JP2015177266A - Transmission module, information transmission network system, information transmission method, and information transmission program - Google Patents

Transmission module, information transmission network system, information transmission method, and information transmission program Download PDF

Info

Publication number
JP2015177266A
JP2015177266A JP2014050814A JP2014050814A JP2015177266A JP 2015177266 A JP2015177266 A JP 2015177266A JP 2014050814 A JP2014050814 A JP 2014050814A JP 2014050814 A JP2014050814 A JP 2014050814A JP 2015177266 A JP2015177266 A JP 2015177266A
Authority
JP
Japan
Prior art keywords
transmission
module
information
predetermined
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014050814A
Other languages
Japanese (ja)
Inventor
亮太 山田
Ryota Yamada
亮太 山田
祐輔 山地
Yusuke Yamachi
祐輔 山地
優樹 井上
Yuki Inoue
優樹 井上
創 梅木
So Umeki
創 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2014050814A priority Critical patent/JP2015177266A/en
Priority to PCT/JP2015/055361 priority patent/WO2015137117A1/en
Publication of JP2015177266A publication Critical patent/JP2015177266A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • H04W40/08Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources based on transmission power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Computer And Data Communications (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid concentration of a communication load on a particular transmission module when a communication path is changed to eliminate a communication fault occurring at a transmission module belonging to a network for information transmission.SOLUTION: A module transmits prescribed transmission information, which should be processed by an information processing device, along a transmission path including the information processing device. The module performs determination processing to determine whether or not its transmission module should directly transmit the prescribed transmission information to a connection scheduled module which is arranged so as to relay the prescribed transmission information from the transmission module on the prescribed transmission path and which lies between a transmission object module and the information processing device. In the case where transmission malfunction of not being able to confirm a transmission completion state of the prescribed transmission information to the transmission object module has occurred, if it is determined direct transmission to the connection scheduled module is possible, the module changes a connection destination of the transmission module from the transmission object module to the connection scheduled module.

Description

本発明は、情報処理装置に関連する情報を、該情報処理装置を含む所定の伝送経路に沿って伝送する伝送モジュール、および当該伝送モジュールと情報処理装置を含んでなるネットワークシステムに関する。   The present invention relates to a transmission module that transmits information related to an information processing apparatus along a predetermined transmission path including the information processing apparatus, and a network system including the transmission module and the information processing apparatus.

従来においては、温度や湿度等の環境パラメータを計測するセンサモジュールを利用して、その計測した情報をネットワークを介して情報処理装置に送信することで、多くの計測データを簡便に収集することを可能とする技術が開発されている。この場合、センサモジュールに無線機能が備えられることで、計測された情報を伝送するための無線ネットワークが形成される。ここで、無線ネットワークにおいて発生した通信障害を認識するための技術として、特許文献1には、ネットワークに属する他のノードから届いたメッセージを利用して自己ノードに関する通信障害を検知する技術が開示されている。また、発生した通信障害に対応すべく行われる伝送経路の切り替えも、他のノードからの指示に従い行われることになる。   Conventionally, by using a sensor module that measures environmental parameters such as temperature and humidity, and transmitting the measured information to an information processing device via a network, a large amount of measurement data can be easily collected. Technologies that enable it are being developed. In this case, the wireless function for transmitting the measured information is formed by providing the sensor module with a wireless function. Here, as a technique for recognizing a communication failure that has occurred in a wireless network, Patent Document 1 discloses a technology for detecting a communication failure related to a self-node using a message received from another node belonging to the network. ing. In addition, transmission path switching performed in response to the communication failure that has occurred is also performed in accordance with an instruction from another node.

特開平4−318721号公報JP-A-4-318721

伝送すべき情報を複数の伝送モジュールを経由して目的地に伝送するネットワークにおいて、情報収集の観点に立てば、該ネットワークに含まれる伝送モジュール間において通信障害が生じると、それまで当該障害区間を経由して収集されていた情報が目的地に届かなくなるため、速やかな通信障害からの復旧が求められる。ここで、ネットワークの特定の区間で通信障害が発生した場合、その障害区間を避けるように新たな通信経路を形成することで情報の伝送を継続させる場合がある。しかし、通信経路が変更されるとそれまでの情報の流れが変わり、場合によっては特定の伝送モジュールに通信負荷が集中し、情報の輻輳が生じる可能性がある。   In a network that transmits information to be transmitted to a destination via a plurality of transmission modules, from the viewpoint of information collection, if a communication failure occurs between transmission modules included in the network, the failure section is determined until then. Since the information collected via the route will not reach the destination, prompt recovery from communication failures is required. Here, when a communication failure occurs in a specific section of the network, information transmission may be continued by forming a new communication path so as to avoid the failure section. However, when the communication path is changed, the information flow up to that time is changed, and in some cases, the communication load is concentrated on a specific transmission module, which may cause information congestion.

また、従来技術のように、ネットワークに属する他の伝送モジュールからの指令に従って自己伝送モジュールの通信経路が変更されてしまうと、それまで形成されていた通信経路を経て自己伝送モジュールが得た情報を通信障害の解消のために十分に活用できず、やはり通信経路の変更後においてネットワークで二次的な障害を引き起こす可能性がある。   Also, as in the prior art, when the communication path of the self-transmission module is changed according to a command from another transmission module belonging to the network, the information obtained by the self-transmission module via the communication path that has been formed so far It cannot be fully utilized for eliminating the communication failure, and may cause a secondary failure in the network after the communication path is changed.

本発明は、このような問題に鑑みてなされたものであり、情報伝送のためのネットワークに属する伝送モジュールにおいて、発生した通信障害を解消するために伝送経路の変更が行われるときに、特定の伝送モジュールに通信負荷が集中することを可及的に回避することを目的とする。   The present invention has been made in view of such problems, and in a transmission module belonging to a network for information transmission, when a transmission path is changed in order to eliminate a communication failure that has occurred, The object is to avoid as much as possible the concentration of communication load on the transmission module.

本発明においては、上記課題を解決するために、情報処理装置で処理される情報(以下、「所定送信情報」という。)を、所定の伝送経路に沿って伝送する伝送モジュールにおいて、直下流に位置する送信対象モジュールへの送信不良が生じた場合に、接続先を送信対象モジュールから、送信不良が発生する前に使用されていた所定の伝送経路に属する他
の伝送モジュールに変更する構成を採用した。これにより、送信不良の発生後においても、伝送経路自体は送信前の伝送経路と実質的に同一の経路を利用することになるため、自己伝送モジュールの接続先を変更しても特定の伝送モジュールに通信負荷が集中することを抑制することが可能となる。なお、本願において、「自己伝送モジュール」は、ネットワークに含まれる伝送モジュールを特定するために使用される表現である。すなわち、ネットワークに属する一の伝送モジュールを基準として、自身の伝送モジュールを特定する場合には「自己伝送モジュール」と表現する。また、自己伝送モジュールから所定送信情報を送信するように接続されている伝送モジュール、換言すると、自己伝送モジュールを基準としてネットワークでの情報の流れにおいて、直下流側に位置する伝送モジュールを「送信対象モジュール」とする。したがって、「自己伝送モジュール」と、「送信対象モジュール」等の表現は伝送モジュール同士の相対関係に基づくものであり、基準となる伝送モジュールが違えば、当然に自己伝送モジュールや送信対象モジュールとして特定される伝送モジュールも違うこととなる。また、「接続予定モジュール」についても、送信対象モジュールと情報処理装置との間に位置する伝送モジュールと定義されるから、「接続予定モジュール」の表現も、同じように伝送モジュール同士の相対関係に基づくものである。本願において、「接続」は、伝送モジュール間で情報送信を行い得るように、両者の間に伝送経路が確立した状態を指す用語である。したがって、上記接続予定モジュールは、今時点では自己伝送モジュールとの間で情報送信のための伝送経路が確立していないモジュールであるが、後において自己伝送モジュールとの間で伝送経路の確立が予定される伝送モジュールを指す。
In the present invention, in order to solve the above-described problem, in a transmission module that transmits information processed by an information processing apparatus (hereinafter referred to as “predetermined transmission information”) along a predetermined transmission path, the information is directly downstream. Adopts a configuration that changes the connection destination from the transmission target module to another transmission module that belongs to the predetermined transmission path that was used before the transmission failure occurred when a transmission failure to the located transmission target module occurs did. As a result, even after a transmission failure occurs, the transmission path itself uses the substantially same path as the transmission path before transmission. Therefore, even if the connection destination of the self-transmission module is changed, a specific transmission module is used. It is possible to suppress the concentration of communication load on the network. In the present application, “self-transmission module” is an expression used to specify a transmission module included in a network. That is, when a transmission module belonging to a network is specified as a reference, the transmission module is expressed as “self transmission module”. In addition, a transmission module connected to transmit predetermined transmission information from the self-transmission module, in other words, a transmission module positioned immediately downstream in the information flow on the network with reference to the self-transmission module is referred to as “transmission target”. Module ". Therefore, expressions such as “self-transmission module” and “transmission target module” are based on the relative relationship between the transmission modules, and if the standard transmission module is different, it is naturally specified as the self-transmission module or transmission target module. The transmission module used is also different. In addition, since the “scheduled connection module” is also defined as a transmission module positioned between the transmission target module and the information processing apparatus, the expression “scheduled connection module” is also in a relative relationship between the transmission modules. Is based. In the present application, “connection” is a term indicating a state in which a transmission path is established between two modules so that information transmission can be performed between the transmission modules. Therefore, the connection scheduled module is a module for which a transmission path for information transmission has not been established with the self transmission module at this time, but a transmission path will be established with the self transmission module later. Refers to the transmission module to be used.

詳細には、本発明は、情報処理装置で処理されるべき所定送信情報を、該情報処理装置を含む所定の伝送経路に沿って伝送するモジュールである。そして、当該伝送モジュールは、前記所定送信情報を自己伝送モジュールから、前記所定の伝送経路において自己伝送モジュールの直下流に位置する送信対象モジュールに送信する送信手段と、前記所定送信情報が、前記送信対象モジュールによって受信された送信完了状態を確認する確認手段と、前記所定の伝送経路において自己伝送モジュールからの前記所定送信情報を中継するように配置されていたモジュールであって、前記送信対象モジュールと前記情報処理装置との間に介在する接続予定モジュールに対して、自己伝送モジュールから該所定送信情報を直接送信することが可能であるか否かについての判断処理を行う判断手段と、前記確認手段によって前記所定送信情報の前記送信完了状態が確認できない送信不良が生じた場合、前記判断手段により自己伝送モジュールから前記所定送信情報を前記接続予定モジュールに直接送信することが可能であると判断されれば、自己伝送モジュールからの接続先を前記送信対象モジュールから前記接続予定モジュールに変更する接続先変更手段と、を備える。   Specifically, the present invention is a module that transmits predetermined transmission information to be processed by an information processing apparatus along a predetermined transmission path including the information processing apparatus. The transmission module transmits the predetermined transmission information from the self-transmission module to a transmission target module located immediately downstream of the self-transmission module in the predetermined transmission path, and the predetermined transmission information includes the transmission Confirmation means for confirming the transmission completion state received by the target module, and a module arranged to relay the predetermined transmission information from the self-transmission module in the predetermined transmission path, A determination unit that performs a determination process as to whether or not the predetermined transmission information can be directly transmitted from a self-transmission module to a connection-scheduled module interposed between the information processing device and the confirmation unit; When a transmission failure occurs in which the transmission completion state of the predetermined transmission information cannot be confirmed, If the determination means determines that the predetermined transmission information can be directly transmitted from the self-transmission module to the connection scheduled module, the connection destination from the self-transmission module is changed from the transmission target module to the connection planned module. Connection destination changing means for changing.

本発明に係る伝送モジュールは、送信手段により、自己伝送モジュールから送信対象モジュールへの情報送信が行われる。この情報送信は、所定の伝送経路に沿って行われることで、自己伝送モジュールからの所定送信情報が最終的には情報処理装置へと伝送されることになる。なお、当該所定の伝送経路は、その起点と終点、および両点の間に位置する伝送モジュールによって形成されるものであるが、本願発明においては、当該所定の伝送経路は特定の経路に限定される意図はない。すなわち、当該所定の伝送経路は、予め決定されている伝送経路であってもよく、または、変化する伝送経路であってもよい。また、伝送モジュールによって伝送される所定送信情報は、所定の伝送経路に含まれる情報処理装置で処理されるべき情報であり、本発明においては、情報処理装置における所定送信情報の処理形態は特定の形態に限定されるものではない。   In the transmission module according to the present invention, information is transmitted from the self-transmission module to the transmission target module by the transmission means. This information transmission is performed along a predetermined transmission path, so that the predetermined transmission information from the self-transmission module is finally transmitted to the information processing apparatus. The predetermined transmission path is formed by the starting point and the end point, and a transmission module located between the two points. However, in the present invention, the predetermined transmission path is limited to a specific path. There is no intention. That is, the predetermined transmission path may be a predetermined transmission path or a changing transmission path. In addition, the predetermined transmission information transmitted by the transmission module is information to be processed by the information processing device included in the predetermined transmission path. In the present invention, the processing form of the predetermined transmission information in the information processing device is a specific type. The form is not limited.

ここで、本発明に係る伝送モジュールは、確認手段により、送信手段によって自己伝送モジュールから送信対象モジュールに送信された所定送信情報が、該送信対象モジュールに到達したことを示す送信完了状態を確認する。例えば、送信対象モジュールに対する送
信完了状態は、所定送信情報を受信した送信対象モジュールから自己伝送モジュールに対して送られる確認信号(アクナレッジ信号)を利用して確認することができる。そして、自己伝送モジュールが確認手段によって所定送信情報の送信完了状態が確認できない場合、送信手段により所定送信情報を送信したにもかかわらず情報送信の目的を達成していないことを意味するため、何らかの理由で送信不良が発生したことになる。
Here, in the transmission module according to the present invention, the confirmation means confirms the transmission completion state indicating that the predetermined transmission information transmitted from the self-transmission module to the transmission target module by the transmission means has reached the transmission target module. . For example, the transmission completion state for the transmission target module can be confirmed using a confirmation signal (acknowledge signal) sent from the transmission target module that has received the predetermined transmission information to the self-transmission module. If the self-transmission module cannot confirm the transmission completion state of the predetermined transmission information by the confirmation means, it means that the purpose of information transmission has not been achieved despite the transmission of the predetermined transmission information by the transmission means. A transmission failure occurred for the reason.

また、本発明に係る伝送モジュールは、判断手段により、所定の伝送経路において自己伝送モジュールからの所定送信情報の中継を行っていた接続予定モジュールに関し、現在の接続先とされている送信対象モジュールに代えて、自己伝送モジュールから接続予定モジュールに直接、所定送信情報を送信すべく接続することが可能であるか否かについての判断処理を行う。すなわち、当該判断処理は、自己伝送モジュールが、送信対象モジュールをスキップして、所定の伝送経路においてその先に位置する接続予定モジュールに接続できるか否かを判定する処理である。なお、接続予定モジュールは、所定の伝送経路において送信対象モジュールと情報処理装置との間に介在する伝送モジュールであればよく、例えば、送信対象モジュールの直下流の伝送モジュールでもよく、更に下流側に位置する伝送モジュールであってもよい。   The transmission module according to the present invention relates to a connection scheduled module that has relayed predetermined transmission information from the self-transmission module in a predetermined transmission path by a determination unit, to a transmission target module that is a current connection destination. Instead, a determination process is performed as to whether or not it is possible to directly connect the predetermined transmission information from the self-transmission module to the connection scheduled module. That is, the determination process is a process for determining whether or not the self-transmission module can skip the transmission target module and connect to a connection-scheduled module positioned ahead in a predetermined transmission path. The connection-scheduled module may be a transmission module that is interposed between the transmission target module and the information processing apparatus in a predetermined transmission path, and may be, for example, a transmission module immediately downstream of the transmission target module, and further on the downstream side. It may be a transmission module located.

そして、上記送信不良が発生した場合、所定送信情報の情報処理装置への伝送を継続させるために、接続先変更手段による処理が行われる。すなわち、自己伝送モジュールは、送信不良が発生した場合に、判断手段の判断処理によって自己伝送モジュールから接続予定モジュールに直接送信可能であると判断されれば、接続先変更手段により送信不良となっている送信対象モジュールとの接続を解消し、その接続先を接続予定モジュールへと変更する。これにより、その後の自己伝送モジュールからの所定送信情報の送信は、接続予定モジュールに対して行われることになる。このとき、接続予定モジュールは、送信不良の発生前においても、自己伝送モジュールからの所定送信情報を中継する立場であったことから、接続先変更手段によって自己伝送モジュールから直接、所定送信情報を受け取るようになったとしても、当該所定送信情報の中継処理という観点に立てば接続予定モジュールの通信負荷が大きく増加する可能性は低い。したがって、本願発明に係る伝送モジュールは、送信不良の解消にあたって特定の伝送モジュール、すなわち新たな接続先となった接続予定モジュールでの負荷集中を回避することができるものである。   When the transmission failure occurs, processing by the connection destination changing unit is performed in order to continue transmission of the predetermined transmission information to the information processing apparatus. That is, when a transmission failure occurs, the self-transmission module becomes a transmission failure by the connection destination changing unit if it is determined by the determination process of the determination unit that it can be transmitted directly from the self-transmission module to the connection scheduled module. The connection with the transmission target module is canceled, and the connection destination is changed to the connection planned module. Thereby, transmission of the predetermined transmission information from the subsequent self-transmission module is performed to the connection scheduled module. At this time, since the connection scheduled module was in a position to relay the predetermined transmission information from the self-transmission module even before the occurrence of the transmission failure, the connection destination changing unit directly receives the predetermined transmission information from the self-transmission module. Even in such a case, it is unlikely that the communication load of the connection-scheduled module will greatly increase from the viewpoint of relay processing of the predetermined transmission information. Therefore, the transmission module according to the present invention can avoid load concentration in a specific transmission module, that is, a connection-scheduled module that has become a new connection destination in eliminating a transmission failure.

なお、上述した判断手段による判断処理は、接続予定モジュールに対して自己伝送モジュールから該所定送信情報を直接送信することが可能であるか否かについて判断が可能である限りは、その処理実行時期は何時であっても構わない。好ましい形態の一つとしては、接続先変更手段による自己伝送モジュールの接続先の変更が行われる直前が挙げられるが、これは、それ以外の時期に当該判断処理が実行されることを妨げるものではない。   The determination process by the determination means described above is performed as long as it can be determined whether or not the predetermined transmission information can be directly transmitted from the own transmission module to the connection scheduled module. May be at any time. One preferred form is immediately before the connection destination of the self-transmission module is changed by the connection destination changing means, but this does not prevent the determination process from being executed at other times. Absent.

ここで、上記の伝送モジュールにおいて、前記送信対象モジュール及び前記接続予定モジュールから、前記判断手段による前記判断処理に使用される所定判断パラメータを収集する判断パラメータ収集手段を、更に備えてもよい。このように所定判断パラメータを収集し、それに基づいて判断処理を行うことで、より適切な判断を行うことが可能となる。なお、所定判断パラメータは、予め定められていたパラメータ又は自己伝送モジュールからの要求に従ったパラメータを、送信対象モジュール及び接続予定モジュールが自己伝送モジュールに対して送るようにしてもよい。この場合、各モジュールは、自己の判断で当該所定判断パラメータの送信時期を決定してもよく、又は、当該要求に応答する形で送信時期を決定してもよい。また、送信対象モジュールが自己伝送モジュールから何らかの情報を受信したとき、その受信を知らせるためのアクナレッジ信号とともに自己伝送モジュールに対して所定判断パラメータを送るようにしてもよい。   Here, the transmission module may further include determination parameter collection means for collecting predetermined determination parameters used for the determination processing by the determination means from the transmission target module and the connection scheduled module. By collecting the predetermined determination parameters in this way and performing determination processing based on the parameters, it is possible to make a more appropriate determination. The predetermined determination parameter may be a predetermined parameter or a parameter according to a request from the self-transmission module, and the transmission target module and the connection scheduled module may send the self-transmission module. In this case, each module may determine the transmission timing of the predetermined determination parameter by its own determination, or may determine the transmission timing in response to the request. When the transmission target module receives some information from the self-transmission module, a predetermined determination parameter may be sent to the self-transmission module together with an acknowledge signal for notifying the reception.

ここで、上記伝送モジュールにおける判断処理の実行時期について言及する。一例とし
ては、前記判断手段は、前記送信不良が生じる前に前記判断パラメータ収集手段によって収集された前記所定判断パラメータに基づいて、該送信不良の発生後に前記判断処理を行ってもよい。このようにすることで、より新鮮な情報に基づいて判断処理を行うことができるため、接続先変更手段が、判断結果に従った接続先の変更を行った結果、その自己伝送モジュールと接続予定モジュールとの間の情報送信が成功する可能性が高くなる。
Here, the execution timing of the determination process in the transmission module will be described. As an example, the determination unit may perform the determination process after the transmission failure occurs based on the predetermined determination parameter collected by the determination parameter collection unit before the transmission failure occurs. In this way, the determination process can be performed based on fresher information. As a result of the connection destination changing unit changing the connection destination according to the determination result, the connection with the self-transmission module is scheduled. The possibility of successful information transmission with the module increases.

また、別の例として、前記判断パラメータ収集手段により前記所定判断パラメータが収集される度に、又は、前記送信不良の発生にかかわらず該判断パラメータ収集手段により該所定判断パラメータが収集された後に、前記判断手段は該所定判断パラメータに基づいて前記判断処理を行ってもよい。このようにすることで、送信不良が発生したときには、既に判断処理により何らかの判断結果が出ていることになるので、直ちに接続予定モジュールへの接続先の変更を実行し得る。   As another example, every time the predetermined judgment parameter is collected by the judgment parameter collecting means, or after the predetermined judgment parameter is collected by the judgment parameter collecting means regardless of the occurrence of the transmission failure, The determination unit may perform the determination process based on the predetermined determination parameter. In this way, when a transmission failure occurs, a determination result has already been obtained by the determination process, so that the connection destination to the connection scheduled module can be immediately changed.

なお、上述までの伝送モジュールにおいて、接続予定モジュールが送信対象モジュールの直下流に位置する場合、前記判断パラメータ収集手段は、前記送信対象モジュールにおける、前記接続予定モジュールへの送信の際の送信電力情報と、該接続予定モジュールにおける、該送信対象モジュールからの受信の際の受信信号強度情報を、前記所定判断パラメータとして収集してもよい。この場合、前記判断手段は、前記送信対象モジュールにおける前記送信電力情報と、前記接続予定モジュールにおける前記受信信号強度情報に加えて、自己伝送モジュールにおける最大送信電力情報と、該接続予定モジュールにおける最低受信信号強度情報とを用いて、前記判断処理を行ってもよい。なお、最大送信電力情報とは、接続先を変更しようとする自己伝送モジュールにおいて、その送信領域を最大とし得るための送信電力値であり、自己伝送モジュールは自己の情報として知り得る立場にある。また、最低受信信号強度情報は、接続予定モジュールが外部から受信し得る最低限の受信信号の強度であり、仕様値又は設定値として、自己伝送モジュールも事前に知り得、又は接続予定モジュールからの通知により知り得る。このように自己伝送モジュール、送信対象モジュール、接続予定モジュールの各パラメータを利用することで、上記判断処理を実行し得る。   In the transmission module up to the above, when the connection scheduled module is located immediately downstream of the transmission target module, the determination parameter collection means transmits the transmission power information at the time of transmission to the connection planned module in the transmission target module. In addition, received signal strength information at the time of reception from the transmission target module in the connection scheduled module may be collected as the predetermined determination parameter. In this case, the determination means includes, in addition to the transmission power information in the transmission target module and the received signal strength information in the connection scheduled module, maximum transmission power information in the own transmission module, and a minimum reception in the connection scheduled module. The determination process may be performed using signal strength information. Note that the maximum transmission power information is a transmission power value for maximizing the transmission area in the self-transmission module attempting to change the connection destination, and the self-transmission module is in a position where it can be known as its own information. The minimum received signal strength information is the minimum received signal strength that the connection scheduled module can receive from the outside. As a specification value or setting value, the self-transmission module can also know in advance, or from the connection scheduled module You can know by notification. As described above, the determination process can be executed by using the parameters of the self-transmission module, the transmission target module, and the connection scheduled module.

また、前記判断パラメータ収集手段は、更に、前記送信対象モジュールにおける、自己伝送モジュールからの受信の際の受信信号強度情報を、前記所定判断パラメータとして収集し、前記判断手段は、更に、前記送信対象モジュールにおける前記受信信号強度情報を用いて、前記判断処理を行ってもよい。このように更なる所定判断パラメータを利用することで、より適切な判断処理を実行することができる。   Further, the determination parameter collection means further collects received signal strength information at the time of reception from the self-transmission module in the transmission target module as the predetermined determination parameter, and the determination means further includes the transmission target The determination process may be performed using the received signal strength information in the module. In this way, more appropriate determination processing can be executed by using further predetermined determination parameters.

ここで、上述までの伝送モジュールにおいて、前記送信手段は、前記所定送信情報を自己伝送モジュールから前記送信対象モジュールに送信するために設定された所定の送信パラメータに従って、自己伝送モジュールから該送信対象モジュールに該所定送信情報を送信してもよい。この場合、前記接続先変更手段は、前記判断手段により自己伝送モジュールから前記所定送信情報を前記接続予定モジュールに直接送信することが可能であると判断されれば、前記送信不良となった前記所定送信情報の送信に使用された前記所定の送信パラメータのうち、少なくとも自己伝送モジュールの接続先に関するノードパラメータを変更することで、該送信不良となった該所定送信情報を前記接続予定モジュールに対して送信する。   Here, in the transmission module up to the above, the transmission means transmits the predetermined transmission information from the self-transmission module to the transmission target module according to a predetermined transmission parameter set for transmitting the predetermined transmission information from the self-transmission module to the transmission target module. The predetermined transmission information may be transmitted. In this case, if it is determined by the determination means that the predetermined transmission information can be directly transmitted from the self-transmission module to the connection scheduled module, the connection destination changing means is configured to cause the transmission failure. Among the predetermined transmission parameters used for transmission of transmission information, by changing at least a node parameter related to the connection destination of the self-transmission module, the predetermined transmission information that has caused the transmission failure is transmitted to the connection scheduled module. Send.

このように構成される送信手段により、所定の送信パラメータに従った情報送信が行われることになる。すなわち、所定の伝送経路に属する伝送モジュールにおける、自己伝送モジュールから送信対象モジュールへの所定送信情報の送信は、その送信条件を決定する所定の送信パラメータに従う。この所定の送信パラメータは、所定送信情報の伝送を行う伝送モジュールのそれぞれが有するものであり、所定の伝送経路としては、各伝送モジュ
ールがそれぞれの所定の送信パラメータに従った所定送信情報の送信を行うことで、各伝送モジュールから所定送信情報が、目的地である情報処理装置へと収集されることになる。そして、自己伝送モジュールにおいて送信不良が生じた場合には、自己伝送モジュールは、接続先変更手段により、判断手段の判断結果に基づいて所定の送信パラメータのうちの一つであるノードパラメータを少なくとも自律的に変更することでその接続先が変更される。すなわち、このような接続先の変更形態は、外部との送受信において発生している送信不良に影響されずに当該送信不良の解消を可能とするものである。なお、接続先の変更においてノードパラメータ以外の送信パラメータもともに変更しても構わない。
Information transmission according to a predetermined transmission parameter is performed by the transmission means configured as described above. That is, transmission of the predetermined transmission information from the self-transmission module to the transmission target module in the transmission module belonging to the predetermined transmission path follows a predetermined transmission parameter that determines the transmission condition. Each of the transmission modules that transmit the predetermined transmission information has this predetermined transmission parameter. As the predetermined transmission path, each transmission module transmits the predetermined transmission information according to the predetermined transmission parameter. By doing so, the predetermined transmission information is collected from each transmission module to the information processing apparatus that is the destination. When a transmission failure occurs in the self-transmission module, the self-transmission module causes the connection destination changing unit to at least autonomously set a node parameter that is one of the predetermined transmission parameters based on the determination result of the determination unit. Change the connection destination to change the connection destination. That is, such a connection destination change mode enables the transmission failure to be resolved without being affected by the transmission failure occurring in transmission / reception with the outside. Note that transmission parameters other than node parameters may be changed in changing the connection destination.

ここで、上述までの伝送モジュールにおいて、自己伝送モジュールの周囲の、又は自己伝送モジュールの内部の環境パラメータを検出するセンサを、更に備えてもよく、その場合、前記送信手段は、検出された前記環境パラメータを前記所定送信情報として送信する。なお、当該構成は、当該伝送モジュールが、環境パラメータ以外の情報を所定送信情報として所定の伝送経路に沿って情報処理装置に伝送することを妨げるものではない。   Here, the transmission module up to the above may further include a sensor for detecting an environmental parameter around the self-transmission module or inside the self-transmission module. An environmental parameter is transmitted as the predetermined transmission information. Note that this configuration does not prevent the transmission module from transmitting information other than the environmental parameters as the predetermined transmission information to the information processing apparatus along a predetermined transmission path.

また、本願発明を、情報処理装置で処理されるべき所定送信情報を、該情報処理装置を含む所定の伝送経路に沿って複数の伝送モジュールを経て伝送するように構成されるネットワークシステムの側面から捉えることもできる。この場合、前記複数の伝送モジュールのうち少なくとも一つの伝送モジュールは、前記所定送信情報を自己伝送モジュールから、前記所定の伝送経路において自己伝送モジュールの直下流に位置する送信対象モジュールに送信する送信手段と、前記所定送信情報が、前記送信対象モジュールによって受信された送信完了状態を確認する確認手段と、前記所定の伝送経路において自己伝送モジュールからの前記所定送信情報を中継するように配置されていたモジュールであって、前記送信対象モジュールと前記情報処理装置との間に介在する接続予定モジュールに対して、自己伝送モジュールから該所定送信情報を直接送信することが可能であるか否かについての判断処理を行う判断手段と、前記確認手段によって前記所定送信情報の前記送信完了状態が確認できない送信不良が生じた場合、前記判断手段により自己伝送モジュールから前記所定送信情報を前記接続予定モジュールに直接送信することが可能であると判断されれば、自己伝送モジュールからの接続先を前記送信対象モジュールから前記接続予定モジュールに変更する接続先変更手段と、を有する。なお、当該情報伝送ネットワークシステムの発明には、上記伝送モジュールの発明に関し開示した技術思想を、技術的な齟齬が生じない限りで適用することが可能である。   Further, the present invention is an aspect of a network system configured to transmit predetermined transmission information to be processed by an information processing apparatus via a plurality of transmission modules along a predetermined transmission path including the information processing apparatus. It can also be captured. In this case, at least one transmission module of the plurality of transmission modules transmits the predetermined transmission information from the self-transmission module to a transmission target module located immediately downstream of the self-transmission module in the predetermined transmission path. And the predetermined transmission information is arranged so as to relay the predetermined transmission information from the self-transmission module in the predetermined transmission path, and confirmation means for confirming a transmission completion state received by the transmission target module Judgment as to whether or not the predetermined transmission information can be directly transmitted from a self-transmission module to a connection scheduled module interposed between the transmission target module and the information processing apparatus. The transmission of the predetermined transmission information by the determination means for performing processing and the confirmation means If a transmission failure that cannot be confirmed is detected, if the determination means determines that the predetermined transmission information can be directly transmitted from the self-transmission module to the connection-scheduled module, the connection from the self-transmission module Connection destination changing means for changing the destination from the transmission target module to the connection scheduled module. It should be noted that the technical idea disclosed regarding the invention of the transmission module can be applied to the invention of the information transmission network system as long as there is no technical flaw.

また、本願発明を、情報処理装置で処理されるべき所定送信情報の伝送を行う伝送モジュールを介して、該情報処理装置を含む所定の伝送経路に沿って該所定送信情報を伝送する情報伝送方法の側面からとらえてもよい。この場合、当該方法は、前記所定送信情報を自己伝送モジュールから、前記所定の伝送経路において自己伝送モジュールの直下流に位置する送信対象モジュールに送信する送信ステップと、前記所定送信情報が、前記送信対象モジュールによって受信された送信完了状態を確認する確認ステップと、前記所定の伝送経路において自己伝送モジュールからの前記所定送信情報を中継するように配置されていたモジュールであって、前記送信対象モジュールと前記情報処理装置との間に介在する接続予定モジュールに対して、自己伝送モジュールから該所定送信情報を直接送信することが可能であるか否かについての判断処理を行う判断ステップと、前記確認ステップで前記所定送信情報の前記送信完了状態が確認できない送信不良が生じた場合、前記判断ステップで自己伝送モジュールから前記所定送信情報を前記接続予定モジュールに直接送信することが可能であると判断されれば、自己伝送モジュールからの接続先を前記送信対象モジュールから前記接続予定モジュールに変更する接続先変更ステップと、を含む。なお、当該情報伝送方法の発明には、上記伝送モジュールの発明に関し開示した技術思想を、技術的な齟齬が生じない限りで適用することが可能である。   Also, the present invention provides an information transmission method for transmitting the predetermined transmission information along a predetermined transmission path including the information processing apparatus via a transmission module for transmitting the predetermined transmission information to be processed by the information processing apparatus. You may catch from the side. In this case, the method includes a transmission step of transmitting the predetermined transmission information from the self-transmission module to a transmission target module located immediately downstream of the self-transmission module in the predetermined transmission path, and the predetermined transmission information includes the transmission A confirmation step for confirming a transmission completion state received by the target module; and a module arranged to relay the predetermined transmission information from the self-transmission module in the predetermined transmission path, A determination step for determining whether or not the predetermined transmission information can be directly transmitted from a self-transmission module to a connection-scheduled module interposed with the information processing apparatus; and the confirmation step When a transmission failure occurs in which the transmission completion status of the predetermined transmission information cannot be confirmed If it is determined in the determining step that the predetermined transmission information can be directly transmitted from the self-transmission module to the connection scheduled module, the connection destination from the self-transmission module is changed from the transmission target module to the connection planned module. A connection destination changing step to be changed. It should be noted that the technical idea disclosed regarding the invention of the transmission module can be applied to the invention of the information transmission method as long as there is no technical flaw.

また、本発明を、情報処理装置で処理されるべき所定送信情報の伝送を行う伝送モジュールに、下記ステップからなる処理を実行させる情報伝送プログラムの側面から捉えることもできる。この場合、当該情報伝送プログラムは、前記所定送信情報を自己伝送モジュールから、前記所定の伝送経路において自己伝送モジュールの直下流に位置する送信対象モジュールに送信する送信ステップと、前記所定送信情報が、前記送信対象モジュールによって受信された送信完了状態を確認する確認ステップと、前記所定の伝送経路において自己伝送モジュールからの前記所定送信情報を中継するように配置されていたモジュールであって、前記送信対象モジュールと前記情報処理装置との間に介在する接続予定モジュールに対して、自己伝送モジュールから該所定送信情報を直接送信することが可能であるか否かについての判断処理を行う判断ステップと、前記確認ステップで前記所定送信情報の前記送信完了状態が確認できない送信不良が生じた場合、前記判断ステップで自己伝送モジュールから前記所定送信情報を前記接続予定モジュールに直接送信することが可能であると判断されれば、自己伝送モジュールからの接続先を前記送信対象モジュールから前記接続予定モジュールに変更する接続先変更ステップと、を実行させる。なお、当該情報伝送プログラムの発明には、上記伝送モジュールの発明に関し開示した技術思想を、技術的な齟齬が生じない限りで適用することが可能である。   The present invention can also be understood from the aspect of an information transmission program that causes a transmission module that transmits predetermined transmission information to be processed by an information processing apparatus to execute processing including the following steps. In this case, the information transmission program transmits the predetermined transmission information from the self-transmission module to a transmission target module located immediately downstream of the self-transmission module in the predetermined transmission path, and the predetermined transmission information includes: A confirmation step of confirming a transmission completion state received by the transmission target module; and a module arranged to relay the predetermined transmission information from a self-transmission module in the predetermined transmission path, the transmission target A determination step for determining whether or not the predetermined transmission information can be directly transmitted from a self-transmission module to a connection-scheduled module interposed between the module and the information processing apparatus; In the confirmation step, it is not possible to confirm the transmission completion state of the predetermined transmission information. If it is determined in the determination step that the predetermined transmission information can be directly transmitted from the self transmission module to the connection scheduled module, the connection destination from the self transmission module is determined from the transmission target module. A connection destination changing step of changing to the connection scheduled module. It should be noted that the technical idea disclosed regarding the invention of the transmission module can be applied to the invention of the information transmission program as long as there is no technical flaw.

情報伝送のためのネットワークに属する伝送モジュールにおいて、発生した通信障害を解消するために伝送経路の変更が行われるときに、特定の伝送モジュールに通信負荷が集中することを可及的に回避することを可能とする。   In a transmission module belonging to a network for information transmission, when a transmission path is changed in order to eliminate a communication failure that has occurred, the concentration of communication load on a specific transmission module should be avoided as much as possible. Is possible.

本発明に係るネットワークシステムの概略構成を示す図である。1 is a diagram showing a schematic configuration of a network system according to the present invention. 図1に示すネットワークシステムに含まれる伝送モジュールの機能ブロック図である。It is a functional block diagram of the transmission module contained in the network system shown in FIG. 図1に示すネットワークシステムに含まれるサーバの機能ブロック図である。It is a functional block diagram of the server contained in the network system shown in FIG. 伝送モジュールで実行される送信情報の伝送処理のフローチャートである。It is a flowchart of the transmission process of the transmission information performed with a transmission module. 図4に示す伝送処理において、伝送の対象となる送信情報のデータ構造を概略的に示す図である。FIG. 5 is a diagram schematically showing a data structure of transmission information to be transmitted in the transmission process shown in FIG. 4. 本発明に係る第2のネットワークシステムにおいて、伝送モジュール間で送信不良が発生した状態を概略的に示す図である。In the 2nd network system concerning the present invention, it is a figure showing roughly the state where transmission failure occurred between transmission modules. 図6Aに示す送信不良が発生した後に、送信不良に係る伝送モジュールの送信パラメータが変更され新たな伝送経路が形成された状態を概略的に示す図である。FIG. 6B is a diagram schematically illustrating a state where a transmission parameter of the transmission module related to the transmission failure is changed and a new transmission path is formed after the transmission failure illustrated in FIG. 6A occurs. 図1に示すネットワークシステムにおける伝送モジュール間で送信不良が発生した状態を概略的に示す図である。FIG. 2 is a diagram schematically showing a state in which a transmission failure has occurred between transmission modules in the network system shown in FIG. 1. 図4に示す伝送処理において、接続先を変更して送信不良を解消する接続先変更処理のフローチャートである。FIG. 5 is a flowchart of a connection destination change process for changing a connection destination and eliminating a transmission failure in the transmission process shown in FIG. 4. 図7に示す接続先変更処理に使用する判断パラメータを収集するために、所定の伝送経路に属するモジュール間で行われる情報授受のシーケンス図である。FIG. 8 is a sequence diagram of information exchange performed between modules belonging to a predetermined transmission path in order to collect determination parameters used in the connection destination change process shown in FIG. 7. 図7に示す送信不良が発生した後に、送信不良に係る伝送モジュールの送信パラメータが変更され新たな伝送経路が形成された状態を概略的に示す図である。FIG. 8 is a diagram schematically showing a state where a transmission parameter of a transmission module related to a transmission failure is changed and a new transmission path is formed after the transmission failure shown in FIG. 7 occurs.

図面を参照して本発明に係るネットワークシステム(以下、単に「ネットワーク」と称する場合もある)10、および当該ネットワークに含まれる伝送モジュール2について説明する。なお、以下の実施形態の構成は例示であり、本発明はこの実施の形態の構成に限定されるものではない。   A network system 10 (hereinafter also simply referred to as “network”) 10 according to the present invention and a transmission module 2 included in the network will be described with reference to the drawings. The configuration of the following embodiment is an exemplification, and the present invention is not limited to the configuration of this embodiment.

図1は、ネットワーク10の概略構成を示す図である。ネットワーク10には、様々な外部環境パラメータ(温度等)を計測するためのセンサが搭載された伝送モジュール又は該センサを搭載しない中継機能のみを有する伝送モジュールが属しており、計測された外部環境パラメータを情報処理装置1に収集するように各伝送モジュールが機能するようにネットワークが形成されている。図1に示すネットワーク10では、伝送モジュールのそれぞれと情報処理装置1との間に、二つの伝送経路L1、L2が形成されている。なお、複数の伝送モジュールを各々区別して表現する場合には、伝送モジュールの参照番号2に続けて、個体を識別するための文字(「A」、「B」等)を付すこととする。   FIG. 1 is a diagram showing a schematic configuration of the network 10. The network 10 includes a transmission module in which sensors for measuring various external environment parameters (such as temperature) are mounted or a transmission module having only a relay function in which the sensors are not mounted. The network is formed so that each transmission module functions so as to collect information in the information processing apparatus 1. In the network 10 illustrated in FIG. 1, two transmission paths L <b> 1 and L <b> 2 are formed between each of the transmission modules and the information processing apparatus 1. When a plurality of transmission modules are distinguished from each other, letters (“A”, “B”, etc.) for identifying the individual are attached after the reference number 2 of the transmission module.

具体的には、ネットワーク10には、3つの伝送モジュール2A、2B、2Cが含まれる伝送経路L1と、3つの伝送モジュール2D、2E、2Cが含まれる伝送経路L2が形成されている。なお、本願においては、伝送経路は、最上流の伝送モジュールから情報処理装置1に至る直列の情報送信のための経路とされる。したがって、図1に示すネットワーク10では、伝送経路L1と伝送経路L2は、伝送モジュール2Cと情報処理装置1との区間において重複することになる。そして、伝送経路L1には、上記センサが搭載された伝送モジュール2Aと、センサが搭載されず中継機能のみを有する伝送モジュール2B、2Cが含まれ、伝送経路L2には、上記センサが搭載された伝送モジュール2Dと、センサが搭載されず中継機能のみを有する伝送モジュール2E、2Cが含まれている。なお、図1に示すネットワーク10では、伝送モジュール間の通信は無線形式で行われ、各伝送経路における伝送モジュールの中継順序は、各伝送モジュールにおいて情報送信のために設定された送信パラメータに従い決定されている。なお、当該送信パラメータは、中継順序だけではなく、情報送信に関する様々な送信条件を決定する複数のパラメータを含むものであり、その詳細は後述する。なお、ネットワーク10では、伝送経路L1では伝送モジュール2A、2B、2Cの順に送信情報が伝送され、また、伝送経路L2では伝送モジュール2D、2E、2Cの順に送信情報が伝送され、最終的に伝送モジュール2Cから当該経路の目的地である情報処理装置1に伝送されることになっている。   Specifically, a transmission path L1 including three transmission modules 2A, 2B, and 2C and a transmission path L2 including three transmission modules 2D, 2E, and 2C are formed in the network 10. In the present application, the transmission path is a path for serial information transmission from the most upstream transmission module to the information processing apparatus 1. Accordingly, in the network 10 illustrated in FIG. 1, the transmission path L1 and the transmission path L2 overlap in the section between the transmission module 2C and the information processing apparatus 1. The transmission path L1 includes a transmission module 2A on which the sensor is mounted and transmission modules 2B and 2C that are not mounted on the sensor and have only a relay function. The transmission path L2 includes the sensor. A transmission module 2D and transmission modules 2E and 2C having only a relay function without a sensor are included. In the network 10 shown in FIG. 1, communication between transmission modules is performed in a wireless format, and the relay order of the transmission modules in each transmission path is determined according to transmission parameters set for information transmission in each transmission module. ing. Note that the transmission parameters include not only the relay order but also a plurality of parameters for determining various transmission conditions regarding information transmission, and details thereof will be described later. In the network 10, transmission information is transmitted in the order of the transmission modules 2A, 2B, and 2C on the transmission path L1, and transmission information is transmitted in the order of the transmission modules 2D, 2E, and 2C on the transmission path L2, and finally transmitted. It is to be transmitted from the module 2C to the information processing apparatus 1 that is the destination of the route.

ここで、情報処理装置1は、送受信装置1aおよびサーバ1bを有している。送受信装置1aは、各伝送経路において情報処理装置1に最も近くに位置する伝送モジュール2Cから伝送されてくる情報を受信し、また、各伝送経路に位置する伝送モジュールに所定の動作指令や通知を届けるために、伝送モジュール2Cに対して送信するための装置である。なお、送受信装置1aはサーバ1bと電気的に接続されている。そして、サーバ1bは、例えば、伝送モジュール2A、2Dに搭載されたセンサよって計測された情報を収集し、所定の情報処理を行う。   Here, the information processing apparatus 1 includes a transmission / reception apparatus 1a and a server 1b. The transmission / reception device 1a receives information transmitted from the transmission module 2C located closest to the information processing device 1 in each transmission path, and sends a predetermined operation command and notification to the transmission module located in each transmission path. It is a device for transmitting to the transmission module 2C for delivery. The transmission / reception device 1a is electrically connected to the server 1b. The server 1b collects information measured by sensors mounted on the transmission modules 2A and 2D, for example, and performs predetermined information processing.

なお、伝送モジュール2A、2Dに搭載されたセンサによる計測、およびその計測データの情報処理装置1への伝送は、継続的な情報収集を実現するために、各伝送モジュールで電源が投入されてから、所定の間隔で(例えば、一定の間隔で)繰り返し実行されるものである。また、センサが搭載された伝送モジュール2A等については、計測対象を計測するセンサ機能、計測した情報を記録したり処理したりする機能、伝送モジュール外部への無線機能、電源機能等が実装された小型のデバイスとして構成され、センサが搭載されていない伝送モジュール2B等については、伝送モジュール外部への無線機能、電源機能等が実装された小型のデバイスとして構成される。   The measurement by the sensors mounted on the transmission modules 2A and 2D and the transmission of the measurement data to the information processing apparatus 1 are performed after the power is turned on in each transmission module in order to realize continuous information collection. Are repeatedly executed at predetermined intervals (for example, at regular intervals). In addition, for the transmission module 2A and the like on which the sensor is mounted, a sensor function for measuring the measurement target, a function for recording and processing the measured information, a wireless function to the outside of the transmission module, a power supply function, and the like are implemented. The transmission module 2B or the like that is configured as a small device and is not mounted with a sensor is configured as a small device on which a wireless function to the outside of the transmission module, a power supply function, and the like are mounted.

このような伝送モジュール2A等に搭載されるセンサとしては、例えば、温度センサ、湿度センサ、加速度センサ、照度センサ、フローセンサ、圧力センサ、地温センサ、パーティクルセンサ等の物理系センサや、COセンサ、pHセンサ、ECセンサ、土壌水分センサ等の化学系センサがある。本実施の形態では、説明を簡便にするために、伝送モジュール2A等には、それぞれが配置された位置における外部温度を計測するための温度セ
ンサが搭載されているものとし、伝送モジュール2A等で計測された温度データはサーバ1bにおける所定の情報処理に供される。
Examples of sensors mounted on such a transmission module 2A include physical sensors such as a temperature sensor, a humidity sensor, an acceleration sensor, an illuminance sensor, a flow sensor, a pressure sensor, a ground temperature sensor, and a particle sensor, and a CO 2 sensor. There are chemical sensors such as pH sensors, EC sensors, and soil moisture sensors. In the present embodiment, in order to simplify the explanation, it is assumed that the transmission module 2A and the like are equipped with temperature sensors for measuring the external temperature at the positions where they are arranged. The measured temperature data is provided for predetermined information processing in the server 1b.

ここで、ネットワーク10においては、センサによる計測が行われると、その計測データが送信情報として複数の伝送モジュールによる中継処理を経て、最終的に情報処理装置1にまで届けられることになる。しかし、ネットワーク10においては無線を介して送信情報の伝送が行われているため、その伝送環境が好適でない場合(例えば、伝送経路外の他の無線装置から電波干渉を受けたり、伝送モジュール間に障害物が一時的に存在したりする等)には、伝送モジュール間の送信情報の送信完了状態が送信元から確認できない送信不良が発生し得る。この送信不良が継続すると、情報処理装置1への送信情報の収集が円滑に進まないため、速やかに送信不良を解消することが求められる。一般には、ネットワーク全体を管理する立場の中央機器(基地局等)がネットワークの通信状況を考慮して、伝送モジュール間の通信条件を調整する場合がある。しかし、伝送モジュール間において送信不良が発生しているため、このような中央機器による調整指示が末端に位置する伝送モジュールに到達しない恐れもあり、その場合には、速やかな送信不良の解消は困難と言わざるを得ない。   Here, in the network 10, when measurement by the sensor is performed, the measurement data is finally sent to the information processing apparatus 1 through relay processing by a plurality of transmission modules as transmission information. However, since transmission information is transmitted via radio in the network 10, the transmission environment is not suitable (for example, receiving radio wave interference from other radio devices outside the transmission path or between transmission modules). For example, when there is an obstacle temporarily, a transmission failure may occur in which the transmission completion state of the transmission information between the transmission modules cannot be confirmed from the transmission source. If this transmission failure continues, collection of transmission information to the information processing apparatus 1 does not proceed smoothly, and it is required to quickly eliminate the transmission failure. In general, a central device (such as a base station) that manages the entire network may adjust the communication conditions between the transmission modules in consideration of the communication status of the network. However, since a transmission failure has occurred between the transmission modules, there is a possibility that such adjustment instructions from the central device may not reach the transmission module located at the end, and in this case, it is difficult to quickly eliminate the transmission failure. I must say.

また、伝送モジュールにおいては、センサによって取得された計測データや上流側の伝送モジュールから受信した情報等を、その下流側に伝送するために一時的に記憶するメモリが搭載されている。そして、送信不良を解消する手段として伝送モジュール自体のリセット処理が行われる場合があるが、一般にリセット処理が行われると伝送モジュールが初期化されるため、メモリ内の情報が消失してしまったり、初期化に要する時間においては伝送モジュールが機能しない状態となったりするため、やはり情報処理措置1への情報収集が阻害されてしまう。   In addition, the transmission module is equipped with a memory that temporarily stores measurement data acquired by the sensor, information received from the upstream transmission module, and the like for transmission to the downstream side. And, there is a case where the reset process of the transmission module itself is performed as a means to eliminate the transmission failure, but generally the information in the memory is lost because the transmission module is initialized when the reset process is performed, During the time required for initialization, the transmission module may be in a non-functional state, so that information collection to the information processing measure 1 is also hindered.

そこで、本発明に係るネットワーク10においては、送信不良が発生した場合に、その送信不良を把握した伝送モジュール自身が自律的に当該状態の解消を図り、送信できなかった情報を再送する処理(以下、「伝送処理」という)を行うこととする。これにより、情報処理装置1への送信情報の収集を円滑に且つ速やかに実現することが可能となる。   Therefore, in the network 10 according to the present invention, when a transmission failure occurs, the transmission module that grasps the transmission failure autonomously resolves the state and retransmits information that could not be transmitted (hereinafter referred to as “transmission failure”). , “Transmission processing”). Thereby, collection of transmission information to the information processing apparatus 1 can be realized smoothly and promptly.

また、伝送処理において、伝送モジュール自身が送信不良の解消を図るために、自律的にその接続先を変更し伝送経路を変えようとする場合、その変更先の伝送モジュールによってはネットワーク10での情報の流れが変更されることで当該伝送モジュールでの通信負荷が増加する可能性がある。そこで、伝送モジュールは、上記の自律的な伝送処理を行うに当たり、伝送経路の変更によって特定の伝送モジュールに通信負荷が集中しないようにする処理(以下、「接続先変更処理」という)も行うこととする。   In addition, in transmission processing, when the transmission module itself attempts to autonomously change its connection destination and change its transmission path in order to resolve a transmission failure, depending on the transmission module of the change destination, information on the network 10 There is a possibility that the communication load in the transmission module will increase due to the change of the flow of. Therefore, when performing the above autonomous transmission processing, the transmission module also performs processing (hereinafter referred to as “connection destination change processing”) to prevent communication load from being concentrated on a specific transmission module by changing the transmission path. And

以上を踏まえ、ネットワーク10における伝送モジュール2および情報処理装置1による具体的な処理について説明する。伝送モジュール2は、内部に演算装置、メモリ等を有し、当該演算装置により所定の制御プログラムが実行されることで、様々な機能が発揮される。そこで、図2に、ネットワーク10に属する伝送モジュール2が発揮する様々な機能の一部をイメージ化した機能ブロックを示す。なお、図2には、センサが搭載されている伝送モジュール2Aについての機能ブロックを代表的に図示しているが、センサを搭載する伝送モジュール2Dについても同様の機能部を有する。また、センサが搭載されている伝送モジュール2A、2Dについては、搭載される温度センサによって計測された温度データをメモリに記憶し、後述する通信部21によってその計測データを下流側の伝送モジュールに送信するように構成される。   Based on the above, specific processing by the transmission module 2 and the information processing apparatus 1 in the network 10 will be described. The transmission module 2 includes an arithmetic device, a memory, and the like inside, and various functions are exhibited when a predetermined control program is executed by the arithmetic device. Therefore, FIG. 2 shows functional blocks in which some of the various functions exhibited by the transmission module 2 belonging to the network 10 are imaged. Note that FIG. 2 representatively shows functional blocks for the transmission module 2A on which the sensor is mounted, but the transmission module 2D on which the sensor is mounted also has a similar functional unit. In addition, for the transmission modules 2A and 2D in which the sensors are mounted, the temperature data measured by the mounted temperature sensor is stored in the memory, and the measured data is transmitted to the downstream transmission module by the communication unit 21 described later. Configured to do.

ここで、伝送モジュール2Aは、機能部として、制御部20、通信部21、送信パラメータ記憶部22、計測部24、情報記憶部25を有している。なお、伝送モジュール2A
の駆動電力は、モジュールが内蔵するバッテリから電力供給を受けてもよく、また、モジュールの外部のAC電源等から電力供給を受けてもよい。以下に、伝送モジュール2Aが有する各機能部について説明する。
Here, the transmission module 2A includes a control unit 20, a communication unit 21, a transmission parameter storage unit 22, a measurement unit 24, and an information storage unit 25 as functional units. Transmission module 2A
The drive power may be supplied from a battery built in the module, or may be supplied from an AC power supply or the like outside the module. Below, each function part which 2A of transmission modules have is demonstrated.

制御部20は、伝送モジュール2における様々な制御を司る機能部であるが、特に、送信制御部201、送信完了確認部202、判断部203、送信パラメータ変更部204、判断パラメータ収集部205、リセット部206を有している。この送信制御部201は、後述する送信パラメータ記憶部22が保持している送信パラメータに従って、後述する通信部21を通して自己伝送モジュールから送信対象モジュール(図1に示す状態においては伝送モジュール2B)への送信情報の送信を行う機能部である。この送信パラメータは、自己伝送モジュールにおける情報送信の条件を決定する複数のパラメータを含むものであり、その詳細については後述する。なお、送信制御部201そのものは、上記の通り、送信パラメータに従った情報送信を行うものであり本発明に係る送信手段として機能するものである。   The control unit 20 is a functional unit that performs various controls in the transmission module 2. In particular, the transmission control unit 201, the transmission completion confirmation unit 202, the determination unit 203, the transmission parameter change unit 204, the determination parameter collection unit 205, and reset Part 206 is provided. The transmission control unit 201 transmits from the self-transmission module to the transmission target module (in the state shown in FIG. 1, the transmission module 2B) through the communication unit 21 described later according to the transmission parameter held in the transmission parameter storage unit 22 described later. It is a functional unit that transmits transmission information. This transmission parameter includes a plurality of parameters for determining information transmission conditions in the self-transmission module, and details thereof will be described later. Note that, as described above, the transmission control unit 201 itself performs information transmission according to transmission parameters, and functions as a transmission unit according to the present invention.

また、送信完了確認部202は、送信制御部201によって送信情報の送信が実行されたとき、その送信された送信情報が直接の接続先である送信対象モジュールに到達したことを確認する機能部であり、本発明に係る確認手段に相当する。例えば、送信対象モジュールである伝送モジュール2Bが自己伝送モジュール2Aからの送信情報を受信した場合、その受信に対応したアクナレッジ信号(受信通知)を自己伝送モジュール2Aに送信するように設計されている場合には、送信完了確認部202は、そのアクナレッジ信号の受信の有無を確認することで、接続先への送信完了を確認することになる。送信完了確認部202によって接続先への送信完了状態が確認できない場合は、自己伝送モジュール2Aにおいて送信不良が生じたことを意味する。   The transmission completion confirmation unit 202 is a functional unit that confirms that when the transmission control unit 201 performs transmission of transmission information, the transmitted transmission information has reached a transmission target module that is a direct connection destination. Yes, corresponding to the confirmation means according to the present invention. For example, when the transmission module 2B, which is a transmission target module, receives transmission information from the self-transmission module 2A, it is designed to transmit an acknowledge signal (reception notification) corresponding to the reception to the self-transmission module 2A. In this case, the transmission completion confirmation unit 202 confirms the completion of transmission to the connection destination by confirming whether or not the acknowledge signal has been received. If the transmission completion confirmation unit 202 cannot confirm the transmission completion state to the connection destination, it means that a transmission failure has occurred in the self-transmission module 2A.

また、送信パラメータ変更部204は、送信完了確認部202による送信完了の確認結果に基づいて、後述する送信パラメータ記憶部22に保持されている送信パラメータの一部又は全部を変更する機能部である。なお、このとき変更される送信パラメータが、自己伝送モジュールの接続先を設定するノードパラメータである場合には、判断部203による判断処理が実行される。この判断部203は、判断パラメータ収集部205が、通信部21を介して自己伝送モジュール2Aの下流側に位置する伝送モジュールから収集してきた判断パラメータに基づいて、本願発明における、自己伝送モジュールの接続先の変更処理(上記接続先変更処理)を行い得るか否かについての判断処理を行う機能部である。なお、判断パラメータ収集部205が収集した判断パラメータは、後述する情報記憶部25によってメモリ内に記憶される。また、リセット部206は、自己伝送モジュール2Aの制御系に関する初期化を実行する機能部である。リセット部206による初期化により、送信パラメータ記憶部22が記憶する送信パラメータの初期化や、後述する情報記憶部25が記憶する様々なデータの消失が生じることになる。   The transmission parameter changing unit 204 is a functional unit that changes some or all of the transmission parameters held in the transmission parameter storage unit 22 described later based on the transmission completion confirmation result by the transmission completion confirmation unit 202. . If the transmission parameter to be changed at this time is a node parameter for setting the connection destination of the self-transmission module, a determination process by the determination unit 203 is executed. This determination unit 203 is connected to the self-transmission module in the present invention based on the determination parameters collected by the determination parameter collection unit 205 from the transmission module located downstream of the self-transmission module 2A via the communication unit 21. This is a functional unit that performs a determination process as to whether or not the previous change process (the connection destination change process) can be performed. The determination parameters collected by the determination parameter collection unit 205 are stored in the memory by the information storage unit 25 described later. The reset unit 206 is a functional unit that executes initialization related to the control system of the self-transmission module 2A. The initialization by the reset unit 206 causes initialization of transmission parameters stored in the transmission parameter storage unit 22 and loss of various data stored in the information storage unit 25 described later.

次に、通信部21は、自己伝送モジュールに搭載されたアンテナを通し外部との情報の送受信を司るものであり、具体的には、送信制御部201からの指示に従った送信対象モジュールへの送信、及び、存在する場合には上流側の伝送モジュールから送信されてきた送信情報の受信を行う。なお、自己伝送モジュールが備えるアンテナは、ダイバシティ機能を有しており、通信部21は必要に応じてダイバシティ機能のON、OFFを調整し、自己伝送モジュールの受信能力の調整を図る。また、通信部21は、上流側の伝送モジュールから送信情報を受信した場合には、当該上流側の伝送モジュールに対して当該送信情報を受信したことを示すアクナレッジ信号を通知するように形成されている。   Next, the communication unit 21 controls transmission / reception of information to / from the outside through an antenna mounted on the self-transmission module. Specifically, the communication unit 21 transmits information to the transmission target module according to an instruction from the transmission control unit 201. Transmission and reception of transmission information transmitted from the upstream transmission module if present exists. The antenna included in the self-transmission module has a diversity function, and the communication unit 21 adjusts ON / OFF of the diversity function as necessary to adjust the reception capability of the self-transmission module. The communication unit 21 is configured to notify the upstream transmission module of an acknowledgment signal indicating that the transmission information has been received when the transmission information is received from the upstream transmission module. ing.

次に、送信パラメータ記憶部22は、送信制御部201によって送信情報の送信が行われるときの送信条件を決定する送信パラメータを、自己伝送モジュールのメモリ内に保持
する機能部である。具体的な送信パラメータの態様は多岐にわたるため、以下に5つの送信パラメータを代表的に例示する。
(1)アンテナダイバシティの有効化に関するパラメータ
当該パラメータは、伝送モジュールが有するアンテナダイバシティの機能のON、OFFを設定するためのパラメータであり、本出願では、以降「ダイバシティパラメータ」と称する。アンテナダイバシティの機能がONにされると、自己伝送モジュールの受信能力が向上する一方で、受信に要する消費電力が若干増加する。
(2)送信電力に関するパラメータ
当該パラメータは、伝送モジュールからの送信情報の送信強度に関するパラメータであり、本出願では、以降「送信電力パラメータ」と称する。送信電力が増加されると、伝送モジュールから送信可能な領域が拡大され、また、伝送モジュールの近くに位置する障害物等の影響を受けにくくなるが、一方で送信に要する消費電力が増加することになる。
(3)チャネルに関するパラメータ
当該パラメータは、伝送モジュール間において情報伝送する際に使用される伝送用チャネルに関するパラメータであり、本出願では、以降「チャネルパラメータ」と称する。一般に、同一のネットワークに属する伝送モジュール同士は、共通のチャネルパラメータが設定される。
(4)ネットワークに関するパラメータ
当該パラメータは、図1に示すように情報処理装置1を最上位として自己伝送モジュールが送信情報の伝送を行うネットワークを識別するためのパラメータであり、本出願では、以降「ネットワークパラメータ」と称する。図1に示すネットワーク10では、伝送モジュール2におけるネットワークパラメータは、全て同一の、ネットワーク10を識別するための値が設定されることになる。
(5)接続先となる伝送モジュールのノードアドレスに関するパラメータ
当該パラメータは、同一のネットワークに属する伝送モジュールであって自己伝送モジュールからの接続先となる送信対象モジュールを識別するためのパラメータであり、本出願では、以降「ノードパラメータ」と称する。図1に示すネットワーク10では、伝送モジュール2Aにおいて、伝送モジュール2Bのノードアドレスが、ノードパラメータとして設定されている。
なお、送信パラメータ記憶部22によって記憶されている上記(1)〜(5)の送信パラメータは、送信パラメータ変更部204の指示により、その一部又は全部が変更可能とされる。また、リセット部206によるリセット処理が行われると、送信パラメータ記憶部22によって記憶されている上記(1)〜(5)の送信パラメータは初期化され、初期の送信パラメータに変更されることになる。
Next, the transmission parameter storage unit 22 is a functional unit that holds transmission parameters for determining transmission conditions when transmission information is transmitted by the transmission control unit 201 in the memory of the self-transmission module. Since the modes of specific transmission parameters are diverse, the following are representative examples of five transmission parameters.
(1) Parameter for Validating Antenna Diversity This parameter is a parameter for setting ON / OFF of the antenna diversity function of the transmission module, and is hereinafter referred to as “diversity parameter” in the present application. When the antenna diversity function is turned on, the reception capability of the self-transmission module is improved, while the power consumption required for reception slightly increases.
(2) Parameter related to transmission power This parameter is a parameter related to the transmission strength of transmission information from the transmission module, and is hereinafter referred to as “transmission power parameter” in the present application. When the transmission power is increased, the area that can be transmitted from the transmission module is expanded, and it is less susceptible to obstacles located near the transmission module, but the power consumption required for transmission increases. become.
(3) Channel-related parameter This parameter is a parameter related to a transmission channel used when information is transmitted between the transmission modules, and is hereinafter referred to as “channel parameter” in the present application. Generally, common channel parameters are set between transmission modules belonging to the same network.
(4) Network-related parameter This parameter is a parameter for identifying a network in which the self-transmission module transmits transmission information with the information processing apparatus 1 as the highest level as shown in FIG. This is referred to as “network parameter”. In the network 10 shown in FIG. 1, the network parameters in the transmission module 2 are all set to the same value for identifying the network 10.
(5) Parameter relating to node address of transmission module serving as connection destination This parameter is a parameter for identifying a transmission target module that is a transmission module belonging to the same network and that is a connection destination from the own transmission module. In the application, this is hereinafter referred to as “node parameter”. In the network 10 shown in FIG. 1, in the transmission module 2A, the node address of the transmission module 2B is set as a node parameter.
Note that some or all of the transmission parameters (1) to (5) stored in the transmission parameter storage unit 22 can be changed by an instruction from the transmission parameter changing unit 204. When the reset process is performed by the reset unit 206, the transmission parameters (1) to (5) stored in the transmission parameter storage unit 22 are initialized and changed to initial transmission parameters. .

次に、計測部24は、自己伝送モジュール2Aに搭載されているセンサ(例えば、温度センサ)を通して外部環境パラメータ(例えば、外部温度)を計測する機能部である。そして、その計測部24による計測データは、情報記憶部25によって自己伝送モジュール2Aのメモリに記憶される。また、情報記憶部25は、自己伝送モジュール2Aが中継器として機能する場合に、通信部21を介して上流側の伝送モジュールから受信した送信情報も記憶する。そして、情報記憶部25によって記憶されているこれらの情報は、送信制御部201からの指示に従って通信部21を介して送信対象モジュールに送信されることになる。更に、情報記憶部25は、判断パラメータ収集部205によって収集され、後述する接続先変更処理において使用される所定の判断パラメータに相当する情報、例えば、送信対象モジュールの送信電力情報や接続予定モジュールのRSSI情報等を記憶する機能部でもある。なお、リセット部206によるリセット処理が行われると、情報記憶部25によって記憶されている情報は消失される。   Next, the measurement unit 24 is a functional unit that measures an external environment parameter (for example, an external temperature) through a sensor (for example, a temperature sensor) mounted on the self-transmission module 2A. And the measurement data by the measurement part 24 are memorize | stored in the memory of the self-transmission module 2A by the information storage part 25. FIG. The information storage unit 25 also stores transmission information received from the upstream transmission module via the communication unit 21 when the self-transmission module 2A functions as a repeater. These pieces of information stored in the information storage unit 25 are transmitted to the transmission target module via the communication unit 21 in accordance with instructions from the transmission control unit 201. Further, the information storage unit 25 collects information by the determination parameter collection unit 205 and corresponds to a predetermined determination parameter used in the connection destination changing process described later, for example, transmission power information of a transmission target module and a connection scheduled module. It is also a functional unit that stores RSSI information and the like. Note that when the reset process by the reset unit 206 is performed, the information stored in the information storage unit 25 is lost.

次に、サーバ1bに形成される機能部について図3に基づいて説明する。サーバ1bは、通信部11、データ記録部12、情報処理部13、受信通知部14を有している。通信
部11は、送受信装置1aを介して伝送経路の最も情報処理装置1側に位置する伝送モジュールから、送信情報を収集するための通信を行う機能部である。具体的には、通信部11は、伝送モジュール2Cと、情報処理装置1との間の送受信を司る。データ記録部12は、通信部11を介して伝送モジュール2から伝送された送信情報に含まれる情報のうち計測データである温度データを記録する機能部である。そして、ここで記録された計測データは、情報処理部13に渡され、当該情報処理部13によって、収集された計測データを用いた所定の情報処理(例えば、温度データに基づいた、伝送モジュールが設置された空間の空調制御等)が行われる。次に、受信通知部14は、通信部11を介して受信した伝送モジュールからの送信情報を、サーバ1bが受信したことを、当該送信情報の送信元である伝送モジュールに対して通知する機能部である。
Next, functional units formed in the server 1b will be described with reference to FIG. The server 1b has a communication unit 11, a data recording unit 12, an information processing unit 13, and a reception notification unit 14. The communication unit 11 is a functional unit that performs communication for collecting transmission information from a transmission module that is located closest to the information processing device 1 in the transmission path via the transmission / reception device 1a. Specifically, the communication unit 11 controls transmission / reception between the transmission module 2 </ b> C and the information processing apparatus 1. The data recording unit 12 is a functional unit that records temperature data, which is measurement data, of information included in transmission information transmitted from the transmission module 2 via the communication unit 11. Then, the measurement data recorded here is transferred to the information processing unit 13, and the information processing unit 13 performs predetermined information processing using the collected measurement data (for example, a transmission module based on temperature data). Air conditioning control of the installed space is performed. Next, the reception notifying unit 14 notifies the transmission module that is the transmission source of the transmission information that the server 1b has received the transmission information from the transmission module received via the communication unit 11. It is.

次に、図4に基づいて、伝送モジュールにおける伝送処理について説明する。なお、当該伝送処理は、図1に示す伝送モジュール2Aで所定の制御プログラムが実行されることで、実現される処理として、以下にその具体的な内容を例示する。しかし、他の伝送モジュールについても、実質的に同じ伝送処理を適用することができる。   Next, transmission processing in the transmission module will be described based on FIG. In addition, the transmission process 2A shown in FIG. 1 executes the predetermined control program, and specific examples of the transmission process will be described below. However, substantially the same transmission processing can be applied to other transmission modules.

また、図5に、伝送処理において伝送モジュール2Aが伝送する送信情報のデータ構造を示す。図5の上段(a)は、送信情報全体のデータ構造を概略的に示しており、当該送信情報は、概略的に8つの領域に区分される。本実施例では、8つの領域のうち、特に重要な5つの領域a1〜a5について説明する。領域a1(Start Symbol)は、送信情報の始まりを示す特定のバイト列である。領域a2(Destination Address)は、送信情報が最終
的に伝送される宛先(本実施例の場合は、情報処理装置1)のアドレスを表す。領域a3(Source Address)は、送信情報の送信元(本実施例の場合は、伝送モジュール2A)のアドレスを表す。領域a4(Data)は、送信元である伝送モジュール2Aに搭載された温度センサによる計測温度データを格納する。領域a5(Terminator Symbol for Data)は、送信情報の終わりを示す特定のバイト列である。
FIG. 5 shows a data structure of transmission information transmitted by the transmission module 2A in the transmission process. The upper part (a) of FIG. 5 schematically shows the data structure of the entire transmission information, and the transmission information is roughly divided into eight areas. In the present embodiment, five particularly important regions a1 to a5 among the eight regions will be described. Area a1 (Start Symbol) is a specific byte string indicating the start of transmission information. An area a2 (Destination Address) represents an address of a destination (information processing apparatus 1 in this embodiment) to which transmission information is finally transmitted. An area a3 (Source Address) represents an address of a transmission information transmission source (in this embodiment, the transmission module 2A). The area a4 (Data) stores temperature data measured by a temperature sensor mounted on the transmission module 2A that is a transmission source. An area a5 (Terminator Symbol for Data) is a specific byte string indicating the end of transmission information.

次に、図5の下段(b)に、領域a4に格納された計測温度データの一例を示す。本実施例では、伝送モジュール2Aにおいて、前回の送信情報の伝送後に計測された2回分の温度データが、領域a4に格納されている。具体的には、データ取得時間の古い順に、時期t10に取得された温度データT1、時期t20に取得された温度データT2が、領域a4に格納されている。これは、伝送モジュール2Aでは、温度センサでデータ計測を行うごとにその計測データを伝送モジュール2Bに伝送するのではなく、複数回の計測データをまとめて伝送するように設計されていることによる。もちろん、伝送される計測データの形態は、図5(b)に示す形態に限られるものではない。   Next, an example of measured temperature data stored in the area a4 is shown in the lower part (b) of FIG. In this embodiment, in the transmission module 2A, the temperature data for two times measured after the transmission of the previous transmission information is stored in the area a4. Specifically, the temperature data T1 acquired at the time t10 and the temperature data T2 acquired at the time t20 are stored in the area a4 in the order of the data acquisition time. This is because the transmission module 2A is designed not to transmit the measurement data to the transmission module 2B every time data measurement is performed by the temperature sensor, but to transmit the measurement data of a plurality of times collectively. Of course, the form of the measurement data to be transmitted is not limited to the form shown in FIG.

<伝送処理>
ここで、図4に戻り、伝送モジュール2Aで実行される伝送処理の説明を行う。まず、S101では、送信制御部201により、自己伝送モジュール2Aからその直下流に位置する送信対象モジュールに相当する伝送モジュール2Bに対して、送信情報を送信すべき送信時期となっているか否かが判定される。そして、S101で肯定判定されると処理はS102へ進み、否定判定されると再びS101の処理が行われる。
<Transmission processing>
Here, returning to FIG. 4, the transmission process executed by the transmission module 2A will be described. First, in S101, the transmission control unit 201 determines whether or not it is a transmission time when transmission information should be transmitted from the self-transmission module 2A to the transmission module 2B corresponding to the transmission target module located immediately downstream thereof. Determined. If an affirmative determination is made in S101, the process proceeds to S102, and if a negative determination is made, the process of S101 is performed again.

次に、S102では、送信制御部201によって、情報記憶部25に記憶されている計測温度データを、伝送モジュール2Bに送信すべき送信情報の領域a4に格納した状態の送信情報が形成され、通信部21を介して伝送モジュール2Bへの送信が実行される。なお、当該送信は、送信パラメータ記憶部22が記憶する送信パラメータ、すなわち、ダイバシティパラメータ、送信電力パラメータ、ノードパラメータ、ネットワークパラメータ、チャネルパラメータを含む送信パラメータに従って実行される。S102の処理が終了すると、S103へ進む。   Next, in S102, the transmission control unit 201 forms transmission information in a state where the measured temperature data stored in the information storage unit 25 is stored in the transmission information area a4 to be transmitted to the transmission module 2B. Transmission to the transmission module 2B is executed via the unit 21. The transmission is executed according to transmission parameters stored in the transmission parameter storage unit 22, that is, transmission parameters including a diversity parameter, a transmission power parameter, a node parameter, a network parameter, and a channel parameter. When the process of S102 ends, the process proceeds to S103.

S103では、送信完了確認部202によって、伝送モジュール2Bへの送信情報の送信完了状態が確認できない送信不良が発生したか否かが判定される。具体的には、送信情報を送信し、それを受信した伝送モジュール2Bで発信されるアクナレッジ信号が、送信から所定時間内に送信完了確認部202によって確認できない場合には、送信不良が発生したものと判断される。S103で肯定判定されるとS104へ進み、否定判定されると本伝送処理を終了する。   In S103, the transmission completion confirmation unit 202 determines whether or not a transmission failure has occurred in which the transmission completion state of the transmission information to the transmission module 2B cannot be confirmed. Specifically, a transmission failure occurred when an acknowledge signal transmitted by the transmission module 2B that transmitted the transmission information and received it cannot be confirmed by the transmission completion confirmation unit 202 within a predetermined time from the transmission. Judged to be. If an affirmative determination is made in S103, the process proceeds to S104, and if a negative determination is made, this transmission process is terminated.

次にS104では、伝送処理における送信情報の再送回数、すなわち後述するS106で実行される送信情報の再送回数が所定回数に到達したか否かが判定される。そして、S104で肯定判定されるとS107へ進み、リセット部206によるリセット処理を実行し、本伝送処理を終了する。また、S104で否定判定されると、処理はS105へ進む。S105では、発生している送信不良を解消するために、送信パラメータ変更部204によって、送信パラメータ記憶部22が記憶している送信パラメータ(ダイバシティパラメータ、送信電力パラメータ、チャネルパラメータ、ネットワークパラメータ、ノードパラメータ等)の一部が変更され、その後、S106で、変更された送信パラメータに従って、送信制御部201により送信不良となった送信情報、すなわち伝送モジュール2Bへの送信完了を確認することができなかった送信情報の再送が実行される。そして、S106の処理が終了すると、再びS103の処理により、再送された送信情報に関する送信不良の発生が判断されることになる。なお、これらのS103〜S106の処理が行われる間、自己伝送モジュール2Aにおいてはリセット部206によるリセット処理は行われないため、情報記憶部25が記憶する情報は消失されない。   Next, in S104, it is determined whether or not the number of retransmissions of transmission information in the transmission process, that is, the number of retransmissions of transmission information executed in S106 described later has reached a predetermined number. If an affirmative determination is made in S104, the process proceeds to S107, the reset process by the reset unit 206 is executed, and the transmission process is terminated. If a negative determination is made in S104, the process proceeds to S105. In S105, the transmission parameter change unit 204 stores transmission parameters (diversity parameter, transmission power parameter, channel parameter, network parameter, node parameter) stored in the transmission parameter storage unit 22 by the transmission parameter change unit 204 in order to eliminate the transmission failure that has occurred. Etc.), and after that, in S106, according to the changed transmission parameter, the transmission control unit 201 could not confirm transmission information that resulted in transmission failure, that is, completion of transmission to the transmission module 2B. Transmission information is retransmitted. When the process of S106 is completed, the occurrence of a transmission failure related to the retransmitted transmission information is determined again by the process of S103. Note that while the processes of S103 to S106 are performed, the reset process by the reset unit 206 is not performed in the self-transmission module 2A, so the information stored in the information storage unit 25 is not lost.

ここで、S105における送信パラメータの変更について詳細に説明する。本実施例においては、変更の対象となる送信パラメータとして、上述のダイバシティパラメータ、送信電力パラメータ、チャネルパラメータ、ネットワークパラメータ、ノードパラメータの5つのパラメータが例示される。以下、各パラメータに対応したS105の処理について述べる。   Here, the change of the transmission parameter in S105 will be described in detail. In the present embodiment, the transmission parameter to be changed is exemplified by the five parameters described above, the diversity parameter, the transmission power parameter, the channel parameter, the network parameter, and the node parameter. Hereinafter, the process of S105 corresponding to each parameter will be described.

(1)ダイバシティパラメータを変更する場合
自己伝送モジュール2Aにおいてアンテナダイバシティ機能が無効化された状態で、送信不良が発生した場合、送信情報が伝送モジュール2Bによって受信され、伝送モジュール2Bからアクナレッジ信号が送信されたにもかかわらず、自己伝送モジュール2Aが当該アクナレッジ信号を適切に受信することができなかったことに起因して、当該送信不良が発生したものと考えることができる。そこで、送信不良の解消手段として、アンテナダイバシティ機能を有効化し、自己伝送モジュール2Aにおける受信能力を向上させることが有用とされる。
(1) When changing a diversity parameter When a transmission failure occurs in the state where the antenna diversity function is disabled in the self-transmission module 2A, transmission information is received by the transmission module 2B, and an acknowledge signal is received from the transmission module 2B. It can be considered that the transmission failure occurred due to the fact that the self-transmission module 2A could not properly receive the acknowledge signal despite being transmitted. Thus, it is useful to enable the antenna diversity function and improve the reception capability in the self-transmission module 2A as means for eliminating transmission failure.

具体的には、自己伝送モジュール2Aは、S105の処理として送信パラメータ記憶部22が記憶するダイバシティパラメータを、有効化に対応する値に変更する処理を行う。その後、送信制御部201により、変更後のダイバシティパラメータを含む、送信パラメータ記憶部22が記憶する送信パラメータに従い、送信情報の再送が実行される。   Specifically, the self-transmission module 2A performs a process of changing the diversity parameter stored in the transmission parameter storage unit 22 to a value corresponding to validation as the process of S105. Thereafter, the transmission control unit 201 retransmits the transmission information according to the transmission parameters stored in the transmission parameter storage unit 22 including the changed diversity parameter.

(2)送信電力パラメータを変更する場合
自己伝送モジュール2Aにおいて送信電力を高く設定すればその送信能力を向上させることは可能であるが、自己伝送モジュール2Aにおける消費電力の上昇や周辺の無線ネットワークへの干渉等が発生するため、自己伝送モジュール2Aの送信電力は、通常は、ある程度抑えた値としている。そこで、自己伝送モジュール2Aにおける送信電力を増加させることで、伝送モジュール間に障害物が存在することで発生し得る送信不良を解消することが可能となる場合がある。
(2) When changing the transmission power parameter If the transmission power is set high in the self-transmission module 2A, it is possible to improve the transmission capability, but the increase in power consumption in the self-transmission module 2A and the surrounding wireless network Therefore, the transmission power of the self-transmission module 2A is normally set to a value that is suppressed to some extent. Therefore, by increasing the transmission power in the self-transmission module 2A, it may be possible to eliminate a transmission failure that may occur due to the presence of an obstacle between the transmission modules.

具体的には、自己伝送モジュール2Aは、S105の処理として送信パラメータ記憶部22が記憶する送信電力パラメータを増加させる処理を行う。その後、送信制御部201により、変更後の送信電力パラメータを含む、送信パラメータ記憶部22が記憶する送信パラメータに従い、送信情報の再送が実行される。なお、送信電力パラメータの増加処理としては、例えば、周囲のネットワークへの干渉を可及的に抑制するために徐々に送信電力が増加するように送信電力パラメータを変更してもよく、また、速やかな送信不良の解消のために、自己伝送モジュール2Aにおいて設定し得る最大の送信電力となるように送信電力パラメータを変更してもよい。   Specifically, the self transmission module 2A performs a process of increasing the transmission power parameter stored in the transmission parameter storage unit 22 as a process of S105. Thereafter, the transmission control unit 201 retransmits the transmission information in accordance with the transmission parameters stored in the transmission parameter storage unit 22 including the changed transmission power parameter. As the transmission power parameter increasing process, for example, the transmission power parameter may be changed so that the transmission power gradually increases in order to suppress interference with surrounding networks as much as possible. In order to eliminate a bad transmission failure, the transmission power parameter may be changed so that the maximum transmission power can be set in the self-transmission module 2A.

(3)チャネルパラメータを変更する場合
自己伝送モジュール2Aにおいて接続先の伝送モジュール2Bとの間で使用されるべき伝送チャネルが相違していたことに起因して、送信不良が発生する可能性が存在する。このような場合には、送信不良の解消手段として、伝送チャネルを変更することが有用とされる。そこで、自己伝送モジュール2Aは、S105の処理として送信パラメータ記憶部22が記憶するチャネルパラメータを変更する処理を行う。その後、送信制御部201により、変更後のチャネルパラメータを含む、送信パラメータ記憶部22が記憶する送信パラメータに従い、送信情報の再送が実行される。
(3) When changing channel parameters There is a possibility that a transmission failure may occur due to a difference in transmission channel to be used between the transmission module 2B of the connection destination in the self transmission module 2A. To do. In such a case, it is useful to change the transmission channel as a means for eliminating the transmission failure. Therefore, the self-transmission module 2A performs a process of changing the channel parameter stored in the transmission parameter storage unit 22 as a process of S105. Thereafter, the transmission control unit 201 retransmits the transmission information according to the transmission parameters stored in the transmission parameter storage unit 22 including the changed channel parameters.

(4)ネットワークパラメータを変更する場合
ネットワークパラメータの変更については、図6A及び図6Bに基づいて説明する。両図に示すネットワークは、伝送モジュール2A、2Bによって形成されるネットワークN2と伝送モジュール2D、2Eによって形成されるネットワークN3とを含む。ネットワークN2における最上位には情報処理装置4が配置され、ネットワークN3における最上位には情報処理装置5が配置される。情報処理装置4、5は、それぞれ情報処理装置1と同じように、送受信装置4a、5aと、サーバ4b、5bを有しており、両情報処理装置は、互いに情報の授受が可能となるように電気的に接続され、共有のデータベースDBを構築している。
(4) When changing network parameters The change of network parameters will be described with reference to FIGS. 6A and 6B. The networks shown in both figures include a network N2 formed by transmission modules 2A and 2B and a network N3 formed by transmission modules 2D and 2E. The information processing device 4 is arranged at the highest level in the network N2, and the information processing device 5 is arranged at the highest level in the network N3. The information processing devices 4 and 5 have transmission / reception devices 4a and 5a and servers 4b and 5b, respectively, like the information processing device 1, so that both information processing devices can exchange information with each other. Are connected to each other to construct a shared database DB.

ここで、図6Aは、ネットワークN2において伝送モジュール2A、2B間で送信不良が発生した状態(すなわちS103で肯定判定された状態)を表している。このとき、自己伝送モジュール2Aは、自己が属しているネットワーク以外のネットワークに存在している伝送モジュールに対して、自己伝送モジュール2Aが接続先として新たに接続可能な伝送モジュールを探索するためのメッセージをブロードキャストする。なお、ネットワークが異なると、そこで使用されている通信チャネルが異なる場合もあるため、上記ブロードキャストは、自己伝送モジュール2Aが使用可能な各通信チャネルを利用して行われる。また、上記メッセージは、例えば、メッセージを受け取った伝送モジュールに、該伝送モジュールが属するネットワークを識別するためのネットワーク名と、該ネットワークで使用されている通信チャネル、上記メッセージの受信強度信号RSSIとを返信させるコマンドを含むものである。   Here, FIG. 6A shows a state in which a transmission failure has occurred between the transmission modules 2A and 2B in the network N2 (that is, a state in which an affirmative determination is made in S103). At this time, the self-transmission module 2A searches for a transmission module that can be newly connected as a connection destination by the self-transmission module 2A with respect to a transmission module that exists in a network other than the network to which the self-transmission module belongs. Broadcast. Note that since different communication channels may be used in different networks, the broadcast is performed using each communication channel that can be used by the self-transmission module 2A. The message includes, for example, a transmission module that has received the message, a network name for identifying the network to which the transmission module belongs, a communication channel used in the network, and a reception strength signal RSSI of the message. It includes commands to be sent back.

自己伝送モジュール2Aは、上記メッセージを受け取ったネットワークN3に属する伝送モジュール2D、2Eからの返事を受け取り、当該返事を送ってきた伝送モジュールの中から新たな接続先としての伝送モジュールを選択する。例えば、返事に含まれる受信強度信号RSSIの情報に基づいて、自己伝送モジュール2Aからの送信情報が最も確実に受信し得る伝送モジュールを新たな接続先として決定し、当該決定を送信パラメータ記憶部22が記憶するネットワークパラメータに反映させ、送信パラメータを変更する。その後、送信制御部201により、変更後のネットワークパラメータを含む、送信パラメータ記憶部22が記憶する送信パラメータに従い、送信情報の再送が実行される。   The self-transmission module 2A receives a reply from the transmission modules 2D and 2E belonging to the network N3 that has received the message, and selects a transmission module as a new connection destination from the transmission modules that have sent the reply. For example, based on the information of the received strength signal RSSI included in the reply, a transmission module that can receive the transmission information from the self-transmission module 2A most reliably is determined as a new connection destination, and the determination is made to the transmission parameter storage unit 22 Is reflected in the network parameters stored in the network and the transmission parameters are changed. Thereafter, the transmission control unit 201 retransmits the transmission information according to the transmission parameters stored in the transmission parameter storage unit 22 including the changed network parameters.

本実施例の場合、自己伝送モジュール2Aが上記メッセージをブロードキャストした結果、ネットワークN3に属する伝送モジュール2D、2Eが接続可能な伝送モジュールとして探索されたとする。ここで、探索された伝送モジュール2D、2Eのうちいずれの伝送モジュールを選択するかについては、受信信号強度RSSIの値が大きい伝送モジュール2Eが選択されることとする。そのため、本実施例では、自己伝送モジュール2Aに関し、図6Bに示すように、自己が属するネットワークをN2からN3に変更するように、送信パラメータ記憶部22が記憶するネットワークパラメータと、必要に応じてネットワークN3に接続するための通信チャネルに関するチャネルパラメータの変更がS105において行われることになる。   In the case of this embodiment, it is assumed that the transmission modules 2D and 2E belonging to the network N3 are searched as connectable transmission modules as a result of the self-transmission module 2A broadcasting the message. Here, regarding which transmission module to be selected from the searched transmission modules 2D and 2E, the transmission module 2E having a large value of the received signal strength RSSI is selected. Therefore, in the present embodiment, with respect to the self-transmission module 2A, as shown in FIG. 6B, the network parameters stored in the transmission parameter storage unit 22 are changed so that the network to which the self belongs is changed from N2 to N3. The channel parameter regarding the communication channel for connecting to the network N3 is changed in S105.

(5)ノードパラメータを変更する場合
ノードパラメータの変更については、図7−図10に基づいて説明する。図7は、ネットワーク10において伝送モジュール2A、2B間で送信不良が発生した状態(すなわちS103で肯定判定された状態)を表している。このとき、自己伝送モジュール2Aでは、新たな接続先となる伝送モジュールを決定し、当該伝送モジュールに接続先を変更するために図8に示す接続先変更処理が、所定の制御プログラムが実行されることで実現される。当該接続先変更処理は、上記の通り、送信不良の解消のための接続先を変更する際に、特定の伝送モジュールに通信負荷が集中しないように、送信不良の発生前に既に伝送モジュール2Aからの送信情報を中継していた接続予定モジュール(本実施例の場合は伝送モジュール2C)に、伝送モジュール2Bをスキップして直接送信する処理である。
(5) When changing a node parameter The change of a node parameter is demonstrated based on FIGS. 7-10. FIG. 7 illustrates a state in which a transmission failure has occurred between the transmission modules 2A and 2B in the network 10 (that is, a state in which an affirmative determination is made in S103). At this time, in the self transmission module 2A, a transmission module to be a new connection destination is determined, and the connection destination changing process shown in FIG. 8 is executed by a predetermined control program in order to change the connection destination to the transmission module. This is realized. As described above, the connection destination changing process has already started from the transmission module 2A before the occurrence of the transmission failure so that the communication load is not concentrated on the specific transmission module when the connection destination for changing the transmission failure is changed. This is a process of skipping the transmission module 2B and directly transmitting it to the connection-scheduled module that relayed the transmission information (transmission module 2C in this embodiment).

<接続先変更処理>
なお、図8に示す接続先変更処理が行われるに当たり、伝送モジュール2Aでは、伝送モジュール2B、2Cとの間で、図9に示す情報授受のシーケンスが常時行われており、当該シーケンスで伝送モジュール2Aが取得する所定の判断パラメータに基づいて、当該接続変更処理が行われることになる。そこで、接続先変更処理に先んじて、図9に示すシーケンスについて説明する。
<Connection change processing>
When the connection destination changing process shown in FIG. 8 is performed, in the transmission module 2A, the information exchange sequence shown in FIG. 9 is always performed between the transmission modules 2B and 2C. The connection change process is performed based on a predetermined determination parameter acquired by 2A. Therefore, the sequence shown in FIG. 9 will be described prior to the connection destination changing process.

図8に示す接続先変更処理が実行される伝送モジュール2Aを自己伝送モジュールとすると、伝送モジュール2Bは伝送モジュール2Aの直下流に位置する送信対象モジュールに相当する。そして、伝送モジュール2Aを起点として情報処理装置1までの伝送経路L1において、伝送モジュール2Cは、送信対象モジュールと情報処理装置1との間に介在し中継機能を有するモジュールであるから、本発明に係る接続予定モジュールの立場にある。したがって、図9は、自己伝送モジュール2A、送信対象モジュール2B、接続予定モジュール2C間の情報授受に関するシーケンス図である。   If the transmission module 2A in which the connection destination changing process shown in FIG. 8 is executed is a self-transmission module, the transmission module 2B corresponds to a transmission target module located immediately downstream of the transmission module 2A. In addition, in the transmission path L1 from the transmission module 2A to the information processing apparatus 1, the transmission module 2C is a module that is interposed between the transmission target module and the information processing apparatus 1 and has a relay function. It is in the position of such a connection scheduled module. Therefore, FIG. 9 is a sequence diagram regarding information exchange between the self-transmission module 2A, the transmission target module 2B, and the connection scheduled module 2C.

そして、図9のシーケンスは、伝送モジュール2A、2B、2C間で送信情報の伝送処理が成功して行われている状態、すなわち送信不良が発生していない状態での送信情報の伝送処理が行われている状態を示している。図9に示す一例では、伝送モジュール2Aにおいて、形成された送信情報がタイミングT1に伝送モジュール2Bに送信され、成功している。そして、伝送モジュール2Bが当該送信情報を、タイミングT2に伝送モジュール2Cへ中継し、成功している。すなわち、伝送経路L1において、伝送モジュール2Aから伝送モジュール2Cへの送信情報の中継が成功している状態が示されている。ここで、タイミングT2での伝送モジュール2Bからの送信情報の送信後において、伝送モジュール2Bは、当該送信情報の送信時の送信電力に関する情報である送信電力情報を取得し、自己のメモリ内に記憶する。   In the sequence of FIG. 9, transmission information transmission processing is performed in a state in which transmission information transmission processing has been successfully performed between the transmission modules 2A, 2B, and 2C, that is, in a state in which no transmission failure has occurred. It shows a broken state. In the example shown in FIG. 9, in the transmission module 2A, the formed transmission information is successfully transmitted to the transmission module 2B at the timing T1. Then, the transmission module 2B relays the transmission information to the transmission module 2C at timing T2 and succeeds. That is, in the transmission path L1, a state in which transmission information is successfully relayed from the transmission module 2A to the transmission module 2C is shown. Here, after transmission information is transmitted from the transmission module 2B at the timing T2, the transmission module 2B acquires transmission power information, which is information regarding transmission power at the time of transmission of the transmission information, and stores it in its own memory. To do.

また、伝送モジュール2Bから送信された当該送信情報を受信した伝送モジュール2Cは、その受信時の受信信号強度(RSSI)に関する情報であるRSSI情報(受信信号強度情報)を取得し、自己の伝送モジュールに記憶する。その後、伝送モジュール2Cは
、伝送モジュール2Bに対して送信情報の受信を通知するためのアクナレッジ信号に対して記憶したRSSI情報を付加して、タイミングT3に伝送モジュール2Bに当該アクナレッジ信号を送信する。そして、アクナレッジ信号を受信した伝送モジュール2Bは、当該アクナレッジ信号から、付加された伝送モジュール2CのRSSI情報を抽出し、自己のメモリに記憶する。したがって、この時点で伝送モジュール2Bのメモリには、伝送モジュール2Bの送信電力情報と伝送モジュール2CのRSSI情報が記憶されていることになる。
Also, the transmission module 2C that has received the transmission information transmitted from the transmission module 2B acquires RSSI information (received signal strength information) that is information related to the received signal strength (RSSI) at the time of reception, and transmits its own transmission module. To remember. Thereafter, the transmission module 2C adds the stored RSSI information to the acknowledge signal for notifying the transmission module 2B of reception of transmission information, and transmits the acknowledge signal to the transmission module 2B at timing T3. To do. Then, the transmission module 2B that has received the acknowledge signal extracts the RSSI information of the added transmission module 2C from the acknowledge signal and stores it in its own memory. Therefore, at this time, the transmission power information of the transmission module 2B and the RSSI information of the transmission module 2C are stored in the memory of the transmission module 2B.

そして、再び、伝送モジュール2Aにおいて計測された計測温度データを包含する次の送信情報が、タイミングT4に伝送モジュール2Aから伝送モジュール2Bに送信される。このとき、当該次の送信情報を受信した伝送モジュール2Bは、伝送モジュール2Aに対して送信するアクナレッジ信号を形成するが、当該アクナレッジ信号には、伝送モジュール2Bのメモリに格納されている、上記の伝送モジュール2Bの送信電力情報と伝送モジュール2CのRSSI情報が付加される。そして、タイミングT5に伝送モジュール2Bから伝送モジュール2Aに対して当該アクナレッジ信号が送信される。そして、アクナレッジ信号を受信した伝送モジュール2Aは、当該アクナレッジ信号から、付加された伝送モジュール2Bの送信電力情報と伝送モジュール2CのRSSI情報を抽出し、自己のメモリに記憶する。これにより、自己伝送モジュール2Aは、送信対象モジュール2Bの送信電力情報と接続予定モジュール2CのRSSI情報を取得したことになる。なお、伝送モジュール2BがタイミングT5にアクナレッジ信号を送信した後は、上述したタイミングT2以降の処理が繰り返されることになる。   Then, the next transmission information including the measured temperature data measured in the transmission module 2A is transmitted from the transmission module 2A to the transmission module 2B at timing T4. At this time, the transmission module 2B that has received the next transmission information forms an acknowledge signal to be transmitted to the transmission module 2A. The acknowledge signal is stored in the memory of the transmission module 2B. The transmission power information of the transmission module 2B and the RSSI information of the transmission module 2C are added. Then, at time T5, the acknowledge signal is transmitted from the transmission module 2B to the transmission module 2A. Then, the transmission module 2A that has received the acknowledge signal extracts the transmission power information of the added transmission module 2B and the RSSI information of the transmission module 2C from the acknowledge signal, and stores them in its own memory. As a result, the self-transmission module 2A has acquired the transmission power information of the transmission target module 2B and the RSSI information of the connection scheduled module 2C. Note that after the transmission module 2B transmits the acknowledge signal at the timing T5, the above-described processing after the timing T2 is repeated.

このように伝送モジュール2Aから伝送モジュール2B、2Cへの送信情報の伝送が成功している場合、伝送モジュール間でのアクナレッジ信号の返信を利用して、伝送モジュール2B、2Cに関する所定の判断パラメータである、送信対象モジュール2Bの送信電力情報と接続予定モジュール2CのRSSI情報が伝送モジュールに、順次収集され、そこで更新されていく。なお、この所定の判断パラメータの収集は、上記の判断パラメータ収集部205によって行われるものである。そして、このように行われる送信情報の伝送処理において、図7に示す送信不良が発生すると(S103の処理で肯定判定されると)、上記S105の処理として図8に示す接続先変更処理が行われることになる。当該接続先変更処理は、送信パラメータのうちノードパラメータを変更する処理に相当する。   As described above, when transmission of transmission information from the transmission module 2A to the transmission modules 2B and 2C is successful, a predetermined determination parameter regarding the transmission modules 2B and 2C is used by using a response of the acknowledge signal between the transmission modules. The transmission power information of the transmission target module 2B and the RSSI information of the connection scheduled module 2C are sequentially collected in the transmission module and updated there. The collection of the predetermined determination parameter is performed by the determination parameter collection unit 205 described above. When the transmission failure shown in FIG. 7 occurs in the transmission information transmission process performed in this way (when an affirmative determination is made in the process of S103), the connection destination change process shown in FIG. 8 is performed as the process of S105. It will be. The connection destination changing process corresponds to a process of changing a node parameter among transmission parameters.

ここで、図8に戻ると、先ずS201では、送信不良が発生した伝送モジュール2Aから、接続予定モジュールに相当する伝送モジュール2Cに対して、送信情報を直接送信することが可能か否かの判断が行われる。なお、当該判断処理は、上記の判断部203によって実行される。具体的には、本接続先変更処理が開始された時点で、図9に示すシーケンスにおいて最も新しく取得された送信対象モジュール2Bの送信電力情報と接続予定モジュール2CのRSSI情報を利用して、以下の式1に従い直接送信余裕度が算出される。
直接送信余裕度=(伝送モジュール2Aの最大送信電力−送信対象モジュール2Bの送信電力)−(接続予定モジュール2Cの最低受信信号強度−接続予定モジュール2CのRSSI) ・・・(式1)
伝送モジュール2Aの最大送信電力:伝送モジュール2Aにおいて設定可能な最大の送信電力であり、単位をdBmとする。
送信対象モジュール2Bの送信電力:図9に示すシーケンスで、実際に送信対象モジュール2Bから接続予定モジュール2Cに送信した際の送信電力であり、単位をdBmとする。
接続予定モジュール2Cの最低受信信号強度:接続予定モジュール2Cが外部から受信し得る最低の受信信号の強度であり、単位をdBmとする。
接続予定モジュール2CのRSSI:図9に示すシーケンスで、実際に接続予定モジュ
ール2Cが送信対象モジュール2Bから受信した際のRSSIであり、単位をdBmとする。
なお、伝送モジュール2Aの最大送信電力と接続予定モジュール2Cの最低受信信号強度は、各伝送モジュールの仕様値として予め伝送モジュール2Aは取得している。
Returning to FIG. 8, first, in S201, it is determined whether or not transmission information can be directly transmitted from the transmission module 2A in which a transmission failure has occurred to the transmission module 2C corresponding to the connection scheduled module. Is done. The determination process is executed by the determination unit 203 described above. Specifically, at the time when the connection destination changing process is started, the transmission power information of the transmission target module 2B and the RSSI information of the connection scheduled module 2C acquired most recently in the sequence shown in FIG. The direct transmission margin is calculated according to Equation 1 below.
Direct transmission margin = (maximum transmission power of transmission module 2A−transmission power of transmission target module 2B) − (minimum received signal strength of connection planned module 2C−RSSI of connection planned module 2C) (Equation 1)
Maximum transmission power of the transmission module 2A: Maximum transmission power that can be set in the transmission module 2A, and its unit is dBm.
Transmission power of the transmission target module 2B: Transmission power when actually transmitted from the transmission target module 2B to the connection scheduled module 2C in the sequence shown in FIG. 9, and the unit is dBm.
Minimum received signal strength of the connection scheduled module 2C: the strength of the lowest received signal that the connection scheduled module 2C can receive from the outside, and its unit is dBm.
RSSI of the connection scheduled module 2C: RSSI when the connection planned module 2C is actually received from the transmission target module 2B in the sequence shown in FIG. 9, and the unit is dBm.
Note that the transmission module 2A acquires the maximum transmission power of the transmission module 2A and the minimum received signal strength of the connection scheduled module 2C in advance as specification values of each transmission module.

直接送信余裕度は、伝送モジュール2Aと送信対象モジュール2Bとの間で行っていた情報送信を、送信対象モジュール2Bをスキップし、伝送モジュール2Aと伝送経路L1において送信対象モジュール2Bよりも情報処理装置1に近く配置されている接続予定モジュール2Cとの間で直接に情報送信を行った場合の余裕度と定義される。ここで、式1に示される直接送信余裕度は、接続予定モジュール2Cに情報送信を行っている送信対象モジュール2Bの送信電力が伝送モジュール2Aの位置に限りなく近づいたとの想定に立ち、送信電力の伸び代(=伝送モジュール2Aの最大送信電力−送信対象モジュール2Bの送信電力)と、直接送信先となる接続予定モジュール2Cの受信能力の伸び代(=−(接続予定モジュール2Cの最低受信信号強度−接続予定モジュール2CのRSSI情報))とを加えたものである。したがって、このように算出される直接送信余裕度が、基準となる基準余裕度より大きい場合に、伝送モジュール2Aから接続予定モジュール2Cへの直接送信が可能と判断することができる。なお、この基準余裕度は、ネットワーク10における様々な通信環境要因を考慮して設定することができるが、一例としては、伝送モジュールが無線機として安定的に受信ができる余裕度(以下、「受信余裕度」という)と、ネットワーク10におけるノイズに対する耐性を得るための余裕度(以下、「ノイズ余裕度」という)等を考慮して基準余裕度を設定してもよい。   In the direct transmission margin, the information transmission performed between the transmission module 2A and the transmission target module 2B is skipped by the transmission target module 2B, and the information processing apparatus is more effective than the transmission target module 2B in the transmission module 2A and the transmission path L1. It is defined as a margin when information is directly transmitted to the connection scheduled module 2C arranged close to 1. Here, the direct transmission margin shown in Equation 1 is based on the assumption that the transmission power of the transmission target module 2B that is transmitting information to the connection scheduled module 2C is as close as possible to the position of the transmission module 2A. (= Maximum transmission power of the transmission module 2A−transmission power of the transmission target module 2B) and an expansion margin of the reception capability of the connection planned module 2C as a direct transmission destination (= − (the minimum received signal of the connection planned module 2C) Strength-RSSI information of the connection scheduled module 2C))). Therefore, when the direct transmission allowance calculated in this way is larger than the reference reference allowance, it can be determined that direct transmission from the transmission module 2A to the connection scheduled module 2C is possible. The reference margin can be set in consideration of various communication environment factors in the network 10, but as an example, a margin (hereinafter, “reception” in which the transmission module can stably receive as a wireless device). The reference margin may be set in consideration of a margin (referred to as “margin”) and a margin for obtaining resistance to noise in the network 10 (hereinafter referred to as “noise margin”).

S201における判断処理の一例を示す。直接送信余裕度を算出するための各パラメータの数値は、以下の通りである。
伝送モジュール2Aの最大送信電力:13dBm
送信対象モジュール2Bの送信電力:8dBm
接続予定モジュール2Cの最低受信信号強度:−110dBm
接続予定モジュール2CのRSSI情報:−60dBm
これらのパラメータから算出される直接送信余裕度は、(13−8)−(−110−(−60))=55dBmである。そして、基準余裕度を算出するための受信余裕度を20dBm、ノイズ余裕度を10dBmとすると、基準余裕度は30dBmとなる。したがって、この場合、直接送信余裕度(55dBm)が基準余裕度(30dBm)よりも大きいことになるため、S201においては直接送信が可能と判断(肯定判断)されることになる。
An example of the determination process in S201 is shown. The numerical value of each parameter for calculating the direct transmission margin is as follows.
Maximum transmission power of the transmission module 2A: 13 dBm
Transmission power of the transmission target module 2B: 8 dBm
Minimum received signal strength of the connection scheduled module 2C: −110 dBm
RSSI information of the connection scheduled module 2C: −60 dBm
The direct transmission margin calculated from these parameters is (13−8) − (− 110 − (− 60)) = 55 dBm. If the reception margin for calculating the reference margin is 20 dBm and the noise margin is 10 dBm, the reference margin is 30 dBm. Therefore, in this case, since the direct transmission margin (55 dBm) is larger than the reference margin (30 dBm), in S201, it is determined that direct transmission is possible (positive determination).

S201で肯定判定されるとS202へ進み、否定判定されると後述するS205へ進む。次に、S202では、S201で直接送信が可能と判断されたことをもって、伝送モジュール2Aから接続予定モジュール2Cへの直接接続を試行する。すなわち、それまで送信対象モジュールであった伝送モジュール2Bとの接続を止めて、伝送経路L1においてより情報処理装置1に近い伝送モジュール2Cへ伝送モジュール2Aの接続先を変更する。当該処理では、判断部203の判断結果を踏まえて、送信パラメータ変更部204が伝送モジュール2Aのノードパラメータを、伝送モジュール2Bのノードアドレスから伝送モジュール2Cのノードアドレスへと変更することになる。S202の処理が終了するとS203へ進み、そこで、S202の直接送信の試行が成功したか否かが判断される。   If a positive determination is made in S201, the process proceeds to S202, and if a negative determination is made, the process proceeds to S205 described later. Next, in S202, when it is determined that direct transmission is possible in S201, a direct connection from the transmission module 2A to the connection scheduled module 2C is attempted. That is, the connection with the transmission module 2B that has been the transmission target module is stopped, and the connection destination of the transmission module 2A is changed to the transmission module 2C closer to the information processing apparatus 1 in the transmission path L1. In this process, based on the determination result of the determination unit 203, the transmission parameter changing unit 204 changes the node parameter of the transmission module 2A from the node address of the transmission module 2B to the node address of the transmission module 2C. When the process of S202 ends, the process proceeds to S203, where it is determined whether or not the direct transmission attempt of S202 is successful.

S203で肯定判定されると、伝送モジュール2Aからの情報送信のための伝送経路L1が、図10に示すように、伝送モジュール2Bをスキップし、伝送モジュール2Aから伝送モジュール2Cへ直接接続される経路となり、新たな伝送経路が確定することになる(S204の処理)。このとき、伝送モジュール2Cは、送信不良が発生する前においても伝送経路L1に属し、伝送モジュール2Aからの送信情報を伝送モジュール2Bから中
継する立場にあった。したがって、図10に示すように伝送モジュール2Aから直接、送信情報を受け取るようになっても、伝送モジュール2Cの通信負荷は実質的には増加していない。例えば、送信不良の発生に伴って伝送モジュール2Aの接続先を伝送モジュール2Eに変更した場合を考えると、変更の結果、伝送モジュール2Eは、伝送モジュール2Aと伝送モジュール2Dの両者から送信情報を受け取ることになるため、その通信負荷が増加することになる。しかし、上記の通り、図8に示す接続先変更処理に従えば、このような特定の伝送モジュールにおける通信負荷の増加を確実に回避することができる。
If an affirmative determination is made in S203, the transmission path L1 for transmitting information from the transmission module 2A skips the transmission module 2B and is directly connected from the transmission module 2A to the transmission module 2C as shown in FIG. Thus, a new transmission path is determined (processing in S204). At this time, the transmission module 2C belongs to the transmission path L1 even before transmission failure occurs, and was in a position to relay transmission information from the transmission module 2A from the transmission module 2B. Therefore, even if transmission information is received directly from the transmission module 2A as shown in FIG. 10, the communication load of the transmission module 2C does not substantially increase. For example, when considering the case where the connection destination of the transmission module 2A is changed to the transmission module 2E due to the occurrence of transmission failure, the transmission module 2E receives transmission information from both the transmission module 2A and the transmission module 2D as a result of the change. As a result, the communication load increases. However, as described above, according to the connection destination changing process shown in FIG. 8, such an increase in communication load in the specific transmission module can be reliably avoided.

また、S203で否定判定されると、接続先変更処理以外の処理によって、伝送モジュール2Aの新たな接続先の探索が行われる(S205の処理)。例えば、伝送モジュール2Aは、周囲に存在している伝送モジュールに対して、伝送モジュール2Aが直接の送信先として新たに接続可能な伝送モジュールを探索するためのメッセージをブロードキャストする。当該メッセージは、例えば、メッセージを受け取った伝送モジュールに、該伝送モジュールを識別するためのノードアドレスと、該伝送モジュールのデバイスタイプとを返信させるコマンドを含むものである。そして、伝送モジュール2Aは、上記メッセージを受け取った伝送モジュールからの返事を受け取り、当該返事を送ってきた伝送モジュールの中から新たな送信先としての伝送モジュールを選択する。例えば、返事に含まれるデバイスタイプの情報に基づいて、伝送モジュール2Aが接続できないタイプの伝送モジュール(例えば、中継機能を有していない伝送モジュール)を除外した伝送モジュールの中から、新たな送信先としての伝送モジュールを決定する。S205で行われる新たな接続先の探索は、伝送モジュール2Aとの接続を優先させる探索であり、上記の直接送信を実現させるものではない。なお、S205による処理は、上述のS201において否定判定された場合にも実行される。   If a negative determination is made in S203, a search for a new connection destination of the transmission module 2A is performed by a process other than the connection destination change process (the process of S205). For example, the transmission module 2A broadcasts a message for searching for a transmission module that can be newly connected as a direct transmission destination to the transmission modules existing around the transmission module 2A. The message includes, for example, a command that causes the transmission module that has received the message to return a node address for identifying the transmission module and the device type of the transmission module. Then, the transmission module 2A receives a reply from the transmission module that has received the message, and selects a transmission module as a new destination from the transmission modules that have sent the reply. For example, based on the device type information included in the reply, a new transmission destination is selected from transmission modules excluding transmission modules (for example, transmission modules that do not have a relay function) that cannot be connected to the transmission module 2A. Determine the transmission module. The search for a new connection destination performed in S205 is a search for giving priority to the connection with the transmission module 2A, and does not realize the direct transmission described above. Note that the processing in S205 is also executed when a negative determination is made in S201 described above.

このように本発明に係る接続先変更処理によれば、ネットワーク10の伝送モジュール間で送信不良が発生した場合には、特定の伝送モジュールに通信負荷を集中させることなく送信不良の解消を図るべく、ノードパラメータの変更が行われることになる。また、上記の伝送処理及び接続先変更処理によれば、S201の判断処理は、送信不良が発生する前に収集された判断パラメータを利用して、その送信不良が発生した後に実行される。このように構成されることで、ネットワーク10の通信環境を反映する新鮮な判断パラメータに基づいてS201の判断処理が行われることになり、以て、適切な直接送信の可否の判断が可能となる。なお、判断処理の時期に関し、別法として、図9に示すシーケンスにおいて、タイミングT5に送信されたアクナレッジ信号によって伝送モジュール2Aが、伝送モジュール2Bの送信電力情報と伝送モジュール2CのRSSI情報を取得するたびに、当該判断処理を実行してもよい。この場合、当該判断処理が、送信不良の発生にかかわらず行われることになるが、送信不良が発生すると既に行われた判断結果を利用して、直ちに伝送モジュール2Aから伝送モジュール2Cへ直接送信を開始することができ、速やかな送信不良の解消を図ることができる。   As described above, according to the connection destination changing process according to the present invention, when a transmission failure occurs between the transmission modules of the network 10, the transmission failure should be solved without concentrating the communication load on the specific transmission module. The node parameter is changed. Further, according to the transmission process and the connection destination change process described above, the determination process of S201 is executed after the transmission failure occurs using the determination parameters collected before the transmission failure occurs. With this configuration, the determination process in S201 is performed based on fresh determination parameters that reflect the communication environment of the network 10, and thus it is possible to determine whether appropriate direct transmission is possible. . As an alternative to the timing of the determination process, in the sequence shown in FIG. 9, the transmission module 2A acquires the transmission power information of the transmission module 2B and the RSSI information of the transmission module 2C by the acknowledge signal transmitted at the timing T5. The determination process may be executed each time. In this case, the determination process is performed regardless of the occurrence of a transmission failure. However, when a transmission failure occurs, the transmission module 2A immediately transmits directly to the transmission module 2C using the determination result already made. It is possible to start, and it is possible to quickly solve the transmission failure.

ここで、図4に示す伝送処理に戻ると、S105においては、変更される送信パラメータが複数ある場合には送信パラメータが一つずつ変更されてもよく、別法として複数の送信パラメータが組み合わされて変更されてもよい。また、S105における送信パラメータの変更は、S103において肯定判定され且つS104で否定判定される限り繰り返されることになるが、当該送信パラメータの変更順序は、特定の順序に限定されるものではなく所定の目的に応じて適宜設定することができる。また、図4に示す伝送処理によれば、伝送モジュール2Aから送信情報を送信する際に送信不良が発生すると、S103〜S106の処理が繰り返されることになる。このとき、情報記憶部25が記憶する情報は保持されたまま、自律的に送信パラメータ記憶部22が記憶する送信パラメータの一部が変更されながら送信情報の再送が繰り返され、送信不良の解消が試みられることになる。そして、送信パラメータの変更による送信情報の再送が成功すると伝送処理は終了とされる
Here, returning to the transmission processing shown in FIG. 4, in S105, when there are a plurality of transmission parameters to be changed, the transmission parameters may be changed one by one. Alternatively, a plurality of transmission parameters are combined. May be changed. The transmission parameter change in S105 is repeated as long as an affirmative determination is made in S103 and a negative determination is made in S104. However, the transmission parameter change order is not limited to a specific order, and is a predetermined value. It can be set appropriately according to the purpose. Further, according to the transmission process shown in FIG. 4, when a transmission failure occurs when transmitting transmission information from the transmission module 2A, the processes of S103 to S106 are repeated. At this time, while the information stored in the information storage unit 25 is retained, a part of the transmission parameters stored in the transmission parameter storage unit 22 is autonomously changed, and the retransmission of the transmission information is repeated, thereby eliminating the transmission failure. Will be tried. Then, when the retransmission of the transmission information by changing the transmission parameter is successful, the transmission process is terminated.

<変形例1>
上記の実施例では、接続予定モジュールとして伝送モジュール2Cを設定したが、例えば、伝送経路L1において伝送モジュール2Cと情報処理装置との間に一又は複数の他の伝送モジュールが介在している場合には、当該一又は複数の他の伝送モジュールのうちの1つを接続予定モジュールとしてもよい。すなわち、伝送モジュール2Aから見たときに、送信対象モジュールである伝送モジュール2Bを含めて2つ以上の伝送モジュールを挟んで伝送経路L1に配置される伝送モジュールに対して直接送信を行う場合でも、実質的に直接送信を行う前の伝送経路L1が実質的に維持されているため、特定の伝送モジュールへの通信負荷の集中を避けることができる。なお、このように複数の接続予定モジュールが存在する場合は、直接送信を成功させやすくするために、伝送モジュール2Aに近い接続予定モジュールから、直接送信を試みるようにするのが好ましい。
<Modification 1>
In the above embodiment, the transmission module 2C is set as the connection scheduled module. For example, when one or more other transmission modules are interposed between the transmission module 2C and the information processing apparatus in the transmission path L1. One of the one or more other transmission modules may be a connection scheduled module. That is, when viewed from the transmission module 2A, even when performing direct transmission to a transmission module arranged in the transmission path L1 across two or more transmission modules including the transmission module 2B that is a transmission target module, Since the transmission path L1 before substantially direct transmission is substantially maintained, concentration of communication load on a specific transmission module can be avoided. In addition, when there are a plurality of connection scheduled modules as described above, it is preferable to attempt direct transmission from a connection scheduled module close to the transmission module 2A in order to facilitate direct transmission.

<変形例2>
上記の実施例では、図4に示す伝送処理の一部として接続先変更処理が開示されているが、当該接続先変更処理は、図4に示す伝送処理を必ずしも前提としなくてもよい。すなわち、伝送モジュール2Aにおいて送信不良が発生した場合には、ダイバシティパラメータや送信電力パラメータ等の変更を試みることなく、ノードパラメータのみの変更を試みるように構成されている場合において、当該接続先変更処理を行うようにしてもよい。また、伝送モジュール2Aは判断部203の判断処理を行わずに、送信不良が発生するとその接続先をそれまでの送信対象モジュールから接続予定モジュールに変更を試みてもよい。
<Modification 2>
In the above embodiment, the connection destination change process is disclosed as a part of the transmission process shown in FIG. 4, but the connection destination change process does not necessarily have to be based on the transmission process shown in FIG. 4. That is, when a transmission failure occurs in the transmission module 2A, the connection destination changing process is performed in a case where only the node parameter is changed without attempting to change the diversity parameter, the transmission power parameter, or the like. May be performed. Further, the transmission module 2A may attempt to change the connection destination from the previous transmission target module to the connection scheduled module when a transmission failure occurs without performing the determination processing of the determination unit 203.

第2の実施例では、上記接続先変更処理のS201における直接送信の判断処理の第2の形態について説明する。なお、本実施例においては、図9に示すシーケンスで、タイミングT4に伝送モジュール2Aから伝送モジュール2Bに対して送信情報が送信されたときの、伝送モジュール2BのRSSI情報が、上記伝送モジュール2Bの送信電力情報と伝送モジュール2CのRSSI情報とともに、タイミングT5にアクナレッジ信号に付加されて伝送モジュール2Aに送信される。したがって、伝送モジュール2Aは、図9のシーケンスを通して、伝送モジュール2Bの送信電力情報及びRSSI情報と、伝送モジュール2CのRSSI情報を判断パラメータとして取得することになる。   In the second embodiment, a second form of the direct transmission determination process in S201 of the connection destination change process will be described. In the present embodiment, the RSSI information of the transmission module 2B when the transmission information is transmitted from the transmission module 2A to the transmission module 2B at the timing T4 in the sequence shown in FIG. The transmission power information and the RSSI information of the transmission module 2C are added to the acknowledge signal at timing T5 and transmitted to the transmission module 2A. Therefore, the transmission module 2A acquires the transmission power information and RSSI information of the transmission module 2B and the RSSI information of the transmission module 2C as determination parameters through the sequence of FIG.

そして、本実施例では、接続先変更処理が開始された時点で、図9に示すシーケンスにおいて最も新しく取得された送信対象モジュール2Bの送信電力情報及びRSSI情報と接続予定モジュール2CのRSSI情報を利用して、以下の式2に従い直接送信余裕度が算出される。
直接送信余裕度=(伝送モジュール2Aの最大送信電力−送信対象モジュール2Bの送信電力)−(接続予定モジュール2Cの最低受信信号強度−接続予定モジュール2CのRSSI)−(送信対象モジュール2Bの理想空間におけるRSSI−送信対象モジュール2Bの実際のRSSI) ・・・(式2)
送信対象モジュール2Bの理想空間におけるRSSI:接続予定モジュール2Bが配置される空間が電波の減衰が生じない理想空間と仮定した場合の受信信号強度であり、単位をdBmとする。
送信対象モジュール2Bの実際のRSSI:図9に示すシーケンスで、伝送モジュール2Aから送信対象モジュール2Bに対して送信が行われたときの、実際の送信対象モジュール2Bの受信信号強度であり、単位をdBmとする。
なお、伝送モジュール2Aの最大送信電力、送信対象モジュール2Bの送信電力、接続予定モジュール2Cの最低受信信号強度、接続予定モジュール2CのRSSIについては
、上記式1と同じである。また、送信対象モジュール2Bの理想空間におけるRSSIは、予め伝送モジュール2Bに対して設定し得る値であるため、予め伝送モジュール2Aはその送信対象モジュール2Bの理想空間におけるRSSIを取得している。
In this embodiment, when the connection destination change process is started, the transmission power information and RSSI information of the transmission target module 2B acquired most recently in the sequence shown in FIG. 9 and the RSSI information of the connection scheduled module 2C are used. Then, the direct transmission margin is calculated according to the following equation 2.
Direct transmission margin = (maximum transmission power of transmission module 2A−transmission power of transmission target module 2B) − (minimum received signal strength of connection planned module 2C−RSSI of connection planned module 2C) − (ideal space of transmission target module 2B) RSSI—actual RSSI of transmission target module 2B) (Expression 2)
RSSI in the ideal space of the transmission target module 2B: The received signal strength when assuming that the space in which the connection scheduled module 2B is arranged is an ideal space where radio wave attenuation does not occur, and its unit is dBm.
Actual RSSI of the transmission target module 2B: The actual received signal strength of the transmission target module 2B when transmission is performed from the transmission module 2A to the transmission target module 2B in the sequence shown in FIG. dBm.
Note that the maximum transmission power of the transmission module 2A, the transmission power of the transmission target module 2B, the minimum received signal strength of the connection scheduled module 2C, and the RSSI of the connection scheduled module 2C are the same as those in Equation 1. Also, since the RSSI in the ideal space of the transmission target module 2B is a value that can be set in advance for the transmission module 2B, the transmission module 2A acquires the RSSI in the ideal space of the transmission target module 2B in advance.

式2に示される直接送信余裕度は、式1に示される直接送信余裕度に対して、更に、伝送モジュール2Bが配置された空間で生じる電波の減衰を考慮したものである。これは、上記の直接送信が行われると伝送モジュール2Aからの電波が送信対象モジュール2Bの空間を通って接続予定モジュール2Cに到達することを想定し、その際に当該空間で生じ得る電波の減衰の程度を直接送信余裕度に反映させたものである。これにより、ネットワーク10において伝送モジュール2A、2B、2Cが概ね直線状に配置されているような場合に、直接送信余裕度を正確に算出することが可能となる。   The direct transmission margin shown in Expression 2 further takes into account the attenuation of radio waves generated in the space in which the transmission module 2B is arranged, with respect to the direct transmission margin shown in Expression 1. This is based on the assumption that when the direct transmission is performed, the radio wave from the transmission module 2A reaches the connection scheduled module 2C through the space of the transmission target module 2B, and the radio wave attenuation that may occur in the space at that time Is directly reflected in the transmission margin. As a result, when the transmission modules 2A, 2B, and 2C are arranged substantially linearly in the network 10, the direct transmission margin can be accurately calculated.

ここで、本実施例に係る判断処理の一例を示す。直接送信余裕度を算出するための各パラメータの数値は、以下の通りである。
伝送モジュール2Aの最大送信電力:13dBm
送信対象モジュール2Bの送信電力:8dBm
接続予定モジュール2Cの最低受信信号強度:−100dBm
接続予定モジュール2CのRSSI情報:−60dBm
送信対象モジュール2Bの理想空間におけるRSSI:−50dBm
送信対象モジュール2Bの実際のRSSI:−60dBm
これらのパラメータから算出される直接送信余裕度は、(13−8)−(−100−(−60))−((−50)−(−60))=35dBmである。そして、基準余裕度を算出するための受信余裕度を20dBm、ノイズ余裕度を5dBmとすると、基準余裕度は25dBmとなる。したがって、この場合、直接送信余裕度(35dBm)が基準余裕度(25dBm)よりも大きいことになるため、S201においては直接送信が可能と判断(肯定判断)されることになる。
Here, an example of determination processing according to the present embodiment will be described. The numerical value of each parameter for calculating the direct transmission margin is as follows.
Maximum transmission power of the transmission module 2A: 13 dBm
Transmission power of the transmission target module 2B: 8 dBm
Minimum received signal strength of the connection scheduled module 2C: −100 dBm
RSSI information of the connection scheduled module 2C: −60 dBm
RSSI in the ideal space of the transmission target module 2B: −50 dBm
Actual RSSI of the transmission target module 2B: −60 dBm
The direct transmission margin calculated from these parameters is (13-8) − (− 100 − (− 60)) − ((− 50) − (− 60)) = 35 dBm. If the reception margin for calculating the reference margin is 20 dBm and the noise margin is 5 dBm, the reference margin is 25 dBm. Therefore, in this case, since the direct transmission margin (35 dBm) is larger than the reference margin (25 dBm), in S201, it is determined that direct transmission is possible (positive determination).

<その他の実施例>
また、接続先変更処理のS201における直接送信の判断処理の別の形態として、各伝送モジュールがGPS機能を有する場合に、それぞれのGPS機能によって得られる各伝送モジュールの位置情報を利用して、直接送信の可否を判断してもよい。この場合、伝送モジュール2Aと伝送モジュール2Cとの間の距離が、伝送モジュール2Aの最大送信電力によって決定される最大送信可能距離より短い場合には、伝送モジュール2Aから伝送モジュール2Cへの直接送信が可能と判断できる。
<Other examples>
As another form of the direct transmission determination process in S201 of the connection destination change process, when each transmission module has a GPS function, the position information of each transmission module obtained by each GPS function is used to directly It may be determined whether transmission is possible. In this case, when the distance between the transmission module 2A and the transmission module 2C is shorter than the maximum transmittable distance determined by the maximum transmission power of the transmission module 2A, direct transmission from the transmission module 2A to the transmission module 2C is not performed. It can be judged that it is possible.

1、4、5・・・・情報処理装置
1b、4b、5b・・・・サーバ
2、2A、2B、3、3A、3B・・・・伝送モジュール
N2、N3、10・・・・ネットワーク
1, 4, 5... Information processing device 1 b, 4 b, 5 b... Server 2, 2 A, 2 B, 3, 3 A, 3 B... Transmission module N 2, N 3, 10.

Claims (12)

情報処理装置で処理されるべき所定送信情報を、該情報処理装置を含む所定の伝送経路に沿って伝送する伝送モジュールであって、
前記所定送信情報を自己伝送モジュールから、前記所定の伝送経路において自己伝送モジュールの直下流に位置する送信対象モジュールに送信する送信手段と、
前記所定送信情報が、前記送信対象モジュールによって受信された送信完了状態を確認する確認手段と、
前記所定の伝送経路において自己伝送モジュールからの前記所定送信情報を中継するように配置されていたモジュールであって、前記送信対象モジュールと前記情報処理装置との間に介在する接続予定モジュールに対して、自己伝送モジュールから該所定送信情報を直接送信することが可能であるか否かについての判断処理を行う判断手段と、
前記確認手段によって前記所定送信情報の前記送信完了状態が確認できない送信不良が生じた場合、前記判断手段により自己伝送モジュールから前記所定送信情報を前記接続予定モジュールに直接送信することが可能であると判断されれば、自己伝送モジュールからの接続先を前記送信対象モジュールから前記接続予定モジュールに変更する接続先変更手段と、
を備える伝送モジュール。
A transmission module for transmitting predetermined transmission information to be processed by the information processing apparatus along a predetermined transmission path including the information processing apparatus,
Transmitting means for transmitting the predetermined transmission information from the self-transmission module to a transmission target module located immediately downstream of the self-transmission module in the predetermined transmission path;
Confirmation means for confirming the transmission completion state received by the transmission target module, the predetermined transmission information;
A module that is arranged to relay the predetermined transmission information from the self-transmission module in the predetermined transmission path, with respect to a connection scheduled module interposed between the transmission target module and the information processing apparatus Determining means for determining whether or not the predetermined transmission information can be directly transmitted from the self-transmission module;
When a transmission failure occurs in which the transmission completion state of the predetermined transmission information cannot be confirmed by the confirmation means, the predetermined transmission information can be directly transmitted from the own transmission module to the connection scheduled module by the determination means. If determined, connection destination changing means for changing the connection destination from the self-transmission module from the transmission target module to the connection scheduled module;
A transmission module comprising:
前記接続予定モジュールは、前記所定の伝送経路において前記送信対象モジュールの直下流に位置するモジュールである、
請求項1に記載の伝送モジュール。
The connection scheduled module is a module located immediately downstream of the transmission target module in the predetermined transmission path.
The transmission module according to claim 1.
前記送信対象モジュール及び前記接続予定モジュールから、前記判断手段による前記判断処理に使用される所定判断パラメータを収集する判断パラメータ収集手段を、更に備える、
請求項2に記載の伝送モジュール。
A judgment parameter collecting means for collecting predetermined judgment parameters used for the judgment processing by the judgment means from the transmission target module and the connection scheduled module;
The transmission module according to claim 2.
前記判断手段は、前記送信不良が生じる前に前記判断パラメータ収集手段によって収集された前記所定判断パラメータに基づいて、該送信不良の発生後に前記判断処理を行う、
請求項3に記載の伝送モジュール。
The determination unit performs the determination process after the occurrence of the transmission failure based on the predetermined determination parameter collected by the determination parameter collection unit before the transmission failure occurs.
The transmission module according to claim 3.
前記判断パラメータ収集手段により前記所定判断パラメータが収集される度に、又は、前記送信不良の発生にかかわらず該判断パラメータ収集手段により該所定判断パラメータが収集された後に、前記判断手段は該所定判断パラメータに基づいて前記判断処理を行う、
請求項3に記載の伝送モジュール。
Each time the predetermined judgment parameter is collected by the judgment parameter collecting means, or after the predetermined judgment parameter is collected by the judgment parameter collecting means regardless of occurrence of the transmission failure, the judgment means performs the predetermined judgment. Performing the determination process based on a parameter;
The transmission module according to claim 3.
前記判断パラメータ収集手段は、前記送信対象モジュールにおける、前記接続予定モジュールへの送信の際の送信電力情報と、該接続予定モジュールにおける、該送信対象モジュールからの受信の際の受信信号強度情報を、前記所定判断パラメータとして収集し、
前記判断手段は、前記送信対象モジュールにおける前記送信電力情報と、前記接続予定モジュールにおける前記受信信号強度情報に加えて、自己伝送モジュールにおける最大送信電力情報と、該接続予定モジュールにおける最低受信信号強度情報とを用いて、前記判断処理を行う、
請求項3から請求項5の何れか1項に記載の伝送モジュール。
The determination parameter collection means includes transmission power information at the time of transmission to the connection scheduled module in the transmission target module, and received signal strength information at the time of reception from the transmission target module at the connection planned module. Collected as the predetermined judgment parameter,
The determination means includes, in addition to the transmission power information in the transmission target module and the received signal strength information in the connection scheduled module, maximum transmission power information in the own transmission module and minimum received signal strength information in the connection scheduled module. The determination process is performed using
The transmission module according to any one of claims 3 to 5.
前記判断パラメータ収集手段は、更に、前記送信対象モジュールにおける、自己伝送モジュールからの受信の際の受信信号強度情報を、前記所定判断パラメータとして収集し、
前記判断手段は、更に、前記送信対象モジュールにおける前記受信信号強度情報を用い
て、前記判断処理を行う、
請求項6に記載の伝送モジュール。
The determination parameter collection means further collects received signal strength information at the time of reception from the self-transmission module in the transmission target module as the predetermined determination parameter,
The determination means further performs the determination process using the received signal strength information in the transmission target module.
The transmission module according to claim 6.
前記送信手段は、前記所定送信情報を自己伝送モジュールから前記送信対象モジュールに送信するために設定された所定の送信パラメータに従って、自己伝送モジュールから該送信対象モジュールに該所定送信情報を送信し、
前記接続先変更手段は、前記判断手段により自己伝送モジュールから前記所定送信情報を前記接続予定モジュールに直接送信することが可能であると判断されれば、前記送信不良となった前記所定送信情報の送信に使用された前記所定の送信パラメータのうち、少なくとも自己伝送モジュールの接続先に関するノードパラメータを変更することで、該送信不良となった該所定送信情報を前記接続予定モジュールに対して送信する、
請求項1から請求項7の何れか1項に記載の伝送モジュール。
The transmission means transmits the predetermined transmission information from the self-transmission module to the transmission target module according to a predetermined transmission parameter set for transmitting the predetermined transmission information from the self-transmission module to the transmission target module,
If the determination unit determines that the predetermined transmission information can be directly transmitted from the self-transmission module to the connection scheduled module by the determination unit, the connection destination changing unit Of the predetermined transmission parameters used for transmission, by changing at least a node parameter related to the connection destination of the self-transmission module, the predetermined transmission information that has caused the transmission failure is transmitted to the connection scheduled module.
The transmission module according to any one of claims 1 to 7.
自己伝送モジュールの周囲の、又は自己伝送モジュールの内部の環境パラメータを検出するセンサを、更に備え、
前記送信手段は、検出された前記環境パラメータを前記所定送信情報として送信する、
請求項1から請求項8の何れか1項に記載の伝送モジュール。
A sensor for detecting environmental parameters around or within the self-transmission module;
The transmission means transmits the detected environmental parameter as the predetermined transmission information.
The transmission module according to any one of claims 1 to 8.
情報処理装置で処理されるべき所定送信情報を、該情報処理装置を含む所定の伝送経路に沿って複数の伝送モジュールを経て伝送するように構成されるネットワークシステムであって、
前記複数の伝送モジュールのうち少なくとも一つの伝送モジュールは、
前記所定送信情報を自己伝送モジュールから、前記所定の伝送経路において自己伝送モジュールの直下流に位置する送信対象モジュールに送信する送信手段と、
前記所定送信情報が、前記送信対象モジュールによって受信された送信完了状態を確認する確認手段と、
前記所定の伝送経路において自己伝送モジュールからの前記所定送信情報を中継するように配置されていたモジュールであって、前記送信対象モジュールと前記情報処理装置との間に介在する接続予定モジュールに対して、自己伝送モジュールから該所定送信情報を直接送信することが可能であるか否かについての判断処理を行う判断手段と、
前記確認手段によって前記所定送信情報の前記送信完了状態が確認できない送信不良が生じた場合、前記判断手段により自己伝送モジュールから前記所定送信情報を前記接続予定モジュールに直接送信することが可能であると判断されれば、自己伝送モジュールからの接続先を前記送信対象モジュールから前記接続予定モジュールに変更する接続先変更手段と、
を有する、情報伝送ネットワークシステム。
A network system configured to transmit predetermined transmission information to be processed by an information processing device via a plurality of transmission modules along a predetermined transmission path including the information processing device,
At least one transmission module of the plurality of transmission modules is
Transmitting means for transmitting the predetermined transmission information from the self-transmission module to a transmission target module located immediately downstream of the self-transmission module in the predetermined transmission path;
Confirmation means for confirming the transmission completion state received by the transmission target module, the predetermined transmission information;
A module that is arranged to relay the predetermined transmission information from the self-transmission module in the predetermined transmission path, with respect to a connection scheduled module interposed between the transmission target module and the information processing apparatus Determining means for determining whether or not the predetermined transmission information can be directly transmitted from the self-transmission module;
When a transmission failure occurs in which the transmission completion state of the predetermined transmission information cannot be confirmed by the confirmation means, the predetermined transmission information can be directly transmitted from the own transmission module to the connection scheduled module by the determination means. If determined, connection destination changing means for changing the connection destination from the self-transmission module from the transmission target module to the connection scheduled module;
An information transmission network system.
情報処理装置で処理されるべき所定送信情報の伝送を行う伝送モジュールを介して、該情報処理装置を含む所定の伝送経路に沿って該所定送信情報を伝送する情報伝送方法であって、
前記所定送信情報を自己伝送モジュールから、前記所定の伝送経路において自己伝送モジュールの直下流に位置する送信対象モジュールに送信する送信ステップと、
前記所定送信情報が、前記送信対象モジュールによって受信された送信完了状態を確認する確認ステップと、
前記所定の伝送経路において自己伝送モジュールからの前記所定送信情報を中継するように配置されていたモジュールであって、前記送信対象モジュールと前記情報処理装置との間に介在する接続予定モジュールに対して、自己伝送モジュールから該所定送信情報を直接送信することが可能であるか否かについての判断処理を行う判断ステップと、
前記確認ステップで前記所定送信情報の前記送信完了状態が確認できない送信不良が生じた場合、前記判断ステップで自己伝送モジュールから前記所定送信情報を前記接続予定
モジュールに直接送信することが可能であると判断されれば、自己伝送モジュールからの接続先を前記送信対象モジュールから前記接続予定モジュールに変更する接続先変更ステップと、
を含む、情報伝送方法。
An information transmission method for transmitting the predetermined transmission information along a predetermined transmission path including the information processing apparatus via a transmission module for transmitting the predetermined transmission information to be processed by the information processing apparatus,
A transmission step of transmitting the predetermined transmission information from the self-transmission module to a transmission target module located immediately downstream of the self-transmission module in the predetermined transmission path;
A step of confirming that the predetermined transmission information is a transmission completion state received by the transmission target module;
A module that is arranged to relay the predetermined transmission information from the self-transmission module in the predetermined transmission path, with respect to a connection scheduled module interposed between the transmission target module and the information processing apparatus A determination step for performing a determination process as to whether or not the predetermined transmission information can be directly transmitted from the self-transmission module;
When a transmission failure occurs in which the transmission completion state of the predetermined transmission information cannot be confirmed in the confirmation step, the predetermined transmission information can be directly transmitted from the self-transmission module to the connection scheduled module in the determination step. If determined, a connection destination changing step of changing the connection destination from the self-transmission module from the transmission target module to the connection scheduled module;
Including an information transmission method.
情報処理装置で処理されるべき所定送信情報の伝送を行う伝送モジュールに、
前記所定送信情報を自己伝送モジュールから、前記所定の伝送経路において自己伝送モジュールの直下流に位置する送信対象モジュールに送信する送信ステップと、
前記所定送信情報が、前記送信対象モジュールによって受信された送信完了状態を確認する確認ステップと、
前記所定の伝送経路において自己伝送モジュールからの前記所定送信情報を中継するように配置されていたモジュールであって、前記送信対象モジュールと前記情報処理装置との間に介在する接続予定モジュールに対して、自己伝送モジュールから該所定送信情報を直接送信することが可能であるか否かについての判断処理を行う判断ステップと、
前記確認ステップで前記所定送信情報の前記送信完了状態が確認できない送信不良が生じた場合、前記判断ステップで自己伝送モジュールから前記所定送信情報を前記接続予定モジュールに直接送信することが可能であると判断されれば、自己伝送モジュールからの接続先を前記送信対象モジュールから前記接続予定モジュールに変更する接続先変更ステップと、
を実行させる、情報伝送プログラム。
In the transmission module that transmits the predetermined transmission information to be processed by the information processing device,
A transmission step of transmitting the predetermined transmission information from the self-transmission module to a transmission target module located immediately downstream of the self-transmission module in the predetermined transmission path;
A step of confirming that the predetermined transmission information is a transmission completion state received by the transmission target module;
A module that is arranged to relay the predetermined transmission information from the self-transmission module in the predetermined transmission path, with respect to a connection scheduled module interposed between the transmission target module and the information processing apparatus A determination step for performing a determination process as to whether or not the predetermined transmission information can be directly transmitted from the self-transmission module;
When a transmission failure occurs in which the transmission completion state of the predetermined transmission information cannot be confirmed in the confirmation step, the predetermined transmission information can be directly transmitted from the self-transmission module to the connection scheduled module in the determination step. If determined, a connection destination changing step of changing the connection destination from the self-transmission module from the transmission target module to the connection scheduled module;
An information transmission program that executes
JP2014050814A 2014-03-13 2014-03-13 Transmission module, information transmission network system, information transmission method, and information transmission program Pending JP2015177266A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014050814A JP2015177266A (en) 2014-03-13 2014-03-13 Transmission module, information transmission network system, information transmission method, and information transmission program
PCT/JP2015/055361 WO2015137117A1 (en) 2014-03-13 2015-02-25 Transmission module, information transmission network system, information transmission method, and information transmission program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014050814A JP2015177266A (en) 2014-03-13 2014-03-13 Transmission module, information transmission network system, information transmission method, and information transmission program

Publications (1)

Publication Number Publication Date
JP2015177266A true JP2015177266A (en) 2015-10-05

Family

ID=54071565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014050814A Pending JP2015177266A (en) 2014-03-13 2014-03-13 Transmission module, information transmission network system, information transmission method, and information transmission program

Country Status (2)

Country Link
JP (1) JP2015177266A (en)
WO (1) WO2015137117A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504481B2 (en) * 1987-08-31 1996-06-05 富士通株式会社 Data transmission method in telemeter system
JP2009253823A (en) * 2008-04-09 2009-10-29 Mitsubishi Electric Corp Automatic measuring system
EP2592870B1 (en) * 2011-11-11 2018-09-26 Itron Global SARL Routing communications based on node availability
JP6008761B2 (en) * 2013-03-07 2016-10-19 株式会社日立製作所 Independent distributed network system

Also Published As

Publication number Publication date
WO2015137117A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
US8885546B2 (en) Control station apparatus and control method thereof, communication apparatus and control method thereof, and wireless communication system
US10321379B2 (en) Method and apparatus for reducing the length of a packet storm in a wireless mesh network
JP5196931B2 (en) Network system and control wireless device
US10588173B2 (en) Wi-Fi mesh fire detection system
US9407552B2 (en) Device and system for preventing congestion in ad-hoc network
WO2016098205A1 (en) Collection system, collection device, and power control method
KR101334131B1 (en) Bundle data relaying method for Swarming UAVs
JP6508594B2 (en) Communication node, communication method and wireless communication system
US9706573B2 (en) Method of routing data in a network of sensors
JPH0983528A (en) Radio network
JP2015220671A (en) Communication method, communication system, and communication device
JP5295052B2 (en) Wireless terminal device, wireless communication system, and wireless communication method
JP5193162B2 (en) Wireless communication state acquisition method and wireless station
WO2015137117A1 (en) Transmission module, information transmission network system, information transmission method, and information transmission program
WO2015129658A1 (en) Transmission module, information transmission network system, information transmission method, and information transmission program
JP6241538B2 (en) Transmission module, information transmission network system, information transmission method, information transmission program
WO2015129659A1 (en) Transport module, information-transport-network system, information-transport method, and information-transport program
CN105794260A (en) Transfer module, information-transfer network system, information transfer method, and information transfer program
JP6142746B2 (en) Transmission module, sensor network system, information transmission network system, information transmission method, information transmission program
JP6708052B2 (en) Wireless communication network system, wireless communication network system construction method, and wireless terminal
TW201545516A (en) Communication device and wireless mesh network
WO2015137118A1 (en) Transmission module, information transmission network system, information transmission method, and information transmission program
JP6064198B2 (en) Wireless network system and safety confirmation system using the same
KR20190049599A (en) Method and apparatus for enhancing reliability transmission through adjacent node transmission on decentralized network using tree topology
JP2021034974A (en) Radio communication device, radio communication program, and radio communications system