JP2015176676A - Negative electrode material of power storage device - Google Patents

Negative electrode material of power storage device Download PDF

Info

Publication number
JP2015176676A
JP2015176676A JP2014050624A JP2014050624A JP2015176676A JP 2015176676 A JP2015176676 A JP 2015176676A JP 2014050624 A JP2014050624 A JP 2014050624A JP 2014050624 A JP2014050624 A JP 2014050624A JP 2015176676 A JP2015176676 A JP 2015176676A
Authority
JP
Japan
Prior art keywords
tnf
tcf
negative electrode
alloy
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014050624A
Other languages
Japanese (ja)
Other versions
JP6211961B2 (en
Inventor
澤田 俊之
Toshiyuki Sawada
俊之 澤田
友紀 廣野
Tomoki Hirono
友紀 廣野
哲嗣 久世
Tetsutsugu Kuze
哲嗣 久世
哲朗 仮屋
Tetsuro Kariya
哲朗 仮屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2014050624A priority Critical patent/JP6211961B2/en
Priority to PCT/JP2015/057011 priority patent/WO2015137338A1/en
Priority to KR1020167023587A priority patent/KR20160132826A/en
Priority to CN201580012018.6A priority patent/CN106133955B/en
Priority to TW104107920A priority patent/TWI639268B/en
Publication of JP2015176676A publication Critical patent/JP2015176676A/en
Application granted granted Critical
Publication of JP6211961B2 publication Critical patent/JP6211961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device excellent in various performances.SOLUTION: A negative electrode 12 of a power storage device includes a collector 18 and a plurality of particles 22 firmly fixed to the surface of the collector 18. The particles 22 are formed of an Si-based alloy. The alloy contains two or more elements selected from the group consisting of Cr, Al, Sn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, Cu, C, B, P, Ag, Zn, In, Ga, Ge, Pb, Bi, S and Se, with the remainder being Si and inevitable impurities. The alloy contains Cr. The ratio of (Cr%/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)) is 0.05 or more. The alloy contains Al and/or Sn. The ratio of ((Al%+Sn%)/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)) is 0.002 or more and 0.400 or less.

Description

本発明は、リチウムイオン二次電池、全固体リチウムイオン二次電池、ハイブリットキャパシタ等の蓄電デバイスの負極に適した材料に関する。   The present invention relates to a material suitable for a negative electrode of a power storage device such as a lithium ion secondary battery, an all solid lithium ion secondary battery, or a hybrid capacitor.

リチウム二次電池の負極活物質には従来より炭素材料からなる粉末が用いられているが、炭素材料は理論容量が372mAh/gと低く、更なる高容量化には限界がある。これに対し、近年ではSn、Al、Siなど炭素材料よりも理論容量の高い金属材料の適用が検討、実用化されている。特に、Siは4000mAh/gを超える理論容量があり、有望な材料である。これら炭素に変わる金属材料をリチウムイオン二次電池の負極活物質として適用する際には、高容量は得られるものの、サイクル寿命が短いという課題がある。   Conventionally, a powder made of a carbon material has been used as a negative electrode active material of a lithium secondary battery. However, the theoretical capacity of the carbon material is as low as 372 mAh / g, and there is a limit to further increasing the capacity. On the other hand, in recent years, application of metal materials having higher theoretical capacity than carbon materials such as Sn, Al, and Si has been studied and put into practical use. In particular, Si has a theoretical capacity exceeding 4000 mAh / g and is a promising material. When a metal material that changes to carbon is used as a negative electrode active material for a lithium ion secondary battery, there is a problem that a cycle life is short although a high capacity is obtained.

この課題に対し、Siに種々の元素を添加し、純Si粉末ではなくSi合金粉末とし、微細組織を得ることで改善する方法が多く提案されている。特許文献1では、共晶となる量、もしくはそれ以上の過共晶となる量のCoなどの元素を添加し、これを100℃/s以上の冷却速度で凝固させることによって、Si相の短軸粒径が5μm以下となる合金粉末を得ている。このような微細Si相を有するSi合金粉末を用いることでサイクル寿命を改善している。すなわち、Liを吸蔵、放出しない珪化物を生成させることにより、微細なSi相のLi吸蔵、放出時の体積変化を抑制する効果を得ている。   In response to this problem, many methods have been proposed in which various elements are added to Si to form a Si alloy powder instead of pure Si powder to obtain a fine structure. In Patent Document 1, a short amount of Si phase is obtained by adding an amount of eutectic or a higher amount of hypereutectic elements such as Co and solidifying it at a cooling rate of 100 ° C./s or more. An alloy powder having an axial particle size of 5 μm or less is obtained. The cycle life is improved by using such an Si alloy powder having a fine Si phase. That is, by producing a silicide that does not occlude and release Li, an effect of suppressing volume change during Li occlusion and release of a fine Si phase is obtained.

さらに、このようなSi合金の適用によるサイクル寿命改善技術を発展させ、より微細な組織が得られ、より優れたサイクル寿命を有する合金として、発明者は、特許文献2において、所定のCr、Ti、Al、Snを添加することで、Si相とCrSi相の微細共晶組織が得られることを提案している。この特許文献2は、Siへの添加元素として、特にCrが優れることを見出したものである。 Furthermore, the inventors have developed a cycle life improvement technique by applying such a Si alloy, and as an alloy having a finer structure and having a better cycle life, the inventor disclosed in Patent Document 2 a predetermined Cr, Ti It has been proposed that a fine eutectic structure of Si phase and CrSi 2 phase can be obtained by adding Al and Sn. This Patent Document 2 has found that Cr is particularly excellent as an additive element to Si.

一方、リチウムイオン二次電池の負極に用いるSi合金粉末は、多くの場合、ボールミルなどにより数μm以下に粉砕加工されたり、結晶性を低下させて使用される。さらに、特許文献4−6のように、ボールミルによる加工の際に、炭素材料、導電性金属粉末、酸化物粉末を導入し、これらとSi合金粉末を複合化することにより、一段と優れた充放電特性を実現する方法が提案されている。   On the other hand, the Si alloy powder used for the negative electrode of a lithium ion secondary battery is often used by being pulverized to a few μm or less by a ball mill or the like, or by reducing crystallinity. Furthermore, as in Patent Document 4-6, when processing by a ball mill, a carbon material, conductive metal powder, and oxide powder are introduced, and these are combined with Si alloy powder to further improve charge and discharge. A method for realizing the characteristics has been proposed.

特開2001−297757公報JP 2001-297757 A 特開2012−150910公報JP2012-150910A 特開2013−84549公報JP2013-84549A 特開2012−178344公報JP 2012-178344 A 特開2012−113945公報JP2012-113945A 特開2013−191529公報JP2013-191529A

第54回電池討論会、講演要旨集、(2013)P13854th Battery Symposium, Abstracts of Lectures, (2013) P138

本発明は、特許文献2の技術をベースとし、さらに充放電特性を改善させる技術を確立したものである。また、その背景には、以下に記述するような、本発明の周辺技術の変化がある。すなわち、近年、リチウムイオン電池のSi系負極用材料を取り巻く環境は大きく変化しており、負極中の導電材やバインダー、また、電解液や電解質、セパレーター、さらには正極材料の改良など、Si系負極材料の最大の欠点である低いサイクル寿命特性を補う電池構成全体の改良が盛んに検討されている(一例として特許文献3などが挙げられる)。このような状況において、同じSi合金を負極活物質として用いても、サイクル寿命が向上するケースが増えてきた。特許文献2において、Cr、Ti、Al、Snの添加量が21%を超えると、サイクル寿命が低下することを記述したが、上述のような電池構成全体の改良によって、これら添加元素の添加量は更に高い水準でも利用可能な場合が出てきた。しかしながら、これら添加元素の添加量を上げた場合、他の問題も発生する。すなわち、これら添加元素の添加量が増えると、残部であるSi量が減り、例えば非特許文献1に示されるような、初期クーロン効率の低下が顕著となる。   The present invention is based on the technique of Patent Document 2, and further establishes a technique for improving charge / discharge characteristics. In addition, there are changes in the peripheral technology of the present invention as described below. That is, in recent years, the environment surrounding Si-based negative electrode materials for lithium-ion batteries has changed greatly. Conductive materials and binders in the negative electrode, as well as improvements in electrolytes, electrolytes, separators, and positive electrode materials, etc. Improvement of the whole battery structure which supplements the low cycle life characteristic which is the biggest fault of negative electrode material is examined actively (for example, patent document 3 etc. are mentioned). In such a situation, even when the same Si alloy is used as the negative electrode active material, the number of cases where the cycle life is improved has increased. In Patent Document 2, it has been described that when the amount of Cr, Ti, Al, and Sn added exceeds 21%, the cycle life is reduced. In some cases, even higher levels are available. However, when the addition amount of these additive elements is increased, other problems also occur. That is, when the addition amount of these additional elements increases, the remaining Si amount decreases, and the initial Coulomb efficiency decreases as shown in Non-Patent Document 1, for example.

同様の問題は、リチウムイオン二次電池以外の蓄電デバイスにおいても生じている。   Similar problems occur in power storage devices other than lithium ion secondary batteries.

本発明の目的は、放電容量、サイクル寿命、初回クーロン効率及び負極膨張率に優れる蓄電デバイス用負極が得られうる材料の提供にある。   An object of the present invention is to provide a material from which a negative electrode for an electricity storage device having excellent discharge capacity, cycle life, initial Coulomb efficiency, and negative electrode expansion coefficient can be obtained.

本発明は特許文献2よりもCr、Ti、Al、Snなどの添加元素量を高くするとともに、Al及び/又はSnを必須元素として含有させることにより、上記のような初期クーロン効率の低下を抑制できることを見出し、発明に至ったものである。さらに、全添加元素の合計量を高くすることで、充放電にともなう負極の厚さ増大を著しく抑制できる効果も見出し、特許文献2よりも総合特性に優れたSi合金粉末となる。   In the present invention, the amount of additive elements such as Cr, Ti, Al, and Sn is made higher than that of Patent Document 2, and Al and / or Sn are contained as essential elements, thereby suppressing the above-described decrease in initial Coulomb efficiency. It has been found out that it can be done and has led to the invention. Furthermore, by increasing the total amount of all the additive elements, an effect of remarkably suppressing the increase in the thickness of the negative electrode accompanying charging / discharging is also found, and the Si alloy powder is more excellent in overall characteristics than Patent Document 2.

本発明に係る蓄電デバイスの負極材料は、Si系合金からなる。この合金は、Cr、Al、Sn、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、Ni、Cu、C、B、P、Ag、Zn、In、Ga、Ge、Pb、Bi、S及びSeからなる群から選択される2以上の元素を含む。残部は、Si及び不可避的不純物である。TCF(%)が下記数式(I)で定義され、TNF(%)が下記数式(II)で定義されるとき、この合金は、下記数式(1)から(6)を満たす。
(I)TCF%=Zr%+Hf%+V%+Nb%+Ta%+Mo%+W%+Mn%+Fe%+Co%+Ni%/2+Cu%/3
(II)TNF%=C%+B%+P%+Ag%+Zn%+In%+Ga%+Ge%+Pb%+Bi%+S%+Se%
(1)25%<Cr%+Ti%+Al%+Sn%+TCF%+TNF%≦40%
(2)0.05≦Cr%/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)
(3)0.002≦(Al%+Sn%)/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)≦0.400
(4)4.8×(Cr%+Ti%+TCF%)+(Al%+Sn%+TNF%)≦135%
(5)TCF%<10%
(6)TNF%≦5%
The negative electrode material of the electricity storage device according to the present invention is made of a Si-based alloy. This alloy includes Cr, Al, Sn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, Cu, C, B, P, Ag, Zn, In, Ga, It contains two or more elements selected from the group consisting of Ge, Pb, Bi, S and Se. The balance is Si and inevitable impurities. When TCF (%) is defined by the following formula (I) and TNF (%) is defined by the following formula (II), this alloy satisfies the following formulas (1) to (6).
(I) TCF% = Zr% + Hf% + V% + Nb% + Ta% + Mo% + W% + Mn% + Fe% + Co% + Ni% / 2 + Cu% / 3
(II) TNF% = C% + B% + P% + Ag% + Zn% + In% + Ga% + Ge% + Pb% + Bi% + S% + Se%
(1) 25% <Cr% + Ti% + Al% + Sn% + TCF% + TNF% ≦ 40%
(2) 0.05 ≦ Cr% / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%)
(3) 0.002 ≦ (Al% + Sn%) / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%) ≦ 0.400
(4) 4.8 × (Cr% + Ti% + TCF%) + (Al% + Sn% + TNF%) ≦ 135%
(5) TCF% <10%
(6) TNF% ≦ 5%

好ましくは、この負極材料は、合金の溶湯が100℃/s以上の速度で冷却されて凝固することで得られる。   Preferably, the negative electrode material is obtained by cooling and solidifying the molten alloy at a rate of 100 ° C./s or more.

好ましくは、この負極材料は、少なくとも合金の粉末と硬質球とが、容器内で撹拌され、この粉末が粉砕されることで得られる。   Preferably, the negative electrode material is obtained by stirring at least an alloy powder and hard spheres in a container and pulverizing the powder.

本発明に係る蓄電デバイスの負極は、集電体と、この集電体の表面に固着された多数の粒子とを備える。粒子は、Si系合金からなる。この合金は、Cr、Al、Sn、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、Ni、Cu、C、B、P、Ag、Zn、In、Ga、Ge、Pb、Bi、S及びSeからなる群から選択される2以上の元素を含む。残部は、Si及び不可避的不純物である。TCF(%)が下記数式(I)で定義され、TNF(%)が下記数式(II)で定義されるとき、この合金は、下記数式(1)から(6)を満たす。
(I)TCF%=Zr%+Hf%+V%+Nb%+Ta%+Mo%+W%+Mn%+Fe%+Co%+Ni%/2+Cu%/3
(II)TNF%=C%+B%+P%+Ag%+Zn%+In%+Ga%+Ge%+Pb%+Bi%+S%+Se%
(1)25%<Cr%+Ti%+Al%+Sn%+TCF%+TNF%≦40%
(2)0.05≦Cr%/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)
(3)0.002≦(Al%+Sn%)/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)≦0.400
(4)4.8×(Cr%+Ti%+TCF%)+(Al%+Sn%+TNF%)≦135%
(5)TCF%<10%
(6)TNF%≦5%
The negative electrode of the electricity storage device according to the present invention includes a current collector and a large number of particles fixed to the surface of the current collector. The particles are made of a Si-based alloy. This alloy includes Cr, Al, Sn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, Cu, C, B, P, Ag, Zn, In, Ga, It contains two or more elements selected from the group consisting of Ge, Pb, Bi, S and Se. The balance is Si and inevitable impurities. When TCF (%) is defined by the following formula (I) and TNF (%) is defined by the following formula (II), this alloy satisfies the following formulas (1) to (6).
(I) TCF% = Zr% + Hf% + V% + Nb% + Ta% + Mo% + W% + Mn% + Fe% + Co% + Ni% / 2 + Cu% / 3
(II) TNF% = C% + B% + P% + Ag% + Zn% + In% + Ga% + Ge% + Pb% + Bi% + S% + Se%
(1) 25% <Cr% + Ti% + Al% + Sn% + TCF% + TNF% ≦ 40%
(2) 0.05 ≦ Cr% / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%)
(3) 0.002 ≦ (Al% + Sn%) / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%) ≦ 0.400
(4) 4.8 × (Cr% + Ti% + TCF%) + (Al% + Sn% + TNF%) ≦ 135%
(5) TCF% <10%
(6) TNF% ≦ 5%

本発明に係る蓄電デバイスは、正極と負極とを備える。この負極は、集電体と、この集電体の表面に固着された多数の粒子とを備える。この粒子は、Si系合金からなる。この合金は、Cr、Al、Sn、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、Ni、Cu、C、B、P、Ag、Zn、In、Ga、Ge、Pb、Bi、S及びSeからなる群から選択される2以上の元素を含む。残部は、Si及び不可避的不純物である。TCF(%)が下記数式(I)で定義され、TNF(%)が下記数式(II)で定義されるとき、この合金は、下記数式(1)から(6)を満たす。
(I)TCF%=Zr%+Hf%+V%+Nb%+Ta%+Mo%+W%+Mn%+Fe%+Co%+Ni%/2+Cu%/3
(II)TNF%=C%+B%+P%+Ag%+Zn%+In%+Ga%+Ge%+Pb%+Bi%+S%+Se%
(1)25%<Cr%+Ti%+Al%+Sn%+TCF%+TNF%≦40%
(2)0.05≦Cr%/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)
(3)0.002≦(Al%+Sn%)/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)≦0.400
(4)4.8×(Cr%+Ti%+TCF%)+(Al%+Sn%+TNF%)≦135%
(5)TCF%<10%
(6)TNF%≦5%
The electricity storage device according to the present invention includes a positive electrode and a negative electrode. The negative electrode includes a current collector and a large number of particles fixed to the surface of the current collector. These particles are made of a Si-based alloy. This alloy includes Cr, Al, Sn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, Cu, C, B, P, Ag, Zn, In, Ga, It contains two or more elements selected from the group consisting of Ge, Pb, Bi, S and Se. The balance is Si and inevitable impurities. When TCF (%) is defined by the following formula (I) and TNF (%) is defined by the following formula (II), this alloy satisfies the following formulas (1) to (6).
(I) TCF% = Zr% + Hf% + V% + Nb% + Ta% + Mo% + W% + Mn% + Fe% + Co% + Ni% / 2 + Cu% / 3
(II) TNF% = C% + B% + P% + Ag% + Zn% + In% + Ga% + Ge% + Pb% + Bi% + S% + Se%
(1) 25% <Cr% + Ti% + Al% + Sn% + TCF% + TNF% ≦ 40%
(2) 0.05 ≦ Cr% / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%)
(3) 0.002 ≦ (Al% + Sn%) / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%) ≦ 0.400
(4) 4.8 × (Cr% + Ti% + TCF%) + (Al% + Sn% + TNF%) ≦ 135%
(5) TCF% <10%
(6) TNF% ≦ 5%

本発明に係る材料を含む負極は、放電容量、サイクル寿命、初回クーロン効率及び負極膨張率に優れる。   The negative electrode containing the material according to the present invention is excellent in discharge capacity, cycle life, initial Coulomb efficiency, and negative electrode expansion coefficient.

図1は、本発明の一実施形態に係る、蓄電デバイスとしてのリチウムイオン二次電池が示された概念図である。FIG. 1 is a conceptual diagram showing a lithium ion secondary battery as an electricity storage device according to an embodiment of the present invention. 図2は、図1の電池の負極の一部が示された拡大断面図である。FIG. 2 is an enlarged cross-sectional view showing a part of the negative electrode of the battery of FIG.

以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。   Hereinafter, the present invention will be described in detail based on preferred embodiments with appropriate reference to the drawings.

図1に概念的に示されたリチウムイオン二次電池2は、槽4、電解液6、セパレータ8、正極10及び負極12を備えている。電解液6は、槽4に蓄えられている。この電解液6は、リチウムイオンを含んでいる。セパレータ8は、槽4を、正極室14及び負極室16に区画している。セパレータ8により、正極10と負極12との当接が防止される。このセパレータ8は、多数の孔(図示されず)を備えている。リチウムイオンは、この孔を通過しうる。正極10は、正極室14において、電解液6に浸漬されている。負極12は、負極室16において、電解液6に浸漬されている。   The lithium ion secondary battery 2 conceptually shown in FIG. 1 includes a tank 4, an electrolytic solution 6, a separator 8, a positive electrode 10, and a negative electrode 12. The electrolytic solution 6 is stored in the tank 4. This electrolytic solution 6 contains lithium ions. The separator 8 partitions the tank 4 into a positive electrode chamber 14 and a negative electrode chamber 16. The separator 8 prevents contact between the positive electrode 10 and the negative electrode 12. The separator 8 has a large number of holes (not shown). Lithium ions can pass through this hole. The positive electrode 10 is immersed in the electrolytic solution 6 in the positive electrode chamber 14. The negative electrode 12 is immersed in the electrolytic solution 6 in the negative electrode chamber 16.

図2には、負極12の一部が示されている。この負極12は、集電体18と、活物質層20とを備えている。活物質層20は、多数の粒子22(粉末)を含んでいる。それぞれの粒子22は、この粒子22に当接する他の粒子22と固着されている。集電体18に当接する粒子22は、この集電体18に固着されている。活物質層20は、多孔質である。   FIG. 2 shows a part of the negative electrode 12. The negative electrode 12 includes a current collector 18 and an active material layer 20. The active material layer 20 includes a large number of particles 22 (powder). Each particle 22 is fixed to another particle 22 that contacts the particle 22. The particles 22 that come into contact with the current collector 18 are fixed to the current collector 18. The active material layer 20 is porous.

粒子22の材質(負極材料)は、Si系合金である。この合金は、Si相と化合物相とを有している。Si相の主成分は、Siである。このSi相は、Diamond構造を有する。Si相にSi以外の元素が固溶してもよい。前述の通り、Siはリチウムイオンと反応する。Si相はSiを主成分としているので、このSi相を含む負極12は、大量のリチウムイオンを吸蔵しうる。Si相は、負極12の蓄電容量を高めうる。   The material of the particles 22 (negative electrode material) is a Si-based alloy. This alloy has a Si phase and a compound phase. The main component of the Si phase is Si. This Si phase has a Diamond structure. Elements other than Si may be dissolved in the Si phase. As described above, Si reacts with lithium ions. Since the Si phase contains Si as a main component, the negative electrode 12 including the Si phase can occlude a large amount of lithium ions. The Si phase can increase the storage capacity of the negative electrode 12.

この合金は、Crを含有する。Crは、化合物相において、Si−Cr化合物を形成する。化合物の具体例は、CrSiである。CrSiは、Si相と共晶反応を起こしうる。換言すれば、粒子22は、Si−CrSi共晶合金から形成されうる。この共晶合金では、Si相は極めて微細であり、CrSi相も極めて微細である。この化合物相は、充電時の膨張及び放電時の収縮によって生じる応力を緩和する。 This alloy contains Cr. Cr forms a Si—Cr compound in the compound phase. Specific examples of the compound is CrSi 2. CrSi 2 can cause a eutectic reaction with the Si phase. In other words, the particles 22 can be formed from a Si—CrSi 2 eutectic alloy. In this eutectic alloy, the Si phase is extremely fine, and the CrSi 2 phase is also extremely fine. This compound phase relieves stress caused by expansion during charge and contraction during discharge.

CrSi相は、Hexagonal構造を有する。CrSi相の空間群は、P622に属する。この相は、充放電時のSi相の体積変化を抑制しうる。この化合物では、Ti等の元素が置換しうる。 The CrSi 2 phase has a hexagonal structure. The space group of CrSi 2 phase belongs to P6 2 22. This phase can suppress the volume change of the Si phase during charge and discharge. In this compound, elements such as Ti can be substituted.

化合物相が、Crと共に、Tiを含有してもよい。この化合物相では、Si−CrSi共晶合金のCrの一部が、Tiで置換される。換言すれば、化合物相は、Si−Cr−Ti化合物を含む。Tiは、結晶の格子定数を増加させると推測される。格子定数の大きな化合物相を有する粒子22では、珪化物中を、リチウムイオンが円滑に通過すると推測される。さらに、(Cr,Ti)Si等の化合物は、粒子22の電気伝導性を向上させると推測される。 The compound phase may contain Ti together with Cr. In this compound phase, a part of Cr in the Si—CrSi 2 eutectic alloy is substituted with Ti. In other words, the compound phase includes a Si—Cr—Ti compound. Ti is presumed to increase the lattice constant of the crystal. In the particles 22 having a compound phase having a large lattice constant, it is estimated that lithium ions pass smoothly through the silicide. Further, it is estimated that a compound such as (Cr, Ti) Si 2 improves the electrical conductivity of the particles 22.

この合金は、Al及びSnのいずれか一方又は両方を含む。これら両元素は、上述のように初期クーロン効率の低下を抑制する。このクーロン効率低下の抑制について、詳細は不明であるが以下のことが推測される。Al、SnはCr、TiおよびTCFに属する元素と異なり、Siと化合した珪化物を生成しにくい。したがって、X線回折やEDX分析を行なうと、Al、Snは合金中でSiに固溶もしくは単独で存在しうることがわかる。Al、SnはいずれもSiや珪化物と比較すると電気伝導性が高く、負極活物質内や導電材との電気伝導性を改善すると考えられる。   This alloy contains one or both of Al and Sn. Both of these elements suppress the decrease in initial Coulomb efficiency as described above. Although details are unknown about the suppression of the coulomb efficiency decrease, the following is presumed. Unlike elements belonging to Cr, Ti, and TCF, Al and Sn are unlikely to form silicides combined with Si. Therefore, when X-ray diffraction or EDX analysis is performed, it is understood that Al and Sn can be dissolved in Si or exist alone in the alloy. Both Al and Sn have higher electrical conductivity than Si and silicide, and are considered to improve the electrical conductivity in the negative electrode active material and with the conductive material.

さらに、従来、Si相の体積膨張を抑制しサイクル寿命を改善するために各種の化合物が適用されてきたが、多くの場合、これら化合物は硬質であり、Si相の膨張・収縮を強制的に抑え込み制限する作用を有すると考えられる。このような強制的な抑え込みの方法は、Siの体積変化に対する物理的な抵抗となり、結果として、Si相本来が持つLi吸蔵キャパシティーまで吸蔵させる場合には内部抵抗として現れる。同様に、一旦膨張したSi相がLiを放出する際には、やはり化合物の変形がSi相の収縮に追随できず、Si相は元の体積まで戻るのに大きな物理的抵抗を受け、結果として、吸蔵したLiを放出しきれない。この放出しきれないLi量が、特に初回のクーロン効率(放電量/充電量×100(%))を低下させる原因となると考えられる。実際に、非特許文献1に示されたように、Si相の体積変化を強制的に抑え込むSi相以外の相が増え、Si相が減るとともに初回クーロン効率が低下している。これに対し、本発明で添加されたAlおよび/もしくはSnは、Siや珪化物と比較し、著しく軟質であるとともに延性も高い。したがって、特にLiを放出する際のSi相の体積収縮の抵抗になりにくいと考えられ、本発明が特許文献2よりもCrやTiなどの合計添加量が高く設定され、Si相の生成量が少ないにも関わらず、初回クーロン効率の低下が小さいと考えられる。このような、電気伝導性の改善とSi相の体積収縮の抵抗になりにくい特長が、本発明におけるAlおよび/もしくはSn添加による、初回クーロン効率の低下抑制の要因であると推測される。   Furthermore, conventionally, various compounds have been applied to suppress the volume expansion of the Si phase and improve the cycle life. However, in many cases, these compounds are hard and force the expansion and contraction of the Si phase. It is thought that it has the effect | action which suppresses and restricts. Such a forced suppression method provides a physical resistance to the volume change of Si, and as a result, it appears as an internal resistance when the Li storage capacity inherent in the Si phase is stored. Similarly, when the expanded Si phase releases Li, the deformation of the compound still cannot follow the contraction of the Si phase, and the Si phase receives a large physical resistance to return to the original volume, resulting in , Occluded Li cannot be released. This amount of Li that cannot be released is considered to cause a decrease in the initial Coulomb efficiency (discharge amount / charge amount × 100 (%)). Actually, as shown in Non-Patent Document 1, the number of phases other than the Si phase that forcibly suppress the volume change of the Si phase increases, the Si phase decreases, and the initial Coulomb efficiency decreases. On the other hand, Al and / or Sn added in the present invention is remarkably soft and has high ductility as compared with Si and silicide. Therefore, it is considered that resistance to volumetric shrinkage of the Si phase particularly when Li is released, and the present invention is set higher in total addition amount of Cr, Ti, etc. than Patent Document 2, and the amount of Si phase generated is reduced. Despite the small number, the decrease in the initial coulomb efficiency is considered to be small. It is presumed that such an improvement in electrical conductivity and resistance to resistance to volume shrinkage of the Si phase is a factor for suppressing a decrease in initial Coulomb efficiency due to the addition of Al and / or Sn in the present invention.

また、Cu系珪化物やSnCu系化合物のように比較的軟質な化合物を利用する提案もあるが、これらの化合物と比較しても、AlやSnは格段に硬度が低い。さらに、AlとSnはSiほどではないが、これ自身もLiを吸蔵出来ることからもわかるとおり、Liが相の内部を移動する際の抵抗が、上述の化合物などと比較しても格段に低く、これもスムーズな充放電を可能とする要因であり、本発明合金の初回クーロン効率の改善に寄与すると考えられる。   There are also proposals to use relatively soft compounds such as Cu-based silicides and SnCu-based compounds, but Al and Sn have much lower hardness than these compounds. Furthermore, although Al and Sn are not as much as Si, as can be seen from the fact that they themselves can occlude Li, the resistance when Li moves inside the phase is much lower than the above compounds. This is also a factor that enables smooth charge and discharge, and is considered to contribute to the improvement of the initial Coulomb efficiency of the alloy of the present invention.

またさらに、AlとSnは延性にも優れることから、Li吸蔵・放出にともなう負極活物質の崩壊を抑制する働きもあると考えられ、優れたサイクル寿命の要因となっているものと推測される。   Furthermore, since Al and Sn are excellent in ductility, it is considered that they also have a function of suppressing the decay of the negative electrode active material accompanying Li occlusion / release, and are presumed to be a factor of excellent cycle life. .

合金が、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、Ni又はCuを含有してもよい。合金が、これらの元素の2種以上を含有してもよい。これらの元素は、CrSi相のCrと置換しうる。この置換により、CrSi相が微細化されると推測される。微細化されたCrSi相は、充電時の膨張及び放電時の収縮によって生じる応力を緩和する。この電池2は、サイクル寿命に優れる。 The alloy may contain Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni or Cu. The alloy may contain two or more of these elements. These elements can replace Cr in the CrSi 2 phase. It is presumed that the CrSi 2 phase is refined by this substitution. The refined CrSi 2 phase relieves stress caused by expansion during charge and contraction during discharge. This battery 2 is excellent in cycle life.

Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、Ni及びCuは、TCFに属する元素である。これらの元素は、合金において珪化物を形成する。これらの元素は、充放電の繰り返しによる負極の膨張を抑制する。TCFの合計含有率は、下記の数式(I)によって得られる。
TCF%=Zr%+Hf%+V%+Nb%+Ta%+Mo%+W%+Mn%+Fe%+ Co%+Ni%/2+Cu%/3 (I)
Niは、負極の膨張を抑制する能力が他の元素の1/2程度である。従って、上記数式(I)において、Ni%が2で除されている。Cuは、負極の膨張を抑制する能力が他の元素の1/3程度である。従って、上記数式(I)において、Cu%が3で除されている。本明細書において、「%」は、特に言及が無い限り、原子組成百分率(at.%)を表す。
Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, and Cu are elements belonging to TCF. These elements form silicides in the alloy. These elements suppress the expansion of the negative electrode due to repeated charge and discharge. The total content of TCF is obtained by the following mathematical formula (I).
TCF% = Zr% + Hf% + V% + Nb% + Ta% + Mo% + W% + Mn% + Fe% + Co% + Ni% / 2 + Cu% / 3 (I)
Ni has the ability to suppress expansion of the negative electrode is about ½ that of other elements. Therefore, in the above formula (I), Ni% is divided by 2. Cu has the ability to suppress expansion of the negative electrode to about 1/3 of other elements. Therefore, in the above formula (I), Cu% is divided by 3. In this specification, “%” represents an atomic composition percentage (at.%) Unless otherwise specified.

TCFの合計含有率は、10%未満が好ましい。この合計含有率が10%未満である合金を有する負極は、サイクル寿命に優れる。この観点から、この合計含有率は5%未満が好ましく、2%未満が特に好ましい。この合計含有率がゼロでもよい。   The total content of TCF is preferably less than 10%. A negative electrode having an alloy having a total content of less than 10% is excellent in cycle life. In this respect, the total content is preferably less than 5% and particularly preferably less than 2%. This total content may be zero.

合金が、C、B、P、Ag、Zn、In、Ga、Ge、Pb、Bi、S又はSeを含有してもよい。合金が、これらの元素の2種以上を含有してもよい。これらの元素を過剰に含む合金は、充放電特性に劣る。充放電特性に大幅な悪影響を与えない範囲で、これらの元素が添加される。   The alloy may contain C, B, P, Ag, Zn, In, Ga, Ge, Pb, Bi, S, or Se. The alloy may contain two or more of these elements. An alloy containing these elements excessively has poor charge / discharge characteristics. These elements are added as long as the charge / discharge characteristics are not significantly adversely affected.

C、B、P、Ag、Zn、In、Ga、Ge、Pb、Bi、S及びSeは、TNFに属する元素である。これらの元素は、合金において、下記(a)から(c)のいずれかの状態にある。
(a)TNFに属する元素が、Si相に固溶する。
(b)TNFに属する元素が、単体相(その元素の固溶体相)を形成する。
(c)TNFに属する元素が、Si以外の元素と化合物を形成する。
TNFの合計含有率は、下記の数式(II)によって得られる。
TNF%=C%+B%+P%+Ag%+Zn%+In%+Ga%+Ge%+Pb%+
Bi%+S%+Se% (II)
C, B, P, Ag, Zn, In, Ga, Ge, Pb, Bi, S, and Se are elements belonging to TNF. These elements are in any of the following states (a) to (c) in the alloy.
(A) Elements belonging to TNF are dissolved in the Si phase.
(B) An element belonging to TNF forms a single phase (solid solution phase of the element).
(C) Elements belonging to TNF form compounds with elements other than Si.
The total content of TNF is obtained by the following mathematical formula (II).
TNF% = C% + B% + P% + Ag% + Zn% + In% + Ga% + Ge% + Pb% +
Bi% + S% + Se% (II)

TNFの合計含有率は、5%以下が好ましい。この合計含有率が5%以下である合金を有する負極は、サイクル寿命に優れる。この観点から、この合計含有率は3%未満が好ましく、1%未満が特に好ましい。この合計含有率がゼロでもよい。   The total content of TNF is preferably 5% or less. A negative electrode having an alloy having a total content of 5% or less is excellent in cycle life. In this respect, the total content is preferably less than 3%, particularly preferably less than 1%. This total content may be zero.

合金は、Cr、Al、Sn、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、Ni、Cu、C、B、P、Ag、Zn、In、Ga、Ge、Pb、Bi、S及びSeからなる群から選択される2以上の元素を含む。この合金の残部は、Si及び不可避的不純物である。   Alloys are Cr, Al, Sn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, Cu, C, B, P, Ag, Zn, In, Ga, Ge And two or more elements selected from the group consisting of Pb, Bi, S and Se. The balance of this alloy is Si and inevitable impurities.

本明細書では、下記の数式により、比率P1(%)が算出される。
P1=Cr%+Ti%+Al%+Sn%+TCF%+TNF%
比率P1は、25%を超えて40%以下が好ましい。比率P1が25%を超えている負極は、充放電の繰り返しに起因する膨張が抑制される。この観点から、比率P1は、27%を超えることがより好ましく、30%を超えることが特に好ましい。比率P1が40%以下である負極12を有する電池2は、初期のクーロン効率に優れる。この観点から、比率P1は38%未満がより好ましく、35%未満が特に好ましい。
In this specification, the ratio P1 (%) is calculated by the following mathematical formula.
P1 = Cr% + Ti% + Al% + Sn% + TCF% + TNF%
The ratio P1 is preferably more than 25% and 40% or less. In the negative electrode in which the ratio P1 exceeds 25%, expansion due to repeated charge / discharge is suppressed. In this respect, the ratio P1 is more preferably greater than 27% and particularly preferably greater than 30%. The battery 2 having the negative electrode 12 with the ratio P1 of 40% or less is excellent in initial Coulomb efficiency. In this respect, the ratio P1 is more preferably less than 38%, and particularly preferably less than 35%.

合金におけるCrとTiとの合計含有率は、0.05%以上30%以下が好ましい。合計含有率が0.05%以上である合金では、結晶子サイズが小さなSi相が得られうる。この観点から、合計含有率は12%以上が特に好ましい。合計含有率が30%以下である合金では、結晶子サイズが小さな化合物相が得られうる。この観点から、合計含有率は25%以下が特に好ましい。   The total content of Cr and Ti in the alloy is preferably 0.05% or more and 30% or less. In an alloy having a total content of 0.05% or more, a Si phase having a small crystallite size can be obtained. In this respect, the total content is particularly preferably equal to or greater than 12%. In an alloy having a total content of 30% or less, a compound phase having a small crystallite size can be obtained. In this respect, the total content is particularly preferably equal to or less than 25%.

本明細書では、下記の数式により、比R1が算出される。
R1=Cr%/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)
比R1は、0.05以上が好ましい。比R1が0.05以上である合金では、組織が微細である。この合金からなる負極12は、サイクル寿命が長い。この観点から、比R1は0.10を超えることがより好ましく、0.15を超えることが特に好ましい。前述の通り、Crの一部がTiと置換した組織では、結晶の格子定数が大きい。この観点から、比R1は0.90未満が好ましく、0.80未満が特に好ましい。
In the present specification, the ratio R1 is calculated by the following mathematical formula.
R1 = Cr% / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%)
The ratio R1 is preferably 0.05 or more. An alloy having a ratio R1 of 0.05 or more has a fine structure. The negative electrode 12 made of this alloy has a long cycle life. In this respect, the ratio R1 is more preferably greater than 0.10 and particularly preferably greater than 0.15. As described above, in the structure in which a part of Cr is replaced with Ti, the lattice constant of the crystal is large. In this respect, the ratio R1 is preferably less than 0.90 and particularly preferably less than 0.80.

本明細書では、下記の数式により、比R2が算出される。
R2=(Al%+Sn%)/(Cr%+Ti%+Al%+Sn%+TCF%+TNF% )
比R2は、0.002以上0.400以下が好ましい。比R2が0.002以上である負極12を含む電池は、初期のクーロン効率に優れる。この観点から、比R2は0.010を超えることがより好ましく、0.100を超えることが特に好ましい。比R2が0.400以下である合金は、微細組織を有しうる。この観点から、比R2は0.350未満がより好ましく、0.300未満が特に好ましい。
In the present specification, the ratio R2 is calculated by the following mathematical formula.
R2 = (Al% + Sn%) / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%)
The ratio R2 is preferably 0.002 or more and 0.400 or less. A battery including the negative electrode 12 having the ratio R2 of 0.002 or more is excellent in initial Coulomb efficiency. In this respect, the ratio R2 is more preferably greater than 0.010, and particularly preferably greater than 0.100. An alloy having a ratio R2 of 0.400 or less can have a microstructure. In this respect, the ratio R2 is more preferably less than 0.350, and particularly preferably less than 0.300.

合金におけるAlとSnとの合計含有率は、0.05%以上15%以下が好ましい。合計含有率が0.05%以上である合金を含む電池は、初期のクーロン効率に優れる。この観点から、合計含有率は2%以上が特に好ましい。合計含有率が15%以下である合金は、微細組織を有しうる。この観点から、合計含有率は10%以下が特に好ましい。   The total content of Al and Sn in the alloy is preferably 0.05% or more and 15% or less. A battery including an alloy having a total content of 0.05% or more is excellent in initial Coulomb efficiency. In this respect, the total content is particularly preferably equal to or greater than 2%. An alloy having a total content of 15% or less can have a microstructure. In this respect, the total content is particularly preferably equal to or less than 10%.

本明細書では、下記の数式により、比率P2(%)が算出される。
P2=4.8×(Cr%+Ti%+TCF%)+(Al%+Sn%+TNF%)
比率P2は、放電容量と相関するパラメータであり、後述する実験結果から、放電容量を予測でき、この式の上限を規定することにより、十分な放電容量を確保できる。比率P2は、135%以下が好ましい。比率P2が135%以下である合金を有する負極の放電容量は、大きい。この観点から、比率P2は130未満がより好ましく、125未満が特に好ましい。比率P2は、100%以上が好ましい。
In this specification, the ratio P2 (%) is calculated by the following mathematical formula.
P2 = 4.8 × (Cr% + Ti% + TCF%) + (Al% + Sn% + TNF%)
The ratio P2 is a parameter that correlates with the discharge capacity, and the discharge capacity can be predicted from the experimental results described later. By defining the upper limit of this equation, a sufficient discharge capacity can be ensured. The ratio P2 is preferably 135% or less. The negative electrode having an alloy having a ratio P2 of 135% or less has a large discharge capacity. In this respect, the ratio P2 is more preferably less than 130, and particularly preferably less than 125. The ratio P2 is preferably 100% or more.

粒子22(粉末)は、単ロール冷却法、ガスアトマイズ法、ディスクアトマイズ法等によって製作されうる。サイズの小さな粒子22が得られるには、溶湯(溶融した原料)の急冷が必要である。冷却速度は、100℃/s以上が好ましい。   The particles 22 (powder) can be manufactured by a single roll cooling method, a gas atomizing method, a disk atomizing method, or the like. In order to obtain particles 22 having a small size, it is necessary to quench the molten metal (molten raw material). The cooling rate is preferably 100 ° C./s or more.

単ロール冷却法では、底部に細孔を有する石英管の中に、原料が投入される。この原料が、アルゴンガス雰囲気中で、高周波誘導炉によって加熱され、溶融する。細孔から流出する原料が、銅ロールの表面に落とされて冷却され、リボンが得られる。このリボンが、ボール(硬質球)と共にポット(容器)に投入される。ボールの材質として、ジルコニア、SUS304及びSUJ2が例示される。ポットの材質として、ジルコニア、SUS304及びSUJ2が例示される。ポットの中にアルゴンガスが充満され、このポットが密閉される。このリボンがミリングにより粉砕され、粒子22が得られる。ミリングとして、ボールミル、ビーズミル、遊星ボールミル、アトライタ及び振動ボールミルが例示される。   In the single roll cooling method, a raw material is put into a quartz tube having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in an argon gas atmosphere. The raw material flowing out from the pores is dropped on the surface of the copper roll and cooled to obtain a ribbon. This ribbon is put into a pot (container) together with a ball (hard sphere). Examples of the ball material include zirconia, SUS304, and SUJ2. Examples of the pot material include zirconia, SUS304, and SUJ2. The pot is filled with argon gas and the pot is sealed. The ribbon is pulverized by milling to obtain particles 22. Examples of milling include a ball mill, a bead mill, a planetary ball mill, an attritor, and a vibrating ball mill.

ガスアトマイズ法では、底部に細孔を有する耐火物坩堝の中に、原料が投入される。この原料が、アルゴンガス雰囲気中で、高周波誘導炉によって加熱され、溶融する。アルゴンガス雰囲気において、細孔から流出する原料に、アルゴンガスが噴射される。原料は急冷されて凝固し、粉末が得られる。この粉末が、ボールと共にポットに投入される。ボールの材質として、ジルコニア、SUS304及びSUJ2が例示される。ポットの材質として、ジルコニア、SUS304及びSUJ2が例示される。ポットの中にアルゴンガスが充満され、このポットが密閉される。この粉末がミリングにより粉砕され、粒子22が得られる。ミリングとして、ボールミル、ビーズミル、遊星ボールミル、アトライタ及び振動ボールミルが例示される。このミリング工程において、組織の微細化や炭素材料、導電性金属粉末、酸化物粉末、その他のセラミックス粉末との複合化も実施されうる。   In the gas atomization method, raw materials are put into a refractory crucible having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in an argon gas atmosphere. In an argon gas atmosphere, argon gas is injected onto the raw material flowing out from the pores. The raw material is rapidly cooled and solidified to obtain a powder. This powder is put into a pot together with a ball. Examples of the ball material include zirconia, SUS304, and SUJ2. Examples of the pot material include zirconia, SUS304, and SUJ2. The pot is filled with argon gas and the pot is sealed. This powder is pulverized by milling to obtain particles 22. Examples of milling include a ball mill, a bead mill, a planetary ball mill, an attritor, and a vibrating ball mill. In this milling step, the structure can be refined and combined with carbon materials, conductive metal powders, oxide powders, and other ceramic powders.

ディスクアトマイズ法では、底部に細孔を有する耐火物坩堝の中に、原料が投入される。この原料が、アルゴンガス雰囲気中で、高周波誘導炉によって加熱され、溶融する。アルゴンガス雰囲気において、細孔から流出する原料が、高速で回転するディスクの上に落とされる。回転速度は、40000rpmから60000rpmである。ディスクによって原料は急冷され、凝固して、粉末が得られる。この粉末に、ミリングが施される。ガスアトマイズ法に関して前述されたミリングが、ディスクアトマイズにも採用されうる。   In the disk atomization method, raw materials are put into a refractory crucible having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in an argon gas atmosphere. In an argon gas atmosphere, the raw material flowing out from the pores is dropped onto a disk that rotates at high speed. The rotation speed is 40000 rpm to 60000 rpm. The raw material is rapidly cooled by the disk and solidified to obtain a powder. This powder is milled. The milling described above for the gas atomization method can also be employed for disk atomization.

以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。   Hereinafter, the effects of the present invention will be clarified by examples. However, the present invention should not be construed in a limited manner based on the description of the examples.

[実験A]
Cr、Ti、Al及びSnの影響を評価する目的で、TCFに属する元素を含まず、かつTNFに属する元素を含まない合金により、実験を行った。この実験には、電池として、二極式コイン型セルが用いられた。
[Experiment A]
For the purpose of evaluating the influence of Cr, Ti, Al and Sn, an experiment was conducted using an alloy which does not contain an element belonging to TCF and does not contain an element belonging to TNF. In this experiment, a bipolar coin cell was used as a battery.

まず、表1に示された組成の原料を準備した。それぞれの原料から、前述のガスアトマイズ法にて粉末を製作した。この粉末を分級し、粒径が20μm以下の粉末を負極用粒子とした。この粒子に、10mass%の導電材(アセチレンブラック)、15mass%の結着材(ポリイミド)及び10mass%の溶媒(N−メチルピロリドン)を乳鉢で混合し、スラリーを得た。このスラリーを、集電体である銅箔の上に塗布した。このスラリーを、真空乾燥機で減圧乾燥した。この乾燥によって溶媒を蒸発させ、活物質層を得た。この活物質層及び銅箔を、ハンドプレスにて押圧した。この活物質層及び銅箔をコイン型セルに適した形状に打ち抜き、負極を得た。   First, raw materials having the compositions shown in Table 1 were prepared. Powders were produced from the respective raw materials by the gas atomization method described above. This powder was classified, and a powder having a particle size of 20 μm or less was used as a negative electrode particle. A 10 mass% conductive material (acetylene black), 15 mass% binder (polyimide), and 10 mass% solvent (N-methylpyrrolidone) were mixed with the particles in a mortar to obtain a slurry. This slurry was apply | coated on the copper foil which is a collector. This slurry was dried under reduced pressure using a vacuum dryer. The solvent was evaporated by this drying to obtain an active material layer. The active material layer and the copper foil were pressed with a hand press. This active material layer and copper foil were punched into a shape suitable for a coin-type cell to obtain a negative electrode.

電解液として、エチレンカーボネートとジメトキシエタンとの混合溶媒を準備した。両者の質量比は、5:5であった。さらに、電解質として、六フッ化リン酸リチウム(LiPF)を準備した。この電解質の濃度は、電解液1リットルに対して1モルである。この電解質を、電解液に溶解させた。 As an electrolytic solution, a mixed solvent of ethylene carbonate and dimethoxyethane was prepared. The mass ratio of both was 5: 5. Furthermore, lithium hexafluorophosphate (LiPF 6 ) was prepared as an electrolyte. The concentration of this electrolyte is 1 mol per liter of the electrolyte. This electrolyte was dissolved in the electrolytic solution.

コイン型セルに適した形状のセパレータ及び正極を、準備した。この正極は、リチウムからなる。減圧下で電解液にセパレータを浸漬し、5時間放置して、セパレータに電解液を充分に浸透させた。   A separator and a positive electrode having a shape suitable for a coin-type cell were prepared. This positive electrode is made of lithium. The separator was immersed in the electrolytic solution under reduced pressure and allowed to stand for 5 hours to fully infiltrate the separator with the electrolytic solution.

槽に、負極、セパレータ及び正極を組み込んだ。槽に電解液を充填し、コイン型セルを得た。   A negative electrode, a separator and a positive electrode were incorporated in the tank. The tank was filled with an electrolytic solution to obtain a coin-type cell.

下記の表1において、No.1−11は本発明の実施例に係る負極材料の組成であり、No.12−27は比較例に係る負極材料の組成である。   In Table 1 below, no. 1-11 is the composition of the negative electrode material according to the example of the present invention. 12-27 is the composition of the negative electrode material according to the comparative example.

Figure 2015176676
Figure 2015176676

上記コイン型セルにて、温度が25℃であり、電流値が1/10Cである条件で、正極と負極との電位差が0Vとなるまで充電を行った。その後、電位差が2Vとなるまで放電を行った。この充電及び放電を、50サイクル繰り返した。初期の放電容量X及び50サイクルの充電及び放電を繰り返した後の放電容量Yを測定した。放電容量Xに対する放電容量Yの比率(維持率)を算出した。放電容量X及び維持率が、下記の表2に示されている。   In the coin-type cell, charging was performed under the conditions that the temperature was 25 ° C. and the current value was 1/10 C until the potential difference between the positive electrode and the negative electrode became 0V. Thereafter, discharging was performed until the potential difference reached 2V. This charge and discharge was repeated 50 cycles. The initial discharge capacity X and the discharge capacity Y after 50 cycles of charging and discharging were measured. The ratio (maintenance rate) of the discharge capacity Y to the discharge capacity X was calculated. The discharge capacity X and the maintenance rate are shown in Table 2 below.

初回の充電容量と初回の放電容量とを測定した。初回の充電容量に対する初回の放電容量の比率(初回クーロン効率)を算出した。この結果が、下記の表2に示されている。   The initial charge capacity and the initial discharge capacity were measured. The ratio of the initial discharge capacity to the initial charge capacity (initial coulomb efficiency) was calculated. The results are shown in Table 2 below.

初期の負極の活物質層の厚さと、50サイクルの充電及び放電を繰り返した後の負極の活物質層の厚さとを測定した。初期の厚さに対する充放電後の厚さの比率(負極膨張率)を算出した。この結果が、下記の表2に示されている。   The thickness of the negative electrode active material layer and the thickness of the negative electrode active material layer after 50 cycles of charge and discharge were measured. The ratio of the thickness after charging / discharging to the initial thickness (negative electrode expansion coefficient) was calculated. The results are shown in Table 2 below.

Figure 2015176676
Figure 2015176676

比較例12に係るセルは、比率P1の値が小さいため負極膨張率が大きい。比較例13に係るセルは、比率P1及び比率P2の値が大きいため、放電容量に劣り、かつ初回クーロン効率に劣る。比較例14に係るセルは、比R1の値が小さいため容量維持率に劣る。比較例15及び16に係るセルは、比R2の値が小さいため、初回クーロン効率に劣る。比較例17に係るセルは、比R2の値が大きいため、容量維持率に劣る。比較例18に係るセルは、比率P2の値が大きいため、放電容量に劣る。比較例19に係るセルは、比率P1の値が小さいため、負極膨張率に劣る。比較例20に係るセルは、比率P1及び比率P2の値が大きいため、放電容量に劣り、かつ初回クーロン効率に劣る。比較例21に係るセルは、比R1の値が小さいため、容量維持率に劣る。比較例22及び23に係るセルは、比R2の値が小さいため、初回クーロン効率に劣る。比較例24に係るセルは、比R2の値が大きいため、容量維持率に劣る。比較例25に係るセルは、比率P2が大きいため、放電容量に劣る。比較例26及び27に係るセルは、比R1の値が小さいため、容量維持率に劣る。   The cell according to Comparative Example 12 has a large negative electrode expansion coefficient because the value of the ratio P1 is small. The cell according to Comparative Example 13 is inferior in discharge capacity and inferior in initial Coulomb efficiency since the values of the ratio P1 and the ratio P2 are large. The cell according to Comparative Example 14 is inferior in capacity maintenance rate because the value of the ratio R1 is small. The cells according to Comparative Examples 15 and 16 are inferior in initial Coulomb efficiency because the value of the ratio R2 is small. The cell according to Comparative Example 17 is inferior in capacity maintenance rate because the value of the ratio R2 is large. The cell according to Comparative Example 18 is inferior in discharge capacity because the value of the ratio P2 is large. The cell according to Comparative Example 19 is inferior in negative electrode expansion coefficient because the value of the ratio P1 is small. The cell according to Comparative Example 20 is inferior in discharge capacity and inferior in initial Coulomb efficiency since the values of ratio P1 and ratio P2 are large. The cell according to Comparative Example 21 is inferior in capacity maintenance rate because the value of the ratio R1 is small. The cells according to Comparative Examples 22 and 23 are inferior in initial Coulomb efficiency because the value of the ratio R2 is small. The cell according to Comparative Example 24 is inferior in capacity maintenance rate because the value of the ratio R2 is large. The cell according to Comparative Example 25 is inferior in discharge capacity because the ratio P2 is large. The cells according to Comparative Examples 26 and 27 are inferior in capacity maintenance rate because the value of the ratio R1 is small.

[実験B]
TCFに属する元素又はTNFに属する元素を含む合金により、実験を行った。この実験には、実験Aと同様、二極式コイン型セルが用いられた。
[Experiment B]
Experiments were performed using an element belonging to TCF or an alloy containing an element belonging to TNF. In this experiment, as in Experiment A, a bipolar coin-type cell was used.

まず、表3及び4に示された組成の原料を準備した。それぞれの原料から、前述のガスアトマイズ法にて粉末を製作した。この粉末を分級し、粒径が106μm以下の粉末を得た。この粉末を、クロム鋼製の硬質球と共に金属製容器に投入し、遊星ボールミル装置に装着して30時間の撹拌を行った。得られた粉末を負極用粒子とした。この粒子を用い、実験Aと同様の方法にて、コイン型セルを得た。   First, raw materials having the compositions shown in Tables 3 and 4 were prepared. Powders were produced from the respective raw materials by the gas atomization method described above. This powder was classified to obtain a powder having a particle size of 106 μm or less. This powder was put into a metal container together with a hard sphere made of chrome steel, mounted on a planetary ball mill apparatus, and stirred for 30 hours. The obtained powder was used as negative electrode particles. Using these particles, a coin-type cell was obtained in the same manner as in Experiment A.

下記の表3及び4において、No.28−62は本発明の実施例に係る負極材料の組成であり、No63−72は比較例に係る負極材料の組成である。   In Tables 3 and 4 below, no. 28-62 is the composition of the negative electrode material according to the example of the present invention, and No. 63-72 is the composition of the negative electrode material according to the comparative example.

Figure 2015176676
Figure 2015176676

Figure 2015176676
Figure 2015176676

上記コイン型セルを用い、実験Aと同様にして、放電容量、容量維持率、初回クーロン効率及び負極膨張率を測定した。この結果が、下記の表5及び6に示されている。   Using the coin cell, the discharge capacity, capacity retention rate, initial coulomb efficiency, and negative electrode expansion rate were measured in the same manner as in Experiment A. The results are shown in Tables 5 and 6 below.

Figure 2015176676
Figure 2015176676

Figure 2015176676
Figure 2015176676

比較例63に係るセルは、比率P1の値が小さいため負極膨張率に劣る。比較例64に係るセルは、比率P1及び比率P2の値が大きいため、放電容量に劣り、かつ初回クーロン効率に劣る。比較例65に係るセルは、比R1が小さいため、容量維持率に劣る。比較例66に係るセルは、比R2が小さいため、初回クーロン効率に劣る。比較例67に係るセルは、比R2の値が大きいため、容量維持率に劣る。比較例68に係るセルは、比率P2の値が大きいため、放電容量に劣る。比較例69及び70に係るセルは、TCFの合計含有率が大きいため、容量維持率に劣る。比較例71及び72に係るセルは、TNFの合計含有率が大きいため、容量維持率が劣る。   The cell according to Comparative Example 63 is inferior in negative electrode expansion coefficient because the value of the ratio P1 is small. The cell according to Comparative Example 64 has a large value of the ratio P1 and the ratio P2. The cell according to Comparative Example 65 is inferior in capacity maintenance rate because the ratio R1 is small. Since the cell according to Comparative Example 66 has a small ratio R2, the initial Coulomb efficiency is inferior. The cell according to Comparative Example 67 is inferior in the capacity maintenance rate because the value of the ratio R2 is large. The cell according to Comparative Example 68 is inferior in discharge capacity because the value of the ratio P2 is large. The cells according to Comparative Examples 69 and 70 are inferior in capacity retention because the total content of TCF is large. Since the cells according to Comparative Examples 71 and 72 have a large total content of TNF, the capacity retention rate is inferior.

[実験C]
[実施例73]
実験Bの実施例61と同様にして、粒径が106μm以下の粉末を得た。この粉末と、天然黒鉛粉末とを金属製容器に投入した。両粉末の質量混合比は、97/3である。この容器に、さらにクロム鋼製の硬質球を投入し、遊星ボールミル装置に装着して30時間の撹拌を行った。得られた粉末を負極用粒子とした。この粒子を用い、実験Aと同様の方法にて、コイン型セルを得た。
[Experiment C]
[Example 73]
In the same manner as in Example 61 of Experiment B, a powder having a particle size of 106 μm or less was obtained. This powder and natural graphite powder were put into a metal container. The mass mixing ratio of both powders is 97/3. Further, a hard sphere made of chrome steel was put into this container, and it was attached to a planetary ball mill device and stirred for 30 hours. The obtained powder was used as negative electrode particles. Using these particles, a coin-type cell was obtained in the same manner as in Experiment A.

[実施例74]
天然黒鉛粉末に代えて亜鉛粉末を用い、粉末の質量混合比を80/20とした他は実施例73と同様にして、実施例74のコイン型セルを得た。
[Example 74]
A coin-type cell of Example 74 was obtained in the same manner as Example 73 except that zinc powder was used instead of natural graphite powder and the powder mass mixing ratio was 80/20.

[実施例75]
天然黒鉛粉末に代えてSiOの粉末を用い、粉末の質量混合比を92/8とした他は実施例73と同様にして、実施例75のコイン型セルを得た。
[Example 75]
A coin-type cell of Example 75 was obtained in the same manner as Example 73 except that SiO 2 powder was used instead of natural graphite powder and the powder mass mixing ratio was set to 92/8.

上記コイン型セルを用い、実験Aと同様にして、放電容量、容量維持率、初回クーロン効率及び負極膨張率を測定した。実施例73に係るセルでは、放電容量は640mAh/gであり、容量維持率は96.2%であり、初回クーロン効率は84.2%であり、負極膨張率は142%であった。実施例74に係るセルでは、放電容量は570mAh/gであり、容量維持率は93.0%であり、初回クーロン効率は85.0%であり、負極膨張率は150%であった。さらに、実施例75に係るセルでは、放電容量は620mAh/gであり、容量維持率は94.5%であり、初回クーロン効率は81.0%であり、負極部膨張率は138%であった。実施例73−75に係るセルは、諸性能に優れている。   Using the coin cell, the discharge capacity, capacity retention rate, initial coulomb efficiency, and negative electrode expansion rate were measured in the same manner as in Experiment A. In the cell according to Example 73, the discharge capacity was 640 mAh / g, the capacity retention rate was 96.2%, the initial Coulomb efficiency was 84.2%, and the negative electrode expansion rate was 142%. In the cell according to Example 74, the discharge capacity was 570 mAh / g, the capacity retention rate was 93.0%, the initial Coulomb efficiency was 85.0%, and the negative electrode expansion rate was 150%. Furthermore, in the cell according to Example 75, the discharge capacity was 620 mAh / g, the capacity retention rate was 94.5%, the initial Coulomb efficiency was 81.0%, and the negative electrode expansion coefficient was 138%. It was. The cells according to Examples 73 to 75 are excellent in various performances.

[考察]
実験A−Cの結果から、本発明の優位性は明らかである。
[Discussion]
From the results of Experiments AC, the superiority of the present invention is clear.

以上説明された負極は、リチウムイオン二次電池のみならず、全固体リチウムイオン二次電池、ハイブリットキャパシタ等の蓄電デバイスにも適用されうる。   The negative electrode described above can be applied not only to a lithium ion secondary battery but also to an electricity storage device such as an all solid lithium ion secondary battery or a hybrid capacitor.

2・・・リチウムイオン二次電池
6・・・電解液
8・・・セパレータ
10・・・正極
12・・・負極
18・・・集電体
20・・・活物質層
22・・・粒子
2 ... Lithium ion secondary battery 6 ... Electrolyte solution 8 ... Separator 10 ... Positive electrode 12 ... Negative electrode 18 ... Current collector 20 ... Active material layer 22 ... Particle

本発明に係る蓄電デバイスの負極用粉末の製造方法は、The method for producing a negative electrode powder for an electricity storage device according to the present invention comprises:
前述の負極材料である合金組成となるよう調整された原材料から、溶湯を得る工程A process for obtaining molten metal from the raw material adjusted to have the alloy composition as the negative electrode material described above
及びas well as
この溶湯を、100℃/s以上の速度で冷却する工程A step of cooling the molten metal at a rate of 100 ° C./s or more.
を含む。including.

他の観点によれば、本発明に係る蓄電デバイスの負極用粉末の製造方法は、
少なくとも前述の負極材料からなる粉末と硬質球とを、容器に投入する工程
及び
少なくともこの粉末と硬質球とを容器内で撹拌し、この粉末を粉砕する工程
を含む。
According to another aspect, the method for producing a negative electrode powder for an electricity storage device according to the present invention comprises:
A step of charging at least the powder made of the negative electrode material and the hard sphere into the container.
as well as
A step of agitating at least the powder and the hard sphere in a container and pulverizing the powder
including.

Claims (5)

Si系合金からなり、
上記合金が、Cr、Al、Sn、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、Ni、Cu、C、B、P、Ag、Zn、In、Ga、Ge、Pb、Bi、S及びSeからなる群から選択される2以上の元素を含んでおり、残部がSi及び不可避的不純物であり、
TCF(%)が下記数式(I)で定義され、TNF(%)が下記数式(II)で定義されるとき、上記合金が、下記数式(1)から(6)を満たす蓄電デバイスの負極材料。
(I)TCF%=Zr%+Hf%+V%+Nb%+Ta%+Mo%+W%+Mn%+Fe%+Co%+Ni%/2+Cu%/3
(II)TNF%=C%+B%+P%+Ag%+Zn%+In%+Ga%+Ge%+Pb%+Bi%+S%+Se%
(1)25%<Cr%+Ti%+Al%+Sn%+TCF%+TNF%≦40%
(2)0.05≦Cr%/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)
(3)0.002≦(Al%+Sn%)/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)≦0.400
(4)4.8×(Cr%+Ti%+TCF%)+(Al%+Sn%+TNF%)≦135%
(5)TCF%<10%
(6)TNF%≦5%
Made of Si alloy,
The alloy is Cr, Al, Sn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, Cu, C, B, P, Ag, Zn, In, Ga, Containing two or more elements selected from the group consisting of Ge, Pb, Bi, S and Se, the balance being Si and inevitable impurities,
When TCF (%) is defined by the following formula (I) and TNF (%) is defined by the following formula (II), the above-mentioned alloy satisfies the following formulas (1) to (6). .
(I) TCF% = Zr% + Hf% + V% + Nb% + Ta% + Mo% + W% + Mn% + Fe% + Co% + Ni% / 2 + Cu% / 3
(II) TNF% = C% + B% + P% + Ag% + Zn% + In% + Ga% + Ge% + Pb% + Bi% + S% + Se%
(1) 25% <Cr% + Ti% + Al% + Sn% + TCF% + TNF% ≦ 40%
(2) 0.05 ≦ Cr% / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%)
(3) 0.002 ≦ (Al% + Sn%) / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%) ≦ 0.400
(4) 4.8 × (Cr% + Ti% + TCF%) + (Al% + Sn% + TNF%) ≦ 135%
(5) TCF% <10%
(6) TNF% ≦ 5%
上記合金の溶湯が、100℃/s以上の速度で冷却されて凝固することで得られる請求項1に記載の負極材料。   The negative electrode material according to claim 1, wherein the molten alloy is obtained by cooling and solidifying at a rate of 100 ° C./s or more. 少なくとも上記合金の粉末と硬質球とが容器内で撹拌され、この粉末が粉砕されることで得られる請求項1又は2に記載の負極材料。   The negative electrode material according to claim 1 or 2, which is obtained by stirring at least the powder of the alloy and the hard sphere in a container and pulverizing the powder. 集電体と、この集電体の表面に固着された多数の粒子とを備えており、
上記粒子が、Si系合金からなり、
上記合金が、Cr、Al、Sn、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、Ni、Cu、C、B、P、Ag、Zn、In、Ga、Ge、Pb、Bi、S及びSeからなる群から選択される2以上の元素を含んでおり、残部がSi及び不可避的不純物であり、
TCF(%)が下記数式(I)で定義され、TNF(%)が下記数式(II)で定義されるとき、上記合金が、下記数式(1)から(6)を満たす蓄電デバイスの負極。
(I)TCF%=Zr%+Hf%+V%+Nb%+Ta%+Mo%+W%+Mn%+Fe%+Co%+Ni%/2+Cu%/3
(II)TNF%=C%+B%+P%+Ag%+Zn%+In%+Ga%+Ge%+Pb%+Bi%+S%+Se%
(1)25%<Cr%+Ti%+Al%+Sn%+TCF%+TNF%≦40%
(2)0.05≦Cr%/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)
(3)0.002≦(Al%+Sn%)/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)≦0.400
(4)4.8×(Cr%+Ti%+TCF%)+(Al%+Sn%+TNF%)≦135%
(5)TCF%<10%
(6)TNF%≦5%
A current collector and a number of particles fixed to the surface of the current collector;
The particles are made of a Si-based alloy,
The alloy is Cr, Al, Sn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, Cu, C, B, P, Ag, Zn, In, Ga, Containing two or more elements selected from the group consisting of Ge, Pb, Bi, S and Se, the balance being Si and inevitable impurities,
When TCF (%) is defined by the following formula (I) and TNF (%) is defined by the following formula (II), the alloy satisfies the following formulas (1) to (6).
(I) TCF% = Zr% + Hf% + V% + Nb% + Ta% + Mo% + W% + Mn% + Fe% + Co% + Ni% / 2 + Cu% / 3
(II) TNF% = C% + B% + P% + Ag% + Zn% + In% + Ga% + Ge% + Pb% + Bi% + S% + Se%
(1) 25% <Cr% + Ti% + Al% + Sn% + TCF% + TNF% ≦ 40%
(2) 0.05 ≦ Cr% / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%)
(3) 0.002 ≦ (Al% + Sn%) / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%) ≦ 0.400
(4) 4.8 × (Cr% + Ti% + TCF%) + (Al% + Sn% + TNF%) ≦ 135%
(5) TCF% <10%
(6) TNF% ≦ 5%
正極と負極とを備えており、
上記負極が、集電体と、この集電体の表面に固着された多数の粒子とを備えており、
上記粒子が、Si系合金からなり、
上記合金が、Cr、Al、Sn、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Mn、Fe、Co、Ni、Cu、C、B、P、Ag、Zn、In、Ga、Ge、Pb、Bi、S及びSeからなる群から選択される2以上の元素を含んでおり、残部がSi及び不可避的不純物であり、
TCF(%)が下記数式(I)で定義され、TNF(%)が下記数式(II)で定義されるとき、上記合金が、下記数式(1)から(6)を満たす蓄電デバイス。
(I)TCF%=Zr%+Hf%+V%+Nb%+Ta%+Mo%+W%+Mn%+Fe%+Co%+Ni%/2+Cu%/3
(II)TNF%=C%+B%+P%+Ag%+Zn%+In%+Ga%+Ge%+Pb%+Bi%+S%+Se%
(1)25%<Cr%+Ti%+Al%+Sn%+TCF%+TNF%≦40%
(2)0.05≦Cr%/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)
(3)0.002≦(Al%+Sn%)/(Cr%+Ti%+Al%+Sn%+TCF%+TNF%)≦0.400
(4)4.8×(Cr%+Ti%+TCF%)+(Al%+Sn%+TNF%)≦135%
(5)TCF%<10%
(6)TNF%≦5%
A positive electrode and a negative electrode,
The negative electrode comprises a current collector and a large number of particles fixed to the surface of the current collector,
The particles are made of a Si-based alloy,
The alloy is Cr, Al, Sn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Mn, Fe, Co, Ni, Cu, C, B, P, Ag, Zn, In, Ga, Containing two or more elements selected from the group consisting of Ge, Pb, Bi, S and Se, the balance being Si and inevitable impurities,
An electrical storage device in which, when TCF (%) is defined by the following formula (I) and TNF (%) is defined by the following formula (II), the alloy satisfies the following formulas (1) to (6).
(I) TCF% = Zr% + Hf% + V% + Nb% + Ta% + Mo% + W% + Mn% + Fe% + Co% + Ni% / 2 + Cu% / 3
(II) TNF% = C% + B% + P% + Ag% + Zn% + In% + Ga% + Ge% + Pb% + Bi% + S% + Se%
(1) 25% <Cr% + Ti% + Al% + Sn% + TCF% + TNF% ≦ 40%
(2) 0.05 ≦ Cr% / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%)
(3) 0.002 ≦ (Al% + Sn%) / (Cr% + Ti% + Al% + Sn% + TCF% + TNF%) ≦ 0.400
(4) 4.8 × (Cr% + Ti% + TCF%) + (Al% + Sn% + TNF%) ≦ 135%
(5) TCF% <10%
(6) TNF% ≦ 5%
JP2014050624A 2014-03-13 2014-03-13 Negative electrode materials for electricity storage devices Active JP6211961B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014050624A JP6211961B2 (en) 2014-03-13 2014-03-13 Negative electrode materials for electricity storage devices
PCT/JP2015/057011 WO2015137338A1 (en) 2014-03-13 2015-03-10 Negative-electrode material for electricity-storage device
KR1020167023587A KR20160132826A (en) 2014-03-13 2015-03-10 Negative-electrode material for electricity-storage device
CN201580012018.6A CN106133955B (en) 2014-03-13 2015-03-10 The negative electrode material of electrical storage device
TW104107920A TWI639268B (en) 2014-03-13 2015-03-12 Si-based alloy for negative electrode material of power storage device, negative electrode of power storage device, power storage device, and method for manufacturing negative electrode material of power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014050624A JP6211961B2 (en) 2014-03-13 2014-03-13 Negative electrode materials for electricity storage devices

Publications (2)

Publication Number Publication Date
JP2015176676A true JP2015176676A (en) 2015-10-05
JP6211961B2 JP6211961B2 (en) 2017-10-11

Family

ID=54071781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014050624A Active JP6211961B2 (en) 2014-03-13 2014-03-13 Negative electrode materials for electricity storage devices

Country Status (5)

Country Link
JP (1) JP6211961B2 (en)
KR (1) KR20160132826A (en)
CN (1) CN106133955B (en)
TW (1) TWI639268B (en)
WO (1) WO2015137338A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017082369A1 (en) * 2015-11-10 2017-05-18 日産自動車株式会社 Negative electrode active material for electrical device, and electrical device using same
JP2017224537A (en) * 2016-06-16 2017-12-21 日産自動車株式会社 Negative electrode active material for electric device and electric device arranged by use thereof
JP2018125086A (en) * 2017-01-30 2018-08-09 京セラ株式会社 Negative electrode material for storage battery, negative electrode for storage battery, and storage battery
JP2021058652A (en) * 2014-09-11 2021-04-15 パイン・メディカル・リミテッドPine Medical Limited Balloon catheter and method of manufacture thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181660A (en) * 2017-04-17 2018-11-15 山陽特殊製鋼株式会社 Negative electrode material for power storage device
CN107723612A (en) * 2017-10-20 2018-02-23 苏州市天星山精密模具有限公司 A kind of anti-oxidant injection mold of impact resistance
US20210339315A1 (en) * 2018-10-05 2021-11-04 Sumitomo Chemical Company, Limited Method for Producing Metal Particle Composition, and Metal Particle Composition
CN110380015B (en) * 2019-05-27 2020-09-29 合山市华美新能源科技有限公司 Preparation method of lithium battery positive electrode slurry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108945A (en) * 1998-05-13 2010-05-13 Ube Ind Ltd Non-aqueous secondary battery
JP2011070779A (en) * 2009-09-24 2011-04-07 Sanyo Special Steel Co Ltd Si alloy for lithium secondary battery negative electrode material
JP2012156028A (en) * 2011-01-27 2012-08-16 Idemitsu Kosan Co Ltd Amorphous alloy, negative electrode material for secondary battery comprising the same, negative electrode for secondary battery containing the same, and secondary battery
JP2013179033A (en) * 2012-02-01 2013-09-09 Sanyo Special Steel Co Ltd Silicon-based alloy negative electrode material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297757A (en) 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
JP5245425B2 (en) * 2007-06-05 2013-07-24 ソニー株式会社 Negative electrode and secondary battery
CN101643864B (en) * 2009-07-10 2011-06-15 成都中科来方能源科技有限公司 Multielement silicon alloy/carbon composite material and preparation method and application thereof
JP2012113945A (en) 2010-11-24 2012-06-14 Daido Steel Co Ltd Negative electrode material for lithium ion battery and method for producing the same
JP5766445B2 (en) * 2011-01-17 2015-08-19 山陽特殊製鋼株式会社 Si alloy powder for negative electrode of lithium ion secondary battery and manufacturing method thereof
JP2012178344A (en) * 2011-02-02 2012-09-13 Hitachi Chem Co Ltd Compound material and method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5884573B2 (en) 2011-09-30 2016-03-15 大同特殊鋼株式会社 Negative electrode active material for lithium ion battery and negative electrode for lithium ion battery using the same
JP2013191529A (en) 2012-02-16 2013-09-26 Hitachi Chemical Co Ltd Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108945A (en) * 1998-05-13 2010-05-13 Ube Ind Ltd Non-aqueous secondary battery
JP2011070779A (en) * 2009-09-24 2011-04-07 Sanyo Special Steel Co Ltd Si alloy for lithium secondary battery negative electrode material
JP2012156028A (en) * 2011-01-27 2012-08-16 Idemitsu Kosan Co Ltd Amorphous alloy, negative electrode material for secondary battery comprising the same, negative electrode for secondary battery containing the same, and secondary battery
JP2013179033A (en) * 2012-02-01 2013-09-09 Sanyo Special Steel Co Ltd Silicon-based alloy negative electrode material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021058652A (en) * 2014-09-11 2021-04-15 パイン・メディカル・リミテッドPine Medical Limited Balloon catheter and method of manufacture thereof
WO2017082369A1 (en) * 2015-11-10 2017-05-18 日産自動車株式会社 Negative electrode active material for electrical device, and electrical device using same
JPWO2017082369A1 (en) * 2015-11-10 2018-10-18 日産自動車株式会社 Negative electrode active material for electric device and electric device using the same
US10340519B2 (en) 2015-11-10 2019-07-02 Nissan Motor Co., Ltd. Negative electrode active material for electric device and electric device using the same
JP2017224537A (en) * 2016-06-16 2017-12-21 日産自動車株式会社 Negative electrode active material for electric device and electric device arranged by use thereof
JP2018125086A (en) * 2017-01-30 2018-08-09 京セラ株式会社 Negative electrode material for storage battery, negative electrode for storage battery, and storage battery

Also Published As

Publication number Publication date
TWI639268B (en) 2018-10-21
JP6211961B2 (en) 2017-10-11
KR20160132826A (en) 2016-11-21
CN106133955B (en) 2019-04-26
CN106133955A (en) 2016-11-16
WO2015137338A1 (en) 2015-09-17
TW201547092A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP6211961B2 (en) Negative electrode materials for electricity storage devices
JP6322362B2 (en) Si alloy negative electrode material
JP5621753B2 (en) Anode material for lithium ion battery
JP6374678B2 (en) Negative electrode materials for electricity storage devices
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
TWI446613B (en) Si based negative electrode material
JP2012234788A (en) Silicon-based alloy cathode material
JP6076772B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP6735060B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
KR102129913B1 (en) Cathode material for power storage devices
JP6371635B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
KR20150074905A (en) Negative active material for lithium secondary battery
JP6630632B2 (en) Anode materials for power storage devices
WO2018193864A1 (en) Negative electrode material for power storage device
JP2015225690A (en) METHOD OF PRODUCING Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR POWER STORAGE DEVICE
WO2018180212A1 (en) Negative electrode material for storage device
JP6045879B2 (en) Sn alloy powder used as a raw material of the negative electrode active material of a lithium ion secondary battery, and its manufacturing method.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170914

R150 Certificate of patent or registration of utility model

Ref document number: 6211961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250