JP2015180975A - Manufacturing method of polarizer - Google Patents

Manufacturing method of polarizer Download PDF

Info

Publication number
JP2015180975A
JP2015180975A JP2015142618A JP2015142618A JP2015180975A JP 2015180975 A JP2015180975 A JP 2015180975A JP 2015142618 A JP2015142618 A JP 2015142618A JP 2015142618 A JP2015142618 A JP 2015142618A JP 2015180975 A JP2015180975 A JP 2015180975A
Authority
JP
Japan
Prior art keywords
polarizing plate
region
grid
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015142618A
Other languages
Japanese (ja)
Other versions
JP6163180B2 (en
Inventor
直樹 花島
Naoki Hanashima
直樹 花島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2015142618A priority Critical patent/JP6163180B2/en
Publication of JP2015180975A publication Critical patent/JP2015180975A/en
Application granted granted Critical
Publication of JP6163180B2 publication Critical patent/JP6163180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a polarizer having high reliability even under an environment having a high temperature or high humidity.SOLUTION: A manufacturing method of a polarizer has a cutting step for obtaining a plurality of polarizers 1 cut into pieces having a prescribed size, by cutting a non-forming area 10 of the polarizers 1 formed on a wafer substrate 16.

Description

本発明は、入射光を偏光方向に応じて透過光と反射光とに分離する偏光板の製造方法に関する。   The present invention relates to a method of manufacturing a polarizing plate that separates incident light into transmitted light and reflected light according to the polarization direction.

近年、液晶表示装置などでは、薄型の偏光板としてポリビニルアルコール(PVA)フィルムにヨウ素化合物を吸着しこれを延伸配向させて可視光の吸収二色性を発現させた偏光フィルムが多く用いられている。偏光フィルムは、機械強度、耐熱性、耐湿性を確保するために、トリアセチルセルロース(TAC)などの透明フィルムによって両面から挟み込まれ、その上に傷防止や汚れ付着防止などのためにハードコート処理がなされている。   In recent years, in a liquid crystal display device or the like, as a thin polarizing plate, a polarizing film in which an iodine compound is adsorbed on a polyvinyl alcohol (PVA) film and stretched and oriented to develop visible light dichroism is often used. . The polarizing film is sandwiched from both sides by a transparent film such as triacetyl cellulose (TAC) to ensure mechanical strength, heat resistance, and moisture resistance, and then hard-coated to prevent scratches and dirt. Has been made.

偏光フィルムに入射する光のうち通過しない偏光成分の光は、偏光フィルム内で吸収されて熱としてフィルム外に放出される。このため、強い光が照射される場合には、発熱によりフィルムの温度が上昇し偏光特性が劣化してしまうという問題がある。これは有機材料自体の耐熱性に原因があり本質的な改善は難しい。   Of the light incident on the polarizing film, the light of the polarized component that does not pass is absorbed in the polarizing film and released as heat to the outside of the film. For this reason, when intense light is irradiated, there exists a problem that the temperature of a film rises by heat_generation | fever and a polarization characteristic will deteriorate. This is due to the heat resistance of the organic material itself and is essentially difficult to improve.

この問題に対して、完全に無機の材料だけから構成された偏光板が用いられる。薄型のものとして代表的なのは、偏光ガラスとワイヤグリッド偏光板である。偏光ガラスは、ガラス内に析出された金属の島状微粒子からなり、微粒子のプラズマ共鳴吸収の異方性によって吸収二色性を発現させるものである。通過しない偏光成分は吸収されるが無機材料で構成されているために高い耐熱性を有する。   For this problem, a polarizing plate composed entirely of an inorganic material is used. Typical examples of the thin type are a polarizing glass and a wire grid polarizing plate. The polarizing glass is made of metal island-like fine particles deposited in the glass, and exhibits absorption dichroism by anisotropy of plasma resonance absorption of the fine particles. Polarized components that do not pass are absorbed but have high heat resistance because they are composed of an inorganic material.

一方、ワイヤグリッド偏光板は、基板の表面に、光の波長以下の周期を持つ微細な金属線からなるワイヤグリッドが形成される(特許文献1参照)。このワイヤグリッド偏光板は、自由電子のプラズマ振動によって通過しない偏光成分は反射するため、入射光をより有効に利用できるメリットがある。   On the other hand, in the wire grid polarizer, a wire grid made of fine metal wires having a period equal to or less than the wavelength of light is formed on the surface of the substrate (see Patent Document 1). This wire grid polarizing plate reflects a polarized component that does not pass through free electron plasma oscillation, and thus has an advantage that incident light can be used more effectively.

またワイヤグリッドに類似のタイプとして、基板表面に楕円形状の金属微粒子を配列してなる微粒子型偏光板がある(特許文献2参照)。これは、微粒子のプラズマ共鳴吸収を利用したもので、ワイヤグリッド偏光板とは異なり、通過しない偏光成分を吸収することから、例えば、偏光板からの反射光で液晶パネルが温度上昇や劣化してしまうことを防止するため、液晶パネルの出射側に用いられる。   Further, as a type similar to a wire grid, there is a fine particle type polarizing plate in which elliptical fine metal particles are arranged on the surface of a substrate (see Patent Document 2). This uses plasma resonance absorption of fine particles and, unlike a wire grid polarizing plate, absorbs a polarized component that does not pass through. For example, the liquid crystal panel is heated or deteriorated by reflected light from the polarizing plate. In order to prevent this, it is used on the emission side of the liquid crystal panel.

これらの無機材料からなる偏光板は、有機偏光フィルムに見られる耐熱性による特性劣化の問題がなく、強いランプの光が照射される液晶プロジェクタ用の偏光板として用いられるようになってきた。   Polarizing plates made of these inorganic materials have been used as polarizing plates for liquid crystal projectors, which do not have the problem of characteristic deterioration due to heat resistance found in organic polarizing films, and are irradiated with strong lamp light.

特表2003−502708号公報Special table 2003-502708 gazette 特開2008−216956号公報JP 2008-216956 A 特開平10−073722号公報Japanese Patent Laid-Open No. 10-073722 特開2006−126464号公報JP 2006-126464 A

これらの無機偏光板は、高温で分解する有機材料成分を含まないために高い耐熱性が得られるが、ワイヤグリッド偏光板や微粒子型偏光板のように基板表面にワイヤグリッドや微粒子などの偏光膜が形成されるタイプでは、偏光膜材料によっては、高湿度や高温環境で、表面からの酸化などによって特性が劣化してしまう場合がある。これを防ぐには、金属線からなるワイヤグリッド或いは金属微粒子を何らかの保護膜で被覆することが有効である。保護膜には、有機の単分子層からなるものや、一般的に半導体デバイスのバリア層として用いられるSiO、Alなどの酸化膜、SiNなどの窒化膜などを用いることができる。 Although these inorganic polarizing plates do not contain organic material components that decompose at high temperatures, high heat resistance can be obtained, but polarizing films such as wire grids and fine particles on the substrate surface like wire grid polarizing plates and fine particle type polarizing plates. In a type in which is formed, depending on the polarizing film material, the characteristics may be deteriorated due to oxidation from the surface in a high humidity or high temperature environment. In order to prevent this, it is effective to coat a wire grid made of metal wires or metal fine particles with some protective film. As the protective film, an organic monomolecular layer, an oxide film such as SiO 2 or Al 2 O 3 generally used as a barrier layer of a semiconductor device, or a nitride film such as SiN can be used.

特許文献3では、10nm以下のアルミノフォスフォネートからなる腐食防止剤の単分
子層で被覆することで、ワイヤグリッド偏光板の信頼性を向上させることが記載されている。これによれば、ワイヤグリッド偏光板では、ナノレベルの微細構造を有するために、耐蝕性に関して通常用いられている材料や形成方法をそのまま適用した場合、著しい光学特性の劣化を招いてしまう場合があることが記載されている。
Patent Document 3 describes that the reliability of the wire grid polarizer is improved by coating with a monolayer of a corrosion inhibitor composed of an aluminophosphonate of 10 nm or less. According to this, since the wire grid polarizing plate has a nano-level microstructure, if the materials and forming methods usually used for corrosion resistance are applied as they are, the optical characteristics may be significantly deteriorated. It is described that there is.

特許文献4では、ワイヤグリッドを構成するAlの表面を被覆することでワイヤグリッド偏光板の耐環境性を改善することが記載されている。ここではAlの熱処理による表面熱酸化膜を用いているが、この方法では、電子ビーム描画で必要となる導電性下地Al膜を一緒に熱酸化できるため、この部分を透明化できるという利点がある。従って、エッチングを用いてこの下地膜を除去する必要がなく、リフトオフ法をパターニング方法として用いることができ、エッチング工程の不安定性を回避することができる、という利点についても述べられている。   Patent Document 4 describes that the environmental resistance of a wire grid polarizer is improved by covering the surface of Al constituting the wire grid. Although a surface thermal oxide film by heat treatment of Al is used here, this method has an advantage that the conductive base Al film necessary for electron beam drawing can be thermally oxidized together, and this portion can be made transparent. . Accordingly, it is also described that there is no need to remove the base film using etching, the lift-off method can be used as a patterning method, and the instability of the etching process can be avoided.

これらのように、ワイヤグリッド偏光板及び微粒子偏光板においては、耐環境性を高めるために保護膜を被覆することが一般的に認識されている。しかしながら、ワイヤグリッドや微粒子など表面に微細な構造が存在する場合、保護膜として同じ材料を用いた場合でも、その形成方法によってその信頼性の改善効果に著しい違いが生じてしまうという問題がある。   As described above, it is generally recognized that wire grid polarizing plates and fine particle polarizing plates are coated with a protective film in order to enhance environmental resistance. However, when a fine structure exists on the surface, such as a wire grid or fine particles, even when the same material is used as the protective film, there is a problem that the effect of improving the reliability varies significantly depending on the formation method.

こうした偏光膜上の保護膜の形成は、偏光特性の劣化を伴うため一般的には膜厚を薄くすることが望ましい。しかしながら、保護膜自体に内在する微小な欠陥の影響が大きくなるためその薄膜化には限界があり、厚さはその保護機能が低下しない範囲で最適に決められる。例えば、Ge等反応性に富む材料を偏光材料として用いる場合、ピンホールや切り出し端面の保護膜の微小な欠陥部から酸化反応が進行し偏光特性を劣化させてしまう場合がある。特に欠陥上に皮脂などの異物が存在する場合に著しい劣化を示すことがある。この偏光膜の変質はワイヤグリッド偏光板や微粒子型偏光板の構造上、偏光材料が配列しているグリッドに沿って進行する傾向があり、欠陥自体が偏光板の有効範囲外にあったとしても、時間の経過とともに変質領域が有効範囲内に拡大していくこともある。   Since the formation of such a protective film on the polarizing film is accompanied by deterioration of polarization characteristics, it is generally desirable to reduce the film thickness. However, since the influence of minute defects inherent in the protective film itself increases, there is a limit to reducing the thickness of the protective film, and the thickness is optimally determined within a range where the protective function does not deteriorate. For example, when a highly reactive material such as Ge is used as a polarizing material, an oxidation reaction may proceed from a pinhole or a minute defect portion of the protective film on the cut-out end face to deteriorate the polarization characteristics. In particular, when a foreign substance such as sebum is present on the defect, it may show significant deterioration. This alteration of the polarizing film tends to proceed along the grid in which the polarizing material is arranged due to the structure of the wire grid polarizing plate and the fine particle type polarizing plate, even if the defect itself is outside the effective range of the polarizing plate. The altered region may expand within the effective range over time.

こうした保護膜の欠陥としては、ピンホールなど膜自体に内在するものの他に、基板の切断端面に生じるものがある。低価格化のため大型のウェハ上に偏光板を一括作成し最後に個片化するプロセスを用いる場合、ダイシングやスクライブなどによる個片化によって、偏光膜上に形成された保護膜の一部が破壊されてしまうことが生じる。また、基板の切断端面部分は取り扱いの際などで異物などが付着する可能性が高く、個片後に劣化が進行しやすくなってしまう一因でもあった。   Such defects in the protective film include those that occur on the cut end face of the substrate in addition to those inherent in the film itself such as pinholes. When using a process that creates polarizing plates on a large wafer at the same time and separates them at the end for cost reduction, a part of the protective film formed on the polarizing film by dicing or scribing is used. It can be destroyed. Further, the cut end surface portion of the substrate has a high possibility of foreign matter adhering during handling and the like, and this is also one of the reasons that deterioration tends to proceed after the individual pieces.

そこで、本発明は、高温や高湿度環境下においても、高い信頼性を持つ偏光板の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of a polarizing plate with high reliability also in high temperature and a high humidity environment.

上述した課題を解決するために、本発明に係る偏光板の製造方法は、ウェハ基板の一面全体に形成された下地膜に、グリッドを形成するパターン及び上記ウェハ基板の周縁部に上記グリッドを形成しない非形成領域を形成するパターンを有するレジストを設け、上記下地膜を用いた上記グリッド及び上記非形成領域を形成する工程と、上記グリッド及び上記非形成領域を保護する保護膜を形成する工程とを備える偏光板の製造方法において、更に、上記ウェハ基板上に形成された上記偏光板の非形成領域において切断することにより、所定の大きさに切断固片化された偏光板を複数得る切断工程を有する。   In order to solve the above-described problems, a method of manufacturing a polarizing plate according to the present invention includes a pattern for forming a grid on a base film formed on the entire surface of a wafer substrate, and the grid on a peripheral portion of the wafer substrate. Providing a resist having a pattern for forming a non-formed region, forming the grid and the non-formed region using the base film, and forming a protective film for protecting the grid and the non-formed region In the manufacturing method of a polarizing plate comprising: a cutting step of further obtaining a plurality of polarizing plates cut and solidified into a predetermined size by cutting in a non-forming region of the polarizing plate formed on the wafer substrate Have

本発明によれば、基板の周縁部にグリッドを形成しない領域を設けているため、基板周縁部の保護膜に破壊が生じた場合にも偏光膜の劣化が生じることがない。   According to the present invention, since the region where the grid is not formed is provided in the peripheral portion of the substrate, the polarizing film does not deteriorate even when the protective film on the peripheral portion of the substrate is broken.

ワイヤグリッド偏光板を示す断面図である。It is sectional drawing which shows a wire grid polarizing plate. 微粒子型偏光板を示す断面図である。It is sectional drawing which shows a fine particle type polarizing plate. 偏光板を示す平面図である。It is a top view which shows a polarizing plate. 光を透過させた偏光板を示す図である。It is a figure which shows the polarizing plate which permeate | transmitted light. 光を透過させた従来の偏光板を示す図である。It is a figure which shows the conventional polarizing plate which permeate | transmitted light. 基板の周縁部を示す断面図である。It is sectional drawing which shows the peripheral part of a board | substrate. 他の偏光板を示す平面図である。It is a top view which shows another polarizing plate. 他の偏光板を示す平面図である。It is a top view which shows another polarizing plate. ワイヤグリッド偏光板の製造工程を示す図である。It is a figure which shows the manufacturing process of a wire grid polarizing plate. 微粒子型偏光板の製造工程を示す図である。It is a figure which shows the manufacturing process of a fine particle type polarizing plate.

以下、本発明が適用された偏光板及びその製造方法について、図面を参照しながら詳細に説明する。本発明が適用された偏光板1は、例えば、図1に示すように、基板2上に光の波長以下のピッチをもつ微細な金属線からなるワイヤグリッド3が形成されるとともに、ワイヤグリッド3を保護する保護膜4が基板2の全面に亘って形成されたワイヤグリッド偏光板1A、あるいは、図2に示すように、基板5上に光の波長以下のピッチを持つグリッドパターン6が形成されるとともに、当該グリッドパターン6上に金属層9を介して微粒子7が配列され、さらに基板5の全面に亘って保護膜8が形成された微粒子型偏光板1Bである。   Hereinafter, a polarizing plate to which the present invention is applied and a method for producing the same will be described in detail with reference to the drawings. In the polarizing plate 1 to which the present invention is applied, for example, as shown in FIG. 1, a wire grid 3 made of fine metal wires having a pitch equal to or smaller than the wavelength of light is formed on a substrate 2. A wire grid polarizer 1A in which a protective film 4 is formed over the entire surface of the substrate 2, or a grid pattern 6 having a pitch less than the wavelength of light is formed on the substrate 5 as shown in FIG. In addition, a fine particle type polarizing plate 1B in which fine particles 7 are arranged on the grid pattern 6 via a metal layer 9 and a protective film 8 is formed over the entire surface of the substrate 5.

そして、この偏光板1は、図3に示すように、基板2,5の周縁部に、ワイヤグリッド3やグリッドパターン6上に配列される微粒子7といった偏光膜が形成されるグリッドGを形成しない領域(以下、「非形成領域10」という。)が設けられている。これにより、偏光板1は、切断個片化等によって基板2,5の周縁部に形成された保護膜4,8に欠陥が生じた場合にも、基板2,5の周縁部分からグリッドGに沿って進行する偏光膜の劣化を回避できる。   As shown in FIG. 3, the polarizing plate 1 does not form a grid G in which a polarizing film such as fine particles 7 arranged on the wire grid 3 or the grid pattern 6 is formed on the periphery of the substrates 2 and 5. A region (hereinafter referred to as “non-forming region 10”) is provided. As a result, the polarizing plate 1 can be applied to the grid G from the peripheral portion of the substrates 2 and 5 even when defects occur in the protective films 4 and 8 formed on the peripheral portions of the substrates 2 and 5 due to cutting and separating. It is possible to avoid deterioration of the polarizing film traveling along.

偏光板1A、1Bを構成する基板2,5は、ガラスをはじめ光学的に透明なものであればどんなものでも使用可能である。液晶プロジェクタなどの用途では吸収によって発生する熱によって偏光膜が破壊してしまうことを避けるため、高い耐熱性、放熱性を有する基板を使用する場合が多い。   As the substrates 2 and 5 constituting the polarizing plates 1A and 1B, any optically transparent substrate such as glass can be used. In applications such as a liquid crystal projector, a substrate having high heat resistance and heat dissipation is often used in order to prevent the polarizing film from being destroyed by heat generated by absorption.

例えば、水晶基板はガラスに比べて高い熱伝導率を有するのみならず、組成が石英ガラスと同じであるため基板自体をエッチングして偏光板の光学特性を高めたい場合に好都合である。またサファイヤ基板の場合には、水晶を凌ぐ高い熱伝導率を持つため放熱特性に優れ、同じ冷却構成であっても基板温度を水晶に比べて低く抑えることができ光学系自体の温度を抑えることができる利点がある。   For example, a quartz substrate not only has a higher thermal conductivity than glass, but also has the same composition as quartz glass, so it is convenient when etching the substrate itself to improve the optical properties of the polarizing plate. In the case of a sapphire substrate, it has excellent heat dissipation characteristics because it has a higher thermal conductivity than quartz, and even with the same cooling configuration, the substrate temperature can be kept lower than that of quartz, and the temperature of the optical system itself can be suppressed. There is an advantage that can be.

また、ワイヤグリッド3やグリッドパターン6上に配列される微粒子7といった偏光膜は、例えばワイヤグリッド偏光板1Aの場合、偏光膜材料としてAl或いはAlSi等を用いることができるが、勿論これらの材料に限定されることはない。一方、微粒子型偏光板1Bの場合にはGeやSiなどが用いられるが、こちらもこれらの材料に限定されることはない。   For the polarizing film such as the fine particles 7 arranged on the wire grid 3 or the grid pattern 6, for example, in the case of the wire grid polarizing plate 1A, Al or AlSi can be used as a polarizing film material. There is no limit. On the other hand, Ge, Si, or the like is used in the case of the fine particle type polarizing plate 1B, but this is not limited to these materials.

非形成領域10は、基板2,5の周縁部の偏光膜が形成されるグリッドGを形成しない領域である。偏光板1は、例えば、保護膜4,8が形成された後にウェハ基板の切断により個片化された場合に、当該切断部分に基板2,5の微小な欠けであるチッピング領域が存在し得る。保護膜4,8は、個片化に伴って生じる切断領域と、この切断領域に隣接するチッピング領域において破壊される。   The non-formation region 10 is a region where the grid G on which the polarizing films on the peripheral portions of the substrates 2 and 5 are formed is not formed. For example, when the polarizing plate 1 is separated into pieces by cutting the wafer substrate after the protective films 4 and 8 are formed, a chipping region that is a minute chip of the substrates 2 and 5 may exist in the cut portion. . The protective films 4 and 8 are destroyed in a cutting region that occurs as a result of singulation and a chipping region adjacent to the cutting region.

したがって、偏光板1は、このような保護膜4,8が破壊される周縁部に非形成領域10を形成することにより、保護膜4,8の破壊によってもワイヤグリッド3やグリッドパターン6上に配列される微粒子7が外部に曝されることが防止され、偏光膜の劣化を防止することができる。   Therefore, the polarizing plate 1 is formed on the wire grid 3 or the grid pattern 6 even when the protective films 4 and 8 are broken by forming the non-formed region 10 at the peripheral edge where the protective films 4 and 8 are broken. The arranged fine particles 7 are prevented from being exposed to the outside, and the polarizing film can be prevented from being deteriorated.

図4に示すように、周縁部に非形成領域10を設けた偏光板1は、全面に亘って偏光膜の変色が見られず、劣化が防止されている。一方、図5に示すように、周縁部までグリッドGが形成され、非形成領域10が設けられていない偏光板では、周縁部を起点としたスジAが観察され、偏光膜の劣化が生じていることがわかる。なお、図5では、基板上に残留していた異物を起点としたスジBも観察された。   As shown in FIG. 4, the polarizing plate 1 provided with the non-formation region 10 in the peripheral portion does not show the discoloration of the polarizing film over the entire surface and is prevented from being deteriorated. On the other hand, as shown in FIG. 5, in the polarizing plate in which the grid G is formed up to the peripheral portion and the non-forming region 10 is not provided, streaks A starting from the peripheral portion are observed, and the polarizing film is deteriorated. I understand that. In FIG. 5, streaks B starting from foreign matters remaining on the substrate were also observed.

また、非形成領域10は、基板2,5の周縁部から内側に向かって、グリッドGのピッチよりも遥かに大きな幅を有し、好ましくは0.2mm以上である。これによりチッピングが多く存在する場合でも保護膜4,8の破壊に伴う偏光膜の劣化の可能性を小さくすることができるからである。すなわち、チッピングが生じうる範囲は、切断面より基板内側に向かって多くとも0.1mmの範囲であることから、非形成領域10を基板2,5の周縁部から基板内側に向かって0.2mm以上設けることにより、偏光膜がチッピングによる影響を受けることがない。   Moreover, the non-formation area | region 10 has a width | variety far larger than the pitch of the grid G toward the inner side from the peripheral part of the board | substrates 2 and 5, Preferably it is 0.2 mm or more. This is because even when there is a lot of chipping, the possibility of deterioration of the polarizing film due to the destruction of the protective films 4 and 8 can be reduced. That is, the range in which chipping can occur is at most 0.1 mm from the cut surface toward the inside of the substrate, so that the non-formed region 10 is 0.2 mm from the peripheral edge of the substrates 2 and 5 toward the inside of the substrate. By providing the above, the polarizing film is not affected by chipping.

なお、非形成領域10は、基板2,5の周縁部から内側に向かって2mm〜3mmの範囲まで形成される。これは、光線が入射する偏光板1の有効領域の境界は基板端から2mm〜3mmの位置にあることが多いため、非形成領域10を、基板2,5の周縁部から幅0.2mm以上2mm〜3mmの範囲で設けることにより、偏光板1としての有効面積を低下させずに保護膜4,8の破壊に伴う偏光膜の劣化を防止することができる。   In addition, the non-formation area | region 10 is formed to the range of 2 mm-3 mm toward the inner side from the peripheral part of the board | substrates 2 and 5. FIG. This is because the boundary of the effective area of the polarizing plate 1 on which the light beam is incident is often located at a position 2 mm to 3 mm from the edge of the substrate, so that the non-formed area 10 is 0.2 mm or more in width from the peripheral edge of the substrates 2 and 5. By providing in the range of 2 mm to 3 mm, it is possible to prevent the polarizing film from being deteriorated due to the destruction of the protective films 4 and 8 without reducing the effective area as the polarizing plate 1.

また、非形成領域10は、予め個片化された基板2,5に保護膜4,8を形成する場合でも有効である。すなわち、偏光板1は、基板2,5の周縁部近傍では、保護膜4,8のグリッド構造の乱れや基板形状の乱れによって欠陥が発生しやすい。また、偏光板1は、基板2,5の取り扱い時などで周縁部近傍に異物が付着する可能性も高く、異物の種類や偏光膜の種類によってはわずかな欠陥でも偏光膜へ与える劣化度合いは大きいものとなる場合がある。このため、偏光板1は、基板2,5の周縁部付近にグリッドGを形成しない非形成領域10を設けることにより、保護膜4,8の形成後に切断工程を含まない場合であっても、信頼性を向上するうえで大きな効果がある。   Further, the non-forming region 10 is effective even when the protective films 4 and 8 are formed on the substrates 2 and 5 that have been separated into pieces in advance. That is, in the polarizing plate 1, defects are likely to occur in the vicinity of the peripheral portions of the substrates 2 and 5 due to disorder of the grid structure of the protective films 4 and 8 and disorder of the substrate shape. In addition, the polarizing plate 1 has a high possibility of foreign matter adhering to the vicinity of the periphery when the substrates 2 and 5 are handled, and the degree of deterioration given to the polarizing film even with a slight defect depending on the type of foreign matter and the type of polarizing film is low. May be large. For this reason, even if the polarizing plate 1 does not include a cutting step after the formation of the protective films 4 and 8 by providing the non-formation region 10 in which the grid G is not formed in the vicinity of the peripheral portions of the substrates 2 and 5, It has a great effect on improving reliability.

ここで、非形成領域10とは、格子状の微細なパターン(グリッドG)が形成されていない領域を意味し、図6に示すように、保護膜4,8を介してAl膜等の金属膜15が露出している場合の他、基板2,5自体の平坦な表面がそのまま露出している場合や、基板2,5の表面を覆う平坦膜が露出している場合も含まれる。   Here, the non-formation region 10 means a region where a fine lattice-like pattern (grid G) is not formed. As shown in FIG. 6, a metal such as an Al film is interposed through the protective films 4 and 8. In addition to the case where the film 15 is exposed, the case where the flat surfaces of the substrates 2 and 5 are exposed as they are or the case where the flat film covering the surfaces of the substrates 2 and 5 is exposed is also included.

また、グリッドGがAl等の金属材料で形成されているワイヤグリッド偏光板1Aや類似の構造を持つ偏光板の場合には、非形成領域10は、金属膜15がそのまま残存している状態となる。この場合、非形成領域10の金属膜は、光学的には反射膜若しくは遮光膜として機能し、非形成領域10は遮光部となる。   When the grid G is a wire grid polarizing plate 1A formed of a metal material such as Al or a polarizing plate having a similar structure, the non-formed region 10 is in a state where the metal film 15 remains as it is. Become. In this case, the metal film in the non-formation region 10 optically functions as a reflection film or a light-shielding film, and the non-formation region 10 serves as a light-shielding portion.

非形成領域10は、偏光特性的には何ら機能しない領域であり、偏光板1として、有効領域を大きくしたい場合には当該非形成領域10が小さい方が好ましい。さらに、この非有効部分を通過した光が漏れ光となって悪影響を及ぼす場合には、この部分には遮光膜(反射膜や吸収膜等、その一部を遮光するもの)が形成されていることが好ましく、非形成領域10に形成されている金属膜15はこの目的には好適である。一方、反射した膜が悪影響を及ぼす場合には遮光膜をエッチングによって除去して透過性を持たせることも可能である。   The non-forming region 10 is a region that does not function at all in terms of polarization characteristics. When the polarizing plate 1 is desired to have a large effective region, the non-forming region 10 is preferably small. Furthermore, when the light that has passed through this ineffective portion is adversely affected as leakage light, a light-shielding film (a film that shields part of it, such as a reflection film or an absorption film) is formed on this portion. Preferably, the metal film 15 formed in the non-forming region 10 is suitable for this purpose. On the other hand, in the case where the reflected film has an adverse effect, the light shielding film can be removed by etching so as to have transparency.

また、偏光板1は、基板2,5の周縁部の非形成領域10まで保護膜4,8が形成される。仮に、ワイヤグリッド3やグリッドパターン6上に配列される微粒子7が形成されるグリッドGの領域に応じて基板2,5の周縁部を除いて保護膜を形成した場合には、保護膜の成膜領域の周縁部分が膜厚減少によって保護性能が不十分となってしまう可能性がある。したがって、保護膜は、グリッドGの形成領域よりも大きく形成されることが好ましく、さらに、基板周縁部を含む基板全面に形成されることが好ましい。   Further, the protective film 4, 8 is formed on the polarizing plate 1 up to the non-formation region 10 at the periphery of the substrates 2, 5. If the protective film is formed except for the peripheral edge of the substrates 2 and 5 according to the region of the grid G where the fine particles 7 arranged on the wire grid 3 or the grid pattern 6 are formed, the protective film is formed. There is a possibility that the protective performance of the peripheral portion of the film region becomes insufficient due to the decrease in the film thickness. Therefore, the protective film is preferably formed larger than the formation region of the grid G, and is preferably formed on the entire surface of the substrate including the peripheral portion of the substrate.

そして、偏光板1は、基板2,5の周縁部の非形成領域10まで保護膜4,8が形成されているため、ワイヤグリッド3やグリッドパターン6上に配列される微粒子7の保護性能が向上され、また、基板2,5の周縁部における保護膜4,8の不良がワイヤグリッド3やグリッドパターン6上に配列される微粒子7の形成領域と重なることもなく、この保護性能に影響することがない。   And since the protective films 4 and 8 are formed in the polarizing plate 1 to the non-formation area | region 10 of the peripheral part of the board | substrates 2 and 5, the protection performance of the microparticles | fine-particles 7 arranged on the wire grid 3 or the grid pattern 6 is provided. In addition, the defect of the protective films 4 and 8 at the peripheral portions of the substrates 2 and 5 does not overlap with the formation region of the fine particles 7 arranged on the wire grid 3 or the grid pattern 6, thereby affecting the protection performance. There is nothing.

また、非形成領域10は、図3に示すように、基板2,5の全周に亘って形成してもよく、また、図7に示すように、基板2,5のワイヤグリッド3の方向や微粒子7の配列方向と直交する辺2A,5Aのみに形成し、あるいは、図8に示すように、基板2,5のワイヤグリッド3の方向や微粒子7の配列方向と直交する辺2A,5Aの非形成領域10をワイヤグリッド3の方向や微粒子7の配列方向と平行な辺2B,5Bよりも大きく形成してもよい。   Moreover, the non-formation area | region 10 may be formed over the perimeter of the board | substrates 2 and 5, as shown in FIG. 3, and the direction of the wire grid 3 of the board | substrates 2 and 5 as shown in FIG. Or formed only on the sides 2A and 5A orthogonal to the arrangement direction of the fine particles 7, or as shown in FIG. 8, the sides 2A and 5A orthogonal to the direction of the wire grid 3 of the substrates 2 and 5 and the arrangement direction of the fine particles 7. The non-formation region 10 may be formed larger than the sides 2B and 5B parallel to the direction of the wire grid 3 and the arrangement direction of the fine particles 7.

偏光膜の劣化は、ワイヤグリッド3や微粒子7に沿ってグリッドGの方向に進行しやすい。したがって、ワイヤグリッド3の方向や微粒子7の配列方向に直交する切断端面で保護膜4,8の破壊が生じている場合、ワイヤグリッド3の方向や微粒子7の配列方向に平行な切断端面で保護膜4,8が破壊されている場合に比べて、偏光膜の劣化が基板2,5の周縁部から内部に広がっていく可能性が高い。   The deterioration of the polarizing film easily proceeds in the direction of the grid G along the wire grid 3 and the fine particles 7. Therefore, when the protective films 4 and 8 are broken at the cut end faces perpendicular to the direction of the wire grid 3 and the arrangement direction of the fine particles 7, the protection is performed at the cut end faces parallel to the direction of the wire grid 3 and the arrangement direction of the fine particles 7. Compared to the case where the films 4 and 8 are broken, there is a high possibility that the deterioration of the polarizing film spreads from the peripheral portions of the substrates 2 and 5 to the inside.

従って、非形成領域10を、ワイヤグリッド3の方向や微粒子7の配列方向に直交する辺2A,5Aのみに形成、あるいは当該直交する辺2A,5Aでの大きさを平行な辺2B,5Bよりも大きくすることによっても、偏光板1は、ワイヤグリッド3の方向や微粒子7の配列方向と平行な辺に対しては有効領域を大きく保ったまま、偏光膜の劣化が内部に広がって偏光板1の有効領域まで進行することを防止し、保護膜の性能を確保することができる。   Accordingly, the non-forming region 10 is formed only on the sides 2A and 5A orthogonal to the direction of the wire grid 3 and the arrangement direction of the fine particles 7, or the size of the orthogonal sides 2A and 5A is determined from the parallel sides 2B and 5B. Also, the polarizing plate 1 has a large deterioration in the polarizing film while keeping the effective area large with respect to the sides parallel to the direction of the wire grid 3 and the arrangement direction of the fine particles 7. It is possible to prevent the progression to 1 effective region and to secure the performance of the protective film.

次いで、ワイヤグリッド偏光板1Aの製造方法について、図9を参照しながら説明する。ワイヤグリッド偏光板1Aは、ウェハ基板11に複数形成された後、所定サイズに切断されることにより個片化される。先ず、ウェハ基板11の裏面に反射防止膜(ARC)12を形成した後(図9(a))、ウェハ基板11の表面にAl薄膜13をスパッタ等により成膜する(図9(b))。次に、反射防止膜(BARC)と化学触媒型フォトレジストをこの順にスピンコータで塗布する。次いで、DUV(遠紫外線)レーザによる二光束干渉露光を行って現像後、所定のピッチ、幅、高さのレジストのグリッドパターンを形成する。このとき、ウェハ基板11の表面に角形遮光開口マスクを設け、ウェハ基板11上に形成される基板2の周縁部に、二光束干渉露光時に露光されない領域を形成する(図9(c))。   Next, a manufacturing method of the wire grid polarizer 1A will be described with reference to FIG. A plurality of wire grid polarizing plates 1A are formed on the wafer substrate 11 and then cut into pieces by cutting into a predetermined size. First, after forming an antireflection film (ARC) 12 on the back surface of the wafer substrate 11 (FIG. 9A), an Al thin film 13 is formed on the surface of the wafer substrate 11 by sputtering or the like (FIG. 9B). . Next, an antireflection film (BARC) and a chemical catalyst type photoresist are applied in this order by a spin coater. Next, after performing two-beam interference exposure using a DUV (far ultraviolet) laser and developing, a resist grid pattern having a predetermined pitch, width, and height is formed. At this time, a rectangular light-shielding aperture mask is provided on the surface of the wafer substrate 11, and a region that is not exposed at the time of two-beam interference exposure is formed in the peripheral portion of the substrate 2 formed on the wafer substrate 11 (FIG. 9C).

次に、RIEエッチングでAlのグリッドパターンを形成するため、まずClガスによるAlエッチングを行った後(図9(d))、残存レジストをArガスによって除去する(図9(e))。これにより、各基板2の周縁部には、ワイヤグリッド3及び非形成領域10が形成される。なお、図9(e)では、非形成領域10にAl薄膜を残し、遮光部として機能させているが、Alエッチング工程で非形成領域10のAl薄膜を除去することにより、遮光部を設けないこともできる。 Next, in order to form an Al grid pattern by RIE etching, after first performing Al etching with Cl 2 gas (FIG. 9D), the remaining resist is removed with Ar gas (FIG. 9E). Thereby, the wire grid 3 and the non-formation area | region 10 are formed in the peripheral part of each board | substrate 2. As shown in FIG. In FIG. 9E, the Al thin film is left in the non-formed region 10 to function as a light shielding portion, but the light shielding portion is not provided by removing the Al thin film in the non-formed region 10 in the Al etching process. You can also.

次いで、ウェハ基板11の全面に、化学気相蒸着(CVD)等により、SiO等からなる保護膜14を形成する(図9(f))。最後に、このウェハ基板11に形成したワイヤグリッド偏光板1Aを汎用のガラススクライバ等によって所定のサイズに切断し個片化する。なお、ワイヤグリッド偏光板1Aは、保護膜14を形成する前に個片化し、最後に保護膜14を形成してもよい。また、ワイヤグリッド偏光板1Aは、予め個片化された基板2に上述した工程を施すことにより形成してもよい。 Next, a protective film 14 made of SiO 2 or the like is formed on the entire surface of the wafer substrate 11 by chemical vapor deposition (CVD) or the like (FIG. 9F). Finally, the wire grid polarizing plate 1A formed on the wafer substrate 11 is cut into a predetermined size by a general-purpose glass scriber or the like and separated into individual pieces. Note that the wire grid polarizing plate 1 </ b> A may be divided into pieces before forming the protective film 14, and finally the protective film 14 may be formed. Moreover, you may form the wire grid polarizing plate 1A by giving the process mentioned above to the board | substrate 2 separated into pieces previously.

次いで、微粒子型偏光板1Bの製造方法について、図10を参照しながら説明する。微粒子型偏光板1Bも、水晶基板等からなるウェハ基板16に複数形成された後、所定のサイズに切断される。先ず、ウェハ基板16の裏面に反射防止膜17を形成した後(図10(a))、ウェハ基板16の表面にAl薄膜18をスパッタ等により成膜する(図10(b))。次に、反射防止膜と化学触媒型フォトレジストをこの順にスピンコータで塗布する。次いで、DUVレーザによる二光束干渉露光を行って現像後、所定のピッチ、幅、高さのレジストのグリッドパターンを形成する。このとき、ウェハ基板16の表面に角形遮光開口マスクを設け、ウェハ基板16上に複数形成される基板5の各周縁部に、二光束干渉露光時に露光されない領域を形成する(図10(c))。   Next, a manufacturing method of the particulate polarizing plate 1B will be described with reference to FIG. A plurality of fine particle type polarizing plates 1B are also formed on a wafer substrate 16 made of a quartz substrate or the like, and then cut into a predetermined size. First, after forming an antireflection film 17 on the back surface of the wafer substrate 16 (FIG. 10A), an Al thin film 18 is formed on the surface of the wafer substrate 16 by sputtering or the like (FIG. 10B). Next, an antireflection film and a chemical catalyst type photoresist are applied in this order by a spin coater. Next, after performing two-beam interference exposure using a DUV laser and developing, a resist grid pattern having a predetermined pitch, width, and height is formed. At this time, a rectangular light-shielding aperture mask is provided on the surface of the wafer substrate 16, and regions that are not exposed at the time of two-beam interference exposure are formed in each peripheral portion of the substrate 5 formed on the wafer substrate 16 (FIG. 10C). ).

その後、ClガスによるAlエッチングを行った後((図10(d)))、残存レジストをArガスによって除去する(図10(e))。ここではAl膜は、エッチングマスクとして一部機能させており、結果的に水晶基板に所定ピッチの凸凹グリッドパターン6が形成される。また、必ずしもグリッドパターン6上にAl膜を設ける必要はなく、適宜Al膜を除去しても良い。この基板に対しGe等からなる微粒子7をスパッタにて配列形成する(図10(f))。これにより、各基板5の周縁部には、グリッドG及び非形成領域10が形成される。なお、図10(e)では、非形成領域10にAl薄膜を残し、遮光部として機能させているが、Alエッチング工程で非形成領域10のAl薄膜を除去することにより、遮光部を設けないこともできる。 Then, after performing Al etching with Cl 2 gas ((FIG. 10D)), the remaining resist is removed with Ar gas (FIG. 10E). Here, the Al film partially functions as an etching mask, and as a result, the uneven grid pattern 6 having a predetermined pitch is formed on the quartz substrate. Further, it is not always necessary to provide an Al film on the grid pattern 6, and the Al film may be removed as appropriate. Fine particles 7 made of Ge or the like are formed on the substrate by sputtering (FIG. 10 (f)). Thereby, the grid G and the non-formation area | region 10 are formed in the peripheral part of each board | substrate 5. FIG. In FIG. 10E, the Al thin film is left in the non-formed region 10 to function as a light shielding portion. However, the light shielding portion is not provided by removing the Al thin film in the non-formed region 10 in the Al etching process. You can also.

次いで、ウェハ基板16の全面に化学気相蒸着(CVD)等により、SiO等からなる保護膜19を形成する。最後に、このウェハ基板16に形成した微粒子型偏光板1Bを所定のサイズに切断し、個片化する(図10(g))。なお、微粒子型偏光板1Bにおいても、保護膜19を形成する前に個片化し、最後に保護膜19を形成してもよく、また、予め個片化された基板5に上述した工程を施すことにより形成してもよい。 Next, a protective film 19 made of SiO 2 or the like is formed on the entire surface of the wafer substrate 16 by chemical vapor deposition (CVD) or the like. Finally, the particulate polarizing plate 1B formed on the wafer substrate 16 is cut into a predetermined size and separated into individual pieces (FIG. 10G). Also in the fine particle type polarizing plate 1B, the protective film 19 may be separated into pieces before forming the protective film 19, and finally the protective film 19 may be formed. Further, the above-described steps are performed on the substrate 5 that has been individually separated. May be formed.

実験例1Experimental example 1

実験例1では、非形成領域10を設けたワイヤグリッド偏光板1Aと、非形成領域10を設けないワイヤグリッド偏光板と、保護膜を形成しないワイヤグリッド偏光板について、それぞれ偏光膜の変化を観察した。   In Experimental Example 1, the change of the polarizing film was observed for the wire grid polarizing plate 1A provided with the non-forming region 10, the wire grid polarizing plate not provided with the non-forming region 10, and the wire grid polarizing plate not formed with the protective film. did.

本実験例1では、裏面に誘電体多層膜によって反射防止膜(ARC)が形成された4インチ石英基板の表面にDCスパッタ装置でAl薄膜を230nm成膜する。次に、厚さ28nmの反射防止膜(BARC)と厚さ230nmの化学触媒型フォトレジストをこの順にスピンコータで塗布する。次いで、DUV(遠紫外線)レーザによる二光束干渉露光を行って現像後、ピッチ150nm、幅70nm、高さ180nmのレジストのグリッドパターンを形成する。次に、RIEエッチングでAlのグリッドパターンを形成するため、まずClガスによるAlエッチングを行った後、残存レジストをArガスによって除去した。この4インチウェハに形成したワイヤグリッド偏光板を汎用のガラススクライバによって25mm×25mmのサイズに切断し比較例1とした。 In Experimental Example 1, an Al thin film having a thickness of 230 nm is formed on the surface of a 4-inch quartz substrate having an antireflection film (ARC) formed of a dielectric multilayer film on the back surface by a DC sputtering apparatus. Next, an antireflection film (BARC) having a thickness of 28 nm and a chemical catalyst type photoresist having a thickness of 230 nm are applied in this order by a spin coater. Next, after performing two-beam interference exposure using a DUV (far ultraviolet) laser and developing, a resist grid pattern having a pitch of 150 nm, a width of 70 nm, and a height of 180 nm is formed. Next, in order to form an Al grid pattern by RIE etching, Al etching with Cl 2 gas was first performed, and then the remaining resist was removed with Ar gas. The wire grid polarizing plate formed on this 4-inch wafer was cut into a size of 25 mm × 25 mm with a general-purpose glass scriber to obtain Comparative Example 1.

比較例1に化学気相蒸着(CVD)によってSiOからなる保護膜を厚さ20nm程度形成したものを比較例2とし、切断前の4インチ基板の状態で保護膜を同じ条件で形成した後にスクライブで25mm×25mmに切断したものを比較例3とした。次に、干渉露光時に基板表面に角形遮光開口マスクを設けて24.5mm×24.5mmの外側が露光されない領域を形成し、非形成領域10を設けた以外は比較例2及び比較例3と同じ条件で作製したものを各々実施例1、実施例2とした。これら完成した5種類のワイヤグリッド偏光板を、各10枚ずつ温度60℃湿度90%の環境下に100時間放置し、偏光膜の変化を観察した。 In Comparative Example 1, a protective film made of SiO 2 formed by chemical vapor deposition (CVD) with a thickness of about 20 nm was used as Comparative Example 2, and after the protective film was formed under the same conditions in the state of a 4-inch substrate before cutting. What was cut | disconnected by 25 mm x 25 mm with the scribe was made into the comparative example 3. Next, a comparative example 2 and a comparative example 3 are provided except that a square light-shielding aperture mask is provided on the substrate surface during interference exposure to form a 24.5 mm × 24.5 mm outside area that is not exposed and a non-formed area 10 is provided. Examples produced under the same conditions were designated as Example 1 and Example 2, respectively. The completed five types of wire grid polarizing plates were each left in an environment of 60 ° C. and 90% humidity for 100 hours to observe changes in the polarizing film.

結果を表1に示す。保護膜を形成していない比較例1では、すべてのサンプルについて、Al表面酸化などの変質が原因と考えられるうっすらとした偏光膜のムラが基板全面に発生した。   The results are shown in Table 1. In Comparative Example 1 in which the protective film was not formed, a slight unevenness of the polarizing film, which was considered to be caused by alteration such as Al surface oxidation, occurred on the entire surface of all the samples.

基板の切断後に保護膜を形成しているが、基板の周縁部に非形成領域10を設けずに個片化された基板の周縁部までワイヤグリッドが形成されている比較例2では、基板中央に変色や特性劣化はなかったが、基板周囲から中央に向かって伸びる筋状の変色領域が観察されたサンプルがあった。基板の周縁部に非形成領域10を設けず基板の周縁部までワイヤグリッドが形成されるとともに、保護膜を形成した後に基板を切断した比較例3では、変色領域が観察されたサンプル数は比較例2よりも多かった。比較例2及び比較例3について、変色領域の偏光特性を評価したところ、本来反射すべき偏光成分の一部が透過しており、偏光特性の劣化が観察された。   Although the protective film is formed after the substrate is cut, in the comparative example 2 in which the wire grid is formed up to the peripheral portion of the separated substrate without providing the non-forming region 10 at the peripheral portion of the substrate, However, there was a sample in which a streak-colored region extending from the periphery of the substrate toward the center was observed. In Comparative Example 3 in which the wire grid was formed up to the periphery of the substrate without providing the non-formation region 10 at the periphery of the substrate, and the substrate was cut after forming the protective film, the number of samples in which the discoloration region was observed was compared. More than in Example 2. When Comparative Example 2 and Comparative Example 3 were evaluated for the polarization characteristics of the discoloration region, a part of the polarization component that should be reflected was transmitted, and deterioration of the polarization characteristics was observed.

一方、かかる比較例2及び比較例3に対して、保護膜があり、かつ基板の周縁部に非形成領域10を設けた実施例1及び実施例2では、保護膜の形成が基板切断の前であるか後であるかにかかわらず、全てのサンプルについて、基板中央や基板周縁部を含め、全面に亘って変色領域などは観察されなかった。   On the other hand, in Comparative Example 2 and Comparative Example 3 in which the protective film is provided and the non-formation region 10 is provided in the peripheral portion of the substrate, the protective film is formed before the substrate is cut. Regardless of whether or not it was later, no discoloration region or the like was observed over the entire surface including the center of the substrate and the peripheral edge of the substrate.

実験例2Experimental example 2

実験例2では、非形成領域10を設けた微粒子型偏光板1Bと、非形成領域10を設けない微粒子型偏光板と、保護膜を形成しない微粒子型偏光板について、それぞれ偏光膜の変化について観察した。   In Experimental Example 2, the change of the polarizing film was observed for the fine particle type polarizing plate 1B provided with the non-formed region 10, the fine particle type polarizing plate not provided with the non-formed region 10, and the fine particle type polarizing plate not formed with the protective film. did.

実験例2では、裏面に誘電体多層膜によって反射防止膜(ARC)が形成された25mm角の水晶基板の表面にスパッタでAl薄膜を60nm成膜する。次に、反射防止膜(BARC)と化学触媒型フォトレジストを、この順に各々28nm、230nmの厚さに、スピンコータで塗布する。次いで、DUV(遠紫外線)レーザによる二光束干渉露光を行って現像後、ピッチ150nm、幅70nm、高さ230nmのレジストのグリッドパターンを形成する。その後、ClガスによるAlエッチングを行った後、残存レジストをArガスによって除去した。ここではAl膜はエッチングマスクとして一部機能させており結果的に水晶基板にピッチ150nmの凸凹グリッドパターンが形成される。この基板に対しGe微粒子をスパッタにて配列形成することで微粒子型偏光板の比較例4を得た。次に、比較例4に化学気相蒸着(CVD)によってSiOからなる保護膜を厚さ20nm程度形成したものを比較例5とした。 In Experimental Example 2, an Al thin film is deposited by sputtering on the surface of a 25 mm square quartz substrate having an antireflection film (ARC) formed on the back surface by a dielectric multilayer film by sputtering. Next, an antireflection film (BARC) and a chemical catalyst type photoresist are applied in this order to a thickness of 28 nm and 230 nm, respectively, with a spin coater. Next, after performing two-beam interference exposure using a DUV (far ultraviolet) laser and developing, a resist grid pattern having a pitch of 150 nm, a width of 70 nm, and a height of 230 nm is formed. Thereafter, Al etching with Cl 2 gas was performed, and then the remaining resist was removed with Ar gas. Here, the Al film partially functions as an etching mask, and as a result, an uneven grid pattern with a pitch of 150 nm is formed on the quartz substrate. Comparative Example 4 of a fine particle type polarizing plate was obtained by forming Ge fine particles on this substrate by sputtering. Next, Comparative Example 5 was obtained by forming a protective film made of SiO 2 with a thickness of about 20 nm by chemical vapor deposition (CVD).

また、干渉露光時に基板全面に遮光マスクを設けてグリッドに直交する方向だけが端から1mm程度の露光されない領域を形成し、非形成領域10を設けた以外は比較例5と同じ条件で作製したものを実施例3とした。これら完成した3種類の微粒子型偏光板に対し、取り扱い時に生じる極端な例として基板の周囲4面に人為的に皮脂を付着させたものを、各10枚ずつ温度60℃湿度90%の環境下に100時間放置し、偏光特性の変化を観察した。   Further, a light-shielding mask was provided on the entire surface of the substrate during interference exposure, and an unexposed area of about 1 mm from the end was formed only in the direction orthogonal to the grid, and the non-formed area 10 was provided, and the same conditions as in Comparative Example 5 were provided. This was designated as Example 3. As an extreme example that occurs during handling of these three types of fine particle type polarizing plates, ten sheets of artificially adhered sebum on the four surfaces around the substrate are each in an environment with a temperature of 60 ° C. and a humidity of 90%. For 100 hours, and the change in polarization characteristics was observed.

結果を表2に示す。保護膜を形成していない比較例4では、すべてのサンプルについて、Geの酸化が基板全面で生じ偏光膜が完全に透明化した。保護膜が形成されているが非形成領域10を設けず、基板の周囲部分にもグリッドが形成されている比較例5では、基板中央に変色や特性劣化はなかったが基板周囲から中央に向かって伸びる筋状の変色領域が観察されたサンプルがあった。変色領域の偏光特性を評価したところ、本来反射吸収すべき偏光成分の一部が透過しており、偏光特性の劣化が観察された。   The results are shown in Table 2. In Comparative Example 4 in which no protective film was formed, Ge oxidation occurred on the entire substrate surface and the polarizing film was completely transparent for all samples. In Comparative Example 5 in which the protective film is formed but the non-formation region 10 is not provided and the grid is also formed in the peripheral portion of the substrate, there is no discoloration or characteristic deterioration in the center of the substrate, but the substrate moves from the periphery to the center. There was a sample in which a streak-like discolored region extending was observed. When the polarization characteristics of the discoloration region were evaluated, a part of the polarization component that should be reflected and absorbed was transmitted, and deterioration of the polarization characteristics was observed.

一方、比較例5に対して、保護膜があり、かつグリッドパターンに直交する辺の付近に非形成領域10を設けた実施例3では、基板周囲にも変色領域や抜けなどは発生しなかった。   On the other hand, compared with Comparative Example 5, in Example 3 where the protective film was provided and the non-formed region 10 was provided in the vicinity of the side orthogonal to the grid pattern, no discoloration region or omission occurred around the substrate. .

比較例5では、保護膜形成後での切断処理がないため、この劣化は切断による保護膜の一部破壊によるものではなく、基板端に存在する保護膜欠陥部分から皮脂によって何らかの偏光膜の変質が誘起されグリッドパターンに沿って進行していったと考えられる。実施例3の結果からは、グリッドパターンが形成されていない非形成領域10では、このような保護膜の欠陥にかかわらず、グリッドパターンに沿った劣化の進行が生じないため十分な保護機能を保持していると考えられる。   In Comparative Example 5, since there is no cutting treatment after the formation of the protective film, this deterioration is not due to partial destruction of the protective film due to the cutting, but any alteration of the polarizing film by sebum from the protective film defect portion present at the substrate edge. It is thought that the phenomenon progressed along the grid pattern. From the results of Example 3, in the non-formation region 10 where the grid pattern is not formed, the progress of deterioration along the grid pattern does not occur regardless of such a defect of the protective film, so that a sufficient protection function is maintained. it seems to do.

このように、ワイヤグリッド偏光板と微粒子型偏光板において、基板端付近にグリッドが形成されていない非形成領域10を設けたものでは、偏光膜の劣化が生じることがなく、高湿度試験において優れた信頼性を有することが検証された。   As described above, in the wire grid polarizing plate and the fine particle type polarizing plate, when the non-formation region 10 in which the grid is not formed is provided in the vicinity of the substrate end, the polarizing film is not deteriorated and is excellent in the high humidity test. It has been verified that it has high reliability.

本発明は、ここに述べたワイヤグリッド偏光板1Aや微粒子型偏光板1Bに限らず、微細なグリッド及びグリッドに類似な構造を有する偏光に依存するデバイスであれば、例えば波長板のようなものでも適用が可能である。この場合、微細なグリッドとは、主に使用波長の1/2以下程度のピッチを有する凸凹断面の構造が想定される。グリッドの断面形状は、所望の偏光特性を有する範囲で適切に決められるが、「凸凹深さ/ピッチ」が1/2以上であると良好な偏光特性を生じさせるために好適である。   The present invention is not limited to the wire grid polarizing plate 1A and the fine particle type polarizing plate 1B described here, but may be a device that depends on polarized light having a fine grid and a structure similar to the grid. But it can be applied. In this case, the fine grid is assumed to have a structure with an uneven cross section mainly having a pitch of about ½ or less of the wavelength used. The cross-sectional shape of the grid is appropriately determined within a range having a desired polarization characteristic, but when the “concave / convex depth / pitch” is 1/2 or more, it is suitable for producing a good polarization characteristic.

1 偏光板、1A ワイヤグリッド偏光板、1B 微粒子型偏光板、2 基板、3 ワイヤグリッド、4 保護膜、5 基板、6 グリッドパターン、7 微粒子、8 保護膜、9 反射防止膜、10 非形成領域、11 ウェハ基板、12 反射防止膜、13 Al薄膜、14 保護膜、16 ウェハ基板、17 反射防止膜、18 Al薄膜、19 グリッドパターン、20 Ge微粒子、21 保護膜   DESCRIPTION OF SYMBOLS 1 Polarizing plate, 1A Wire grid polarizing plate, 1B Fine particle type polarizing plate, 2 Substrate, 3 Wire grid, 4 Protective film, 5 Substrate, 6 Grid pattern, 7 Fine particle, 8 Protective film, 9 Antireflection film, 10 Non-formation region 11 Wafer substrate, 12 Antireflection film, 13 Al thin film, 14 Protective film, 16 Wafer substrate, 17 Antireflection film, 18 Al thin film, 19 Grid pattern, 20 Ge fine particle, 21 Protective film

Claims (9)

ウェハ基板の一面全体に形成された下地膜に、グリッドを形成するパターン及び上記ウェハ基板の周縁部に上記グリッドを形成しない非形成領域を形成するパターンを有するレジストを設け、上記下地膜を用いた上記グリッド及び上記非形成領域を形成する工程と、
上記グリッド及び上記非形成領域を保護する保護膜を形成する工程とを備える偏光板の製造方法において、
更に、上記ウェハ基板上に形成された上記偏光板の非形成領域において切断することにより、所定の大きさに切断固片化された偏光板を複数得る切断工程を有する偏光板の製造方法。
A resist having a pattern for forming a grid and a pattern for forming a non-formation region not forming the grid on the peripheral edge of the wafer substrate is provided on the base film formed on the entire surface of the wafer substrate, and the base film is used. Forming the grid and the non-forming region;
In the manufacturing method of a polarizing plate provided with the process of forming the protective film which protects the grid and the non-formation region,
Furthermore, the manufacturing method of the polarizing plate which has the cutting process which obtains several polarizing plates cut | disconnected by the predetermined magnitude | size by cut | disconnecting in the non-formation area | region of the said polarizing plate formed on the said wafer substrate.
上記切断工程は、上記保護膜を形成する工程の前に行う請求項1記載の偏光板の製造方法。   The method for producing a polarizing plate according to claim 1, wherein the cutting step is performed before the step of forming the protective film. 上記切断工程は、上記保護膜を形成する工程の後に行う請求項1記載の偏光板の製造方法。   The method for producing a polarizing plate according to claim 1, wherein the cutting step is performed after the step of forming the protective film. 上記非形成領域には、遮光部が形成されている請求項1〜3のいずれか1項に記載の偏光板の製造方法。   The manufacturing method of the polarizing plate of any one of Claims 1-3 in which the light-shielding part is formed in the said non-formation area | region. 上記非形成領域は、上記ウェハ基板の周縁部から内側に向かって0.2mm以上設けられている請求項1〜4のいずれか1項に記載の偏光板の製造方法。   The said non-formation area | region is a manufacturing method of the polarizing plate of any one of Claims 1-4 provided 0.2 mm or more toward the inner side from the peripheral part of the said wafer substrate. 上記非形成領域は、上記ウェハ基板の周縁部から2〜3mmの位置まで設けられている請求項5記載の偏光板の製造方法。   The said non-formation area | region is a manufacturing method of the polarizing plate of Claim 5 provided from the peripheral part of the said wafer substrate to the position of 2-3 mm. 上記ウェハ基板は、略矩形状に形成され、
上記非形成領域は、上記ウェハ基板の、上記グリッドの長手方向と略直交する辺の周縁部に設けられている請求項1〜6のいずれか1項に記載の偏光板の製造方法。
The wafer substrate is formed in a substantially rectangular shape,
The said non-formation area | region is a manufacturing method of the polarizing plate of any one of Claims 1-6 provided in the peripheral part of the side substantially orthogonal to the longitudinal direction of the said grid of the said wafer substrate.
さらに、上記非形成領域は、上記ウェハ基板の、上記グリッドの長手方向と略平行な辺の周縁部に設けられている請求項7記載の偏光板の製造方法。   Furthermore, the said non-formation area | region is a manufacturing method of the polarizing plate of Claim 7 provided in the peripheral part of the side substantially parallel to the longitudinal direction of the said grid of the said wafer substrate. 上記グリッドの長手方向と略直交する辺の周縁部に設けられている上記非形成領域が、上記グリッドの長手方向と略平行な辺の周縁部に設けられている上記非形成領域よりも大きく形成されている請求項8記載の偏光板の製造方法。   The non-formation region provided in the peripheral portion of the side substantially orthogonal to the longitudinal direction of the grid is formed larger than the non-formation region provided in the peripheral portion of the side substantially parallel to the longitudinal direction of the grid. The method for producing a polarizing plate according to claim 8.
JP2015142618A 2015-07-17 2015-07-17 Manufacturing method of polarizing plate Active JP6163180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015142618A JP6163180B2 (en) 2015-07-17 2015-07-17 Manufacturing method of polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015142618A JP6163180B2 (en) 2015-07-17 2015-07-17 Manufacturing method of polarizing plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010124178A Division JP2011248284A (en) 2010-05-31 2010-05-31 Polarizing plate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2015180975A true JP2015180975A (en) 2015-10-15
JP6163180B2 JP6163180B2 (en) 2017-07-12

Family

ID=54329209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015142618A Active JP6163180B2 (en) 2015-07-17 2015-07-17 Manufacturing method of polarizing plate

Country Status (1)

Country Link
JP (1) JP6163180B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102390A (en) * 2016-02-22 2017-08-29 住友化学株式会社 Polarization plates and image display device
JP6401837B1 (en) * 2017-08-10 2018-10-10 デクセリアルズ株式会社 Polarizing plate and optical device
JP6423124B1 (en) * 2018-08-03 2018-11-14 デクセリアルズ株式会社 Polarizing plate, method for producing the same, and optical instrument
CN109581567A (en) * 2017-09-27 2019-04-05 迪睿合株式会社 Polarization plate and its manufacturing method and optical device
JP2019061226A (en) * 2018-08-03 2019-04-18 デクセリアルズ株式会社 Polarizer, manufacturing method for the same and optical equipment
JP2019109375A (en) * 2017-12-19 2019-07-04 セイコーエプソン株式会社 Polarization element, and manufacturing method for polarization element
JP2019113816A (en) * 2017-12-25 2019-07-11 セイコーエプソン株式会社 Method for manufacturing wire grid polarization element, and substrate for manufacturing wire grid polarization element
US10859744B2 (en) 2017-12-25 2020-12-08 Seiko Epson Corporation Method of manufacturing wire grid polarization element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017408A (en) * 2003-06-23 2005-01-20 Ricoh Opt Ind Co Ltd Polarizing optical element and manufacturing method thereof
JP2005107232A (en) * 2003-09-30 2005-04-21 Hitachi Ltd Projection video display device, and optical element and optical unit for use in the same
JP2007052316A (en) * 2005-08-19 2007-03-01 Seiko Epson Corp Substrate for liquid crystal device, manufacturing method of substrate for liquid crystal device, liquid crystal device and projection type display apparatus
US20070217008A1 (en) * 2006-03-17 2007-09-20 Wang Jian J Polarizer films and methods of making the same
JP2009031538A (en) * 2007-07-27 2009-02-12 Seiko Epson Corp Optical device, liquid crystal device, mother board for liquid crystal device, and electronic apparatus
JP2009086127A (en) * 2007-09-28 2009-04-23 Seiko Epson Corp Liquid crystal device and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017408A (en) * 2003-06-23 2005-01-20 Ricoh Opt Ind Co Ltd Polarizing optical element and manufacturing method thereof
JP2005107232A (en) * 2003-09-30 2005-04-21 Hitachi Ltd Projection video display device, and optical element and optical unit for use in the same
JP2007052316A (en) * 2005-08-19 2007-03-01 Seiko Epson Corp Substrate for liquid crystal device, manufacturing method of substrate for liquid crystal device, liquid crystal device and projection type display apparatus
US20070217008A1 (en) * 2006-03-17 2007-09-20 Wang Jian J Polarizer films and methods of making the same
JP2009031538A (en) * 2007-07-27 2009-02-12 Seiko Epson Corp Optical device, liquid crystal device, mother board for liquid crystal device, and electronic apparatus
JP2009086127A (en) * 2007-09-28 2009-04-23 Seiko Epson Corp Liquid crystal device and electronic device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107102390A (en) * 2016-02-22 2017-08-29 住友化学株式会社 Polarization plates and image display device
JP2019035802A (en) * 2017-08-10 2019-03-07 デクセリアルズ株式会社 Polarizer and optical equipment
JP6401837B1 (en) * 2017-08-10 2018-10-10 デクセリアルズ株式会社 Polarizing plate and optical device
JP2019061125A (en) * 2017-09-27 2019-04-18 デクセリアルズ株式会社 Polarizer, manufacturing method for the same and optical equipment
CN109581567A (en) * 2017-09-27 2019-04-05 迪睿合株式会社 Polarization plate and its manufacturing method and optical device
US11143805B2 (en) 2017-09-27 2021-10-12 Dexerials Corporation Polarizing plate, polarizing plate manufacturing method, and optical apparatus
JP2019109375A (en) * 2017-12-19 2019-07-04 セイコーエプソン株式会社 Polarization element, and manufacturing method for polarization element
JP2019113816A (en) * 2017-12-25 2019-07-11 セイコーエプソン株式会社 Method for manufacturing wire grid polarization element, and substrate for manufacturing wire grid polarization element
US10859744B2 (en) 2017-12-25 2020-12-08 Seiko Epson Corporation Method of manufacturing wire grid polarization element
JP2019061226A (en) * 2018-08-03 2019-04-18 デクセリアルズ株式会社 Polarizer, manufacturing method for the same and optical equipment
JP6423124B1 (en) * 2018-08-03 2018-11-14 デクセリアルズ株式会社 Polarizing plate, method for producing the same, and optical instrument
JP2019061225A (en) * 2018-08-03 2019-04-18 デクセリアルズ株式会社 Polarizer, manufacturing method for the same and optical equipment
JP7046759B2 (en) 2018-08-03 2022-04-04 デクセリアルズ株式会社 Optical equipment and its manufacturing method

Also Published As

Publication number Publication date
JP6163180B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
WO2011152422A1 (en) Polarizing plate and method for producing polarizing plate
JP6163180B2 (en) Manufacturing method of polarizing plate
TWI744348B (en) Dustproof film, dustproof film module housing, dustproof film module, method of manufacturing the same, exposure master, exposure device, and method of manufacturing semiconductor device
JP6402799B2 (en) Light-absorbing polarizing element, transmissive projector, and liquid crystal display device
US10962698B2 (en) Inorganic polarizing plate
KR101809313B1 (en) Grid polarizing device and method for manufacturing grid polarizing device
JP7174625B2 (en) Method for manufacturing membrane assembly for EUV lithography, membrane assembly, lithographic apparatus and device manufacturing method
JP5929881B2 (en) Grid polarizer
US10295716B2 (en) Inorganic polarizing plate and production method thereof
JP6051519B2 (en) Method for manufacturing wire grid element
WO2020042259A1 (en) Display panel and manufacturing method therefor
KR101695293B1 (en) Laser pattern mask and method for fabrication the same
US20190187350A1 (en) Polarizing element
JPH04233542A (en) Aberrasion mask and use thereof
US20170139137A1 (en) Method of manufacturing nano antenna
JP5822401B2 (en) Pellicle for lithography
JP2016024419A (en) Wire grid polarizer, polarized image pickup device, and projector
JP6122045B2 (en) Waveplate manufacturing method
JP2009008878A (en) Method for manufacturing polarization converting element
US9823398B2 (en) Polarizer and optical element having polarizer
JP6805315B1 (en) Patterned light guide structure and how to form it
KR102172217B1 (en) Pellicle container and particle removing method using the same
JP7200510B2 (en) Orientation method and photo-alignment device
JPWO2017057233A1 (en) Optical member, chamber, and light source device
JP2016180882A (en) Polarizer, photo-aligning device and photo-aligning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170616

R150 Certificate of patent or registration of utility model

Ref document number: 6163180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250