JP2015174910A - Semiconductor particle paste and photoelectric conversion device - Google Patents

Semiconductor particle paste and photoelectric conversion device Download PDF

Info

Publication number
JP2015174910A
JP2015174910A JP2014052029A JP2014052029A JP2015174910A JP 2015174910 A JP2015174910 A JP 2015174910A JP 2014052029 A JP2014052029 A JP 2014052029A JP 2014052029 A JP2014052029 A JP 2014052029A JP 2015174910 A JP2015174910 A JP 2015174910A
Authority
JP
Japan
Prior art keywords
particle paste
semiconductor particle
nanocrystals
semiconductor
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014052029A
Other languages
Japanese (ja)
Other versions
JP6334216B2 (en
Inventor
徹 仲山
Toru Nakayama
徹 仲山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014052029A priority Critical patent/JP6334216B2/en
Publication of JP2015174910A publication Critical patent/JP2015174910A/en
Application granted granted Critical
Publication of JP6334216B2 publication Critical patent/JP6334216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor particle paste in which semiconductor nanocrystal becoming quantum dot can be integrated at high density, and a photoelectric conversion device to which the semiconductor particle paste is applied.SOLUTION: The semiconductor particle paste is provided in which luminescent nanocrystal having a maximum diameter of 20 nm or less is dispersed in solution of an organic molecule 15a containing a metal complex 14. In this case, it is preferred that: the metal complex is one kind of in vivo complex selected from a group of hemoglobin, myoglobin, chlorophyll, bleomycin, vitamin B, molybutoten hemocyanin, ferredoxin; or the metal complex includes one kind of metal ion selected from a group of Na, K, Mg, Ca, Al, Mn, Co, Fe, Cu, Zn, Mo, Pd and Pt and one kind of ligand selected from a group of CO, NO, NH, RNH, RCOO, RO, ROH, NH, PO, ROPOand (RO)PO.

Description

本発明は、半導体粒子ペーストおよび光電変換装置に関する。   The present invention relates to a semiconductor particle paste and a photoelectric conversion device.

近年、太陽電池や半導体レーザなどの光電変換装置は、その変換効率を高めるために量子ドットを利用することが提案されている(例えば、特許文献1を参照)。   In recent years, photoelectric conversion devices such as solar cells and semiconductor lasers have been proposed to use quantum dots in order to increase the conversion efficiency (see, for example, Patent Document 1).

この場合に適用される量子ドットとしては、サイズが約20nm程度の半導体材料を主成分とするナノ結晶となるが、従来より用いられているナノ結晶には、元々、形状やサイズにばらつきがあり、ペースト化してもナノ結晶を高密度に集積させることができず、高効率の光電変換装置を得ることができないという問題があった。   The quantum dots applied in this case are nanocrystals whose main component is a semiconductor material having a size of about 20 nm. However, the conventional nanocrystals have variations in shape and size. However, there is a problem in that nanocrystals cannot be accumulated at high density even when pasted, and a highly efficient photoelectric conversion device cannot be obtained.

特開2006−114815号公報JP 2006-114815 A

本発明は上記課題に鑑みてなされたものであり、量子ドットとなるナノ結晶を高密度に集積させることのできる半導体粒子ペーストと、それを適用した光電変換装置を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the semiconductor particle paste which can integrate the nanocrystal used as a quantum dot with high density, and a photoelectric conversion apparatus using the same.

本発明の半導体粒子ペーストは、金属錯体を含む有機分子の溶液中に、最大径が1〜20nmで、発光性を示すナノ結晶を分散させていることを特徴とする。   The semiconductor particle paste of the present invention is characterized in that nanocrystals having a maximum diameter of 1 to 20 nm and exhibiting luminescent properties are dispersed in a solution of an organic molecule containing a metal complex.

本発明の光電変換装置は、半導体基板の主面上に、上記のナノ結晶の集積膜を有していることを特徴とする。   The photoelectric conversion device of the present invention is characterized by having the above-mentioned nanocrystal integrated film on the main surface of a semiconductor substrate.

本発明によれば、量子ドットとなる半導体性のナノ結晶を高密度に集積させることのできる半導体粒子ペーストと、それを適用した光電変換装置を得ることできる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor particle paste which can integrate the semiconducting nanocrystal used as a quantum dot with high density, and a photoelectric conversion apparatus using the same can be obtained.

本発明の光電変換装置の一実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one Embodiment of the photoelectric conversion apparatus of this invention. 本発明の半導体粒子ペーストの製法の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the manufacturing method of the semiconductor particle paste of this invention.

本実施形態の半導体粒子ペーストは、金属錯体を含む有機分子の溶液中に、最大径が1〜20nmで、発光性を示すナノ結晶を分散させているものである。   The semiconductor particle paste of the present embodiment is one in which nanocrystals having a maximum diameter of 1 to 20 nm and exhibiting luminescent properties are dispersed in a solution of organic molecules containing a metal complex.

この半導体粒子ペーストは、半導体材料を主成分とするナノ結晶を有機分子中に含有させたものであるため、半導体粒子ペーストをそのまま半導体基板の表面に塗布した際にも、ペースト中に含まれるナノ結晶は、有機分子を介して分散された状態であることから流動性の高いものとなる。   Since this semiconductor particle paste contains nanocrystals mainly composed of a semiconductor material in organic molecules, even when the semiconductor particle paste is directly applied to the surface of a semiconductor substrate, the nanoparticle contained in the paste is included. Since the crystal is dispersed through organic molecules, the crystal has high fluidity.

また、ナノ結晶は、溶液中において、金属錯体が近接した状態で存在しているため、有
機分子よりもイオン性の強い無機物である金属錯体と結合しやすくなっている。このためナノ結晶は優先的に金属錯体を介して結合するようになり、ナノ結晶が集積された際には両者の結合間隔を狭くすることができる。その結果、ナノ結晶による密度の高い集積膜を形成することができ、変換効率の高い光電変換装置を得ることができる。
In addition, since nanocrystals exist in a solution in a state where the metal complexes are close to each other, the nanocrystals are easily bonded to a metal complex that is an inorganic substance having stronger ionicity than organic molecules. Therefore, the nanocrystals are preferentially bonded via the metal complex, and when the nanocrystals are integrated, the bonding interval between the two can be narrowed. As a result, an integrated film with a high density of nanocrystals can be formed, and a photoelectric conversion device with high conversion efficiency can be obtained.

この場合、ナノ結晶の最大径が1〜20nmとなっていることで、同じ組成でサイズの大きい半導体材料の粒子に比較して高いエネルギーギャップ(Eg)を有するものとなっているため、このナノ結晶に可視光(波長:400〜1000nm)を照射すると、ナノ結晶は照射した光のエネルギーによってキャリアの励起と緩和(降下)を繰り返すものとなり発光性の高いものとなる。この場合、発光性の評価はフォトルミネッセンス分析により行う。   In this case, since the maximum diameter of the nanocrystal is 1 to 20 nm, the nanocrystal has a high energy gap (Eg) compared to particles of a semiconductor material having the same composition and a large size. When the crystal is irradiated with visible light (wavelength: 400 to 1000 nm), the nanocrystal repeats excitation and relaxation (lowering) of the carrier by the energy of the irradiated light and becomes highly luminescent. In this case, evaluation of luminescent property is performed by photoluminescence analysis.

これに対し、ナノ結晶の最大径が20nmを超えるものが含まれているような場合には、ナノ結晶を集積させた膜の密度を高めることが困難になるとともに、ナノ結晶自体も発光性の弱いものとなってしまうことから光電変換効率も低くなってしまう。   On the other hand, when the maximum diameter of the nanocrystal exceeds 20 nm, it is difficult to increase the density of the film in which the nanocrystal is integrated, and the nanocrystal itself is also luminescent. Since it becomes weak, photoelectric conversion efficiency will also become low.

一方、ナノ結晶の最大径が1nmよりも小さい場合には、発光性をほとんど示さなくなり、量子ドットとしての機能を発揮できないものとなる。   On the other hand, when the maximum diameter of the nanocrystal is smaller than 1 nm, light emission is hardly exhibited and the function as a quantum dot cannot be exhibited.

この半導体粒子ペーストを構成するナノ結晶のサイズは、例えば、中間バンド方式に代表される量子ドットとして好適なものとなるが、この場合、密度の高い集積膜を形成できるという理由から、ナノ結晶の形状としては、球状体が好ましいものとなるが、これ以外に立方体や柱状体など等方的な寸法を有する形状であっても良い。なお、ナノ結晶が球状体である場合には、真球度は0.80以上1.00以下であることがより望ましい。   The size of the nanocrystals constituting this semiconductor particle paste is suitable, for example, as a quantum dot typified by the intermediate band method. In this case, because of the fact that a dense integrated film can be formed, As the shape, a spherical body is preferable, but other than this, a shape having an isotropic dimension such as a cube or a columnar body may be used. When the nanocrystal is a spherical body, the sphericity is more preferably 0.80 or more and 1.00 or less.

このような形状のナノ結晶を含む半導体粒子ペーストを用いると、集積膜に占めるナノ結晶の割合を集積膜の断面観察から得られる面積比で70%以上にすることができる。   When a semiconductor particle paste containing nanocrystals having such a shape is used, the ratio of nanocrystals in the integrated film can be made 70% or more in terms of the area ratio obtained from cross-sectional observation of the integrated film.

また、上記のような形状を有するナノ結晶であれば、半導体粒子ペーストには最大径の異なるナノ結晶が含まれていても良い。半導体粒子ペースト中に最大径の異なるナノ結晶を含ませるようにすると、大きいサイズのナノ結晶の隙間に小さいサイズのナノ結晶を充填できることからナノ結晶の充填率をさらに高めることができ、導電率の高い光電変換装置を形成することができる。この場合、最大径の範囲としては、ナノ結晶が強い発光性を示すものになるという点で1〜20nm、特に、5〜10nmであることが望ましい。   Moreover, as long as it is a nanocrystal which has the above shapes, the semiconductor particle paste may contain nanocrystals having different maximum diameters. By including nanocrystals with different maximum diameters in the semiconductor particle paste, it is possible to fill the gaps between the large sized nanocrystals with small sized nanocrystals, which can further increase the filling rate of the nanocrystals and increase the conductivity. A high photoelectric conversion device can be formed. In this case, the range of the maximum diameter is preferably 1 to 20 nm, particularly 5 to 10 nm in that the nanocrystal exhibits strong light emission.

ここで、最大径とは、個々のナノ結晶における最長径のことを言い、例えば、透過電子顕微鏡により撮影された写真から求められる最大の長さに相当する。ナノ結晶の真球度は、例えば、ベックマン・コールター・ラピッドVUE画像解析装置(Beckman Coulter Rapid VUE Image Analyzer)バージョン2.06(ベックマン・コールター社、フロリダ州マイアミ)を用いて決定することができる。具体的には、Rapid VUEが、連続階調(グレースケール)形式の画像を撮影し、これをサンプリングおよび量子化の処理を経てデジタル形式に変換する。システムソフトウェアが、画像内の繊維状、桿状または球状の粒子の同定と測定とを行う。Da/Dp(Da=√(4A/π);Dp=P/π;A=ピクセル面積;P=ピクセル周長)として計算される粒子の真球度は、ゼロから1の間の値であり、1が真球を示すものとなる。   Here, the maximum diameter means the longest diameter of each nanocrystal, and corresponds to the maximum length obtained from a photograph taken with a transmission electron microscope, for example. The sphericity of the nanocrystal can be determined using, for example, a Beckman Coulter Rapid VUE Image Analyzer version 2.06 (Beckman Coulter, Miami, FL). Specifically, the Rapid VUE takes an image in a continuous tone (grayscale) format and converts it into a digital format through sampling and quantization processes. System software identifies and measures the fibrous, bowl-like or spherical particles in the image. The sphericity of a particle calculated as Da / Dp (Da = √ (4A / π); Dp = P / π; A = pixel area; P = pixel circumference) is a value between zero and one 1 indicates a true sphere.

本実施形態の半導体粒子ペーストに含ませる金属錯体としては、含まれる金属の安定度定数が高いという点で、ヘモグロビン、ミオグロビン、クロロフィル、ブレオマイシン、ビタミンB12、モリブトテンヘモシニアン、フェレドキシンの群から選ばれる1種の生体内錯体が好適なものとなるが、他に、Na、K、Mg、Ca、Al、Mn、Co、Fe
、Cu、Zn、Mo、PdおよびPtの群から選ばれる少なくとも1種の金属イオンと、CO 2−、NO 、NH、RNH、RCOO、RO、ROH、N、PO 3−、ROPO 2−、(RO)PO2−の群から選ばれる1種の配位子とを含む金属錯体でも良く、これらの金属錯体はいずれもこれらが金属の酸化物や炭酸化合物あるいは少なくとも上記のマイナスイオンを含む形態に変成されて中間層となり同様の効果を発揮できる。
The metal complex contained in the semiconductor particle paste of the present embodiment is from the group of hemoglobin, myoglobin, chlorophyll, bleomycin, vitamin B 12 , molybtoten hemocyanin, ferredoxin in that the stability constant of the metal contained is high. One kind of in vivo complex selected is suitable, but other than that, Na, K, Mg, Ca, Al, Mn, Co, Fe
, Cu, Zn, Mo, Pd and Pt, at least one metal ion selected from the group consisting of CO 3 2− , NO 3 , NH 3 , RNH 2 , RCOO , RO , ROH, N 2 H 4 , PO 4 3− , ROPO 3 2− , (RO) 2 PO 2− may be a metal complex containing one kind of ligand, and these metal complexes are all oxides of these metals. It can be transformed to a form containing carbonic acid compound or at least the above-mentioned negative ions to form an intermediate layer and exhibit the same effect.

半導体粒子ペーストについては、ナノ結晶が流動しやすいチキソトロピー性の粘度特性を有するものであるのが良く、例えば、室温(25℃)において、1mPa・s以上50mPa・s以下の粘度を示すものが望ましい。これにより、例えば、900cm以上の大面積の集積膜を形成する場合でも4隅と中央部との厚み差を約0.1μmの差で形成することができる。 The semiconductor particle paste should have a thixotropic viscosity characteristic in which nanocrystals are easy to flow. For example, a paste exhibiting a viscosity of 1 mPa · s to 50 mPa · s at room temperature (25 ° C.) is desirable. . Thereby, for example, even when an integrated film having a large area of 900 cm 2 or more is formed, the thickness difference between the four corners and the central portion can be formed with a difference of about 0.1 μm.

また、半導体粒子ペーストがこのような粘度特性を有するようなものであると、有機分子がナノ結晶を拘束した状態を長期間維持できることから、保存性が良く、かつ長期間にわたって高い充填性の集積膜を形成することができる。   In addition, if the semiconductor particle paste has such a viscosity characteristic, the organic molecules can maintain the state in which the nanocrystals are constrained to the nanocrystals for a long period of time. A film can be formed.

この場合、半導体粒子ペーストを構成する有機分子としては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンなどの炭素数2〜20のα−オレフィンから選ばれる少なくとも1種が望ましい。上記した有機分子は分子量も小さいため、有機分子同士の絡みも少ないことから、室温(25℃)において、1mPa・s以上50mPa・s以下の範囲の粘度特性を長期間維持することができる。   In this case, the organic molecules constituting the semiconductor particle paste include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, At least one selected from α-olefins having 2 to 20 carbon atoms such as 1-octadecene and 1-eicosene is desirable. Since the above-mentioned organic molecules have a small molecular weight, and there is little entanglement between the organic molecules, the viscosity characteristics in the range of 1 mPa · s to 50 mPa · s can be maintained for a long time at room temperature (25 ° C.).

このような半導体粒子ペーストを構成するナノ結晶としては、半導体材料を主成分とするものからなり、そのエネルギーギャップ(Eg)は用いる材料によって異なるが、0.15〜2.50evを有するものが好適である。具体的な量子ドット5aの材料としては、ゲルマニウム(Ge)、シリコン(Si)、ガリウム(Ga)、インジウム(In)、ヒ素(As)、アンチモン(Sb)、銅(Cu)、鉄(Fe)、硫黄(S)、鉛(Pb)、テルル(Te)およびセレン(Se)から選ばれるいずれか1種またはこれらの化合物半導体を用いることが望ましい。   Nanocrystals constituting such a semiconductor particle paste are composed mainly of a semiconductor material, and the energy gap (Eg) varies depending on the material used, but those having 0.15 to 2.50 ev are suitable. It is. Specific materials for the quantum dots 5a include germanium (Ge), silicon (Si), gallium (Ga), indium (In), arsenic (As), antimony (Sb), copper (Cu), iron (Fe). It is desirable to use any one selected from sulfur (S), lead (Pb), tellurium (Te) and selenium (Se) or a compound semiconductor thereof.

図1は、本発明の光電変換装置の一実施形態を示す断面模式図である。本実施形態の光電変換装置は、半導体基板1の主面上に、上記の半導体粒子ペーストに含まれるナノ結晶3が連結された集積膜5を有するものである。本実施形態の光電変換装置によれば、上述したサイズを有する半導体性のナノ結晶3に金属錯体が付与されて形成されるものであるため、ナノ結晶3は加熱後には金属錯体に由来する無機配位子4を介して連結された状態になることから、分子量が高くなると立体障害などにより体積が大きくなる有機分子などに比較して量子ドットとなるナノ結晶3の集積膜5を高密度なものにできる。これにより高い光電変換効率を有する光電変換装置を得ることができる。   FIG. 1 is a schematic cross-sectional view showing one embodiment of the photoelectric conversion device of the present invention. The photoelectric conversion device of the present embodiment has an integrated film 5 on a main surface of a semiconductor substrate 1 to which nanocrystals 3 contained in the semiconductor particle paste are connected. According to the photoelectric conversion device of the present embodiment, since the metal complex is formed on the semiconducting nanocrystal 3 having the above-described size, the nanocrystal 3 is inorganic derived from the metal complex after heating. Since it is connected via the ligand 4, the integrated film 5 of the nanocrystals 3 serving as quantum dots is formed in a higher density than an organic molecule whose volume increases due to steric hindrance when the molecular weight increases. Can be a thing. Thereby, a photoelectric conversion device having high photoelectric conversion efficiency can be obtained.

図1には、半導体基板1と、無機配位子4を含むナノ結晶3の集積膜5との2層構造を示したにすぎないが、この集積膜5は多層化されていても良いし、また、この集積膜5の上側にも半導体基板1(もしくは半導体の膜)が設けられていてもよい。この場合、集積膜5の上層および下層に設けた半導体基板1をp型またはn型として機能するようにすると、ナノ結晶3の集積膜5にさらに2つの半導体基板1による光電変換が加わるため、光電変換効率をさらに向上させることができる。   FIG. 1 only shows a two-layer structure of the semiconductor substrate 1 and the integrated film 5 of the nanocrystal 3 containing the inorganic ligand 4, but the integrated film 5 may be multilayered. Also, the semiconductor substrate 1 (or a semiconductor film) may be provided on the upper side of the integrated film 5. In this case, if the semiconductor substrate 1 provided in the upper layer and the lower layer of the integrated film 5 is made to function as p-type or n-type, photoelectric conversion by the two semiconductor substrates 1 is further added to the integrated film 5 of the nanocrystal 3. Photoelectric conversion efficiency can be further improved.

次に、本実施形態の半導体粒子ペーストおよび光電変換装置を製造する方法について、図2を基に説明する。本実施形態の半導体粒子ペーストは、半導体素原料粒子11を、硝
酸とフッ酸とを混合した酸性溶液13とこの溶液よりも比重の低い有機分子15aの溶液15(以下、有機分子溶液15という。)の混合溶液中に分散させた後に、その混合溶液に超音波振動を与えることにより調製される。
Next, a method for producing the semiconductor particle paste and the photoelectric conversion device of the present embodiment will be described with reference to FIG. In the semiconductor particle paste of this embodiment, the semiconductor raw material particles 11 are referred to as an acidic solution 13 in which nitric acid and hydrofluoric acid are mixed, and a solution 15 of organic molecules 15a having a specific gravity lower than this solution (hereinafter referred to as organic molecule solution 15). ) After being dispersed in the mixed solution, and then applying ultrasonic vibration to the mixed solution.

半導体素原料粒子11を硝酸とフッ酸とを混合した酸性溶液13(以下、単に、酸性溶液13という場合がある。)中に分散させて、超音波振動を与えると、溶解反応により半導体素原料粒子11が熱融解し、微少サイズ(最大径が10nm以下)の粒子11aが生成する。後に、この粒子11aが結晶化して発光性を有するナノ結晶3となる。生成した粒子11aはサイズが小さいために、比重の大きい酸性溶液13中において液面付近まで浮上してくる。   When the semiconductor raw material particles 11 are dispersed in an acidic solution 13 in which nitric acid and hydrofluoric acid are mixed (hereinafter sometimes simply referred to as acidic solution 13) and subjected to ultrasonic vibration, the semiconductor raw material is dissolved by a dissolution reaction. The particles 11 are melted by heat to generate particles 11a having a very small size (maximum diameter is 10 nm or less). Later, the particles 11a are crystallized to form a nanocrystal 3 having luminescence. Since the generated particles 11a are small in size, they float up to the vicinity of the liquid surface in the acidic solution 13 having a large specific gravity.

この工程では、硝酸とフッ酸との酸性溶液13とともに、この酸性溶液13よりも比重の低い有機分子溶液15に金属錯体14を含ませており、また、この系においては酸性溶液13の上側に有機分子溶液15が分離した状態で存在しているため、酸性溶液13の液面付近まで浮上した粒子11a(またはナノ結晶3)は有機分子溶液15中に存在する金属錯体14および有機分子15aと結合し、有機分子溶液15の層に分散した状態となる。   In this process, together with the acidic solution 13 of nitric acid and hydrofluoric acid, a metal complex 14 is included in an organic molecular solution 15 having a specific gravity lower than that of the acidic solution 13, and in this system, on the upper side of the acidic solution 13. Since the organic molecular solution 15 exists in a separated state, the particles 11a (or nanocrystals 3) that have floated to the vicinity of the liquid surface of the acidic solution 13 are separated from the metal complex 14 and the organic molecules 15a that exist in the organic molecular solution 15. They are bonded and dispersed in the layer of the organic molecule solution 15.

この方法によれば、半導体素原料粒子11から熱融解によって微少サイズの粒子11aを生成させる際に、硝酸とフッ酸とを含み、比重の重い酸性溶液13中に分散するようにしているため、生成した微少サイズの粒子11aは沈降しにくく、また、粒子11aの周囲が高い比重を有する媒体であることから生成した粒子11aは周囲から等方的な圧力を受けることになる。その結果、熱融解して生成した粒子11aは冷却されてナノ結晶3になる間、酸性溶液13中に浮遊した状態で存在することから、生成するナノ結晶3のほとんどが等方的な形状となるため、最大径が20nmに近いサイズでも、真球度の高いナノ結晶3を多くの割合で含むものにできる。この場合、粒子11aの最大径は酸性溶液中に含まれる硝酸(NO )およびフッ酸(F)の濃度によって調整できる。 According to this method, when the fine particles 11a are generated from the semiconductor raw material particles 11 by heat melting, the particles 11a contain nitric acid and hydrofluoric acid and are dispersed in the acidic solution 13 having a high specific gravity. The generated fine particles 11a are unlikely to settle, and the generated particles 11a are subjected to isotropic pressure from the surroundings because the periphery of the particles 11a is a medium having a high specific gravity. As a result, while the particles 11a generated by thermal melting are cooled and become nanocrystals 3, they exist in a suspended state in the acidic solution 13, so that most of the generated nanocrystals 3 have an isotropic shape. Therefore, even when the maximum diameter is close to 20 nm, the nanocrystal 3 having a high sphericity can be included in a large proportion. In this case, the maximum diameter of the particles 11a can be adjusted by the concentration of nitric acid (NO 3 ) and hydrofluoric acid (F ) contained in the acidic solution.

また、このようにして調製される半導体粒子ペーストは、ナノ結晶3に近接して安定度定数の高い金属錯体14が存在しているために、成膜を行ってナノ結晶3の集積膜を形成したときには、ナノ結晶3の周りからは有機分子15aが除かれて、金属錯体14が優先的に介在するようになり、その結果、加熱後にはナノ結晶3の間には無機配位子4が中間層として存在することになる。こうして中間層を介して隣接するナノ結晶3の間隔を狭いものにすることができる。   In addition, the semiconductor particle paste thus prepared has a metal complex 14 having a high stability constant in the vicinity of the nanocrystal 3, so that the integrated film of the nanocrystal 3 is formed by film formation. In this case, the organic molecules 15a are removed from around the nanocrystals 3 and the metal complexes 14 are preferentially interposed. As a result, the inorganic ligands 4 are interposed between the nanocrystals 3 after heating. It exists as an intermediate layer. Thus, the interval between the adjacent nanocrystals 3 through the intermediate layer can be narrowed.

また、本実施形態の半導体粒子ペーストの製法では、酸性溶液13中で生成したナノ結晶3は空気に触れることなく、有機分子15aを含む有機分子溶液15中に移動し、有機分子15aに覆われる状態になることから、生成したナノ結晶3は含まれる酸素量が極めて少ないものとなり、これにより高い量子効果を示すナノ結晶3を得ることができる。   Moreover, in the manufacturing method of the semiconductor particle paste of this embodiment, the nanocrystal 3 produced | generated in the acidic solution 13 moves in the organic molecule solution 15 containing the organic molecule 15a, without touching air, and is covered with the organic molecule 15a. Since it will be in a state, the produced | generated nanocrystal 3 becomes a thing with very little oxygen amount contained, and can obtain the nanocrystal 3 which shows a high quantum effect by this.

次に、混合溶液から有機分子溶液15だけ分離回収する。分離回収した有機分子溶液15は有機分子15aが金属錯体14およびナノ結晶3を含む溶液となっており、こうして本実施形態の半導体粒子ペーストを得ることができる。   Next, only the organic molecule solution 15 is separated and recovered from the mixed solution. The separated and recovered organic molecule solution 15 is a solution in which the organic molecules 15a contain the metal complex 14 and the nanocrystal 3, and thus the semiconductor particle paste of this embodiment can be obtained.

最後に、上記工程によって得られた半導体粒子ペーストを半導体基板1の表面に塗布し、乾燥させることにより、ナノ結晶3が無機配位子14を介して高密度に充填された集積膜7を得ることができる。   Finally, the semiconductor particle paste obtained by the above process is applied to the surface of the semiconductor substrate 1 and dried to obtain the integrated film 7 in which the nanocrystals 3 are filled with high density via the inorganic ligands 14. be able to.

1・・・・・・・・・・半導体基板
3・・・・・・・・・・ナノ結晶
5・・・・・・・・・・集積膜
11・・・・・・・・・半導体素原料粒子
11a・・・・・・・・粒子
13・・・・・・・・・硝酸とフッ酸とを含む酸性溶液
14・・・・・・・・・無機配位子
15・・・・・・・・・有機分子溶液
15a・・・・・・・・有機分子
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 3 ... Nanocrystal 5 ... Integrated film 11 ... Semiconductor Raw material particles 11a ... Particles 13 ... An acidic solution 14 containing nitric acid and hydrofluoric acid ... Inorganic ligands 15 ...・ ・ ・ ・ ・ ・ Organic molecule solution 15a ... Organic molecules

Claims (6)

金属錯体を含む有機分子の溶液中に、最大径が1〜20nmで、発光性を示すナノ結晶が分散していることを特徴とする半導体粒子ペースト。   A semiconductor particle paste characterized in that nanocrystals having a maximum diameter of 1 to 20 nm and exhibiting luminescent properties are dispersed in a solution of an organic molecule containing a metal complex. 前記有機分子が、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセンから選ばれる少なくとも1種であることを特徴とする請求項1に記載の半導体粒子ペースト。   The organic molecule is selected from ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene The semiconductor particle paste according to claim 1, wherein the semiconductor particle paste is at least one kind. 前記金属錯体が、ヘモグロビン、ミオグロビン、クロロフィル、ブレオマイシン、ビタミンB12、モリブトテンヘモシニアン、フェレドキシンの群から選ばれる1種であることを特徴とする請求項1に記載の半導体粒子ペースト。 2. The semiconductor particle paste according to claim 1, wherein the metal complex is one selected from the group consisting of hemoglobin, myoglobin, chlorophyll, bleomycin, vitamin B 12 , molybtoten hemocyanin, and ferredoxin. 前記金属錯体が、Na、K、Mg、Ca、Al、Mn、Co、Fe、Cu、Zn、Mo、PdおよびPtの群から選ばれる少なくとも1種の金属イオンと、CO 2−、NO 、NH、RNH、RCOO、RO、ROH、N、PO 3−、ROPO 2−、(RO)PO2−の群から選ばれる1種の配位子とを含むものであることを特徴とする請求項1に記載の半導体粒子ペースト。 The metal complex includes at least one metal ion selected from the group consisting of Na, K, Mg, Ca, Al, Mn, Co, Fe, Cu, Zn, Mo, Pd, and Pt, CO 3 2− , NO 3. -, NH 3, RNH 2, RCOO -, RO -, ROH, N 2 H 4, PO 4 3-, ROPO 3 2-, and one ligand selected from (RO) 2 PO 2- group The semiconductor particle paste according to claim 1, comprising: 半導体基板の主面上に、請求項1乃至4のうちいずれかの前記半導体粒子ペーストに含まれる前記ナノ結晶の集積膜を有していることを特徴とする光電変換装置。   A photoelectric conversion device comprising an integrated film of the nanocrystals contained in the semiconductor particle paste according to any one of claims 1 to 4 on a main surface of a semiconductor substrate. 前記ナノ結晶が前記金属錯体に由来する無機配位子を介して連結されていることを特徴とする請求項5に記載の光電変換装置。   The photoelectric conversion device according to claim 5, wherein the nanocrystals are linked through an inorganic ligand derived from the metal complex.
JP2014052029A 2014-03-14 2014-03-14 Semiconductor particle paste Active JP6334216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014052029A JP6334216B2 (en) 2014-03-14 2014-03-14 Semiconductor particle paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014052029A JP6334216B2 (en) 2014-03-14 2014-03-14 Semiconductor particle paste

Publications (2)

Publication Number Publication Date
JP2015174910A true JP2015174910A (en) 2015-10-05
JP6334216B2 JP6334216B2 (en) 2018-05-30

Family

ID=54254398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014052029A Active JP6334216B2 (en) 2014-03-14 2014-03-14 Semiconductor particle paste

Country Status (1)

Country Link
JP (1) JP6334216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417291A (en) * 2018-02-08 2018-08-17 浙江正泰太阳能科技有限公司 Conductive silver paste for solar cell and preparation method thereof and solar cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329686A (en) * 2002-05-09 2003-11-19 Kenichi Hanaki Luminescent fine particle
JP2010534141A (en) * 2007-05-31 2010-11-04 ジ アドミニストレイターズ オブ ザ チューレン エデュケイショナル ファンド Method for forming stable functional nanoparticles
JP2011026472A (en) * 2009-07-27 2011-02-10 Sharp Corp Semiconductor phosphor nanoparticle
JP2011080067A (en) * 2009-10-09 2011-04-21 Samsung Electronics Co Ltd Nanoparticle complex, method of manufacturing the same and device including nanoparticle complex
JP2011518650A (en) * 2008-03-11 2011-06-30 イミュノライト・エルエルシー Plasmonics support system and method for internal energy activation from external radiation sources
JP2011202148A (en) * 2010-03-03 2011-10-13 Sharp Corp Wavelength converting member, light emitting device and image display device, and process for producing wavelength converting member
JP2013074041A (en) * 2011-09-27 2013-04-22 Toppan Printing Co Ltd Cmos semiconductor device manufacturing method and cmos semiconductor device
US20140022779A1 (en) * 2011-04-01 2014-01-23 Kai Su White light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329686A (en) * 2002-05-09 2003-11-19 Kenichi Hanaki Luminescent fine particle
JP2010534141A (en) * 2007-05-31 2010-11-04 ジ アドミニストレイターズ オブ ザ チューレン エデュケイショナル ファンド Method for forming stable functional nanoparticles
JP2011518650A (en) * 2008-03-11 2011-06-30 イミュノライト・エルエルシー Plasmonics support system and method for internal energy activation from external radiation sources
JP2011026472A (en) * 2009-07-27 2011-02-10 Sharp Corp Semiconductor phosphor nanoparticle
JP2011080067A (en) * 2009-10-09 2011-04-21 Samsung Electronics Co Ltd Nanoparticle complex, method of manufacturing the same and device including nanoparticle complex
JP2011202148A (en) * 2010-03-03 2011-10-13 Sharp Corp Wavelength converting member, light emitting device and image display device, and process for producing wavelength converting member
US20140022779A1 (en) * 2011-04-01 2014-01-23 Kai Su White light emitting device
JP2013074041A (en) * 2011-09-27 2013-04-22 Toppan Printing Co Ltd Cmos semiconductor device manufacturing method and cmos semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417291A (en) * 2018-02-08 2018-08-17 浙江正泰太阳能科技有限公司 Conductive silver paste for solar cell and preparation method thereof and solar cell
CN108417291B (en) * 2018-02-08 2020-03-10 浙江正泰太阳能科技有限公司 Conductive silver paste for solar cell, preparation method of conductive silver paste and solar cell

Also Published As

Publication number Publication date
JP6334216B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
TWI785056B (en) Uniformly encapsulated nanoparticles and uses thereof
TWI786122B (en) Ink comprising encapsulated nanoparticles
CN110114439B (en) Glass composite particles and uses thereof
Fujii et al. All-inorganic colloidal silicon nanocrystals—surface modification by boron and phosphorus co-doping
Casavola et al. Colloidal strategies for preparing oxide‐based hybrid nanocrystals
CN111201300B (en) Ink comprising encapsulated nanoparticles
US10189003B1 (en) Continuous microwave-assisted segmented flow reactor for high-quality nanocrystal synthesis
TW201118041A (en) Synthesis of silver, antimony, and tin doped bismuth telluride nanoparticles and bulk bismuth telluride to form bismuth telluride composites
KR20160086918A (en) Luminescent particle, materials and products including same, and methods
Berends et al. Formation of colloidal copper indium sulfide nanosheets by two-dimensional self-organization
Getachew et al. Metal halide perovskite nanocrystals for biomedical engineering: Recent advances, challenges, and future perspectives
Liu et al. Anisotropic heavy-metal-free semiconductor nanocrystals: Synthesis, properties, and applications
Soni et al. Hot injection method for nanoparticle synthesis: basic concepts, examples and applications
JP6334216B2 (en) Semiconductor particle paste
JP2011062607A (en) Circular nanoparticle assembly and method for producing the same
JP6158904B2 (en) Nanoparticle phosphor element and light emitting element
Lin et al. Luminescent nanofluids of organometal halide perovskite nanocrystals in silicone oils with ultrastability
Kudera et al. Growth mechanism, shape and composition control of semiconductor nanocrystals
Li et al. Large ZnO mesocrystals of hexagonal columnar morphology derived from liquid crystal templates
Viswanath From clusters to semiconductor nanostructures
Sikdar et al. Excitonic properties of layer-by-layer CVD grown ZnO hexagonal microdisks
JP2015141983A (en) Semiconductor particle paste and production method thereof, and photoelectric conversion device
JP6620124B2 (en) Nanoparticle phosphor element and light emitting element
Patel et al. Simple non-aqueous fabrication route for oleic acid capped luminescent cadmium sulphide quantum dots at relatively low temperature
Joo et al. Decay time dynamics of red and blue luminescence of surface-functionalized silicon quantum dots

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180426

R150 Certificate of patent or registration of utility model

Ref document number: 6334216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150