JP2015175233A - タービン動翼翼列、タービン段落および蒸気タービン - Google Patents

タービン動翼翼列、タービン段落および蒸気タービン Download PDF

Info

Publication number
JP2015175233A
JP2015175233A JP2014049429A JP2014049429A JP2015175233A JP 2015175233 A JP2015175233 A JP 2015175233A JP 2014049429 A JP2014049429 A JP 2014049429A JP 2014049429 A JP2014049429 A JP 2014049429A JP 2015175233 A JP2015175233 A JP 2015175233A
Authority
JP
Japan
Prior art keywords
blade
turbine
ratio
height
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014049429A
Other languages
English (en)
Other versions
JP6081398B2 (ja
Inventor
川崎 榮
Sakae Kawasaki
榮 川崎
野村 大輔
Daisuke Nomura
大輔 野村
晃平 丸山
Kohei Maruyama
晃平 丸山
富永 純一
Junichi Tominaga
純一 富永
新一郎 大橋
Shinichiro Ohashi
新一郎 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014049429A priority Critical patent/JP6081398B2/ja
Publication of JP2015175233A publication Critical patent/JP2015175233A/ja
Application granted granted Critical
Publication of JP6081398B2 publication Critical patent/JP6081398B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

【課題】運転開始から長期間経過後においても水滴の浸食による性能低下を抑制できるタービン動翼翼列を提供する。
【解決手段】タービン動翼翼列の動翼は、タービンロータの周方向に互いに離間した複数の動翼を備えている。動翼は、タービンロータの側に設けられた基端側領域32と、基端側領域32より翼高さが高い先端側領域33と、を有している。先端側領域33は、隣り合う動翼との周方向の重なり量を示すラップ量Lと、動翼の翼コード長Cとの比であるラップ量比L/Cの先端側領域33における最大値を有する頂点翼高さ位置34を含み、頂点翼高さ位置34から翼高さが低い側および翼高さが高い側に向ってラップ量比が徐々に小さくなるように形成されている。
【選択図】図9

Description

本発明の実施の形態は、タービン動翼翼列、タービン段落および蒸気タービンに関する。
蒸気タービンは、火力発電プラント、ガスタービンと組み合わせたコンバインドサイクル発電プラント、原子力発電プラント、さらには、再生可能エネルギを利用した地熱発電プラント、太陽熱発電プラント等に広く適用されている。このような蒸気タービンの性能および信頼性を向上させることにより、CO排出の削減やエネルギ損失の削減へ大きく寄与することができる。
蒸気タービンの性能向上のための有効な対策の一つとして、排気環状面積を増加させ、作動流体の速度を小さくして排気損失を低減させることが挙げられる。排気環状面積を増加させるためには、最終タービン段落の動翼を長翼化して動翼の平均径を上げるといった対策が効果的である。しかしながらこの場合、遠心力が増加するという問題が生じ得る。この問題に対処するためには、動翼材料の開発や動翼の構造機構の開発、動翼の振動抑制機構の開発等が効果的となる。
また、動翼を長翼化させた場合、動翼の先端部の周速が増加して蒸気流れの相対マッハ数が増加し得る。従来の最終タービン段落においては、動翼の入口に流入する蒸気の相対速度は亜音速近傍にあり、動翼の出口から流出する蒸気の相対速度は超音速となっており、遷音速翼型の動翼が主流となっていた。しかしながら、上述したように、長翼化によって最終タービン段落の動翼の先端部の周速が増加する場合、動翼の先端部側の領域において、入口における蒸気の相対速度が超音速となり得る。超音速で蒸気が流入する場合には、衝撃波が発生し得るため、この衝撃波による損失の抑制が動翼の性能に関わってくる。そこで、衝撃波損失を抑制するために、超音速で流入した蒸気の流れを超音速で流出させる超音速翼型の動翼の開発が行われている。
このような超音速翼型の動翼として、動翼の入口での衝撃波を軽減するために、所望の翼面曲率を有し、出口側に向って動翼間通路が拡大するように形成された末広翼形状を有する動翼が提案されている。
特開2013−32772号公報
ところで、原子力発電プラント用の蒸気タービンの大部分の段落、地熱発電プラント用の蒸気タービンの大部分の段落、あるいは火力発電プラント用の蒸気タービンのうちの低圧タービンの各段落では、作動流体である蒸気の一部が凝縮して液化する場合がある。液化した蒸気の一部は、静翼の翼面や、ダイアフラム外輪の内周面(壁面)に付着して水膜を形成し、静翼の後縁やダイアフラム外輪の内周面から吹き千切れて水滴となって、下流側の動翼に衝突する。このことにより、動翼の一部が水滴によって浸食される現象が発生する場合がある。このような現象は、動翼に流入する蒸気の速度が亜音速である場合にも生じ得るが、超音速となっている場合には、動翼に衝突する水滴の速度が増大し、浸食量が増大し得る。また、この水滴による浸食は、蒸気圧力や温度が低下した、湿り度が高い最終タービン段落において発生する可能性が高くなっている。
以上のことから、長期間にわたって蒸気タービンが運転されると、上述のように水滴の浸食により動翼の翼型形状が変化し得る。しかしながら、翼型形状は、初期的に動翼の性能が最大限発揮されるように設定されるため、運転開始から長期間経過後に性能が低下し得るという課題があった。
本発明は、このような点を考慮してなされたものであり、運転開始から長期間経過後においても水滴の浸食による性能低下を抑制できるタービン動翼翼列、タービン段落および蒸気タービンを提供することを目的とする。
実施の形態によるタービン動翼翼列は、タービンロータに設けられ、超音速の蒸気が流入するタービン動翼翼列である。このタービン動翼翼列は、タービンロータの周方向に互いに離間した複数の動翼を備えている。動翼は、タービンロータ側に設けられた基端側領域と、基端側領域より翼高さが高い先端側領域と、を有している。先端側領域は、隣り合う動翼との周方向の重なり量を示すラップ量Lと、動翼の翼コード長Cとの比であるラップ量比L/Cの先端側領域における最大値を有する頂点翼高さ位置を含み、頂点翼高さ位置から翼高さが低い側および翼高さが高い側に向ってラップ量比が徐々に小さくなるように形成されている。
また、実施の形態によるタービン段落は、周方向に互いに離間した複数の静翼を有する静翼翼列と、静翼翼列の下流側に隣り合って配置された上述のタービン動翼翼列と、を備えている。
さらに、実施の形態による蒸気タービンは、ケーシングと、ケーシングに回転自在に設けられたタービンロータと、上述のタービン段落と、を備えている。
図1は、実施の形態における蒸気タービンの一例を示す子午断面図である。 図2は、図1の蒸気タービンにおける最終タービン段落とその上流側のタービン段落とを拡大して示す子午断面図である。 図3は、図2のA−A線横断面を示す図である。 図4は、図2の最終タービン段落の動翼において、翼高さ比と10年後の相対浸食量との関係を示すグラフである。 図5は、図2の最終タービン段落の動翼において、翼高さ比と相対マッハ数との関係を示すグラフである。 図6(a)は、図2の最終タービン段落において、ラップ量を説明するための動翼の横断面図であり、図6(b)は、図6(a)のB部拡大図である。 図7は、図2の最終タービン段落において、ラップ量比と性能との関係を示すグラフである。 図8(a)〜(c)は、図2の最終タービン段落において、衝撃波を説明するための動翼の横断面図である。 図9は、実施の形態による動翼の先端側領域において、翼高さ比とラップ量比との関係を示すグラフである。 図10は、図9に示す動翼の先端側領域において、翼高さ比と10年後のラップ量比との関係を示すグラフである。
以下、図面を参照して、本発明の実施の形態におけるタービン動翼翼列、タービン段落および蒸気タービンについて説明する。
ここでは、まず、蒸気タービンとして、蒸気の圧力が比較的低い低圧蒸気タービン(以下、単に蒸気タービンと記す)を例に挙げて説明する。低圧蒸気タービンの一例を図1に示す。
図1に示すように、蒸気タービン1は、ケーシング2と、ケーシング2内に回転自在に設けられたタービンロータ3と、を備えている。ケーシング2には、複数の静翼翼列10が設けられ、タービンロータ3には、複数のタービン動翼翼列30(以下、単に動翼翼列30と記す)が設けられている。一の静翼翼列10と、当該一の静翼翼列10の下流側に隣り合って配置された一の動翼翼列30とによって一のタービン段落が構成されている。蒸気タービン1には、複数のタービン段落20a、20b、20cが設けられており、最も高圧側(上流側)のタービン段落は第1タービン段落20aといい、最も低圧側(下流側)のタービン段落は、最終タービン段落20cという。
静翼翼列10は、タービンロータ3の周方向に所定のピッチで互いに離間して配置された複数の静翼11(ノズル)を有している。より詳細には、図2に示すように、ケーシング2の内周側には、タービン段落毎にダイアフラム外輪12が設けられている。このダイアフラム外輪12より内周側にはダイアフラム内輪13が設けられている。上述した静翼11は、ダイアフラム外輪12とダイアフラム内輪13との間に設けられている。すなわち、静翼11は、ダイアフラム外輪12とダイアフラム内輪13とによって支持され、周方向に均等に列状に配置されている。
動翼翼列30は、周方向に所定のピッチで互いに離間して配置された複数の動翼31を有している。より詳細には、動翼31は、タービンロータ3に設けられたロータディスク4に植設され、周方向に均等に列状に配置されている。
図1に示すように、ケーシング2には、ボイラ(図示せず)等において生成された蒸気を作動蒸気としてタービン段落に供給する蒸気管5が連結されている。この蒸気管5により供給された蒸気は、第1タービン段落20aに入り、各タービン段落を通って下流側に流れて、最終タービン段落20cから抜けていく。この間、蒸気の膨張仕事を動翼31が受けてタービンロータ3が回転する。すなわち、動翼31は、静翼11において膨張された蒸気の速度エネルギを回転エネルギに変換して動力を発生させる。このようにして、タービンロータ3が回転駆動され、タービンロータ3に連結された発電機(図示せず)において発電が行われる。また、最終タービン段落20cから抜けた蒸気は、ケーシング2の外部に設けられた復水器(図示せず)に送られて復水が生成され、生成された復水は、上述したボイラに供給される。
ところで、図2に示すように、動翼31は、タービンロータ3の側に設けられた基端側領域32と、基端側領域32より翼高さが高い先端側領域33と、を有している。すなわち、基端側領域32は動翼31うちの内周側の領域であって、翼高さが低い領域であり、先端側領域33は外周側の領域であって、タービンロータ3の側とは反対側の領域となっている。ここで、翼高さは、タービンロータ3の回転軸線からの距離と言い換えることもできる。
動翼31の先端側領域33は、隣り合う動翼31との周方向の重なり量を示すラップ量L(後述、図6(a)参照)と、動翼31の翼コード長C(後述、図6(a)参照)との比であるラップ量比L/Cの先端側領域33における最大値を有する頂点翼高さ位置34を有し、当該頂点翼高さ位置34から翼高さが低い側および翼高さが高い側に向ってラップ量比が徐々に小さくなるように形成されている。
このように動翼31の先端側領域33を形成することにより、運転開始から長期間経過後においても水滴の浸食による性能低下を抑制できる。このことについて、以下により詳細に説明する。
蒸気タービン1が運転している間、図2に示すように、第1タービン段落20a(図1参照)に流入した蒸気は、下流に流れるに伴って拡大する拡大流路内をP方向に沿って流れて膨張する。このことにより、蒸気の圧力および温度が降下し、湿り度が3%〜5%程度まで非平衡膨張した際に水滴が発生する。通常、火力発電プラント用の蒸気タービン1においては、最終タービン段落20cよりも一段上流側の最終前タービン段落20bで水滴が発生し得る。
最終前タービン段落20bにおいて初期的に形成される水滴の径は、0.1μm〜1μm程度である。形成された水滴の一部は、当該最終前タービン段落20bの静翼11の表面や動翼31の表面に衝突して付着する。しかしながら、この場合、水滴の径が小さいため、当該最終前タービン段落20bにおける動翼31の浸食は軽微となる。
最終前タービン段落20bの静翼11や動翼31に衝突し付着した水滴は、図2の実線で示すように、遠心力やコリオリ力を受けながら、拡大流路内をQ方向に沿って外周側へ流れる。これにより、最終タービン段落20cに対応するダイアフラム外輪12の内周面に、多くの水滴が付着し、液膜が形成される。
形成された液膜は、ダイアフラム外輪12の内周面の近傍で発生する蒸気の二次流れによって、ダイアフラム外輪12の内周面に沿って、静翼11の腹側から隣り合う他の静翼11の背側に向う。静翼11の背側に達した液膜は、蒸気の二次流れ(静翼11間に発生する渦流)によって、静翼11の背側の外周側から内周側に拡散されながら静翼11の後縁に延びる(図2の破線ハッチングで示したR領域参照)。静翼11の後縁に達した液膜は、後縁より蒸気の主流に吹き千切られて水滴6となって主流内に放出される。このときの水滴6の径は、数百μmになるため、静翼11の下流側の動翼31に衝突して、当該動翼31を浸食し得る。
図3に、図2のA−A線横断面を示す。図3に示す翼断面の高さ位置は、動翼31の全高の90%の位置となっている。
図3には、実線の矢印によって蒸気流れの速度ベクトルが示されている。Cnは静翼11の出口における蒸気の絶対速度を示し、Uは動翼31の回転周方向速度を示し、Wnは蒸気の相対速度を示している。また、図3には、破線の矢印によって水滴の速度ベクトルが示されている。Cpは静翼11の出口における水滴の絶対速度を示し、Wpは水滴の相対速度を示している。
図3に示すように、水滴の絶対速度Cpは、蒸気の絶対速度Cnより小さくなっている。しかしながら、動翼31の回転周方向速度は同じとなるため、動翼31の入口における水滴の相対速度は、蒸気の相対速度より大きくなる。そして、水滴は、回転周方向速度Uに近い速度で動翼31に流入する。ここで、動翼31の浸食量は、水滴の相対速度Wpに比例する。このため、動翼31の長翼化によって回転周方向速度が大きくなり、蒸気の相対速度が上昇して浸食量が増大し得る。浸食量が増大すると、動翼31の翼型形状が、設計時の形状とは異なる形状に変形し、翼型損失が増加し得る。
動翼31の入口における蒸気の相対マッハ数が1を超える場合、動翼31に流入する蒸気の流れが超音速の流れとなる。この場合、蒸気の膨張不足による翼型損失の増加を抑えるために、動翼31が、出口側に向って動翼間通路が拡大するように形成された末広翼形状を有していることが好適である。しかしながら、上述したように、動翼31が水滴によって浸食されると、動翼31は末広翼形状を維持することが困難になり、翼型損失が増加して、性能低下が発生するおそれがある。本実施の形態による動翼翼列30は、このような水滴の浸食による性能低下を抑制するためのものである。
図4に、現時点で世界最大級の翼長をもつ最終タービン段落20cの動翼31における運転開始から10年経過後の相対浸食量の予測分布を示す。横軸は、翼高さと動翼31の全高との比である翼高さ比を示している。例えば、動翼31の全高の90%の翼高さ位置は翼高さ比0.9の翼高さ位置となる。縦軸は動翼31の前縁35(図6参照)の相対浸食量を示す。相対浸食量は、浸食量を翼コード長C(図6(a)参照)で除した値である。ここで、翼コード長Cは、動翼の前縁35と後縁36(図6参照)との距離に相当する。翼コード長Cが、翼高さ位置ごとに異なる場合には、相対浸食量は、所定の翼高さ位置における浸食量を当該翼高さ位置における翼コード長Cで除した値とすることが好適である。なお、浸食量は、理論式から得られる浸食量に、実測データを用いて補正して得られた値となっている。
図4に示すように、最終タービン段落20cの動翼31においては、翼高さ比が0.93の位置において浸食量が最大となっている。この翼高さ比0.93の位置から上下方向(翼高さが低くなる方向および高くなる方向)に向って浸食量は小さくなっている。そして、翼高さ比0.85〜1の範囲において、動翼31の前縁35が浸食される。
初期運転期間(運転開始後1年間程度)では、運転時間によらず図4に示す予測された浸食量の傾向に沿って浸食が進行するが、浸食量はまだ少ない。しかしながら、運転開始後10年〜20年を経過すると、浸食量が増大して、動翼31の質量や剛性が変化し、動翼31の固有振動数が変化し得る。この場合、タービンロータ3の回転数との離調不足により動翼31の振動応力が増加し、場合によっては、動翼31の損傷を招く可能性が生じる。このことを回避するために、動翼31の交換や、溶接補修などによる再生措置を行うことがある。
図5に、現時点で世界最大級の翼長をもつ最終タービン段落20cの動翼31に、超音速翼型を適用する範囲を示す。横軸は翼高さ比を示し、縦軸は相対マッハ数を示している。
超音速翼型は、超音速で流入した蒸気の流れを超音速で流出させることが可能な翼型である。すなわち、超音速翼型は、動翼31の入口における相対マッハ数および出口における相対マッハ数が1を超える場合に用いられる。図5によれば、相対マッハ数が1を超える翼高さ比は、0.82以上であることが示されている。この相対マッハ数が1を超える翼高さ比の範囲は、図4に示した動翼31の前縁35(図6参照)が浸食される翼高さ比の範囲に概略重なっている。
図6(a)、(b)は、翼高さ比0.92における最終タービン段落20cの動翼31の横断面を示している。図6(a)に示すように、互いに隣り合う動翼31は、タービンロータ3の回転軸線X(図1参照)に沿った方向(Y方向)から見たときに、一部が重なり合っている。すなわち、動翼31は、上流側に設けられた前縁35と、下流側に設けられた後縁36と、を含んでおり、動翼31の前縁35の側の領域が、隣り合う他の動翼31の後縁36の側の領域と重なり合ってラップ領域が形成されている。このラップ領域の周方向寸法(重なり量)をラップ量Lとする。また、ラップ領域には、図6(b)に示すように、互いに隣り合う動翼31との距離が最も小さくなる翼通路狭隘部(スロート部T)が形成されている。超音速翼型に用いられる末広翼形状は、このスロート部Tより下流側において動翼31間の通路幅が出口側に向って拡大する形状となっている。
図7に、上述のように形成された超音速翼型形状を有する動翼31の性能を示す。横軸はラップ量比を示し、縦軸は性能(効率)を示す。ここで、横軸に示されたラップ量比は、図6に示すラップ量Lと、動翼31の翼コード長Cとの比(L/C)を示している。なお、翼コード長Cが、翼高さ位置ごとに異なる場合には、ラップ量比は、所定の翼高さ位置におけるラップ量Lを当該翼高さ位置における翼コード長Cで除した値とすることが好適である。また、縦軸に示された性能は、動翼31を通過する蒸気のエネルギからタービンロータ3を回転駆動するエネルギへの変換効率を意味している。
図7に示されているように、ラップ量比が0近傍において効率が最大となっており、ラップ量比が減少または増大するに従って効率が低下している。このうち、ラップ量比が負の値となっている領域においては、ラップ量比が正の値となっている領域よりも効率低下の度合いが大きくなっている。
この理由を、図8を用いて説明する。図8(a)は、ラップ量比が正の値となっている場合に形成され得る衝撃波を示し、図8(b)は、ラップ量比が0となっている場合に形成され得る衝撃波を示し、図8(c)は、ラップ量比が負の値となっている場合に形成され得る衝撃波を示している。
図8(a)に示すように、ラップ量比が正の値となっている場合には、動翼31の前縁35が図8(b)、(c)に示す場合よりも上流側に形成されるため、動翼31の入口に形成され得る入口衝撃波は、最も上流側に形成される。この入口衝撃波は、隣り合う動翼31の翼面(表面)に反射しながら下流側へ伝播する。また、動翼31の出口にも出口衝撃波が形成されるため、下流へ伝播した入口衝撃波は、出口衝撃波と干渉する。このような衝撃波の反射や干渉によって損失が増加し得る。すなわち、ラップ量比が大きくなると、衝撃波が反射する位置が上流側へ移動するため、衝撃波の干渉が大きくなり損失が増加する。
図8(b)に示すように、ラップ量比が0となっている場合、入口衝撃波が隣り合う動翼31の翼面で反射することを回避することができる。このことにより、損失の増加を防止でき、効率を最大にすることができる。
図8(c)に示すように、ラップ量比が負の値となっている場合、スロート部Tが動翼31の後縁36に位置付けられるため、超音速流れに適した末広翼形状を形成することができなくなる。この場合、動翼31の出口において超音速流れを実現することが困難になり、出口の流れが亜音速流れとなる。このことにより、動翼31を通過する蒸気の速度が、入口における超音速から出口において亜音速に急減速することになり、動翼31の翼面において流れが剥離し、効率が大きく低下し得る。
このように、最終タービン段落20cの動翼翼列30では、ラップ量Lによって動翼31の効率が大きく変わる可能性がある。そこで、このような状況を考慮した本実施の形態における動翼翼列30について、以下により詳細に説明する。
すなわち、本実施の形態においては、動翼31の先端側領域33は、翼高さ比が0.82〜1となる領域となっている。このことにより、先端側領域33を、水滴による浸食量が大きくなり得る超音速の蒸気が流入する領域(図5参照)とすることができ、浸食による動翼31の効率低下をより確実に抑制することができる。また、先端側領域33が、翼高さ比が0.85〜1となる領域となっている場合には、先端側領域33を、水滴による浸食が進行し得る領域(図4参照)とすることができ、浸食による動翼31の効率低下をより確実に抑制することができる。なお、図9(後述する図10も同様)においては、先端側領域33の翼高さ比が0.85〜1となっている例を示している。
また、頂点翼高さ位置34における翼高さ比は、0.93となっている。このことにより、水滴による浸食が最大となり得る翼高さ位置(図4参照)において、ラップ量比を最大にすることができ、浸食による動翼31の効率低下を効果的に抑制できる。
また、先端側領域33のラップ量比は、頂点翼高さ位置34から翼高さが低い側および翼高さが高い側に向って直線状に小さくなっている。このことにより、先端側領域33の全体にわたって、ラップ量比を10年後の予測浸食量より大きくすることができ、動翼31の効率低下を効果的に抑制できる。
また、先端側領域33のラップ量比は、0以上となっている。このことにより、水滴による浸食が予測される先端側領域33において、運転開始から10年経過後においても、ラップ量比が負の値となることを抑制できる。また、当該ラップ量比は、0.09以上である場合には、10年経過後においても、ラップ量比が負の値となることをより一層抑制できる。
また、頂点翼高さ位置34のラップ量比(ラップ量比の最大値)は、0.1以下となっている。このことにより、ラップ量比が大きくなりすぎることによって損失が増大することを抑制できる。
また、先端側領域33は、超音速で流入した蒸気の流れを超音速で流出させる超音速翼型形状を有している。すなわち、先端側領域33は、動翼31間の通路がスロート部T(図6(b)参照)から出口側に向って拡大した末広翼形状を有していることが好ましい。このことにより、動翼31に流入した超音速の蒸気の流れを、超音速で動翼31から流出させることができる。このため、蒸気の流れが急減速して亜音速となることを防止し、効率低下を抑制できる。
さらに、上述した動翼31を構成する動翼翼列30は、最終タービン段落20cを構成している。このことにより、蒸気圧力や温度が低下した、湿り度が高い最終タービン段落20cの動翼31において、水滴による浸食によって性能が低下することを効果的に抑制することができる。
図9に、上述のようにして構成された本実施の形態による動翼31の翼高さ比とラップ量比との関係を実線で示す。また、図9には、図4に示す相対浸食量(運転開始から10年経過後の浸食量の予測分布)が破線で示されている。
図9に示すように、先端側領域33(翼高さ比:0.85〜1)において、翼高さ比が0.93の位置に頂点翼高さ位置34が存在し、当該頂点翼高さ位置34におけるラップ量比が0.1となっている。この頂点翼高さ位置34から翼高さ比が0.85の位置に向って、ラップ量比が直線状(線形的)に小さくなるとともに、翼高さ比が1の位置に向って、ラップ量比が直線状に小さくなっている。
また、図9の実線で示されるようなラップ量比とすることにより、破線で示すような浸食量の浸食が進行した場合であっても、運転開始から10年経過後のラップ量比を、先端側領域33の全体にわたって0以上に維持することが可能となる。
上述したようなラップ量比を有する先端側領域33は、例えば、動翼31の前縁35を、隣り合う他の動翼31の後縁36を基準にして、流入する蒸気の上流側に延ばすことにより実現することができる。しかしながら、これに限られることはなく、動翼31の後縁36を、隣り合う他の動翼31の前縁35を基準にして、流出する蒸気の下流側に延ばすようにしてもよく、あるいは、動翼31の前縁35および後縁36を、蒸気の上流側および下流側にそれぞれ延ばすようにしてもよい。
なお、図9には基端側領域32におけるラップ量比を示していないが、基端側領域32におけるラップ量比は任意とすることができる。
図10には、図9に示す先端側領域33において運転開始から10年経過後に浸食が進行した場合のラップ量比が示されている。すなわち、図10は、図9における実線のラップ量比から破線の相対浸食量を減じて得られたグラフである。
図10に示されているように、先端側領域33において10年経過後に浸食が進行した場合であっても、ラップ量比を0以上に維持することができる。図7を用いて既に説明したように、ラップ量比が0近傍では動翼31の性能を最大にすることができる。一方、ラップ量比が負の値となると動翼31の効率が低下し得るため、設計時にラップ量比が0近傍に設定されている場合、浸食によってラップ量比が低減して負の値となり、動翼31の性能が低下するおそれがある。これに対して本実施の形態によれば、上述したように、先端側領域33における10年経過後のラップ量比を0以上とすることができるため、動翼31の性能が低下することを防止できる。更に言えば、10年経過後に、動翼31の性能を向上させて、効率を最大化させることが可能となるとともに、10年経過するまでは、ラップ量比を正の値とすることができ、ラップ量比を負の値とするよりも動翼31の性能の低下を抑制することができる。
以上述べた実施の形態によれば、運転開始から長期間経過した後においても水滴の浸食による性能低下を抑制できる。
なお、上述した実施の形態においては、動翼31の先端側領域33の翼高さ比、頂点翼高さ位置34における翼高さ比、先端側領域33のラップ量比および頂点翼高さ位置34のラップ量比として、好ましい数値(あるいは数値範囲)が設定されている例について説明した。しかしながら、このことに限られることはなく、蒸気タービン1の設計条件(各部の寸法、形状など)、運転条件(流入蒸気の流量、圧力など)などに応じて、上記数値は好適に変更することができる。
すなわち、動翼31の先端側領域33を、ラップ量比L/Cの最大値を有する頂点翼高さ位置34を有し、当該頂点翼高さ位置34から翼高さが低い側および翼高さが高い側に向ってラップ量比が徐々に小さくなるように形成することにより、先端側領域33において水滴の浸食による性能低下を抑制することができる。図4および図9の破線にて示されたように、予測される浸食量は、翼高さ比が比較的高い所定の範囲において、浸食量が最大となる位置が存在し、この最大となる位置から翼高さが低い側および翼高さが高い側に向って浸食量が徐々に小さくなっている。このため、動翼31の先端側領域33におけるラップ量比を上述のように設定することにより、当該先端側領域33において浸食による性能低下を効果的に抑制することができる。
より具体的には、先端側領域33における頂点翼高さ位置34を、浸食量の予測分布に応じて浸食量が最も多くなる位置に適切に設定することにより、浸食量が最大となり得る翼高さ位置におけるラップ量比を大きくすることができ、浸食による性能低下を効果的に抑制することができる。そして、浸食量がそれ程大きくならない翼高さ位置では、ラップ量比が小さくなるため、必要以上にラップ量比が大きくなることを抑制でき、動翼31の性能低下を抑制できる。
また、先端側領域33を、浸食量の予測により浸食が発生し得る領域、または超音速流れが流入する領域に適切に設定することにより、先端側領域33において浸食による性能低下を効果的に抑制することができる。
さらに、先端側領域33におけるラップ量比を、予測される浸食量に応じて適切に設定することにより、運転開始から所定の期間経過後の浸食による性能低下を効果的に抑制することができる。
また、上述した本実施の形態においては、先端側領域33のラップ量比は、頂点翼高さ位置34から翼高さが低い側および翼高さが高い側に向って直線状に小さくなっている例について説明した。しかしながら、このことに限られることはなく、ラップ量比は、頂点翼高さ位置34から翼高さが低い側および翼高さが高い側に向って徐々に小さくなっていれば、直線状に小さくなることに限られることはない。この場合においても、浸食による性能低下を効果的に抑制することができる。
また、上述した本実施の形態においては、先端側領域33は、超音速で流入した蒸気の流れを超音速で流出させる超音速翼型形状を有している例について説明した。しかしながら、このことに限られることはなく、先端側領域33は、超音速翼型形状を有していない場合であっても、上述のようにして浸食による性能低下を効果的に抑制することができる。
さらに、上述した本実施の形態においては、先端側領域33のラップ量比を特定する動翼31が最終タービン段落20cを構成している例について説明した。しかしながら、このことに限られることはなく、本実施の形態による動翼31は、最終タービン段落20c以外の他のタービン段落に適用してもよい。
本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 蒸気タービン
2 ケーシング
3 タービンロータ
10 静翼翼列
11 静翼
20c 最終タービン段落
30 動翼翼列
31 動翼
32 基端側領域
33 先端側領域
34 頂点翼高さ位置

Claims (12)

  1. タービンロータに設けられ、超音速の蒸気が流入するタービン動翼翼列であって、
    前記タービンロータの周方向に互いに離間した複数の動翼を備え、
    前記動翼は、前記タービンロータ側に設けられた基端側領域と、前記基端側領域より翼高さが高い先端側領域と、を有し、
    前記先端側領域は、隣り合う前記動翼との前記周方向の重なり量を示すラップ量Lと、前記動翼の翼コード長Cとの比であるラップ量比L/Cの当該先端側領域における最大値を有する頂点翼高さ位置を含み、当該頂点翼高さ位置から翼高さが低い側および翼高さが高い側に向って前記ラップ量比が徐々に小さくなるように形成されていることを特徴とするタービン動翼翼列。
  2. 前記先端側領域の前記ラップ量比は、前記頂点から翼高さが低い側および翼高さが高い側に向って直線的に小さくなっていることを特徴とする請求項1に記載のタービン動翼翼列。
  3. 前記先端側領域における前記ラップ量比は、0以上であることを特徴とする請求項1または2に記載のタービン動翼翼列。
  4. 前記先端側領域における前記ラップ量比は、0.09以上であることを特徴とする請求項1乃至3のいずれか一項に記載のタービン動翼翼列。
  5. 前記頂点翼高さ位置の前記ラップ量比は、0.1以下であることを特徴とする請求項1乃至4のいずれか一項に記載のタービン動翼翼列。
  6. 前記先端側領域は、翼高さと当該動翼の全高との比である翼高さ比が0.82〜1となる領域であることを特徴とする請求項1乃至5のいずれか一項に記載のタービン動翼翼列。
  7. 前記先端側領域は、翼高さと当該動翼の全高との比である翼高さ比が、0.85〜1となる領域であることを特徴とする請求項1乃至6のいずれか一項に記載のタービン動翼翼列。
  8. 前記頂点翼高さ位置における前記翼高さ比は、0.93であることを特徴とする請求項1乃至7のいずれか一項に記載のタービン動翼翼列。
  9. 前記先端側領域は、超音速で流入した蒸気の流れを超音速で流出可能な形状を有していることを特徴とする請求項1乃至8のいずれか一項に記載のタービン動翼翼列。
  10. 最終タービン段落を構成することを特徴とする請求項1乃至9のいずれか一項に記載のタービン動翼翼列。
  11. 周方向に互いに離間した複数の静翼を有する静翼翼列と、
    前記静翼翼列の下流側に隣り合って配置された請求項1乃至10のいずれか一項に記載のタービン動翼翼列と、を備えたことを特徴とするタービン段落。
  12. ケーシングと、
    前記ケーシングに回転自在に設けられた前記タービンロータと、
    請求項11に記載の前記タービン段落と、を備えたことを特徴とする蒸気タービン。
JP2014049429A 2014-03-12 2014-03-12 タービン動翼翼列、タービン段落および蒸気タービン Active JP6081398B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049429A JP6081398B2 (ja) 2014-03-12 2014-03-12 タービン動翼翼列、タービン段落および蒸気タービン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014049429A JP6081398B2 (ja) 2014-03-12 2014-03-12 タービン動翼翼列、タービン段落および蒸気タービン

Publications (2)

Publication Number Publication Date
JP2015175233A true JP2015175233A (ja) 2015-10-05
JP6081398B2 JP6081398B2 (ja) 2017-02-15

Family

ID=54254673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049429A Active JP6081398B2 (ja) 2014-03-12 2014-03-12 タービン動翼翼列、タービン段落および蒸気タービン

Country Status (1)

Country Link
JP (1) JP6081398B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499521B1 (ja) * 1965-04-01 1974-03-05
JPS5612681B1 (ja) * 1969-01-24 1981-03-24
JPH0216302A (ja) * 1988-07-01 1990-01-19 Hitachi Ltd タービン動翼列
JP2000045704A (ja) * 1998-07-31 2000-02-15 Toshiba Corp 蒸気タービン
JP2003065002A (ja) * 2001-08-30 2003-03-05 Toshiba Corp 蒸気タービン動翼及び蒸気タービン
JP2013032772A (ja) * 2011-06-29 2013-02-14 Hitachi Ltd 超音速タービン動翼及び軸流タービン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS499521B1 (ja) * 1965-04-01 1974-03-05
JPS5612681B1 (ja) * 1969-01-24 1981-03-24
JPH0216302A (ja) * 1988-07-01 1990-01-19 Hitachi Ltd タービン動翼列
JP2000045704A (ja) * 1998-07-31 2000-02-15 Toshiba Corp 蒸気タービン
JP2003065002A (ja) * 2001-08-30 2003-03-05 Toshiba Corp 蒸気タービン動翼及び蒸気タービン
JP2013032772A (ja) * 2011-06-29 2013-02-14 Hitachi Ltd 超音速タービン動翼及び軸流タービン

Also Published As

Publication number Publication date
JP6081398B2 (ja) 2017-02-15

Similar Documents

Publication Publication Date Title
US9051839B2 (en) Supersonic turbine moving blade and axial-flow turbine
JP4923073B2 (ja) 遷音速翼
CN108533332B (zh) 涡轮喷嘴以及具备涡轮喷嘴的径流式涡轮机
US20140137533A1 (en) Exhaust gas diffuser for a gas turbine
JP2012031864A (ja) 低圧蒸気タービン及び低圧蒸気タービンを運転する方法
JP2016166569A (ja) 蒸気タービン
JP6268315B2 (ja) タービン動翼及び蒸気タービン
JP2011106474A (ja) 軸流タービン段落および軸流タービン
JP2012082826A (ja) タービンバケットシュラウドテール
JP2015048716A (ja) 蒸気タービン
JP6081398B2 (ja) タービン動翼翼列、タービン段落および蒸気タービン
JP2007056824A (ja) 軸流タービンの静翼、動翼ならびにこれらの静翼および動翼を備えた軸流タービン
JP6866187B2 (ja) タービンノズル及びそれを備えたラジアルタービン
EP3196411A2 (en) Flow alignment devices to improve diffuser performance
JP6302172B2 (ja) タービンおよびタービンでの衝撃損失を低減するための方法
JPH11173104A (ja) タービン動翼
JP6867189B2 (ja) タービンノズル及びそれを備えたラジアルタービン
US11753940B2 (en) Steam turbine rotor blade
JP2018003812A (ja) 動翼およびそれを用いたタービン
JP2018035676A (ja) タービン
JP4822924B2 (ja) タービン翼およびこれを備える蒸気タービン
JP6154609B2 (ja) タービン静翼、および軸流タービン
JP2013076344A (ja) 軸流圧縮機
JP2020159275A (ja) タービン静翼、及びタービン
JP2017082725A (ja) 動翼、軸流タービン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170118

R151 Written notification of patent or utility model registration

Ref document number: 6081398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151