JP2015177734A - Automatic power factor control apparatus - Google Patents

Automatic power factor control apparatus Download PDF

Info

Publication number
JP2015177734A
JP2015177734A JP2014077335A JP2014077335A JP2015177734A JP 2015177734 A JP2015177734 A JP 2015177734A JP 2014077335 A JP2014077335 A JP 2014077335A JP 2014077335 A JP2014077335 A JP 2014077335A JP 2015177734 A JP2015177734 A JP 2015177734A
Authority
JP
Japan
Prior art keywords
receiving point
power factor
current
power receiving
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014077335A
Other languages
Japanese (ja)
Other versions
JP5766840B1 (en
Inventor
小林 浩
Hiroshi Kobayashi
浩 小林
悠 藤田
Hisashi Fujita
悠 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toenec Corp
Original Assignee
Toenec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toenec Corp filed Critical Toenec Corp
Priority to JP2014077335A priority Critical patent/JP5766840B1/en
Application granted granted Critical
Publication of JP5766840B1 publication Critical patent/JP5766840B1/en
Publication of JP2015177734A publication Critical patent/JP2015177734A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automatic power factor control apparatus for controlling insertion and separation of a phase advance capacitor while reducing a calculation load of an apparatus.SOLUTION: An automatic power factor control apparatus 1 for controlling insertion and separation of phase advance capacitors 3, 3 comprises: a power receiving point current threshold calculation unit 8 for calculating a threshold of current at a power receiving point from a load power factor and phase advance capacitor capacitance and the like; an effective value calculation unit 11 for calculating an effective value of a current signal at the power receiving point; and an insertion/separation determination control unit 12 for determining and controlling insertion and separation of the phase advance capacitors. The power receiving point current threshold calculation unit 8 calculates a threshold of power receiving point current and stores the threshold; and the insertion/separation determination control unit 12 compares the effective value of the current signal at the power receiving point calculated by the effective value calculation unit 11 with the power receiving point current threshold, and determines and controls insertion and separation of the phase advance capacitors 3.

Description

本発明は、進相コンデンサの投入と開放を制御する自動力率制御装置に関するものである。  The present invention relates to an automatic power factor control device for controlling the insertion and release of a phase advance capacitor.

従来、高圧需要家では、受電点の力率を改善するために進相コンデンサ(SC)を複数台設置し、受電点の力率を適正に維持するように、SCの投入台数を制御する自動力率制御装置(APFC:Automatic Power Factor Controller)が設置される。APFCの一般的な制御方式は、受電点の電圧と電流を計測して無効電力や力率を演算し、この無効電力の大きさに応じて、投入するSC台数を決定するというものである。
現在APFCの普及率は高圧需要家の10%程度と低い。このため、多くのSCは常時投入された状態であり、高圧需要家での消費電力が小さい夜間等では、受電点の力率が進みとなり、高圧配電系統の電圧上昇問題を引き起こしている。よって、受電点の力率を適正に維持できるAPFCの設置は、高圧配電系統等の電力品質の維持・向上のためには、さらなる低コスト化や設置メリットの拡大等が必要である。
このような背景から、APFCを低コスト化する方策の1つとして、電流計測のみから受電点の無効電力や力率を演算する機能を有した自動力率制御装置が提案されている(特開2012−50290号公報)。
特開2012−50290号公報に示された自動力率制御装置では、電圧計測が不要となることから、電圧を取り込むためのハードウェアや電圧値を計算するためのソフトウェアが不要となり、APFCの低コスト化に寄与するものとなっている。
Conventionally, high-voltage customers have installed multiple phase-advancing capacitors (SC) to improve the power factor at the power receiving point, and an automatic control system that controls the number of SCs input so as to maintain the power factor at the power receiving point appropriately. A power factor controller (APFC: Automatic Power Factor Controller) is installed. A general control method of APFC is to measure the voltage and current of a power receiving point, calculate reactive power and power factor, and determine the number of SCs to be input according to the magnitude of the reactive power.
Currently, the penetration rate of APFC is as low as 10% of high-pressure customers. For this reason, many SCs are always turned on, and the power factor at the power receiving point is increased at night when the power consumption of high-voltage consumers is small, causing a voltage increase problem in the high-voltage distribution system. Therefore, the installation of APFC that can properly maintain the power factor of the power receiving point requires further cost reduction and expansion of installation merit in order to maintain and improve the power quality of the high voltage distribution system and the like.
From such a background, as one of the measures for reducing the cost of APFC, an automatic power factor control device having a function of calculating a reactive power and a power factor of a power receiving point only from current measurement has been proposed (Japanese Patent Application Laid-Open (JP-A)). 2012-50290 publication).
In the automatic power factor control apparatus disclosed in Japanese Patent Application Laid-Open No. 2012-50290, voltage measurement is not required, so that hardware for taking in voltage and software for calculating a voltage value are not required, and the APFC is low. This contributes to cost reduction.

特開2012−50290号公報  JP 2012-50290 A

特許文献1に開示されている自動力率制御装置の構成では、電流センサCT2に入力された受電点電流の実効値演算を常に行い、あらかじめ決められたしきい値と比較し、しきい値を超過したらSCを投入し、しきい値を下回ったらSCを開放することを基本としているものであり、平方根や三角関数が含まれている式を常時演算し続けるため、制御装置のプログラムステップ数が多くなることから、低コストのプログラマブルコントローラ(PLC)等のハードウェアを用いて装置を構成することが困難であるという問題点があった。  In the configuration of the automatic power factor control device disclosed in Patent Document 1, the effective value calculation of the receiving point current input to the current sensor CT2 is always performed, and compared with a predetermined threshold value. If the value exceeds the threshold value, the SC is inserted, and when the value falls below the threshold value, the SC is basically released. Since the expression including the square root and the trigonometric function is constantly calculated, the number of program steps of the control device is reduced. Therefore, it has been difficult to configure the apparatus using hardware such as a low-cost programmable controller (PLC).

本発明は、装置の計算負荷を低減し、低コストのハードウェアを用いて装置を構成することができる、進相コンデンサの投入と開放を制御する自動力率制御装置の提供を目的とし、この目的の少なくとも一部を達成するために以下の手段を採った。
本発明は、電力需要家の受電点より負荷側に、この負荷と並列に接続されるよう設けられた力率改善用の進相コンデンサの投入と開放を制御する自動力率制御装置において、
負荷力率と進相コンデンサ容量等から前記受電点の電流のしきい値を計算する受電点電流しきい値演算部と、
前記受電点の電流信号の実効値を演算する実効値演算部と、
前記進相コンデンサの投入と開放を決定し制御する投入・開放決定制御部と、
を備え、
前記受電点電流しきい値演算部において受電点電流のしきい値を計算し、保持しておき、
前記投入・開放決定制御部において、前記実効値演算部で演算した受電点の電流信号の実効値と前記受電点電流しきい値を比較して、進相コンデンサの投入と開放を決定し制御することを要旨とする。
It is an object of the present invention to provide an automatic power factor control device that controls the introduction and release of a phase advance capacitor, which can reduce the calculation load of the device and can be configured using low-cost hardware. In order to achieve at least part of the objective, the following measures were taken.
The present invention is an automatic power factor control device for controlling the insertion and release of a phase advance capacitor for power factor improvement provided so as to be connected in parallel with this load on the load side from the power consumer's power receiving point.
A power receiving point current threshold value calculating unit for calculating a current threshold value of the power receiving point from a load power factor and a phase advance capacitor capacity;
An effective value calculation unit for calculating an effective value of the current signal at the power receiving point;
An on / off determination control unit that determines and controls the on / off of the phase advance capacitor, and
With
The receiving point current threshold value calculation unit calculates and holds the receiving point current threshold value,
In the on / off decision control unit, the effective value of the current signal at the power receiving point calculated by the effective value calculating unit is compared with the power receiving point current threshold value to determine and control on / off of the phase advance capacitor. This is the gist.

受電点電流しきい値をあらかじめ求めておき、受電点電流実効値を負荷電流の値に変換することなく、そのまま受電点電流しきい値と比較しながら、進相コンデンサの投入・開放を行うことにより、装置の計算負荷を低減することができ、低コストのハードウェアを用いて自動力率制御装置を構成することができるものとなる。  Obtain the receiving point current threshold value in advance, and turn the phase advance capacitor on and off while comparing it with the receiving point current threshold value without converting the receiving point current effective value to the load current value. Thus, the calculation load of the apparatus can be reduced, and the automatic power factor control apparatus can be configured using low-cost hardware.

また、本発明の自動力率制御装置において、負荷力率を推定する負荷力率推定部を備えて構成することもできる。
こうすれば、負荷力率を予め想定することなく、また、負荷機器の取替えや増設があった場合でも、再度負荷力率を想定し直さずに、適切な進相コンデンサの投入・開放制御ができるものとなる。
Further, the automatic power factor control device of the present invention may be configured to include a load power factor estimation unit that estimates the load power factor.
In this way, appropriate phase-advancing capacitor on / off control can be performed without assuming the load power factor in advance, and without re-estimating the load power factor even when the load equipment is replaced or expanded. It will be possible.

また、本発明の自動力率制御装置において、演算や制御に必要な設定値を外部から入力する設定値入力部を備えて構成することもできる。
こうすれば、負荷力率推定部を持たない場合でも、メーカ仕様や短時間の実測結果により負荷力率を想定し、あらかじめ設定値入力部から入力して保持しておくことができる。
Further, the automatic power factor control device of the present invention can be configured to include a set value input unit for inputting set values necessary for calculation and control from the outside.
In this way, even when the load power factor estimation unit is not provided, the load power factor can be assumed based on the manufacturer's specifications and short-time measurement results, and can be input and held in advance from the set value input unit.

また、本発明の自動力率制御装置において、前記実効値演算部が、前記受電点の電流信号を計測する電流センサに備えられているものとすることもできる。
こうすれば、電流センサとして実効値演算部をもつセンサを使用することで、自動力率制御装置内の実効値演算部が不要となり、装置の低コスト化を実現可能となる。
In the automatic power factor control device of the present invention, the effective value calculation unit may be provided in a current sensor that measures a current signal at the power receiving point.
In this way, by using a sensor having an effective value calculation unit as a current sensor, an effective value calculation unit in the automatic power factor control device is not necessary, and the cost of the device can be reduced.

第1実施例の自動力率制御装置の構成図である。  It is a block diagram of the automatic power factor control apparatus of 1st Example. 受電点電流と負荷電流の関係を示すベクトル図である。  It is a vector diagram which shows the relationship between a receiving point current and load current. 動作の流れを示す動作フロー図である。  It is an operation | movement flowchart which shows the flow of operation | movement. 第2実施例の自動力率制御装置の構成図である。  It is a block diagram of the automatic power factor control apparatus of 2nd Example. 第3実施例の自動力率制御装置の構成図である。  It is a block diagram of the automatic power factor control apparatus of 3rd Example.

次に、本発明を実施するための形態を実施例を用いて説明する。  Next, the form for implementing this invention is demonstrated using an Example.

図1に第1実施例の自動力率制御装置1の構成例を示す。
電力需要家の受電点より負荷側に、この負荷と並列に接続されるよう設けられた力率改善用の進相コンデンサ3,3の投入と開放を制御する自動力率制御装置1は、CT等の電流センサから受電点2の電流信号を入力する電流信号入力部10と、電流信号の実効値を演算する実効値演算部11と、実効値と受電点電流しきい値を比較して、進相コンデンサの投入と開放を決定し制御する投入・開放決定制御部12と、受電点電流のしきい値を負荷力率と進相コンデンサ容量等から計算する受電点電流のしきい値演算部8と、負荷力率を推定する負荷力率推定部13と、演算や制御に必要な設定値を外部から入力する設定値入力部6を備えている。
FIG. 1 shows a configuration example of an automatic power factor control apparatus 1 according to the first embodiment.
An automatic power factor control device 1 for controlling the insertion and release of the power factor improving phase-advancing capacitors 3 and 3 provided so as to be connected in parallel to the load on the load side from the power receiving point of the electric power consumer. A current signal input unit 10 for inputting a current signal at a power receiving point 2 from a current sensor, etc., an effective value calculating unit 11 for calculating an effective value of the current signal, and comparing an effective value and a power receiving point current threshold value, An on / off decision control unit 12 for determining and controlling the introduction and release of the phase advance capacitor, and a threshold value calculation unit for the reception point current for calculating the threshold of the reception point current from the load power factor and the phase advance capacitor capacity 8, a load power factor estimation unit 13 for estimating the load power factor, and a set value input unit 6 for inputting a set value necessary for calculation and control from the outside.

本自動力率制御装置1の特徴は、受電点電流のしきい値演算部8において受電点電流しきい値をあらかじめ求めておき、実効値演算部11で演算した受電点電流実効値を他の値に変換することなく、そのまま受電点電流しきい値と比較しながら、進相コンデンサ3,3の投入・開放を行うことである。
従来の自動力率制御装置では、負荷電流しきい値をあらかじめ求めておき、計測する受電点電流実効値を負荷電流実効値に変換しながら、負荷電流実効値と負荷電流しきい値を比較して、進相コンデンサの投入・開放を行っていたが、受電点電流実効値を負荷電流実効値に常に変換するため計算負荷が大きくなり、低価格な汎用プログラマブルコントローラ等を用いて、自動力率制御装置を構成することが困難であった。
The automatic power factor control device 1 is characterized in that a power receiving point current threshold value is obtained in advance in the power receiving point current threshold value calculation unit 8, and the power reception point current effective value calculated by the effective value calculation unit 11 is obtained as another value. The phase-advancing capacitors 3 and 3 are turned on and off without being converted into values while being directly compared with the power receiving point current threshold value.
In the conventional automatic power factor control device, the load current threshold value is obtained in advance and the load current effective value is compared with the load current threshold value while converting the measured receiving point current effective value into the load current effective value. The phase-advancing capacitor was turned on and off, but the calculation load increases because the effective value of the receiving point current is always converted to the effective value of the load current. It was difficult to configure the control device.

ここで、受電点電流と負荷電流の関係を、ベクトル図で図2に示す。
負荷電流は、需要家構内で稼働している電気機器に流れる電流の合計電流であり、一般的に遅れ力率であるため、ベクトル図では原点から遅れ側に位置するベクトルで表現される。負荷電流が遅れ力率である場合に進相コンデンサ3,3が投入されないと、受電点電流も遅れ力率であるため、配電線損失の増加や電力料金の増加等のデメリットが生じる。このため、負荷電流が流れる電気機器と並列に進相コンデンサ3,3を投入することで、受電点の力率を1に近くなるように調整する。進相コンデンサ3,3の電流の位相は電圧に対して進み90度であるため、ベクトル図では進み側を向くベクトルで表現する。
Here, the relationship between the power receiving point current and the load current is shown as a vector diagram in FIG.
The load current is the total current flowing through the electrical equipment operating on the customer premises, and is generally a delay power factor. Therefore, in the vector diagram, the load current is represented by a vector positioned on the delay side. If the phase-advancing capacitors 3 and 3 are not inserted when the load current has a delay power factor, the power receiving point current also has a delay power factor, which causes disadvantages such as an increase in distribution line loss and an increase in power charges. For this reason, the power factor at the power receiving point is adjusted to be close to 1 by inserting the phase advance capacitors 3 and 3 in parallel with the electric equipment through which the load current flows. Since the phase of the current of the phase-advancing capacitors 3 and 3 is 90 degrees with respect to the voltage, the vector diagram is represented by a vector facing the advance side.

図2は、わかりやすさのため、すでに容量Qsc(電流Isc)の進相コンデンサ(SC)3が1台投入されている状態の受電点電流を、受電点電流(SC1台投入)と表現し、その後追加して同容量Qsc(電流Isc)の進相コンデンサ(SC)3を1台、つまり合計2台投入された状態の受電点電流を、受電点電流(SC2台投入)と表現している。
進相コンデンサ3,3を投入した場合の受電点電流ベクトルは、負荷電流ベクトルと同時に投入されている進相コンデンサ電流ベクトルの合成である。よって、受電点電流(SC1台投入)と受電点電流(SC2台投入)位置関係は図のとおりである。
In FIG. 2, for the sake of simplicity, the power receiving point current in a state where one phase advance capacitor (SC) 3 having the capacity Qsc (current Isc) is already input is expressed as a power receiving point current (1 SC input), and then In addition, the power receiving point current in a state where one phase advance capacitor (SC) 3 having the same capacity Qsc (current Isc), that is, a total of two power capacitors is input, is expressed as a power receiving point current (2 SC input).
The receiving point current vector when the phase advance capacitors 3 and 3 are turned on is a combination of the phase advance capacitor current vectors that are turned on simultaneously with the load current vector. Therefore, the positional relationship between the power receiving point current (1 SC input) and the power receiving current (2 SC input) is as shown in the figure.

一般的な高圧受変電設備では、受電点電流を直接計測することは可能であるが、負荷電流を直接計測することは困難である場合が多い。これは、負荷電流は複数の電気機器に流れる電流の合計であるため、1個の電流センサのみを用いて測定することができないからである。
一方で、例えば受電点力率を1に調整する場合を考えると、負荷電流ベクトルの無効分が投入すべき進相コンデンサ電流を直接表現しているため、投入すべき進相コンデンサ容量を決定しやすい特徴がある。このため、従来の自動力率制御装置では、実際に計測できる受電点電流を、制御に便利な負荷電流に変換して、進相コンデンサの投入・開放制御を行ってきた。
In general high-voltage receiving / transforming equipment, it is possible to directly measure the receiving point current, but it is often difficult to directly measure the load current. This is because the load current is the sum of the currents flowing through a plurality of electrical devices and cannot be measured using only one current sensor.
On the other hand, for example, when considering the case where the power reception point power factor is adjusted to 1, the ineffective portion of the load current vector directly represents the phase advance capacitor current to be input. There are easy features. For this reason, in the conventional automatic power factor control device, the power receiving point current that can be actually measured is converted into a load current that is convenient for control, and the on / off control of the phase advance capacitor has been performed.

本自動力率制御装置1では、あらかじめ受電点電流しきい値を保持しておき、計測する受電点電流実効値を別の値に変換することなく、直接受電点電流しきい値と比較して進相コンデンサ3,3の投入・開放を行う。
本自動力率制御装置1の動作の流れを、図1の構成例,図2のベクトル図,及び図3の動作フローを用いて説明する。
In this automatic power factor control device 1, a receiving point current threshold value is held in advance, and the measured receiving point current effective value is directly compared with the receiving point current threshold value without converting to another value. Turn on and off the phase-advancing capacitors 3 and 3.
The operation flow of the automatic power factor control apparatus 1 will be described with reference to the configuration example of FIG. 1, the vector diagram of FIG. 2, and the operation flow of FIG.

(動作1)
ステップS1において、あらかじめ設定値入力部6から、1台当たりのコンデンサ容量Qscと回路電圧Vと負荷力率(力率角θ)を入力しておく。
(Operation 1)
In step S1, a capacitor capacity Qsc, a circuit voltage V, and a load power factor (power factor angle θ) per unit are input in advance from the set value input unit 6.

(動作2)
ステップS2において、あらかじめ設定値入力部6から入力された、1台当たりのコンデンサ容量Qscと回路電圧Vと負荷力率(力率角θ)を用いて、受電点電流のしきい値演算部8において受電点電流しきい値ITthNを下記の式で計算し、メモリー9に保持しておく。なお、負荷力率推定部13で、特開2012−50290号公報に基づき負荷の負荷力率の推定値を求めておくこともできる。

Figure 2015177734
ここで、ILthNは、N台目の進相コンデンサ3を投入するための負荷電流しきい値、ITthNは、N台目の進相コンデンサ3を投入するための受電点電流しきい値を表している。
(1)式は、負荷力率がcosθの場合に、容量QSCの進相コンデンサ3を投入すれば、受電点の力率を1に改善できる最大の負荷電流実効値を表している。
(2)式は、その最大の負荷電流実効値を、受電点電流実効値に換算する式である。(Operation 2)
In step S2, the threshold value calculation unit 8 for the power receiving point current is obtained by using the capacitor capacity Qsc per unit, the circuit voltage V, and the load power factor (power factor angle θ) inputted in advance from the set value input unit 6. The power receiving point current threshold value I TthN is calculated by the following formula and stored in the memory 9. In addition, the load power factor estimation unit 13 can obtain an estimated value of the load power factor of the load based on Japanese Patent Application Laid-Open No. 2012-50290.
Figure 2015177734
Here, I LthN is a load current threshold value for turning on the N-th phase advance capacitor 3, and I TthN is a receiving point current threshold value for turning on the N-th phase advance capacitor 3. Represents.
(1), the load power factor when the cos [theta], if charged phase advancing capacitor 3 capacity Q SC, which represents the maximum load current effective value can improve the power factor of the receiving point to 1.
The expression (2) is an expression for converting the maximum load current effective value into a power receiving point current effective value.

(3)式の導出根拠を、図2のベクトル図を用いて説明する。
図2の記号と(3)式の記号は、I→ILthN,I→ITthNと対応している。
図2において、I,I,ISCの間の関係を見ると、受電点電流I,負荷電流の有効分,負荷電流の無効分から投入前SC電流を引いた電流の3つの電流が、受電点電流Iを斜辺とする直角三角形を構成している。このことから、三平方の定理を用いると、(3)式が容易に導出される。
The basis for deriving equation (3) will be described with reference to the vector diagram of FIG.
The symbol in FIG. 2 and the symbol in the expression (3) correspond to I L → I LthN and I T → I TthN .
In FIG. 2, I L, I T, looking at the relationship between I SC, receiving point current I T, the effective amount of the load current, three current of the current minus the before-SC current from reactive component of the load current constitutes a right-angled triangle having the hypotenuse receiving point current I T. From this, the equation (3) can be easily derived using the three-square theorem.

(動作3)
ステップS3において、受電点電流の電流信号を電流信号入力部10から取り込み、受電点電流実効値を実効値演算部11で演算する。
(Operation 3)
In step S <b> 3, the current signal of the power receiving point current is taken from the current signal input unit 10, and the power receiving point current effective value is calculated by the effective value calculating unit 11.

(動作4)
ステップS4において、投入・開放決定制御部12では、受電点電流実効値を、あらかじめ保持している受電点電流しきい値と比較する。ステップS5において、受電点電流実効値が受電電流しきい値を一定時間超過したら進相コンデンサ3を投入し、一定時間下回ったら進相コンデンサ3を開放する。
(Operation 4)
In step S4, the on / off determination control unit 12 compares the power receiving point current effective value with the power receiving point current threshold value that is held in advance. In step S5, the phase advance capacitor 3 is turned on when the power reception point effective value exceeds the power reception current threshold value for a predetermined time, and the phase advance capacitor 3 is opened when the value is lower than the predetermined time.

(動作5)
動作3に戻り、処理を繰り返す。これにより、常に受電点の力率を1よりも進み側にする、最低の進相コンデンサ3を投入しておくことが可能であり、受電点の力率を適正に維持することが可能である。
(Operation 5)
Return to operation 3 and repeat the process. As a result, it is possible to put in the lowest phase advance capacitor 3 that always sets the power factor of the power receiving point to a more advanced side than 1, and it is possible to properly maintain the power factor of the power receiving point. .

図4は、負荷力率推定部13を持たない自動力率制御装置1の構成例である。
負荷力率推定部13を持たない場合には、メーカ仕様や短時間の実測結果により負荷力率を想定し、あらかじめ設定値入力部6から入力し、入力値保存部7にて保持しておけばよい。
FIG. 4 is a configuration example of the automatic power factor control apparatus 1 that does not have the load power factor estimation unit 13.
If the load power factor estimation unit 13 is not provided, the load power factor is assumed based on the manufacturer's specifications and short-time actual measurement results, input in advance from the set value input unit 6, and stored in the input value storage unit 7. That's fine.

図5は、装置内に備える機能を最小限にした自動力率制御装置1の構成例である。
図4と比較すると、電流センサとして実効値演算部13をもつセンサを使用することで、自動力率制御装置1内の実効値演算部11を省略している。電流実効値の演算にはCPUによる高速演算が必要であるが、このような構成にすることで演算が不要となり、装置の低コスト化を実現可能である。
FIG. 5 is a configuration example of the automatic power factor control apparatus 1 in which the functions provided in the apparatus are minimized.
Compared with FIG. 4, the effective value calculation unit 11 in the automatic power factor control device 1 is omitted by using a sensor having the effective value calculation unit 13 as a current sensor. The calculation of the effective current value requires a high-speed calculation by the CPU. However, with such a configuration, the calculation becomes unnecessary, and the cost of the apparatus can be reduced.

上記各実施例を含む本発明の自動力率制御装置1のメリットは、力率改善用進相コンデンサ(SC)3を開閉制御するための計算を簡略化できることである。
即ち、計測した電流の実効値を、他の値に計算し直すことなく、そのまましきい値と比較することができる点にあり、上記(3)式で一旦しきい値を決定すれば、その後は複雑な計算式による計算が不要であるため、制御プログラムの簡素化が実現でき、低コストのPLCで容易に装置を構成することができる。
The merit of the automatic power factor control device 1 of the present invention including the above embodiments is that the calculation for opening and closing the power factor improving phase advance capacitor (SC) 3 can be simplified.
That is, the effective value of the measured current can be directly compared with the threshold value without recalculating it to another value. Once the threshold value is determined by the above equation (3), Since no calculation by a complicated calculation formula is required, the control program can be simplified, and the apparatus can be easily configured with a low-cost PLC.

現在APFCの普及率が低いのは、特に変圧器合計容量が300kVA未満の小容量受電設備を設置する高圧需要家である。これらの小容量受電設備は、設置コストをより低く抑えたいというニーズが多い。このため、小容量受電設備に新たにAPFCを追加設置するには、設置コストを極力抑える必要がある。本発明の手法を用いることで、APFCとして専用のハードウェアを開発しなくとも、汎用の低コストのPLCにソフトウェアを実装するのみで装置を実現できる。  Currently, APFC has a low penetration rate, especially for high-voltage customers who install small-capacity power receiving facilities with a total transformer capacity of less than 300 kVA. These small-capacity power receiving facilities have many needs to keep the installation cost lower. For this reason, in order to newly install an APFC in a small-capacity power receiving facility, it is necessary to suppress the installation cost as much as possible. By using the method of the present invention, an apparatus can be realized only by mounting software on a general-purpose low-cost PLC without developing dedicated hardware as an APFC.

1 自動力率制御装置
2 受電点
3 進相コンデンサ(SC)
5 開閉器
6 設定値入力部
8 受電点電流しきい値演算部
10 電流信号入力部
11 実効値演算部
12 投入・開放決定制御部
13 負荷力率推定部
1 Automatic power factor controller 2 Receiving point 3 Phase advance capacitor (SC)
5 Switch 6 Set Value Input Unit 8 Receiving Point Current Threshold Calculation Unit 10 Current Signal Input Unit 11 Effective Value Calculation Unit 12 Input / Open Determination Control Unit 13 Load Power Factor Estimation Unit

本発明は、装置の計算負荷を低減し、低コストのハードウェアを用いて装置を構成することができる、進相コンデンサの投入と開放を制御する自動力率制御装置の提供を目的とし、この目的の少なくとも一部を達成するために以下の手段を採った。
本発明は、電力需要家の受電点より負荷側に、この負荷と並列に接続されるよう設けられた力率改善用の進相コンデンサの投入と開放を制御する自動力率制御装置において、
負荷力率と進相コンデンサ容量から前記受電点の電流のしきい値を計算する受電点電流しきい値演算部と、
前記受電点の電流信号の実効値を演算する実効値演算部と、
前記進相コンデンサの投入と開放を決定し制御する投入・開放決定制御部と、
を備え、
前記受電点電流しきい値演算部において受電点電流のしきい値を計算し、保持しておき、
前記投入・開放決定制御部において、前記実効値演算部で演算した受電点の電流信号の実効値と前記受電点電流しきい値とを比較して、進相コンデンサの投入と開放を決定し制御することを要旨とする。
It is an object of the present invention to provide an automatic power factor control device that controls the introduction and release of a phase advance capacitor, which can reduce the calculation load of the device and can be configured using low-cost hardware. In order to achieve at least part of the objective, the following measures were taken.
The present invention is an automatic power factor control device for controlling the insertion and release of a phase advance capacitor for power factor improvement provided so as to be connected in parallel with this load on the load side from the power consumer's power receiving point.
A receiving point current threshold calculation unit for calculating a threshold value of the current of the load power factor and phase advance capacitor capacitance or et the receiving point,
An effective value calculation unit for calculating an effective value of the current signal at the power receiving point;
An on / off determination control unit that determines and controls the on / off of the phase advance capacitor, and
With
The receiving point current threshold value calculation unit calculates and holds the receiving point current threshold value,
In the on / off determination control unit, the effective value of the current signal at the power receiving point calculated by the effective value calculating unit and the power receiving point current threshold value are compared, and control is performed by determining whether the phase advance capacitor is turned on or off. The gist is to do.

Claims (4)

電力需要家の受電点より負荷側に、この負荷と並列に接続されるよう設けられた力率改善用の進相コンデンサの投入と開放を制御する自動力率制御装置において、
負荷力率と進相コンデンサ容量等から前記受電点の電流のしきい値を計算する受電点電流しきい値演算部と、
前記受電点の電流信号の実効値を演算する実効値演算部と、
前記進相コンデンサの投入と開放を決定し制御する投入・開放決定制御部と、
を備え、
前記受電点電流しきい値演算部において受電点電流のしきい値を計算し、保持しておき、
前記投入・開放決定制御部において、前記実効値演算部で演算した受電点の電流信号の実効値と前記受電点電流しきい値を比較して、進相コンデンサの投入と開放を決定し制御する
ことを特徴とする自動力率制御装置。
In the automatic power factor control device that controls the introduction and release of the phase advance capacitor for power factor improvement provided so as to be connected in parallel with this load on the load side from the power receiving point of the power consumer,
A power receiving point current threshold value calculating unit for calculating a current threshold value of the power receiving point from a load power factor and a phase advance capacitor capacity;
An effective value calculation unit for calculating an effective value of the current signal at the power receiving point;
An on / off determination control unit that determines and controls the on / off of the phase advance capacitor, and
With
The receiving point current threshold value calculation unit calculates and holds the receiving point current threshold value,
In the on / off decision control unit, the effective value of the current signal at the power receiving point calculated by the effective value calculating unit is compared with the power receiving point current threshold value to determine and control on / off of the phase advance capacitor. An automatic power factor control device characterized by that.
負荷力率を推定する負荷力率推定部を備えていることを特徴とする請求項1に記載の自動力率制御装置。  The automatic power factor control apparatus according to claim 1, further comprising a load power factor estimation unit that estimates a load power factor. 演算や制御に必要な設定値を外部から入力する設定値入力部を備えていることを特徴とする請求項1または請求項2に記載の自動力率制御装置。  The automatic power factor control device according to claim 1 or 2, further comprising a set value input unit for inputting a set value necessary for calculation and control from the outside. 前記実効値演算部が、前記受電点の電流信号を計測する電流センサに備えられていることを特徴とする請求項1ないし請求項3いずれかに記載の自動力率制御装置。  4. The automatic power factor control device according to claim 1, wherein the effective value calculation unit is provided in a current sensor that measures a current signal at the power receiving point.
JP2014077335A 2014-03-17 2014-03-17 Automatic power factor control device Expired - Fee Related JP5766840B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014077335A JP5766840B1 (en) 2014-03-17 2014-03-17 Automatic power factor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014077335A JP5766840B1 (en) 2014-03-17 2014-03-17 Automatic power factor control device

Publications (2)

Publication Number Publication Date
JP5766840B1 JP5766840B1 (en) 2015-08-19
JP2015177734A true JP2015177734A (en) 2015-10-05

Family

ID=53888022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014077335A Expired - Fee Related JP5766840B1 (en) 2014-03-17 2014-03-17 Automatic power factor control device

Country Status (1)

Country Link
JP (1) JP5766840B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11063436B2 (en) 2019-06-21 2021-07-13 Murata Manufacturing Co., Ltd. Power conversion device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670447U (en) * 1993-03-02 1994-09-30 日野自動車工業株式会社 Substation
JPH0746763A (en) * 1993-05-26 1995-02-14 Meidensha Corp Reactive power regulator
JPH11353044A (en) * 1998-06-11 1999-12-24 Meidensha Corp Power factor improving device
JP2006067760A (en) * 2004-08-30 2006-03-09 Tokyo Electric Power Co Inc:The Distributed power supply unit
JP2011050122A (en) * 2009-08-25 2011-03-10 Mitsubishi Electric Corp Control unit for phase advanced capacitor
JP2012050290A (en) * 2010-08-30 2012-03-08 Mitsubishi Electric Corp Automatic power factor regulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670447U (en) * 1993-03-02 1994-09-30 日野自動車工業株式会社 Substation
JPH0746763A (en) * 1993-05-26 1995-02-14 Meidensha Corp Reactive power regulator
JPH11353044A (en) * 1998-06-11 1999-12-24 Meidensha Corp Power factor improving device
JP2006067760A (en) * 2004-08-30 2006-03-09 Tokyo Electric Power Co Inc:The Distributed power supply unit
JP2011050122A (en) * 2009-08-25 2011-03-10 Mitsubishi Electric Corp Control unit for phase advanced capacitor
JP2012050290A (en) * 2010-08-30 2012-03-08 Mitsubishi Electric Corp Automatic power factor regulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11063436B2 (en) 2019-06-21 2021-07-13 Murata Manufacturing Co., Ltd. Power conversion device

Also Published As

Publication number Publication date
JP5766840B1 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
US9893522B2 (en) Paralleling of active filters with independent controls
JP5717189B2 (en) Phase advance capacitor controller
Nam et al. Phasor estimation in the presence of DC offset and CT saturation
EP3224953B1 (en) A method for estimating an electrical operating time of a circuit breaker using current feedback
CN111095712B (en) Arc detection based on current variance
CN105940353B (en) Periodical external disturbance inhibits control device
EP2859635A1 (en) Method for identifying fault by current differential protection and device thereof
EP3028366B1 (en) Uninterruptible power supply control
CN106329474A (en) Protection device and method of operating same, computer program product, and electrical installation
JP5766840B1 (en) Automatic power factor control device
AU2013291046B2 (en) Excitation inrush current suppressing apparatus and excitation inrush current suppressing method
WO2020136157A1 (en) A method and device for monitoring insulation between a dc bus and protective earth
JP5419830B2 (en) Automatic power factor adjuster
JP6889026B2 (en) Power converter
US9285410B2 (en) Control circuit, and power generation device having the same
JP6037382B2 (en) Harmonic suppression device
EP3472906B1 (en) Identification method for identifying a resonance of a power grid, and grid-connected unit
JP2016167926A (en) Power fluctuation suppressing device
JP6558690B2 (en) Isolated operation detection device, power conditioner, and isolated operation detection method
KR101451008B1 (en) Controller, controlling method, and recording medium for grid synchronization
Skolota et al. Detecting voltage swell, interruption and sag
JP6503904B2 (en) Islander operation detection device for distributed power supply
KR102055771B1 (en) Voltage reactive power control device and recording medium
JP2019091546A (en) Excitation rush current suppression device
JP5584662B2 (en) Power receiving demand monitoring control method and private power plant

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150617

R150 Certificate of patent or registration of utility model

Ref document number: 5766840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees