 5, by the same method as Example 1, X-ray diffraction analysis, measurement of specific surface area, measurement of solid solution ratio of aluminum, and measurement of solid solution ratio of nitrogen The volume resistivity was measured immediately after production, after 30 days and after 210 days. The result of the X-ray diffraction analysis of the obtained conductive zinc oxide powder of Comparative Example 5 is shown in FIG. From the result of the X-ray diffraction analysis, as shown in FIG. 5, a diffraction peak derived from zinc oxide was observed. FIG. 10 shows the NMR spectrum of the conductive zinc oxide powder of Comparative Example 5. In the NMR spectrum of the conductive zinc oxide powder of Comparative Example 5, a peak around 200 ppm indicating solid solution of aluminum in zinc oxide was not observed. In FIG. 11, the Raman spectrum of the electroconductive zinc oxide powder of the comparative example 5 is shown. In the Raman spectrum of the conductive zinc oxide powder of Comparative Example 5, no peak derived from the solid solution of nitrogen was observed. Table 1 shows the specific surface area of the conductive zinc oxide powder of Comparative Example 5, the solid solution ratio of aluminum, the solid solution ratio of nitrogen, and the volume resistivity immediately after production, after 30 days and after 210 days. The specific surface area of the conductive zinc oxide powder of Comparative Example 5 was 2.32 m 2 / g, the aluminum solid solution ratio was 0 mass%, and the nitrogen solid solution ratio was 0 mass%. In addition, the volume resistivity was as low as 94.1 Ω · cm immediately after manufacture, but increased to 191.0 Ω · cm after 30 days, and after 210 days, the measurement limit (1 × 10 8 Ω · cm). It has been confirmed that it becomes higher as it exceeds cm) and changes with time.

また、比較例5の導電性酸化亜鉛粉末の蛍光スペクトルを測定し、格子空孔(酸素欠損)の有無を調べた。実施例1と同様の方法で比較例5の導電性酸化亜鉛粉末の蛍光スペクトルを測定した。その結果を、実施例1、比較例3、4、6の導電性酸化亜鉛粉末の蛍光スペクトルと併せて図14に示す。実施例1の導電性酸化亜鉛粉末の蛍光スペクトルには、500nm付近にピークが観察されないのに対して、比較例5の導電性酸化亜鉛粉末の蛍光スペクトルには、他の比較例と同様に500nm付近にピークが観察された。比較例5の導電性酸化亜鉛粉末が、製造直後に、低い体積抵抗率を持ち、導電性を示し、その経時変化が著しいのは、比較例5の導電性酸化亜鉛粉末の導電性が、格子空孔(酸素欠損)に起因することによるからと推察される。   Further, the fluorescence spectrum of the conductive zinc oxide powder of Comparative Example 5 was measured to examine the presence or absence of lattice vacancies (oxygen vacancies). The fluorescence spectrum of the conductive zinc oxide powder of Comparative Example 5 was measured in the same manner as in Example 1. The results are shown in FIG. 14 together with the fluorescence spectra of the conductive zinc oxide powders of Example 1 and Comparative Examples 3, 4, and 6. In the fluorescence spectrum of the conductive zinc oxide powder of Example 1, no peak is observed in the vicinity of 500 nm, whereas the fluorescence spectrum of the conductive zinc oxide powder of Comparative Example 5 is 500 nm as in the other comparative examples. A peak was observed in the vicinity. The conductive zinc oxide powder of Comparative Example 5 has a low volume resistivity and exhibits electrical conductivity immediately after production, and the change over time is significant because the conductivity of the conductive zinc oxide powder of Comparative Example 5 is a lattice. This is presumed to be due to vacancies (oxygen deficiency).

(比較例6)
アルミニウム源を窒化アルミニウム(AlN)粉末とし、原料粉末を、窒化アルミニウム粉末10mol、酸化亜鉛粉末90molとしたこと以外は、実施例1と同様の方法によって、比較例6の導電性酸化亜鉛粉末を製造した。得られた比較例6の導電性酸化亜鉛粉末について、実施例1と同様の方法により、X線回折分析、比表面積の測定、アルミニウムの固溶割合の測定、および窒素の固溶割合の測定と製造直後、30日経過後および210日経過後の体積抵抗率の測定を行った。得られた比較例6の導電性酸化亜鉛粉末のX線回折分析の結果を図5に示す。X線回折分析の結果からは、図5に示す通り、酸化亜鉛に由来する回折ピークが観察された。図12に、比較例4の導電性酸化亜鉛粉末のNMRスペクトルを示す。比較例6の導電性酸化亜鉛粉末のNMRスペクトルには、酸化亜鉛へのアルミニウムの固溶を示す200ppm周辺のピークは観察されなかった。図13に、比較例6の導電性酸化亜鉛粉末のラマンスペクトルを示す。比較例6の導電性酸化亜鉛粉末のラマンスペクトルには、窒素の固溶に由来するピークは観察されなかった。比較例6の導電性酸化亜鉛粉末の比表面積、アルミニウムの固溶割合、窒素の固溶割合と、製造直後、30日経過後および210日経過後の体積抵抗率は表1に示す通りであった。比較例6の導電性酸化亜鉛粉末の比表面積は3.17m/g、アルミニウムの固溶割合は0質量%、窒素の固溶割合は0.060質量%であった。また、その体積抵抗率は、製造直後でも424.0Ω・cmと高く、30日経過後および210日経過後のいずれにおいても、測定装置の測定限界(1×10Ω・cm)を上回るほど高くなり、著しく経時変化することが確認された。
(Comparative Example 6)
A conductive zinc oxide powder of Comparative Example 6 is produced in the same manner as in Example 1 except that the aluminum source is aluminum nitride (AlN) powder and the raw material powder is 10 mol of aluminum nitride powder and 90 mol of zinc oxide powder. did. About the obtained conductive zinc oxide powder of Comparative Example 6, by the same method as in Example 1, X-ray diffraction analysis, measurement of specific surface area, measurement of solid solution ratio of aluminum, and measurement of solid solution ratio of nitrogen The volume resistivity was measured immediately after production, after 30 days and after 210 days. The result of the X-ray diffraction analysis of the obtained conductive zinc oxide powder of Comparative Example 6 is shown in FIG. From the result of the X-ray diffraction analysis, as shown in FIG. 5, a diffraction peak derived from zinc oxide was observed. FIG. 12 shows the NMR spectrum of the conductive zinc oxide powder of Comparative Example 4. In the NMR spectrum of the conductive zinc oxide powder of Comparative Example 6, a peak around 200 ppm indicating solid solution of aluminum in zinc oxide was not observed. In FIG. 13, the Raman spectrum of the electroconductive zinc oxide powder of the comparative example 6 is shown. In the Raman spectrum of the conductive zinc oxide powder of Comparative Example 6, no peak derived from the solid solution of nitrogen was observed. Table 1 shows the specific surface area of the conductive zinc oxide powder of Comparative Example 6, the solid solution ratio of aluminum, the solid solution ratio of nitrogen, and the volume resistivity immediately after manufacture, after 30 days and after 210 days. The specific surface area of the conductive zinc oxide powder of Comparative Example 6 was 3.17 m 2 / g, the aluminum solid solution ratio was 0 mass%, and the nitrogen solid solution ratio was 0.060 mass%. Moreover, its volume resistivity is as high as 424.0 Ω · cm even immediately after production, and becomes higher as it exceeds the measurement limit (1 × 10 8 Ω · cm) of the measuring device after 30 days and after 210 days. It was confirmed that the time-dependent change occurred.

また、比較例6の導電性酸化亜鉛粉末の蛍光スペクトルを測定し、格子空孔(酸素欠損)の有無を調べた。実施例1と同様の方法で比較例6の導電性酸化亜鉛粉末の蛍光スペクトルを測定した。その結果を、実施例1、比較例3、4、5の導電性酸化亜鉛粉末の蛍光スペクトルと併せて図14に示す。実施例1の導電性酸化亜鉛粉末の蛍光スペクトルには、500nm付近にピークが観察されないのに対して、比較例6の導電性酸化亜鉛粉末の蛍光スペクトルには、他の比較例と同様に500nm付近にピークが観察された。比較例6の導電性酸化亜鉛粉末が、製造直後に、体積抵抗率が高いものの導電性を示し、その経時変化が著しいのは、比較例6の導電性酸化亜鉛粉末の導電性が、格子空孔(酸素欠損)に起因することによるからと推察される。   Further, the fluorescence spectrum of the conductive zinc oxide powder of Comparative Example 6 was measured to examine the presence or absence of lattice vacancies (oxygen vacancies). The fluorescence spectrum of the conductive zinc oxide powder of Comparative Example 6 was measured in the same manner as in Example 1. The results are shown in FIG. 14 together with the fluorescence spectra of the conductive zinc oxide powders of Example 1 and Comparative Examples 3, 4, and 5. In the fluorescence spectrum of the conductive zinc oxide powder of Example 1, no peak is observed in the vicinity of 500 nm, whereas in the fluorescence spectrum of the conductive zinc oxide powder of Comparative Example 6, it is 500 nm as in the other comparative examples. A peak was observed in the vicinity. The conductive zinc oxide powder of Comparative Example 6 exhibits conductivity with a high volume resistivity immediately after production, and the change over time is significant because the conductivity of the conductive zinc oxide powder of Comparative Example 6 is lattice empty. This is presumed to be due to pores (oxygen deficiency).

(比較例7)
混合粉末の焼成時の雰囲気をアンモニア(NH)雰囲気としたこと以外は、比較例3と同様の方法によって、混合粉末を焼成した。ところが、焼成後の坩堝内には、焼成物が残存しなかった。酸化亜鉛粉末がアンモニア雰囲気において加熱されたことにより、酸化亜鉛が還元されて亜鉛が生成し、生成した亜鉛がその沸点以上の温度に加熱されて、蒸発したためと考えられる。
(Comparative Example 7)
The mixed powder was fired by the same method as in Comparative Example 3 except that the atmosphere during firing of the mixed powder was an ammonia (NH 3 ) atmosphere. However, no fired product remained in the crucible after firing. It is considered that because the zinc oxide powder was heated in an ammonia atmosphere, zinc oxide was reduced to generate zinc, and the generated zinc was heated to a temperature equal to or higher than its boiling point and evaporated.

以上の通り、導電性酸化亜鉛粉末の製造に、本発明のAl−N−H系化合物粉末の一種であるAl(NH)粉末をアルミニウム源として用いることで、焼成後の解砕は行うものの、原料を混合して特定の温度範囲で焼成するだけの簡便な方法によって、体積抵抗率が低く、その経時変化が少ない、実用的な導電性酸化亜鉛粉末を製造することができた。そして、その導電性酸化亜鉛粉末は、アルミニウムと窒素がともに固溶した新規な導電性酸化亜鉛粉末であった。一方、従来のアルミニウム源である硫酸アルミニウム、硝酸アルミニウム、および塩化アルミニウムを用いても、またアルミニウムと窒素をともに含有する窒化アルミニウムを用いても、あるいは従来のアルミニウム源を用いてアンモニア雰囲気で焼成しても、原料を混合して焼成するだけの方法では、体積抵抗率が低く、その経時変化が少ない、アルミニウムと窒素とがともに固溶した導電性酸化亜鉛粉末を得ることはできなかった。 As described above, for the production of the conductive zinc oxide powder, the Al 2 (NH) 3 powder, which is a kind of the Al—N—H compound powder of the present invention, is used as the aluminum source, so that the pulverization after firing is performed. However, a practical conductive zinc oxide powder having a low volume resistivity and little change over time could be produced by a simple method in which raw materials were mixed and fired at a specific temperature range. The conductive zinc oxide powder was a novel conductive zinc oxide powder in which both aluminum and nitrogen were dissolved. On the other hand, using conventional aluminum sources such as aluminum sulfate, aluminum nitrate, and aluminum chloride, using aluminum nitride containing both aluminum and nitrogen, or using a conventional aluminum source, firing in an ammonia atmosphere. However, the method of simply mixing and firing the raw materials could not provide a conductive zinc oxide powder having a low volume resistivity and little change over time, in which both aluminum and nitrogen are in solid solution.

Figure 2015101493
Figure 2015101493

Claims (9)

酸化亜鉛粉末と、イミド基および/またはアミド基を含有するAl−N−H系化合物粉末とを混合し、不活性雰囲気中、900℃〜1200℃の範囲で焼成することを特徴とする導電性酸化亜鉛粉末の製造方法。   Conductivity characterized in that zinc oxide powder and Al—N—H compound powder containing imide group and / or amide group are mixed and fired in an inert atmosphere in the range of 900 ° C. to 1200 ° C. A method for producing zinc oxide powder. 前記酸化亜鉛粉末と、該酸化亜鉛粉末に対してアルミニウム換算で0.5mol%〜10mol%の割合の、前記イミド基および/またはアミド基を含有するAl−N−H系化合物粉末とを混合することを特徴とする請求項1記載の導電性酸化亜鉛粉末の製造方法。   The zinc oxide powder is mixed with the Al—N—H-based compound powder containing the imide group and / or amide group in a proportion of 0.5 mol% to 10 mol% in terms of aluminum with respect to the zinc oxide powder. The method for producing a conductive zinc oxide powder according to claim 1. 前記酸化亜鉛粉末と、該酸化亜鉛粉末に対してアルミニウム換算で2mol%〜10mol%の割合の、前記イミド基および/またはアミド基を含有するAl−N−H系化合物粉末とを混合することを特徴とする請求項1記載の導電性酸化亜鉛粉末の製造方法。   Mixing the zinc oxide powder and the Al—N—H-based compound powder containing the imide group and / or amide group in a ratio of 2 mol% to 10 mol% in terms of aluminum with respect to the zinc oxide powder. The method for producing a conductive zinc oxide powder according to claim 1. 前記イミド基および/またはアミド基を含有するAl−N−H系化合物粉末の炭素不純物濃度が質量基準で2%以下であることを特徴とする請求項1〜3いずれか一項に記載の導電性酸化亜鉛粉末の製造方法。   The carbon impurity concentration of the Al-N-H-based compound powder containing the imide group and / or amide group is 2% or less on a mass basis, and the conductivity according to any one of claims 1 to 3. Method for producing zinc oxide powder. アルミニウムおよび窒素が固溶していることを特徴とする導電性酸化亜鉛粉末。   A conductive zinc oxide powder characterized by solid solution of aluminum and nitrogen. アルミニウムが、酸化亜鉛に対して0.01質量%〜1.00質量%の割合で固溶していることを特徴とする請求項5記載の導電性酸化亜鉛粉末。   6. The conductive zinc oxide powder according to claim 5, wherein aluminum is solid-dissolved in a proportion of 0.01% by mass to 1.00% by mass with respect to zinc oxide. 窒素が、酸化亜鉛に対して0.02質量%〜0.40質量%の割合で固溶していることを特徴とする請求項5または6に記載の導電性酸化亜鉛粉末。   The conductive zinc oxide powder according to claim 5 or 6, wherein nitrogen is solid-dissolved in a proportion of 0.02 mass% to 0.40 mass% with respect to zinc oxide. アルミニウムが、酸化亜鉛に対して0.3質量%〜1.00質量%の割合で固溶し、窒素が、酸化亜鉛に対して0.1質量%〜0.40質量%の割合で固溶していることを特徴とする請求項5記載の導電性酸化亜鉛粉末。   Aluminum is solid-dissolved in a proportion of 0.3% to 1.00% by mass with respect to zinc oxide, and nitrogen is solid-dissolved in a proportion of 0.1% to 0.40% by mass with respect to zinc oxide. The conductive zinc oxide powder according to claim 5, wherein the conductive zinc oxide powder is formed. 比表面積が3.00m/g〜5.00m/gであり、体積抵抗率が100Ω・cm以下であることを特徴とする請求項5〜8いずれか一項に記載の導電性酸化亜鉛粉末。 A specific surface area of 3.00m 2 /g~5.00m 2 / g, conductive zinc oxide according to claim 5-8 any one, wherein the volume resistivity of not more than 100 [Omega · cm Powder.
JP2013241459A 2013-11-22 2013-11-22 Conductive zinc oxide powder and method for producing the same Expired - Fee Related JP6201680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013241459A JP6201680B2 (en) 2013-11-22 2013-11-22 Conductive zinc oxide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013241459A JP6201680B2 (en) 2013-11-22 2013-11-22 Conductive zinc oxide powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015101493A true JP2015101493A (en) 2015-06-04
JP6201680B2 JP6201680B2 (en) 2017-09-27

Family

ID=53377511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013241459A Expired - Fee Related JP6201680B2 (en) 2013-11-22 2013-11-22 Conductive zinc oxide powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP6201680B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218315A (en) * 2014-05-21 2015-12-07 宇部興産株式会社 Method for producing nitride phosphor powder, nitride phosphor powder, and pigment
CN114486844A (en) * 2021-12-31 2022-05-13 扬州新达再生资源科技有限公司 Spectrum analysis method and system for zinc oxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162477A (en) * 1979-06-02 1980-12-17 Honshu Chemical Manufacture of electroconductive zinc oxide
JPH0570124A (en) * 1991-09-11 1993-03-23 Tosoh Corp Electrically conductive crystal-oriented zinc oxide powder and its production
JPH06144834A (en) * 1992-11-09 1994-05-24 Mitsui Mining & Smelting Co Ltd Production of electrically conductive zinc oxide
JPH072519A (en) * 1991-05-28 1995-01-06 Mitsui Mining & Smelting Co Ltd Preparation of electrically conductive needle zinc oxide
JPH07182939A (en) * 1993-12-22 1995-07-21 Mitsubishi Materials Corp Transparent conducting film forming composition and transparent conducting film forming method
JP2010053009A (en) * 2008-08-29 2010-03-11 Chiba Univ Method for producing zinc oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162477A (en) * 1979-06-02 1980-12-17 Honshu Chemical Manufacture of electroconductive zinc oxide
JPH072519A (en) * 1991-05-28 1995-01-06 Mitsui Mining & Smelting Co Ltd Preparation of electrically conductive needle zinc oxide
JPH0570124A (en) * 1991-09-11 1993-03-23 Tosoh Corp Electrically conductive crystal-oriented zinc oxide powder and its production
JPH06144834A (en) * 1992-11-09 1994-05-24 Mitsui Mining & Smelting Co Ltd Production of electrically conductive zinc oxide
JPH07182939A (en) * 1993-12-22 1995-07-21 Mitsubishi Materials Corp Transparent conducting film forming composition and transparent conducting film forming method
JP2010053009A (en) * 2008-08-29 2010-03-11 Chiba Univ Method for producing zinc oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015218315A (en) * 2014-05-21 2015-12-07 宇部興産株式会社 Method for producing nitride phosphor powder, nitride phosphor powder, and pigment
CN114486844A (en) * 2021-12-31 2022-05-13 扬州新达再生资源科技有限公司 Spectrum analysis method and system for zinc oxide
CN114486844B (en) * 2021-12-31 2022-12-13 扬州新达再生资源科技有限公司 Spectrum analysis method and system for zinc oxide

Also Published As

Publication number Publication date
JP6201680B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP5804149B2 (en) Manufacturing method and processing method of double fluoride phosphor
Packiyaraj et al. Structural and photoluminescence studies of Eu3+ doped cubic Y2O3 nanophosphors
JP5206152B2 (en) Gallium oxide and method for producing the same
Krishna et al. Combustion synthesis approach for spectral tuning of Eu doped CaAl2O4 phosphors
WO2016084723A1 (en) Tabular alumina powder production method and tabular alumina powder
Liu et al. Size-controlled synthesis and characterization of quantum-size SnO2 nanocrystallites by a solvothermal route
Ohyama et al. Combustion synthesis of YAG: Ce phosphors via the thermite reaction of aluminum
JP2018062596A (en) Red phosphor and method for producing the same
JP5828366B2 (en) Method for producing double fluoride phosphor
JP6201680B2 (en) Conductive zinc oxide powder and method for producing the same
JPWO2015093430A1 (en) Method for manufacturing phosphor
JP6354325B2 (en) Method for producing nitride phosphor powder and method for producing pigment
KR101494340B1 (en) method of preparing titanium carbide powder
JP2011162429A (en) Method for producing gallium oxide
JP5640749B2 (en) Gallium oxide and method for producing the same
JP5640775B2 (en) Method for producing granular gallium oxide
KR20150061633A (en) Method for producing conductive mayenite compound having high electron density
CN107074574B (en) Method for producing plate-like alumina powder
Pal et al. Effect of Li+ co-doping on the luminescence properties of ZnO: Tb 3+ nanophosphors
Niewa et al. New ways to high-quality bulk scandium nitride
Zhang et al. Direct low-temperature synthesis of RB6 (R= Ce, Pr, Nd) nanocubes and nanoparticles
JP2011144080A (en) Method for producing gallium oxide
JP6177173B2 (en) High purity boron and method for producing the same
Yuan et al. Synthesis and characterization of Nd3+-doped CaF2 nanoparticles
Zhang et al. Photocatalytic activities of europium (III) and niobium (V) co-doped TiO2 nanopowders synthesized in Ar/O2 radio-frequency thermal plasmas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6201680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees