JP2015175140A - Earthquake-resistance reinforcement method of concrete main girder for bridge - Google Patents

Earthquake-resistance reinforcement method of concrete main girder for bridge Download PDF

Info

Publication number
JP2015175140A
JP2015175140A JP2014051150A JP2014051150A JP2015175140A JP 2015175140 A JP2015175140 A JP 2015175140A JP 2014051150 A JP2014051150 A JP 2014051150A JP 2014051150 A JP2014051150 A JP 2014051150A JP 2015175140 A JP2015175140 A JP 2015175140A
Authority
JP
Japan
Prior art keywords
concrete
main girder
concrete main
hole
fixing bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014051150A
Other languages
Japanese (ja)
Other versions
JP6259687B2 (en
Inventor
惠二郎 合田
Keijiro Aida
惠二郎 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Mitsubishi Construction Co Ltd
BBM Co Ltd
Original Assignee
PS Mitsubishi Construction Co Ltd
BBM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Mitsubishi Construction Co Ltd, BBM Co Ltd filed Critical PS Mitsubishi Construction Co Ltd
Priority to JP2014051150A priority Critical patent/JP6259687B2/en
Publication of JP2015175140A publication Critical patent/JP2015175140A/en
Application granted granted Critical
Publication of JP6259687B2 publication Critical patent/JP6259687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake-resistance reinforcement method and an earthquake-resistance reinforcement structure of a concrete main girder for a bridge capable of easily installing a bearing and an installation member, while improving earthquake-resistance reinforcement performance of the concrete main girder, by maximally restraining a chipping quantity of the concrete main girder.SOLUTION: A hole 1d of the depth within cover concrete is drilled on a side surface of a concrete main girder 1 in response to a position of a plurality of female screw holes formed on a sidewall of an installation member 5, and the tip of a fixing bolt 6 is not projected from the sidewall of the installation member 5, and the installation member 5 is screwed in the female screw hole at an interval between a bottom surface and the side surface of the installation concrete main girder 1, and a form is installed in both side openings of the installation member 5, and concrete mortar 9 is filled in a cavity of the concrete main girder 1 enclosed by the installation member 5 and the form, and the tip of the fixing bolt 6 is inserted into the hole 1d of the concrete main girder 1 by rotating the fixing bolt 6, and the concrete mortar 9 is cured and hardened, and the installation member 5 is integrated with the concrete main girder 1.

Description

本発明は、橋梁用コンクリート主桁の耐震補強工法に関する。   The present invention relates to a seismic reinforcement method for a main girder for a bridge.

19995年の兵庫県南部地震以降、橋梁の耐震性能をレベル2地震動に対応させるべく既設橋梁の耐震補強工事が進められてきた。   Since the 1999 Hyogoken-Nanbu Earthquake, seismic reinforcement work has been carried out on existing bridges in order to adapt the seismic performance of bridges to Level 2 ground motions.

しかし、鉄筋コンクリート橋やプレストレストコンクリート橋の場合、鉄筋やプレストレストを導入するためのPCケーブルが配置されていることから、支承や変位制限構造等の取付部材の取り付けが困難であるため耐震化が鋼橋に比べて遅れる傾向があった。   However, in the case of reinforced concrete bridges and prestressed concrete bridges, PC cables are installed to introduce reinforcing bars and prestressed concrete, so it is difficult to attach mounting members such as bearings and displacement limiting structures. There was a tendency to lag behind.

このような状況下で、特開2011−252368号公報には、コンクリート主桁に取付部材を一体に固定してコンクリート橋の耐震能力を向上させ、支承や取付部材の取付を容易としたコンクリート主桁の耐震補強工法は提示されている。   Under such circumstances, Japanese Patent Application Laid-Open No. 2011-252368 discloses a concrete main unit that is easily fixed to a bearing or mounting member by fixing the mounting member integrally to the concrete main girder to improve the seismic capacity of the concrete bridge. Seismic reinforcement methods for girders are presented.

特開2011−252368号公報JP 2011-252368 A 道路橋示方書(V耐震設計編)社団法人日本道路協会、2002年4月10日発行、P.245参照Road Bridge Specification (V Seismic Design) Japan Road Association, issued April 10, 2002 See 245

しかしながら、従来のコンクリート主桁の耐震補強工法は、主桁鉄筋が露出するまで主桁側面をはつる必要があるため、プレテンションT桁のように主桁幅が狭い場合には、はつる量が大きくなり主桁の耐力に影響を与える恐れがある。   However, the conventional seismic reinforcement method for concrete main girders requires the side of the main girder to be hung until the main girder rebar is exposed. Therefore, when the main girder width is narrow like a pretension T girder, the amount of hanger May increase the strength of the main girder.

本発明は、前記従来技術の持つ課題を解決する、コンクリート主桁のはつり量を極力抑えつつ、コンクリート主桁の耐震補性能を向上することができ、支承や取付部材の取り付けも容易にできる橋梁用コンクリート主桁の耐震補強工法及び橋梁用コンクリート主桁の耐震補強構造を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, can suppress the amount of suspension of the concrete main girder as much as possible, can improve the seismic compensation performance of the concrete main girder, and can easily mount the support and the mounting member. The purpose is to provide a seismic strengthening method for concrete main girders and a seismic strengthening structure for concrete main girders for bridges.

本発明の橋梁用コンクリート主桁の耐震補強工法は、前記課題を解決するために、コンクリート主桁の側面に取付部材の側壁に形成した複数の雌ねじ孔に対応する位置にかぶりコンクリート以内の深さの孔を削孔する工程と、コンクリート主桁の底面と側面との間に幅狭の間隔を開け、コンクリート主桁の側面に形成した孔の位置と側壁に形成した雌ねじ孔の位置が合致するようにし、前記雌ねじ孔に固定ボルトの先端が側壁から突き出さないように螺着した水平底面と垂直側壁を備えた取付部材を配置する工程と、取付部材の両側開口に型枠を設置する工程と、取付部材と型枠に囲まれたコンクリート主桁との空隙にコンクリートモルタルを充填する工程と、コンクリートモルタルが未硬化の状態で、取付部材の雌ねじ孔に螺着した固定ボルトを回転し、固定ボルトの先端をコンクリート主桁の孔に挿入する工程と、コンクリートを養生して硬化させ、コンクリート主桁と取付部材を一体とする工程と、を備えることを特徴とする。   In order to solve the above-mentioned problem, the seismic reinforcement method for a concrete main girder for a bridge according to the present invention has a depth within the cover concrete at a position corresponding to a plurality of female screw holes formed on the side wall of the mounting member on the side surface of the concrete main girder. A narrow gap is formed between the bottom surface and side surface of the concrete main girder, and the position of the hole formed on the side surface of the concrete main girder matches the position of the female screw hole formed on the side wall. And a step of arranging a mounting member having a horizontal bottom surface and a vertical side wall screwed so that the front end of the fixing bolt does not protrude from the side wall into the female screw hole, and a step of installing a formwork on both side openings of the mounting member Filling the gap between the mounting member and the concrete main girder surrounded by the formwork with concrete mortar, and the fixing bolt screwed into the female screw hole of the mounting member with the concrete mortar uncured. Rotating the door, the steps of the front end of the fixing bolt is inserted into the hole of the concrete main beam, and cured by curing the concrete, characterized in that it comprises a step of integrally concrete main beam and the mounting member.

また、本発明の橋梁用コンクリート主桁の耐震補強工法は、コンクリート主桁の側面に形成する孔の内径を前記孔に挿入される前記固定ボルトの部分の外径より大きくし、孔に固定ボルトを挿入する際の孔の奥に残った空気の排気間隙を形成することを特徴とする。   Further, the seismic reinforcement method for a concrete main girder for a bridge according to the present invention is such that the inner diameter of the hole formed in the side surface of the concrete main girder is larger than the outer diameter of the portion of the fixing bolt inserted into the hole, The exhaust gap of the air remaining in the back of the hole when inserting is formed.

また、本発明の橋梁用コンクリート主桁の耐震補強工法は、コンクリート主桁の側面に形成する孔の内径と前記孔に挿入される前記固定ボルトの部分の外径をほぼ同じとすることを特徴とする。   Further, the seismic reinforcement method for a bridge concrete main girder according to the present invention is characterized in that the inner diameter of the hole formed in the side surface of the concrete main girder and the outer diameter of the portion of the fixing bolt inserted into the hole are substantially the same. And

また、本発明の橋梁用コンクリート主桁の耐震補強工法は、前記コンクリートモルタルとして、無収縮コンクリートモルタル又は鋼繊維補強流動性高強度コンクリートモルタルを用いることを特徴とする。   Further, the seismic reinforcement method for a bridge main girder according to the present invention is characterized by using non-shrinkable concrete mortar or steel fiber reinforced flowable high strength concrete mortar as the concrete mortar.

また、本発明の橋梁用コンクリート主桁耐震補強工法は、前記鋼繊維補強高流動性高強度コンクリートは、セメント、石灰石フィラー、シリカフュームからなる混合体において、前記混合体1m3当たり250〜450Lの範囲で添加されるセメントと、前記混合体1m3当たり150〜300Lの範囲で添加される石灰石フィラーと、前記混合体1m3当たり50〜100Lの範囲で添加されるシリカフュームと、前記混合体1m3当たり容積比で4〜12%の範囲で添加される直径0.15〜0.3mmで長さ6〜25mm程度の鋼繊維と直径0.15〜0.3mmで長さ1.0mm以下の鋼繊維と、水と、を混練して形成されることを特徴とする。 Moreover, in the concrete main girder seismic reinforcement method for bridges of the present invention, the steel fiber reinforced high-fluidity high-strength concrete is a mixture of cement, limestone filler, and silica fume in a range of 250 to 450 L per 1 m 3 of the mixture. in the cement is added, the limestone filler is added in the range of the mixture 1 m 3 per 150~300L, and silica fume is added in the range of the mixture 1 m 3 per 50~100L, the mixture 1 m 3 per Steel fibers having a diameter of 0.15 to 0.3 mm and a length of about 6 to 25 mm and steel fibers having a diameter of 0.15 to 0.3 mm and a length of 1.0 mm or less are added in a volume ratio of 4 to 12%. And water are kneaded.

また、本発明の橋梁用コンクリート主桁の耐震補強工法は、前記鋼繊維補強流動性高強度コンクリートは、減水剤と収縮低減剤が添加することを特徴とする。   The seismic reinforcement method for a concrete girder for a bridge according to the present invention is characterized in that a water reducing agent and a shrinkage reducing agent are added to the steel fiber reinforced flowable high strength concrete.

コンクリート主桁の側面に取付部材の側壁に形成した複数の雌ねじ孔に対応する位置にかぶりコンクリート以内の深さの孔を削孔する工程と、コンクリート主桁の底面と側面との間に幅狭の間隔を開け、コンクリート主桁の側面に形成した孔の位置と側壁に形成した雌ねじ孔の位置が合致するようにし、前記雌ねじ孔に固定ボルトの先端が側壁から突き出さないように螺着した水平底面と垂直側壁を備えた取付部材を配置する工程と、取付部材の両側開口に型枠を設置する工程と、取付部材と型枠に囲まれたコンクリート主桁との空隙にコンクリートモルタルを充填する工程と、コンクリートモルタルが未硬化の状態で、取付部材の雌ねじ孔に螺着した固定ボルトを回転し、固定ボルトの先端をコンクリート主桁の孔に挿入する工程と、コンクリートを養生して硬化させ、コンクリート主桁と取付部材を一体とする工程と、を備えることで、コンクリート主桁のはつり量を極力抑えつつ、コンクリート主桁と取付部材をコンクリートで強固に一体化することでコンクリート主桁の耐震性能を向上することができ、支承や取付部材の取り付けも容易になる。
コンクリート主桁の側面に形成する孔の内径を前記孔に挿入される前記固定ボルトの部分の外径より大きくし、孔に固定ボルトを挿入する際の孔の奥に残った空気の排気間隙を形成することで、コンクリート充填空間に空気溜まりを無くすことで、コンクリート主桁と取付部材の一体化を向上することが可能となる。
コンクリート主桁の側面に形成する孔の内径と前記孔に挿入される前記固定ボルトの部分の外径をほぼ同じとすることで、固定ボルトの面圧を小さくすることが可能となる。

コンクリートモルタルとして、無収縮コンクリートモルタル又は鋼繊維補強流動性高強度コンクリートモルタルを用いることで、無収縮コンクリートモルタルは流動性が良く遅乾性であるため施工性が良く、鋼繊維補強流動性高強度コンクリートモルタルは硬化後のコンクリート強度を向上することが可能となる。
前記鋼繊維補強高流動性高強度コンクリートは、セメント、石灰石フィラー、シリカフュームからなる混合体において、前記混合体1m3当たり250〜450Lの範囲で添加されるセメントと、前記混合体1m3当たり150〜300Lの範囲で添加される石灰石フィラーと、前記混合体1m3当たり50〜100Lの範囲で添加されるシリカフュームと、前記混合体1m3当たり容積比で4〜12%の範囲で添加される直径0.15〜0.3mmで長さ6〜25mm程度の鋼繊維と直径0.15〜0.3mmで長さ1.0mm以下の鋼繊維と、水と、を混練して形成されることで、補強用の鋼繊維のモルタル中への分散を十分に確保でき、マトリックスとなるコンクリートと鋼繊維の界面付着強度を確保し鋼繊維の補強効果が十分に発揮され、狭い空間への充填が可能な自己充填性、流動性を確保することが可能となる。
鋼繊維補強流動性高強度コンクリートは、減水剤と収縮低減剤が添加することで、モルタルの流動性、分離抵抗性、硬化後の強度やクラックに対する抵抗性を向上することが可能となる。
Narrow the space between the bottom surface and the side surface of the concrete main girder, and the process of drilling holes with a depth within the cover concrete at positions corresponding to the female screw holes formed on the side wall of the mounting member on the side surface of the concrete main girder The position of the hole formed on the side surface of the concrete main girder and the position of the female screw hole formed on the side wall coincide with each other, and the end of the fixing bolt is screwed into the female screw hole so that it does not protrude from the side wall. Filling the gap between the mounting member and the concrete main girder surrounded by the mold by placing the mounting member with the horizontal bottom and vertical side walls, installing the mold at the opening on both sides of the mounting member, and filling the concrete mortar Rotating the fixing bolt screwed into the female screw hole of the mounting member while the concrete mortar is uncured, inserting the tip of the fixing bolt into the hole of the concrete main girder, Curing and hardening the riet to integrate the concrete main girder and the mounting member into one unit, so that the concrete main girder and the mounting member are firmly integrated with concrete while suppressing the amount of suspension of the concrete main girder as much as possible. By doing so, the seismic performance of the concrete main girder can be improved, and the mounting of the support and the mounting member becomes easy.
The inside diameter of the hole formed in the side surface of the concrete main girder is made larger than the outside diameter of the portion of the fixing bolt inserted into the hole, and the exhaust gap of the air remaining behind the hole when the fixing bolt is inserted into the hole By forming it, it becomes possible to improve the integration of the concrete main girder and the mounting member by eliminating an air reservoir in the concrete filling space.
By making the inner diameter of the hole formed in the side surface of the concrete main girder and the outer diameter of the portion of the fixing bolt inserted into the hole substantially the same, the surface pressure of the fixing bolt can be reduced.

By using non-shrinkable concrete mortar or steel fiber reinforced flowable high strength concrete mortar as concrete mortar, nonshrinkable concrete mortar has good flowability and slow drying, so workability is good and steel fiber reinforced flowable high strength concrete Mortar can improve the concrete strength after curing.
The steel fiber reinforced high fluidity high strength concrete, cement, limestone filler, the mixture comprising silica fume, cement is added in the range of the mixture 1 m 3 per 250~450L, the mixture 1 m 3 per 150 Limestone filler added in the range of 300 L, silica fume added in the range of 50 to 100 L per 1 m 3 of the mixture, and diameter 0 added in the range of 4 to 12% by volume ratio per 1 m 3 of the mixture By kneading a steel fiber having a length of about 15 to 0.3 mm and a length of about 6 to 25 mm, a steel fiber having a diameter of 0.15 to 0.3 mm and a length of 1.0 mm or less, and water, Sufficient dispersion of reinforcing steel fibers in the mortar can be ensured, and the interfacial adhesion strength between the concrete and steel fibers used as a matrix can be ensured, and the reinforcing effect of the steel fibers can be fully demonstrated. , Self-filling that can be filled in a small space, it is possible to secure the fluidity.
By adding a water reducing agent and a shrinkage reducing agent, the steel fiber reinforced flowable high strength concrete can improve the mortar fluidity, separation resistance, strength after hardening and resistance to cracking.

(a)(b)本発明の実施形態を示す図である。(A) (b) It is a figure which shows embodiment of this invention. (a)(b)本発明の実施形態を示す図である。(A) (b) It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. (a)(b)本発明の実施形態を示す図である。(A) (b) It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention.

本発明の実施の形態を図により説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1(a)(b)は,橋梁用コンクリート主桁1の一例を示す図である。コンクリート主桁1は、上フランジ部1aと下フランジ部1b、ウェブ部1cとからなる断面略T字形の形状をしている。コンクリート主桁1は、橋脚又は橋台2に支承3を介して支持されている。   FIGS. 1A and 1B are views showing an example of a concrete main girder 1 for a bridge. The concrete main girder 1 has a substantially T-shaped cross section including an upper flange portion 1a, a lower flange portion 1b, and a web portion 1c. The concrete main girder 1 is supported on a bridge pier or abutment 2 via a support 3.

コンクリート主桁1の耐震補強工法の第一工程は、耐震補強するコンクリート主桁1の下フランジ部1bの側面に所定内径の孔1dを穿孔機により複数削孔する。孔1dの削孔位置は後述する取付部材5に形成した雌ねじ孔5aの位置に対応するようにする。孔1dの深さは、コンクリート主桁1の補強鉄筋4のかぶりコンクリートを超えない深さとする。   In the first step of the seismic reinforcement method for the concrete main girder 1, a plurality of holes 1 d having a predetermined inner diameter are drilled on the side surface of the lower flange portion 1 b of the concrete main girder 1 to be seismically reinforced. The drilling position of the hole 1d corresponds to the position of the female screw hole 5a formed in the mounting member 5 described later. The depth of the hole 1d is set so as not to exceed the cover concrete of the reinforcing steel bars 4 of the concrete main girder 1.

図2(a)(b)は,取付部材5の一例を示す図である。取付部材5は水平底部5aと垂直側壁部5bから断面コ字形の鋼製部材である。垂直側壁部5c間の間隔L1は、コンクリート主桁1の下フランジ部1bの両側壁間の幅L2より20〜40mm長くする。垂直側壁部5bには、所定間隔で複数の雌ねじ孔5cが形成される。垂直側壁部5bに形成した雌ねじ孔5cに対応する下フランジ部1bの側面に孔1dが削孔される。取付部材5の両端には、複数の取付部材5を橋軸方向を連設するための連結ボルト用の孔(図示せず)や、取付部材5をコンクリート主桁1の耐震補強位置に配置するための吊り具7の吊りワイヤ7aを固定するためのワイヤ固定具(図示せず)が取り付けられる。   FIGS. 2A and 2B are diagrams showing an example of the attachment member 5. The attachment member 5 is a steel member having a U-shaped cross section from the horizontal bottom 5a and the vertical side wall 5b. The interval L1 between the vertical side wall portions 5c is 20 to 40 mm longer than the width L2 between both side walls of the lower flange portion 1b of the concrete main girder 1. A plurality of female screw holes 5c are formed in the vertical side wall portion 5b at a predetermined interval. A hole 1d is cut in the side surface of the lower flange portion 1b corresponding to the female screw hole 5c formed in the vertical side wall portion 5b. At both ends of the mounting member 5, connecting bolt holes (not shown) for connecting the plurality of mounting members 5 in the bridge axis direction, and the mounting members 5 are arranged at the seismic reinforcement positions of the concrete main girder 1. For this purpose, a wire fixing tool (not shown) for fixing the suspension wire 7a of the lifting tool 7 is attached.

図3は、取付部材5の雌ねじ孔5cに螺着される固定ボルト6を示す図である。固定ボルト6は、頭部6aと雄ねじ部6bにより構成される。図8に示される実施形態では、雄ねじ部6bの外径dは、コンクリート主桁1の下フランジ部1bに形成した孔1dの内径Dに比較し30〜50mm小さくする。また、図9に示される実施形態では、コンクリート主桁1の下フランジ部1bに形成した孔1dの内径Dと雄ねじ部6bの外径dとほぼ同じにする。図10に示される実施形態では、主桁1の下フランジ部1bに形成した孔1dの内径Dと雄ねじ部6bの先端に螺着した大径部6cの外径dとほぼ同じにする。   FIG. 3 is a view showing the fixing bolt 6 screwed into the female screw hole 5 c of the mounting member 5. The fixing bolt 6 is composed of a head portion 6a and a male screw portion 6b. In the embodiment shown in FIG. 8, the outer diameter d of the male screw portion 6 b is 30 to 50 mm smaller than the inner diameter D of the hole 1 d formed in the lower flange portion 1 b of the concrete main girder 1. In the embodiment shown in FIG. 9, the inner diameter D of the hole 1d formed in the lower flange portion 1b of the concrete main girder 1 and the outer diameter d of the male screw portion 6b are made substantially the same. In the embodiment shown in FIG. 10, the inner diameter D of the hole 1d formed in the lower flange portion 1b of the main girder 1 and the outer diameter d of the large diameter portion 6c screwed to the tip of the male screw portion 6b are made substantially the same.

図4(a)(b)は、コンクリート主桁1の耐震補強工法の第二工程を示す図である。この工程では、取付部材5をコンクリート主桁1の補強位置に配置する。取付部材5は、コンクリート主桁1の上フランジ部1aに配置された吊り具7の吊りワイヤ7aにより吊り下げ支持される。取付部材5の水平底部5aとコンクリート主桁1の下フランジ部1bの底面間の間隔と取付部材5の垂直側壁部5bとコンクリート主桁1の下フランジ部1bの側面間の間隔を10〜20mmとなるようにする。上フランジ部1aに配置された吊り具7を移動可能にし、複数の取付部材5を橋軸方向に連設する際の作業を容易にする。取付部材5を所定位置に配置する工程では、取付部材5の雌ねじ孔5cに固定ボルト6の雄ねじ部6bをその先端部が垂直側壁部5bから突き出さないように螺着する。固定ボルト6を螺着することにより雌ねじ孔5cが塞がれた状態になる。   4A and 4B are views showing a second step of the seismic reinforcement method for the concrete main girder 1. FIG. In this step, the attachment member 5 is disposed at the reinforcing position of the concrete main beam 1. The attachment member 5 is suspended and supported by a suspension wire 7a of a suspension 7 disposed on the upper flange portion 1a of the concrete main girder 1. The distance between the horizontal bottom 5a of the mounting member 5 and the bottom surface of the lower flange 1b of the concrete main girder 1 and the distance between the vertical side wall 5b of the mounting member 5 and the side surface of the lower flange 1b of the concrete main girder 1 are 10 to 20 mm. To be. The hanger 7 arranged on the upper flange portion 1a can be moved, and the work when connecting the plurality of attachment members 5 in the bridge axis direction is facilitated. In the step of disposing the mounting member 5 at a predetermined position, the male screw portion 6b of the fixing bolt 6 is screwed into the female screw hole 5c of the mounting member 5 so that the tip portion does not protrude from the vertical side wall portion 5b. By screwing the fixing bolt 6, the female screw hole 5 c is closed.

図5は、コンクリート主桁1の耐震補強工法の第三工程を示す図である。この工程では、取付部材5の両端側の開口部に型枠8を設置する。型枠8を開口部に設置することで、コンクリート主桁1の下フランジ部1bの底面と側面が取付部材5と型枠8により水密に囲まれる。   FIG. 5 is a diagram showing a third step of the seismic reinforcement method for the concrete main girder 1. In this step, the mold 8 is installed in the openings on both ends of the mounting member 5. By installing the mold 8 in the opening, the bottom and side surfaces of the lower flange portion 1 b of the concrete main girder 1 are watertightly surrounded by the attachment member 5 and the mold 8.

図6は、コンクリート主桁1の耐震補強工法の第四工程を示す図である。この工程では、取付部材5と型枠8により囲まれたコンクリート主桁1との空間に、コンクリートモルタル9を充填する。   FIG. 6 is a diagram illustrating a fourth step of the seismic reinforcement method for the concrete main girder 1. In this step, the concrete mortar 9 is filled into the space between the mounting member 5 and the concrete main girder 1 surrounded by the mold 8.

コンクリートモルタル9としては、無収縮コンクリートモルタル又は鋼繊維補強流動性高強度コンクリートモルタルを用いる。無収縮コンクリートモルタルは流動性が良く遅乾性であるため施工性が良い。鋼繊維補強流動性高強度コンクリートモルタルは、狭い空間においても自己充填が良く、硬化後の強度を向上することが可能となる。   As the concrete mortar 9, non-shrinkable concrete mortar or steel fiber reinforced fluidity high strength concrete mortar is used. Non-shrinkable concrete mortar is easy to work because it has good fluidity and slow drying. The steel fiber reinforced flowable high strength concrete mortar has good self-filling even in a narrow space, and can improve the strength after curing.

本発明に使用する鋼繊維補強流動性高強度コンクリート9は、セメント、石灰石フィラー、シリカフュームからなる混合体において、前記混合体1m3当たり250〜450Lの範囲で添加されるセメントと、前記混合体1m3当たり150〜300Lの範囲で添加される石灰石フィラーと、前記混合体1m3当たり50〜100Lの範囲で添加されるシリカフュームと、前記混合体1m3当たり容積比で4〜12%の範囲で添加される直径0.15〜0.3mmで長さ6〜25mm程度の鋼繊維と直径0.15〜0.3mmで長さ1.0mm以下の鋼繊維と、水と、を含むことを特徴とする。 The steel fiber reinforced flowable high-strength concrete 9 used in the present invention is a mixture made of cement, limestone filler, and silica fume. The cement is added in the range of 250 to 450 L per 1 m 3 of the mixture, and the mixture 1 m. a limestone filler is added in the range of 3 per 150~300L, and silica fume is added in the range of the mixture 1 m 3 per 50~100L, it added in an amount of 4-12% in the mixing body 1 m 3 per volume ratio A steel fiber having a diameter of 0.15 to 0.3 mm and a length of about 6 to 25 mm, a steel fiber having a diameter of 0.15 to 0.3 mm and a length of 1.0 mm or less, and water. To do.

鋼繊維補強流動性高強度コンクリートに用いられるセメントは、普通ポルトランドセメント、コンクリートの早期強度を向上しようとする場合は、早強ポルトランドセメントを使用するのが好ましい。セメントは、混合体1m3当たり250〜450Lの範囲で添加する。セメントの添加量が、混合体1m3当たり250〜450Lの範囲を外れると高強度が達成できなくなる恐れがある。 The cement used for the steel fiber reinforced flowable high-strength concrete is preferably normal Portland cement and, if it is intended to improve the early strength of the concrete, early-strength Portland cement is preferably used. Cement is added in the range of 250 to 450 L / m 3 of the mixture. If the added amount of cement is outside the range of 250 to 450 L per 1 m 3 of the mixture, high strength may not be achieved.

鋼繊維補強流動性高強度コンクリートに用いられる石灰石フィラーは、密度が27〜28g/cm3程度で、CaCo3(炭酸カルシュム)成分が95%以上の石灰石粉末である。石灰石フィラーは、混合体1m3当たり150〜300Lの範囲で添加する。石灰石粉末は形状が良好であり、セメントペーストの流動性を改善する効果がある。石灰石フィラーの添加量が、混合体1m3当たり150〜300Lの範囲を外れると、狭い空間への充填の際の適度な流動性を確保することが困難になる。 The limestone filler used for the steel fiber reinforced flowable high-strength concrete is a limestone powder having a density of about 27 to 28 g / cm 3 and a CaCo 3 (calcium carbonate) component of 95% or more. Limestone filler is added in the range of 150 to 300 L per 1 m 3 of the mixture. Limestone powder has a good shape and has the effect of improving the fluidity of the cement paste. When the addition amount of the limestone filler is out of the range of 150 to 300 L per 1 m 3 of the mixture, it becomes difficult to ensure adequate fluidity when filling the narrow space.

本発明に用いられるシリカフュームは、直径0.1〜0.2μm程度のガラス質シリカ球状の超微粒子粉末である。シリカフュームは、コンクリートの強度と耐久性の向上に寄与し、低水粉体比のコントロールにより、コンクリートの施工(混練時)の改善に有効である。シリカフュームは、混合体1m3当たり50〜100Lの範囲で添加する。シリカフュームの添加量が、混合体1m3当たり50〜100Lの範囲を外れると、混合体の化学組成バランスや粒度分布のバランスが崩れ、硬化後の高強度を達成できなくなる恐れがある。 The silica fume used in the present invention is a glassy silica spherical ultrafine particle powder having a diameter of about 0.1 to 0.2 μm. Silica fume contributes to improving the strength and durability of concrete, and is effective in improving concrete construction (during kneading) by controlling the low water powder ratio. Silica fume is added in the range of 50 to 100 L per 1 m 3 of the mixture. If the amount of silica fume added is outside the range of 50 to 100 L per 1 m 3 of the mixture, the balance of the chemical composition and the particle size distribution of the mixture may be lost, and high strength after curing may not be achieved.

鋼繊維補強流動性高強度コンクリートに用いられる補強用の鋼繊維は、直径0.15〜0.3mmで、長さが6〜25mmの鋼繊維と、直径0.15〜0.3mmで、長さが1.0mm以下の鋼繊維を組み合わせたものである。長さが6〜25mmと長さが1.0mm以下の微細鋼繊維を組み合わせて用いるのは、補強用鋼繊維を混合体と混合する際、長さが長い鋼繊維のみの場合、鋼繊維が混合体中に均等に分散されにくい。長さの短い微細鋼繊維を組み合わせて用いることにより、補強用鋼繊維が混合体中に均等に分散される。補強用の鋼繊維は、混合体の容積率で4〜12%の範囲で加える。鋼繊維の容積率が4%未満だと鋼繊維の補強効果が減少し、良好な強度が得られない恐れがある。鋼繊維の容積率が12%より大きいと、コンクリートの流動性が低下する恐れがある。   Steel fiber reinforcement steel fiber for reinforcement used for fluidity high strength concrete is 0.15-0.3 mm in diameter, 6-25 mm in length, 0.15-0.3 mm in diameter, long A steel fiber having a thickness of 1.0 mm or less is combined. The combination of fine steel fibers having a length of 6 to 25 mm and a length of 1.0 mm or less is used when the reinforcing steel fibers are mixed with the mixture, and in the case of only the long steel fibers, Difficult to be evenly dispersed in the mixture. By using a combination of fine steel fibers having a short length, the reinforcing steel fibers are evenly dispersed in the mixture. The reinforcing steel fibers are added in the range of 4 to 12% by volume ratio of the mixture. If the volume ratio of the steel fibers is less than 4%, the reinforcing effect of the steel fibers is reduced, and there is a possibility that good strength cannot be obtained. When the volume ratio of steel fibers is larger than 12%, the fluidity of concrete may be lowered.

減水剤としては、リグニン系、ナフタレンスルホン酸系、メラニン系、ポリカルボン酸系、AE減水剤、高性能減水剤、高性能AE減水剤を用いることができる。減水剤の配合量は、モルタルの流動性、分離抵抗性、硬化後の強度を考慮してセメント100重量部に対して、固形分換算で、0.5〜4.0重量部が好ましい。   As the water reducing agent, lignin, naphthalenesulfonic acid, melanin, polycarboxylic acid, AE water reducing agent, high performance water reducing agent, and high performance AE water reducing agent can be used. The blending amount of the water reducing agent is preferably 0.5 to 4.0 parts by weight in terms of solid content with respect to 100 parts by weight of cement in consideration of mortar fluidity, separation resistance, and strength after curing.

収縮低減剤としては、化学式R1O(A10)mHで示される化合物を主成分とするものを用いても良い。化学式中R1は、水素又は炭素数1〜6の直鎖もしくは分岐のアルキル基である。収縮低減剤の配合量は、モルタルの作業性、分離抵抗性、硬化後の強度やクラックの抵抗性を考慮して、セメント100重量部に対して、0.5〜10重量部とする。 As the shrinkage reducing agent, a compound mainly composed of a compound represented by the chemical formula R 1 O (A 10 ) mH may be used. In the chemical formula, R 1 is hydrogen or a linear or branched alkyl group having 1 to 6 carbon atoms. The blending amount of the shrinkage reducing agent is 0.5 to 10 parts by weight with respect to 100 parts by weight of cement in consideration of workability of mortar, separation resistance, strength after curing and resistance to cracking.

水/セメント比は、モルタルの流動性や分離抵抗性、硬化後の強度や耐久性から10〜30重量部が好ましい。   The water / cement ratio is preferably 10 to 30 parts by weight from the flowability and separation resistance of the mortar and the strength and durability after curing.

鋼繊維補強流動性高強度コンクリート9の硬化後の圧縮強度を150N/mm2以上とすることで、コンクリート主桁1と取付部材5が鋼繊維補強流動性高強度コンクリート9により強固に一体化され、コンクリート主桁1の耐震強度を飛躍的に向上させることが可能となる。 By setting the compressive strength after hardening of the steel fiber reinforced flowable high strength concrete 9 to 150 N / mm 2 or more, the concrete main girder 1 and the mounting member 5 are firmly integrated with the steel fiber reinforced flowable high strength concrete 9. The seismic strength of the concrete main girder 1 can be dramatically improved.

図7は、コンクリート主桁1の耐震補強工法の第五工程を示す図である。この工程では、取付部材5と型枠8により囲まれたコンクリート主桁1との空間に充填された鋼繊維補強流動性高強度コンクリート9のモルタルが未硬化の状態で、固定ボルト6を回転させ、固定ボルト6の雄ねじ部6bを孔1dに挿入する。取付部材5とコンクリート主桁1間の空隙に鋼繊維補強流動性高強度コンクリート9のモルタルを充填する際、非貫通孔である孔1dの底に空気溜まりが形成される。   FIG. 7 is a diagram showing a fifth step of the seismic reinforcement method for the main concrete girder 1. In this step, the fixing bolt 6 is rotated while the mortar of the steel fiber reinforced flowable high strength concrete 9 filled in the space between the mounting member 5 and the concrete main girder 1 surrounded by the mold 8 is uncured. The male screw portion 6b of the fixing bolt 6 is inserted into the hole 1d. When the mortar of the steel fiber reinforced flowable high-strength concrete 9 is filled in the gap between the mounting member 5 and the concrete main beam 1, an air pocket is formed at the bottom of the hole 1d which is a non-through hole.

図8は、固定ボルト6の雄ねじ部6bが孔1dに挿入された状態を示す実施形態の拡大図である。孔1dの内径Dは、固定ボルト6の雄ねじ部6b外径よりも30〜50mm大きく形成されている。固定ボルト6の雄ねじ部としては、外径がMD24以上を使用するのが良い。固定ボルト6を回転させ、雄ねじ部5bを孔1dに挿入していくと、孔1dの底の空気溜まりの空気が押し出され、孔1dと雄ねじ部8b間の空隙から空気が外部に排出される。孔1dの内径Dと雄ねじ部6bの外径dの差が大きすぎると雄ねじ部6bの挿入による孔1dの空気溜まりの空気押し出し効果が少なくなり、孔1dの内径Dと雄ねじ部6bの外径dの差が小さすぎると、押し出された空気がスムーズに排出されない。   FIG. 8 is an enlarged view of the embodiment showing a state in which the male screw portion 6b of the fixing bolt 6 is inserted into the hole 1d. The inner diameter D of the hole 1d is formed 30 to 50 mm larger than the outer diameter of the external thread portion 6b of the fixing bolt 6. As the external thread portion of the fixing bolt 6, it is preferable to use an outer diameter of MD24 or more. When the fixing bolt 6 is rotated and the male screw portion 5b is inserted into the hole 1d, the air in the air reservoir at the bottom of the hole 1d is pushed out, and the air is discharged to the outside from the gap between the hole 1d and the male screw portion 8b. . If the difference between the inner diameter D of the hole 1d and the outer diameter d of the male screw portion 6b is too large, the effect of pushing out the air in the hole 1d due to the insertion of the male screw portion 6b is reduced, and the inner diameter D of the hole 1d and the outer diameter of the male screw portion 6b are reduced. If the difference in d is too small, the extruded air cannot be discharged smoothly.

図9は、固定ボルト6の雄ねじ部6bが孔1dに挿入された状態を示す実施形態の拡大図である。孔1dの内径Dと孔1dに挿入される固定ボルト6の部分の外径をほぼ同じにする。図10に示すように雄ねじ部6bの先端に孔1dの内径Dとほぼ同じに外径dの大径部6cを螺着しても良い。孔1dの内径Dと孔1dに挿入される固定ボルト6の部分をほぼ同じにすることで固定ボルト6の面圧を小さくすることができ、流動性が良く遅乾性の無収縮コンクリートモルタルでも固定ボルトを固定することが可能となりコストダウンが期待できる。   FIG. 9 is an enlarged view of the embodiment showing a state in which the male screw portion 6b of the fixing bolt 6 is inserted into the hole 1d. The inner diameter D of the hole 1d and the outer diameter of the portion of the fixing bolt 6 inserted into the hole 1d are made substantially the same. As shown in FIG. 10, a large-diameter portion 6c having an outer diameter d may be screwed to the tip of the male screw portion 6b in substantially the same manner as the inner diameter D of the hole 1d. By making the inner diameter D of the hole 1d and the portion of the fixing bolt 6 inserted into the hole 1d substantially the same, the surface pressure of the fixing bolt 6 can be reduced, and even non-shrinkable concrete mortar with good fluidity and slow drying can be fixed. Bolts can be fixed and cost reduction can be expected.

コンクリート主桁1の耐震補強工法の第六工程は、図7に示す状態で未硬化のコンクリートモルタル9を養生し硬化させる工程である。コンクリートモルタル9が十分硬化したことを確認し、型枠8を取り外す。この工程で、コンクリート主桁1の一区分の耐震補強工法が終了する。以上述べた第一工程〜第六工程をコンクリート主桁1の橋軸方向に沿って順次施工する。   The sixth step of the seismic reinforcement method for the concrete main girder 1 is a step of curing and curing the uncured concrete mortar 9 in the state shown in FIG. After confirming that the concrete mortar 9 is sufficiently cured, the mold 8 is removed. In this process, the seismic reinforcement method for one section of the concrete main girder 1 is completed. The first to sixth steps described above are sequentially performed along the bridge axis direction of the concrete main girder 1.

以上のように、本発明の橋梁用コンクリート主桁の耐震補強工法及び橋梁用コンクリート主桁の耐震補強構造によれば、コンクリート主桁のはつり量を極力抑えつつ、狭い空間へのモルタル充填もスムーズに実施することができ、コンクリート主桁と取付部材をコンクリートで強固に一体化することでコンクリート主桁の耐震性能を向上することができ、支承や取付部材の取り付けも容易になる。   As described above, according to the seismic strengthening method for a bridge concrete main girder and the seismic reinforcement structure for a bridge concrete main girder according to the present invention, mortar filling into a narrow space can be smoothly performed while suppressing the amount of suspension of the concrete main girder as much as possible. The seismic performance of the concrete main girder can be improved by firmly integrating the concrete main girder and the mounting member with concrete, and mounting of the support and the mounting member is facilitated.

1:コンクリート主桁、1a :上フランジ部、1b:下フランジ部、1c:ウェブ部、1d:孔、2:橋脚又は橋台、3:支承、4:補強鉄筋、5:取付部材、5a:水平底部、5b:垂直側壁部、5c:雌ねじ孔、6:固定ボルト、6a:頭部、6b:雄ねじ部、6c:大径部、7:吊り具、7a:吊りワイヤ、8:型枠、9:コンクリートモルタル   1: concrete main girder, 1a: upper flange portion, 1b: lower flange portion, 1c: web portion, 1d: hole, 2: bridge pier or abutment, 3: support, 4: reinforcing steel, 5: mounting member, 5a: horizontal Bottom part, 5b: Vertical side wall part, 5c: Female screw hole, 6: Fixing bolt, 6a: Head part, 6b: Male screw part, 6c: Large diameter part, 7: Lifting tool, 7a: Hanging wire, 8: Formwork, 9 : Concrete mortar

Claims (6)

コンクリート主桁の側面に取付部材の側壁に形成した複数の雌ねじ孔に対応する位置にかぶりコンクリート以内の深さの孔を削孔する工程と、
コンクリート主桁の底面と側面との間に幅狭の間隔を開け、コンクリート主桁の側面に形成した孔の位置と側壁に形成した雌ねじ孔の位置が合致するようにし、前記雌ねじ孔に固定ボルトの先端が側壁から突き出さないように螺着した水平底面と垂直側壁を備えた取付部材を配置する工程と、
取付部材の両側開口に型枠を設置する工程と、
取付部材と型枠に囲まれたコンクリート主桁との空隙にコンクリートモルタルを充填する工程と、
コンクリートモルタルが未硬化の状態で、取付部材の雌ねじ孔に螺着した固定ボルトを回転し、固定ボルトの先端をコンクリート主桁の孔に挿入する工程と、
コンクリートを養生して硬化させ、コンクリート主桁と取付部材を一体とする工程と、
を備えることを特徴とする橋梁用コンクリート主桁の耐震補強工法。
Drilling a hole having a depth within the cover concrete at a position corresponding to a plurality of female screw holes formed on the side wall of the mounting member on the side surface of the concrete main beam,
A narrow space is provided between the bottom surface and the side surface of the concrete main girder so that the position of the hole formed on the side surface of the concrete main girder matches the position of the female screw hole formed on the side wall. Disposing a mounting member having a horizontal bottom surface and a vertical side wall screwed so that the tip of the side wall does not protrude from the side wall;
Installing a formwork on both side openings of the mounting member;
Filling the gap between the mounting member and the concrete main girder surrounded by the formwork with concrete mortar,
In a state in which the concrete mortar is uncured, rotating the fixing bolt screwed into the female screw hole of the mounting member, and inserting the tip of the fixing bolt into the hole of the concrete main beam,
Curing and hardening the concrete, and integrating the concrete main girder and the mounting member;
A seismic reinforcement method for bridge concrete main girders, characterized by comprising:
コンクリート主桁の側面に形成する孔の内径を前記孔に挿入される前記固定ボルトの部分の外径より大きくし、孔に固定ボルトを挿入する際の孔の奥に残った空気の排気間隙を形成することを特徴とする請求項1に記載の橋梁用コンクリート主桁の耐震補強工法。   The inside diameter of the hole formed in the side surface of the concrete main girder is made larger than the outside diameter of the portion of the fixing bolt inserted into the hole, and the exhaust gap of the air remaining behind the hole when the fixing bolt is inserted into the hole The seismic reinforcement method for a concrete main girder for bridges according to claim 1, wherein the method is formed. コンクリート主桁の側面に形成する孔の内径と前記孔に挿入される前記固定ボルトの部分の外径をほぼ同じとすることを特徴とする請求項1に記載の橋梁用コンクリート主桁の耐震補強工法。   2. The seismic reinforcement of a concrete main girder for bridges according to claim 1, wherein an inner diameter of a hole formed on a side surface of the concrete main girder is substantially the same as an outer diameter of a portion of the fixing bolt inserted into the hole. Construction method. 前記コンクリートモルタルとして、無収縮コンクリートモルタル又は鋼繊維補強流動性高強度コンクリートモルタルを用いることを特徴とする請求項1〜3のいずれか1項に記載の橋梁用コンクリート主桁の耐震補強工法。   The seismic reinforcement method for a concrete main girder for bridges according to any one of claims 1 to 3, wherein as the concrete mortar, non-shrinkable concrete mortar or steel fiber reinforced fluidity high strength concrete mortar is used. 前記鋼繊維補強高流動性高強度コンクリートは、セメント、石灰石フィラー、シリカフュームからなる混合体において、前記混合体1m3当たり250〜450Lの範囲で添加されるセメントと、前記混合体1m3当たり150〜300Lの範囲で添加される石灰石フィラーと、前記混合体1m3当たり50〜100Lの範囲で添加されるシリカフュームと、前記混合体1m3当たり容積比で4〜12%の範囲で添加される直径0.15〜0.3mmで長さ6〜25mm程度の鋼繊維と直径0.15〜0.3mmで長さ1.0mm以下の鋼繊維と、水と、を混練して形成されることを特徴とする請求項4に記載の橋梁用コンクリート主桁の耐震補強工法。 The steel fiber reinforced high fluidity high strength concrete, cement, limestone filler, the mixture comprising silica fume, cement is added in the range of the mixture 1 m 3 per 250~450L, the mixture 1 m 3 per 150 Limestone filler added in the range of 300 L, silica fume added in the range of 50 to 100 L per 1 m 3 of the mixture, and diameter 0 added in the range of 4 to 12% by volume ratio per 1 m 3 of the mixture A steel fiber having a length of about 15 to 0.3 mm and a length of about 6 to 25 mm, a steel fiber having a diameter of 0.15 to 0.3 mm and a length of 1.0 mm or less, and water are kneaded and formed. The seismic reinforcement method for a concrete main girder for bridges according to claim 4. 前記鋼繊維補強流動性高強度コンクリートは、減水剤と収縮低減剤が添加することを特徴とする請求項5に記載の橋梁用コンクリート主桁の耐震補強工法。   6. The seismic reinforcement method for a bridge concrete main girder according to claim 5, wherein the steel fiber reinforced flowable high strength concrete is added with a water reducing agent and a shrinkage reducing agent.
JP2014051150A 2014-03-14 2014-03-14 Seismic strengthening method for concrete girder for bridge Active JP6259687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014051150A JP6259687B2 (en) 2014-03-14 2014-03-14 Seismic strengthening method for concrete girder for bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014051150A JP6259687B2 (en) 2014-03-14 2014-03-14 Seismic strengthening method for concrete girder for bridge

Publications (2)

Publication Number Publication Date
JP2015175140A true JP2015175140A (en) 2015-10-05
JP6259687B2 JP6259687B2 (en) 2018-01-10

Family

ID=54254591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014051150A Active JP6259687B2 (en) 2014-03-14 2014-03-14 Seismic strengthening method for concrete girder for bridge

Country Status (1)

Country Link
JP (1) JP6259687B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293479A (en) * 2020-10-08 2022-04-08 四川苏博特新材料有限公司 Concrete overpass bridge protection device and anti-collision reinforcement method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196284A (en) * 2009-02-23 2010-09-09 Kumagai Gumi Co Ltd Method for reinforcing existing structure
JP2011038392A (en) * 2009-07-15 2011-02-24 Bbm:Kk Bridge fall preventive apparatus
JP2011202419A (en) * 2010-03-25 2011-10-13 Ohbayashi Corp Structure and method for joining shaft member and rc member
JP2013167049A (en) * 2012-02-14 2013-08-29 Railway Technical Research Institute Viaduct column replacement method and viaduct column for replacement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196284A (en) * 2009-02-23 2010-09-09 Kumagai Gumi Co Ltd Method for reinforcing existing structure
JP2011038392A (en) * 2009-07-15 2011-02-24 Bbm:Kk Bridge fall preventive apparatus
JP2011202419A (en) * 2010-03-25 2011-10-13 Ohbayashi Corp Structure and method for joining shaft member and rc member
JP2013167049A (en) * 2012-02-14 2013-08-29 Railway Technical Research Institute Viaduct column replacement method and viaduct column for replacement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293479A (en) * 2020-10-08 2022-04-08 四川苏博特新材料有限公司 Concrete overpass bridge protection device and anti-collision reinforcement method thereof

Also Published As

Publication number Publication date
JP6259687B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
US10125487B2 (en) Thermal insulation element
CN101858114A (en) Construction method for cast-in-place integral light-weight partition wall
CN106382016B (en) Ancient building labyrinth integral reinforcing construction technology
CN104712079B (en) The assembled polypropylene fibre sludge ceramsite concrete wall and its construction method connected based on mat surface
CN105756189B (en) A kind of assembling frame core wall structure system using full Baogang's primary structure member
CN108385871A (en) The precast wall body of fabricated structure
CN107313516B (en) Autoclaved aerated concrete wallboard and steel girder connecting node structure and construction method thereof
JP5615015B2 (en) Seismic reinforcement structure and seismic reinforcement method
JP6921536B2 (en) Construction method of anchors to be installed in existing masonry and post-construction anchors
JP2015006977A (en) Fiber-reinforced flowable high strength concrete
JP6757947B2 (en) Seismic reinforcement method
JP6259687B2 (en) Seismic strengthening method for concrete girder for bridge
CN110468967B (en) Connecting node of oversized overweight prefabricated cladding plate and main body structure beam and construction method
CN112482609A (en) Prefabricated wallboard and connection structure thereof
WO2014096802A4 (en) Reinforced blockwork construction method
KR102535741B1 (en) Inorganic anchor material and method for anchoring anchor bar using the same
CN214195076U (en) Prefabricated wallboard and connection structure thereof
CN205153197U (en) Self preservation temperature filler wall
JP2000073339A (en) Inspection gallery in fill-type dam and construction method of inspection gallery in fill-type dam
CN105003036A (en) Prefabricated rail and its manufacturing method
CN112144722A (en) Fireproof floor
JP7381623B2 (en) Ultra-high strength reinforced concrete segment and its manufacturing method
JP2013147883A (en) Shear reinforcing method of concrete structure using cement-based composition contained in cartridge
JP5470195B2 (en) How to install the structure
CN103553484B (en) Heat-insulated concrete of kervit micro-beads and construction technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6259687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250