JP2003329686A - Luminescent fine particle - Google Patents

Luminescent fine particle

Info

Publication number
JP2003329686A
JP2003329686A JP2002134676A JP2002134676A JP2003329686A JP 2003329686 A JP2003329686 A JP 2003329686A JP 2002134676 A JP2002134676 A JP 2002134676A JP 2002134676 A JP2002134676 A JP 2002134676A JP 2003329686 A JP2003329686 A JP 2003329686A
Authority
JP
Japan
Prior art keywords
luminescent
fine particle
functional group
luminescent fine
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002134676A
Other languages
Japanese (ja)
Other versions
JP4107873B2 (en
Inventor
Kenichi Hanaki
賢一 花木
Kenji Yamamoto
健二 山本
Yukio Yamaguchi
由岐夫 山口
Shinya Maenozono
信也 前之園
Yoichiro Komori
陽一朗 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002134676A priority Critical patent/JP4107873B2/en
Publication of JP2003329686A publication Critical patent/JP2003329686A/en
Application granted granted Critical
Publication of JP4107873B2 publication Critical patent/JP4107873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a luminescent fine particle suited for use as a molecular- recognition luminescent marker substance used in the sensitive measurements of target substances such as biological substances or environment-related substances, and being excellent in stability as to dispersion in biological solvents such as highly basic solutions or acidic solutions. <P>SOLUTION: The luminescent fine particle has a polymer having a polar functional group and physically and/or chemically bonded to the surface thereof. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、生体関連物質、環
境関連物質等の標的物質の高感度測定法に用いる分子認
識発光性マーカー物質として好適であり、高塩又は酸性
溶液をはじめ、生物溶媒で分散安定性に優れる発光性微
粒子に関する。
TECHNICAL FIELD The present invention is suitable as a molecular recognition luminescent marker substance used in a highly sensitive measurement method of a target substance such as a biological substance, an environment-related substance, a high salt or acidic solution, and a biological solvent. And relates to luminescent fine particles having excellent dispersion stability.

【0002】[0002]

【従来の技術】近年、生体内に含まれるタンパク質、ウ
イルス、核酸等の生体関連物質や、ダイオキシン、金属
イオン等の環境関連物質を高感度に測定する方法とし
て、分子認識物質を蛍光体等のマーカー物質に結合した
分子認識体を用いる方法が多用されている。しかし、従
来用いられていた蛍光体等のマーカー物質は、発光効率
が低く感度の点で必ずしも満足できず、また、一定の波
長の光しか発することができないことから、一時に複数
の検体を検出する等の複雑な測定に用いることは困難で
あった。
2. Description of the Related Art In recent years, as a highly sensitive method for measuring biologically-related substances such as proteins, viruses and nucleic acids contained in the living body and environment-related substances such as dioxins and metal ions, molecular recognition substances such as fluorescent substances have been used. A method using a molecular recognition body bound to a marker substance is widely used. However, conventionally used marker substances such as phosphors have low emission efficiency and are not always satisfactory in terms of sensitivity, and because they can only emit light of a certain wavelength, multiple samples can be detected at one time. It was difficult to use for complicated measurements such as

【0003】近年、マーカー物質となる分子認識発光性
微粒子として、半導体超微粒子(以下、半導体ナノ粒子
ともいう)が注目されている。半導体ナノ粒子はバルク
結晶における励起子ボーア半径と同等の粒子径を有する
半導体の超微粒子(超微結晶)であり、量子閉じ込め効
果の発現によって光学スペクトル、すなわち吸収スペク
トル及び蛍光スペクトルを粒子径によって調節すること
が可能である。すなわち、粒子径によって異なる波長の
光を発し得る。
In recent years, semiconductor ultrafine particles (hereinafter, also referred to as semiconductor nanoparticles) have been attracting attention as molecular recognition luminescent fine particles used as a marker substance. Semiconductor nanoparticles are semiconductor ultrafine particles (ultrafine crystals) having a particle size equivalent to the exciton Bohr radius in bulk crystals, and the optical spectrum, that is, the absorption spectrum and the fluorescence spectrum, is adjusted by the particle size by the quantum confinement effect. It is possible to That is, it is possible to emit light of different wavelengths depending on the particle size.

【0004】半導体ナノ粒子は、通常、粒径が0.5〜
100nm、好ましくは0.5〜50nm、より好まし
くは1〜10nmである超微粒子である。またこの半導
体ナノ粒子の種類としては、例えば、CuCl等のI−
VII族化合物半導体、CdS、CdSe等のII−V
I族、InAs等のIII−V族化合物半導体、IV族
半導体等の半導体結晶等が挙げられる。このような半導
体ナノ粒子はコロイド化学的合成法により合成され、そ
の表面は一般に界面活性剤及び/又は表面修飾剤で被覆
され、安定化されている。
The semiconductor nanoparticles usually have a particle size of 0.5 to 0.5.
The ultrafine particles have a size of 100 nm, preferably 0.5 to 50 nm, and more preferably 1 to 10 nm. The type of the semiconductor nanoparticles is, for example, I-, such as CuCl.
II-V such as Group VII compound semiconductors, CdS, CdSe, etc.
Examples thereof include III-V group compound semiconductors such as group I and InAs, and semiconductor crystals such as group IV semiconductors. Such semiconductor nanoparticles are synthesized by a colloidal chemical synthesis method, and the surface thereof is generally coated with a surfactant and / or a surface modifier and stabilized.

【0005】高い量子効率を有し、かつ、粒子径分布が
狭い半導体ナノ粒子を得るための合成法は限定されてお
り、これらの方法によれば得られるナノ粒子の表面は疎
水性となる場合が多い。しかし、表面が疎水性では、標
的となるタンパク質、ウイルス、核酸等の生体関連物質
との反応性が低下し高い感度で検出することが困難とな
る。また、半導体ナノ粒子は、ファンデルワールス力に
より粒子同士が凝集しやすく、測定中にも凝集が起こっ
てしまうことから、凝集が起こる前に測定を終了しなく
てはならないという問題もあった。
[0005] There are limited synthetic methods for obtaining semiconductor nanoparticles having high quantum efficiency and narrow particle size distribution, and the surface of the nanoparticles obtained by these methods is hydrophobic. There are many. However, if the surface is hydrophobic, the reactivity with the biologically relevant substances such as target proteins, viruses and nucleic acids decreases, and it becomes difficult to detect with high sensitivity. In addition, since semiconductor nanoparticles are likely to aggregate with each other due to Van der Waals forces, and aggregation also occurs during measurement, there is also a problem that the measurement must be terminated before aggregation occurs.

【0006】そこで、生体内へ導入して用いる場合には
半導体ナノ粒子の表面を親水化すると同時に、半導体ナ
ノ粒子同士が凝集することを防ぐ必要があった。半導体
ナノ粒子表面の親水化としては、例えば、WO00/1
7656「WATER−SOLUBLE THIOL−
CAPPED NANOCRYSTALS」に記載され
ているような方法が報告されている。この方法は、半導
体ナノ粒子の表面にカルボキシル基等の極性を有する官
能基をグラフトすることにより、官能基の有するイオン
の電荷同士の反発により粒子の凝集を防ぐというもので
ある。
Therefore, when introduced into a living body for use, it is necessary to make the surface of the semiconductor nanoparticles hydrophilic and at the same time prevent the semiconductor nanoparticles from aggregating with each other. Examples of hydrophilicizing the surface of the semiconductor nanoparticles include WO00 / 1.
7656 "WATER-SOLUBLE THEOL-
A method as described in "CAPPED NANOCRYSTALS" has been reported. In this method, a functional group having a polarity such as a carboxyl group is grafted on the surface of the semiconductor nanoparticles to prevent the particles from aggregating due to the repulsion between the electric charges of the ions of the functional group.

【0007】しかしながら、この方法では試験条件を厳
密にコントロールできるin vitro試験であって
も長期間の分散性は不安定であり、更に、in viv
o試験では、高塩濃度の生体内であることから、生体内
に存在するイオンによって粒子表面にグラフトされた官
能基の電荷が打ち消されてしまい、凝集を防ぐことはで
きなかった。
However, according to this method, the long-term dispersibility is unstable even in an in vitro test in which the test conditions can be strictly controlled, and further, in vivo
In the o test, since it was in a living body with a high salt concentration, the electric charge of the functional group grafted on the particle surface was canceled by the ions existing in the living body, and the aggregation could not be prevented.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記現状に
鑑み、生体関連物質、環境関連物質等の標的物質の高感
度測定法に用いる分子認識発光性微粒子のマーカー物質
として好適であり、高塩又は酸性溶液をはじめ、生物溶
媒で分散安定性に優れる発光性微粒子を提供することを
目的とする。
In view of the above situation, the present invention is suitable as a marker substance for molecular recognition luminescent fine particles used in a highly sensitive measurement method of a target substance such as a biological substance and an environment-related substance. It is an object of the present invention to provide luminescent fine particles having excellent dispersion stability in a biological solvent including a salt or an acidic solution.

【0009】[0009]

【課題を解決するための手段】本発明は、極性官能基を
有する高分子が表面に物理的及び/又は化学的に接合し
ている半導体ナノ粒子からなる発光性微粒子である。以
下に本発明を詳述する。
The present invention is a luminescent fine particle composed of semiconductor nanoparticles in which a polymer having a polar functional group is physically and / or chemically bonded to the surface. The present invention is described in detail below.

【0010】本発明の発光性微粒子は、極性官能基を有
する高分子が表面に物理的及び/又は化学的に接合して
いることを特徴とする半導体ナノ粒子からなる。上記半
導体ナノ粒子としては特に限定されず、例えば、CuC
l等のI−VII族化合物半導体、CdS、CdSe等
のII−VI族、InAs等のIII−V族化合物半導
体、IV族半導体等の半導体結晶、TiO等の金属酸
化物、フタロシアニン、アゾ化合物等の有機化合物から
なるもの、またはそれらの複合材料等が挙げられる。か
かる複合材料としては、例えば、CdSをコア−CdS
eをシェル、CdSeをコア−CdSをシェル、CdS
をコア−ZnSをシェル、CdSeをコア−ZnSをシ
ェル、CdSeのナノ結晶をコア−ZnSをシェル、C
dSeのナノ結晶をコア−ZnSeをシェル、Siをコ
ア−SiOをシェルとするコア−シェル構造を有する
もの等が挙げられる。
The luminescent fine particles of the present invention are composed of semiconductor nanoparticles characterized in that a polymer having a polar functional group is physically and / or chemically bonded to the surface. The semiconductor nanoparticles are not particularly limited, and include, for example, CuC.
I-VII group compound semiconductors such as I, II-VI group semiconductors such as CdS and CdSe, III-V group compound semiconductors such as InAs, semiconductor crystals such as IV group semiconductors, metal oxides such as TiO 2 , phthalocyanines, azo compounds And the like, or a composite material thereof. As such a composite material, for example, CdS is core-CdS.
e for shell, CdSe for core-CdS for shell, CdS
Is a core-ZnS shell, CdSe is a core-ZnS shell, CdSe nanocrystals are a core-ZnS shell, C
Examples thereof include those having a core-shell structure in which dSe nanocrystals have a core-ZnSe as a shell and Si has a core-SiO 2 as a shell.

【0011】なお、上記半導体ナノ粒子としては、本発
明の目的を損なわない範囲であれば、表面を化学的又は
物理的に修飾されたものであってもよく、また、界面活
性剤、分散安定剤又は酸化防止剤等の添加剤を加えたも
のであってもよい。このような半導体ナノ粒子は、コロ
イド化学的な方法、例えば、逆ミセル法(Liano
s, P.et al., Chem. Phys.
Lett., 125,299 (1986))やホッ
トソープ法(Peng, X. et al.,J.
Am. Chem. Soc., 119, 7019
(1997))等によって合成することができる。
The semiconductor nanoparticles may be those whose surface is chemically or physically modified as long as the object of the present invention is not impaired. It may be one to which an additive such as an agent or an antioxidant is added. Such semiconductor nanoparticles can be prepared by a colloidal chemical method such as a reverse micelle method (Liano).
s, P.S. et al. Chem. Phys.
Lett. , 125, 299 (1986)) and the hot soap method (Peng, X. et al., J.
Am. Chem. Soc. , 119, 7019
(1997)) and the like.

【0012】上記半導体ナノ粒子の粒子径の好ましい下
限は0.5nm、上限は100nmである。0.5nm
未満であると原子又は分子そのものとなってしまい、1
00nmを超えると、バルクの性質となってしまうこと
がある。より好ましい下限は0.5nm、上限は50n
m、更に好ましい下限は1nm、上限は10nmであ
る。上記半導体ナノ粒子の形状としては特に限定され
ず、例えば、球状、棒状、板状、薄膜状、繊維状、チュ
ーブ状等が挙げられる。なかでも球状が好ましい。
The preferable lower limit of the particle size of the semiconductor nanoparticles is 0.5 nm, and the upper limit thereof is 100 nm. 0.5 nm
If it is less than 1, it becomes an atom or molecule itself, and 1
If it exceeds 00 nm, it may become a bulk property. A more preferable lower limit is 0.5 nm and an upper limit is 50 n
m, more preferably the lower limit is 1 nm and the upper limit is 10 nm. The shape of the semiconductor nanoparticles is not particularly limited, and examples thereof include spherical shape, rod shape, plate shape, thin film shape, fiber shape, tube shape and the like. Of these, spherical shape is preferable.

【0013】本発明の発光性微粒子では、上記半導体ナ
ノ粒子の表面に極性官能基を有する高分子が物理的及び
/又は化学的に接合している。極性官能基を有する高分
子を物理的及び/又は化学的に接合させることにより、
高分子の有する極性官能基同士の電気的な反発により粒
子の凝集を防ぐことができる。上記極性官能基を有する
高分子は、酸性条件下及び/又は塩基性条件下でイオン
化する官能基を有することが好ましい。一般に生体内
は、部位により酸性条件にも塩基性条件にもなり得る
が、酸性条件下でイオン化する官能基と塩基性条件下で
イオン化する官能基とを両方同時に有することにより、
酸性条件下でも塩基性条件下でも表面の極性官能基がイ
オン化し得るので、静電反発力により粒子の凝集を防ぐ
ことができる。かかる官能基としては、例えば、カルボ
キシル基、スルホニル基、リン酸基、アンモニウム基等
が挙げられる。更に、生体内での測定に供することか
ら、上記極性官能基を有する高分子としては天然物であ
ることが好ましい。
In the luminescent fine particles of the present invention, a polymer having a polar functional group is physically and / or chemically bonded to the surface of the semiconductor nanoparticles. By physically and / or chemically bonding a polymer having a polar functional group,
Agglomeration of particles can be prevented by electrical repulsion between polar functional groups of the polymer. The polymer having a polar functional group preferably has a functional group that is ionized under acidic conditions and / or basic conditions. In general, in vivo, depending on the site, both acidic and basic conditions are possible, but by having both a functional group that ionizes under acidic conditions and a functional group that ionizes under basic conditions at the same time,
Since the polar functional group on the surface can be ionized under acidic condition or basic condition, aggregation of particles can be prevented by electrostatic repulsion. Examples of such a functional group include a carboxyl group, a sulfonyl group, a phosphoric acid group, an ammonium group and the like. Further, the polymer having the polar functional group is preferably a natural product because it is used for in vivo measurement.

【0014】このような種々の要件を満たしうる高分子
としては特にタンパク質が好適である。タンパク質と半
導体ナノ粒子とを結合させることにより、本発明の発光
性微粒子は生体内でも安定した分散安定性を示すととも
に、該タンパク質の本来有する機能をも発現することが
でき、生体内の生体関連物質、環境関連物質等の標的物
質の測定に利用することができる。例えば、タンパク質
として、細胞膜透過性を有するタンパク質を用いれば、
細胞を破壊することなく細胞内に存在する標的物質の分
析にも用いることができる。また、上記タンパク質とし
ては免疫反応不活性タンパク質であることが好ましい。
免疫反応不活性タンパク質であれば、生体内に用いて
も、生体の免疫機構によって排除されることなく測定を
行うことができる。
Proteins are particularly preferable as the polymer capable of satisfying such various requirements. By binding a protein and a semiconductor nanoparticle, the luminescent fine particle of the present invention can exhibit stable dispersion stability in a living body, and can also exhibit the function originally possessed by the protein. It can be used to measure target substances such as substances and environment-related substances. For example, if a protein having cell membrane permeability is used as the protein,
It can also be used for analysis of target substances existing in cells without destroying the cells. The protein is preferably an immunoreactive inactive protein.
If an immunoreactive inactive protein is used in a living body, it can be measured without being eliminated by the immune system of the living body.

【0015】かかるタンパク質としては、具体的には例
えば、アルブミン、ミオグロビン、カゼイン等が挙げら
れる。なかでもアルブミンは、後述の分子認識物質との
結合の面でも優れており好適である。
Specific examples of such a protein include albumin, myoglobin, casein and the like. Of these, albumin is preferable because it is also excellent in terms of binding to the molecular recognition substance described below.

【0016】上記半導体ナノ粒子と上記極性官能基を有
する高分子とは、物理的及び/又は化学的に接合されて
いる。上記結合の態様としては特に限定されず、化学吸
着、物理吸着、配位、水素結合、イオン結合、共有結合
等が挙げられる。結合の安定性から、結合力の強い結合
様式により結合されていることが好ましい。なお、本発
明の目的を損なわない範囲で、直接的接合のほかに間接
的接合、すなわち該半導体ナノ粒子表面と該高分子との
間に接合を媒介する他の有機分子が存在していてもよ
い。また、上記極性官能基を有する高分子は、上記半導
体ナノ粒子表面を取り囲むようにして複数結合している
ことが好ましい。極性官能基を有する高分子の半導体ナ
ノ粒子表面の被覆率が高まることにより、本発明の発光
性微粒子の分散安定性がより向上する。
The semiconductor nanoparticles and the polymer having the polar functional group are physically and / or chemically bonded. The form of the bond is not particularly limited, and examples thereof include chemical adsorption, physical adsorption, coordination, hydrogen bond, ionic bond, covalent bond and the like. From the viewpoint of stability of binding, it is preferable that they are bound by a binding mode having a strong binding force. Note that, in addition to direct bonding, indirect bonding, that is, other organic molecules that mediate bonding between the surface of the semiconductor nanoparticles and the polymer may be present as long as the object of the present invention is not impaired. Good. Further, it is preferable that a plurality of the polymers having the polar functional group are bound so as to surround the surface of the semiconductor nanoparticles. By increasing the coverage of the surface of the polymer semiconductor nanoparticles having polar functional groups, the dispersion stability of the luminescent particles of the present invention is further improved.

【0017】本発明の発光性微粒子を作製する方法とし
ては特に限定されず、例えば、上記半導体ナノ粒子を、
アルブミン溶液に浸漬する方法等が挙げられる。この方
法により、半導体ナノ粒子の表面にアルブミンが物理吸
着される。
The method for producing the luminescent fine particles of the present invention is not particularly limited.
Examples include a method of immersing in an albumin solution. By this method, albumin is physically adsorbed on the surface of the semiconductor nanoparticles.

【0018】本発明の発光性微粒子は、表面に物理的及
び/又は化学的に極性官能基を有する高分子が接合して
いることから、高分子の有する極性官能基同士の電気的
反発により粒子の凝集を防ぐことができる。特に極性官
能基を有する高分子としてタンパク質を用いる場合に
は、生体内でも安定した分散状態を保ち、かつ、細胞膜
を通過して細胞を破壊することなく細胞内に侵入させる
こと等が可能となる。また、本発明の発光性微粒子は、
半導体ナノ粒子を用いることから、励起光照射によって
高輝度の蛍光(フォトルミネッセンス)を発し、微量成
分の高感度測定に好適に用いることができる。また、粒
子径の異なる半導体ナノ粒子からなる本発明の発光性微
粒子を目的に応じて使い分けることにより、発光スペク
トルを任意に調節・設計可能であり、より精密な測定へ
の応用を図ることができる。
Since the polymer having a polar functional group is physically and / or chemically bonded to the surface of the luminescent fine particles of the present invention, the particles are caused by electrical repulsion between polar functional groups of the polymer. Aggregation can be prevented. In particular, when a protein is used as a polymer having a polar functional group, it is possible to maintain a stable dispersed state in a living body and to penetrate into a cell without destroying the cell through a cell membrane. . Further, the luminescent fine particles of the present invention,
Since semiconductor nanoparticles are used, they emit fluorescence of high brightness (photoluminescence) upon irradiation with excitation light, and can be suitably used for highly sensitive measurement of trace components. Further, by selectively using the luminescent fine particles of the present invention composed of semiconductor nanoparticles having different particle sizes according to the purpose, the emission spectrum can be arbitrarily adjusted and designed, and application to more precise measurement can be achieved. .

【0019】本発明の発光性微粒子に分子認識物質を吸
着及び/又は結合してなる分子認識発光性微粒子は、生
体関連物質、環境関連物質等の標的物質の高感度測定法
に好適に用いることができる。かかる分子認識発光性微
粒子もまた、本発明の1つである。
The molecule-recognizing luminescent particles obtained by adsorbing and / or binding a molecule-recognizing substance to the luminescent particles of the present invention are suitable for use in a highly sensitive method for measuring a target substance such as a biological substance or an environment-related substance. You can Such molecular recognition luminescent fine particles are also one aspect of the present invention.

【0020】上記分子認識物質とは、標的物質に特異的
に反応するものであれば特に限定されないが抗原、抗体
等のタンパク質、DNA、シクロデキストリン、クラウ
ンエーテル等の環状化合物等が挙げられる。
The above-mentioned molecular recognition substance is not particularly limited as long as it specifically reacts with the target substance, and examples thereof include proteins such as antigens and antibodies, and cyclic compounds such as DNA, cyclodextrin and crown ether.

【0021】本発明の分子認識発光性微粒子を作製する
方法としては特に限定されず、例えば、物理的吸着法や
化学的結合法等が挙げられる。例えば、分子認識物質が
タンパク質である場合には、発光性微粒子をアミノシラ
ン誘導体等で処理することにより、直接又は縮合試薬に
より、タンパク質のアミノ基と発光性微粒子が結合され
る。また、分子認識物質がDNAのPCR産物である場
合には、発光性微粒子をポリL−リシンでコートするこ
とにより静電気的に結合可能である。分子認識物質がオ
リゴヌクレオチドである場合には、予めアルキルアミノ
アシランでコートした発光性微粒子を光感受性保護基を
有するリンカーで保護し、光照射による脱保護、合成の
繰り返しによりオリゴヌクレオチド鎖を合成する方法が
挙げられる
The method for producing the molecular recognition luminescent fine particles of the present invention is not particularly limited, and examples thereof include a physical adsorption method and a chemical bonding method. For example, when the molecular recognition substance is a protein, the amino group of the protein and the luminescent fine particle are bonded directly or by a condensation reagent by treating the luminescent fine particle with an aminosilane derivative or the like. When the molecular recognition substance is a PCR product of DNA, it can be electrostatically bound by coating the luminescent fine particles with poly L-lysine. When the molecular recognition substance is an oligonucleotide, the luminescent fine particles previously coated with alkylaminoasilane are protected with a linker having a photosensitizing protective group, deprotected by light irradiation, and the oligonucleotide chain is synthesized by repeating the synthesis. How to do

【0022】また、本発明の発光性微粒子に用いる極性
官能基を有する高分子としてアルブミンを用いる場合に
は、ビオチンとアビジンとを用いて本発明の分子認識発
光性微粒子を作製する方法が好適である。すなわち、ビ
オチンはアルブミンとの結合性に優れることから、本発
明の発光性微粒子が極性官能基を有する高分子としてア
ルブミンを用いている場合には、そのアルブミン上に容
易にビオチンを結合させることができる。一方、ビオチ
ンは、分子認識物質として用いられる抗原、抗体等のタ
ンパク質やDNA等にも容易に結合させることができ
る。表面にビオチンを有する本発明の発光性微粒子と、
表面にビオチンを有する抗原、抗体等のタンパク質やD
NA等の分子認識物質とは、アビジンを介して容易に結
合することができる。このように、本発明の発光性微粒
子に用いる極性官能基を有する高分子としてアルブミン
を用い、ビオチンとアビジンとを介して発光性微粒子と
分子認識物質とが結合した分子認識発光性微粒子(Av
idin−Biotin−Albumin−Quant
um Dots:以下、ABA−QDsともいう)は、作
製が容易であり応用範囲が広く好適である。かかる本発
明の分子認識発光性微粒子の1実施態様を図1及び図2
に示した。
When albumin is used as the polymer having a polar functional group used in the luminescent fine particles of the present invention, the method for producing the molecular recognition luminescent fine particles of the present invention using biotin and avidin is preferable. is there. That is, since biotin has excellent binding properties to albumin, when albumin is used as the polymer having a polar functional group in the luminescent fine particles of the present invention, biotin can be easily bound to the albumin. it can. On the other hand, biotin can easily bind to proteins such as antigens and antibodies used as molecular recognition substances, DNA, and the like. Luminescent fine particles of the present invention having biotin on the surface,
Antigens with biotin on the surface, proteins such as antibodies, and D
A molecular recognition substance such as NA can be easily bound via avidin. As described above, albumin is used as the polymer having a polar functional group used in the luminescent fine particles of the present invention, and the molecule-recognizing luminescent fine particles (Av) in which the luminescent fine particles and the molecular recognition substance are bound via biotin and avidin.
idin-Biotin-Albumin-Quant
um Dots: hereinafter, also referred to as ABA-QDs) is preferable because it is easy to produce and has a wide range of applications. One embodiment of such molecular recognition luminescent fine particles of the present invention is shown in FIGS.
It was shown to.

【0023】本発明の分子認識発光性微粒子は、分子認
識物質を選択することにより種々の生体関連物質、環境
関連物質等を標的物質することができる。本発明の分子
認識発光性微粒子による測定対象となる標的物質として
は、抗体又はレセプターを作製できるものであれば特に
限定されず、例えば、抗原・抗体や異常型プリオン等の
タンパク質、ダイオキシン類等の内分泌撹乱物質、エイ
ズウイルス等のウイルス、ペプチド、核酸、金属イオン
等が挙げられる。
The molecule-recognizing luminescent fine particles of the present invention can be used as a target substance for various bio-related substances, environment-related substances and the like by selecting a molecule-recognizing substance. The target substance to be measured by the molecular recognition luminescent particles of the present invention is not particularly limited as long as it can produce an antibody or a receptor, and examples thereof include proteins such as antigens / antibodies and abnormal prions, dioxins and the like. Examples thereof include endocrine disrupting substances, viruses such as AIDS virus, peptides, nucleic acids, metal ions and the like.

【0024】本発明の分子認識発光性微粒子は、本発明
の発光性微粒子からなることにより分散安定性に極めて
優れる。このため、ELISA法によるタンパク質の検
出や、免疫スクリーニング法、ハイブリッド形成法によ
るDNA、RNAの検出等のin vitro法に用い
ると、凝集が起こりにくく、長時間安定した試験を行う
ことができる。また、生体内での分散安定性に優れるこ
とから、生体内における標的物質を高感度に測定するこ
とができ、薬物や生体成分の追尾、薬物の作用機構の解
析等のin vivo試験にも応用することができる。
更に、アフィニティクロマトグラフィーの担体等に用い
ることにより、標的物質の分離や濃縮にも応用できる。
本発明の分子認識発光性微粒子を用いる標的物質の検出
キットもまた、本発明の1つである。
The molecular recognition luminescent fine particles of the present invention are excellent in dispersion stability because they are composed of the luminescent fine particles of the present invention. Therefore, when used in an in vitro method such as detection of a protein by an ELISA method, detection of DNA or RNA by an immunoscreening method or a hybridization method, aggregation does not easily occur, and a stable test can be performed for a long time. In addition, because it has excellent dispersion stability in vivo, it can measure target substances in vivo with high sensitivity, and can be applied to in vivo tests such as tracking of drugs and biological components and analysis of drug action mechanism. can do.
Furthermore, by using it as a carrier for affinity chromatography, it can be applied to separation and concentration of target substances.
A detection kit for a target substance using the molecular recognition luminescent fine particles of the present invention is also one of the present invention.

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0025】(実施例1)11−メルカプトウンデカン
酸ナトリウム塩表面修飾発光性微粒子(MUA−QD)
1mgとウシ血清アルブミン(シグマ社製:BSA)1
0mgとを予め0.1mLの蒸留水に溶解し、0.1M
2−[N−モルフォリノ]エタンスルホン酸(MES)
バッファー(pH4.8)3.4mLを加えて充分に混
合した。次いで、蒸留水で溶解した10mg/mL1−
エチル−3−(3−ジメチルアミノプロピル)カルボジ
イミド塩酸塩(ピアス社製、EDC)溶液0.5mLを
加え、室温2時間撹拌しながら反応させた。未反応のB
SAは反応液をマイクロコンYM−100(ミリポア社
製)で15000xgで5分間遠心することで除去し
た。遠心後、PBSバッファー(pH7.2)で2回洗
浄した後、0.5mLのPBSバッファーで溶解するこ
とにより、半導体素子の表面にウシ血清アルブミンが接
合した発光性微粒子(BSA結合MUA−QD)を得
た。
(Example 1) 11-Mercaptoundecanoic acid sodium salt surface-modified luminescent fine particles (MUA-QD)
1 mg and bovine serum albumin (Sigma: BSA) 1
0 mg was dissolved in 0.1 mL of distilled water in advance, and
2- [N-morpholino] ethanesulfonic acid (MES)
3.4 mL of buffer (pH 4.8) was added and mixed thoroughly. Then, 10 mg / mL 1-dissolved in distilled water
0.5 mL of a solution of ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (manufactured by Pierce, EDC) was added, and the mixture was reacted with stirring at room temperature for 2 hours. Unreacted B
SA was removed by centrifuging the reaction solution with Microcon YM-100 (manufactured by Millipore) at 15,000 × g for 5 minutes. After centrifugation, washing twice with PBS buffer (pH 7.2), and then dissolving with 0.5 mL of PBS buffer, luminescent fine particles (BSA-bound MUA-QD) in which bovine serum albumin was bonded to the surface of the semiconductor element Got

【0026】得られたBSA結合MUA−QDを0、
0.25、0.5、1、2、4Mの濃度の塩化ナトリウ
ムを含む10mMリン酸バッファー(pH7.2)で溶
解し、室温で3日間静置した。充分に撹拌した後、10
mM リン酸バッファー(pH7.4)で作製した0.
5%アガロースゲルで135V、50分間電気泳動を行
った。対照としてABSが接合していないMUA−QD
についても同様にして電気泳動を行った。得られた電気
泳動像を図3に示した。図3より、BSA結合MUA−
QDでは、4Mの塩化ナトリウムで処理してもブロード
な電気泳動像が観察され、充分に分散していることがわ
かった。一方、MUA−QDでは0.25Mの塩化ナト
リウム処理でも全く泳動されず、凝集していることがわ
かった。
The BSA-bound MUA-QD obtained was 0,
It was dissolved in 10 mM phosphate buffer (pH 7.2) containing sodium chloride at concentrations of 0.25, 0.5, 1, 2, and 4 M, and left standing at room temperature for 3 days. After stirring well, 10
It was made with mM phosphate buffer (pH 7.4).
Electrophoresis was performed on a 5% agarose gel at 135 V for 50 minutes. MUA-QD without ABS as a control
Electrophoresis was performed in the same manner. The obtained electrophoresis image is shown in FIG. From FIG. 3, BSA-bound MUA-
With QD, a broad electrophoretic image was observed even after treatment with 4 M sodium chloride, indicating that the particles were sufficiently dispersed. On the other hand, it was found that MUA-QD was not electrophoresed at all even when treated with 0.25 M sodium chloride, and aggregated.

【0027】また、BSA結合MUA−QDとMUA−
QDとを10mMMESバッファー(pH4.0及びp
H5.5)及び10mMリン酸バッファー(pH7.
4)で溶解し、室温で12時間静置した。充分に撹拌し
た後、10mMリン酸バッファー(pH7.4)で作製
した0.5%アガロースゲルで135V、50分間電気
泳動を行った。得られた電気泳動像を図4に示した。図
4より、BSA結合MUA−QDでは、pH4であって
もpH7.4の場合と同様の移動度を示したことから、酸
性下でも充分に分散していることがわかった。一方、M
UA−QDでは、pH5.5では泳動されるもののpH
7.4の場合に比べて移動度が劣り若干の凝集が認めら
れ、更にpH4では完全に凝集していることがわかっ
た。
Further, BSA-coupled MUA-QD and MUA-
QD and 10 mM MES buffer (pH 4.0 and p
H5.5) and 10 mM phosphate buffer (pH 7.
It melt | dissolved in 4) and it left still at room temperature for 12 hours. After thorough stirring, electrophoresis was performed on a 0.5% agarose gel prepared with 10 mM phosphate buffer (pH 7.4) at 135 V for 50 minutes. The obtained electrophoresis image is shown in FIG. From FIG. 4, BSA-bound MUA-QD showed the same mobility even at pH 4 as at pH 7.4, indicating that it was sufficiently dispersed even under acidic conditions. On the other hand, M
In UA-QD, the pH of the sample migrates at pH 5.5, but
It was found that the mobility was inferior to that in the case of 7.4 and some aggregation was observed, and further that the aggregation was complete at pH 4.

【0028】[0028]

【発明の効果】本発明によれば、生体関連物質、環境関
連物質等の標的物質の高感度測定法に用いる分子認識発
光性微粒子のマーカー物質として好適であり、特に生体
内での分散安定性に優れる発光性微粒子を提供できる。
INDUSTRIAL APPLICABILITY According to the present invention, it is suitable as a marker substance for molecular recognition luminescent fine particles used in a highly sensitive measurement method of a target substance such as a bio-related substance and an environment-related substance, and particularly, dispersion stability in vivo It is possible to provide excellent luminescent fine particles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分子認識発光性微粒子の1実施態様を
示す模式図である。
FIG. 1 is a schematic view showing one embodiment of the molecular recognition luminescent fine particles of the present invention.

【図2】本発明の分子認識発光性微粒子の1実施態様を
示す模式図である。
FIG. 2 is a schematic view showing one embodiment of the molecular recognition luminescent fine particles of the present invention.

【図3】実施例で作製したBSA結合MUA−QDとM
UA−QDとを異なる濃度の塩化ナトリウムで処理した
後の電気泳動像である。
FIG. 3 shows BSA-bound MUA-QD and M produced in the examples.
It is an electrophoresis image after treating UA-QD with sodium chloride of different concentration.

【図4】実施例で作製したBSA結合MUA−QDとM
UA−QDとを異なるpHで処理した後の電気泳動像で
ある。
FIG. 4 shows BSA-bound MUA-QD and M prepared in the examples.
It is an electrophoretic image after processing UA-QD with different pH.

【符号の説明】[Explanation of symbols]

1 発光性微粒子 2 半導体ナノ粒子 3 アルブミン 4 ビオチン 5 アビジン 6 分子認識物質(オリゴDNA) 7 分子認識物質(IgG抗体) 1 Luminescent particles 2 Semiconductor nanoparticles 3 albumin 4 biotin 5 Avidin 6 Molecular recognition substance (oligo DNA) 7 Molecular recognition substance (IgG antibody)

フロントページの続き (71)出願人 502166891 前之園 信也 東京都文京区本郷7−3−1 (71)出願人 000002174 積水化学工業株式会社 大阪府大阪市北区西天満2丁目4番4号 (72)発明者 花木 賢一 東京都新宿区西早稲田1−11−4−1001 (72)発明者 山本 健二 東京都文京区西方1−8−18 (72)発明者 山口 由岐夫 東京都文京区本郷7−3−1 (72)発明者 前之園 信也 東京都文京区本郷7−3−1 (72)発明者 小森 陽一朗 大阪府大阪市北区西天満2丁目4番4号 積水化学工業株式会社内 Fターム(参考) 4H045 AA10 BA70 CA40 DA70 EA20 EA50 EA61 FA50 Continued front page    (71) Applicant 502166891             Shinya Maenozono             7-3-1 Hongo, Bunkyo-ku, Tokyo (71) Applicant 000002174             Sekisui Chemical Co., Ltd.             2-4-4 Nishitenma, Kita-ku, Osaka-shi, Osaka (72) Inventor Kenichi Hanaki             1-11-4-1001 Nishi-Waseda, Shinjuku-ku, Tokyo (72) Inventor Kenji Yamamoto             1-8-18 West, Bunkyo-ku, Tokyo (72) Inventor Yukio Yamaguchi             7-3-1 Hongo, Bunkyo-ku, Tokyo (72) Inventor Shinya Maenozono             7-3-1 Hongo, Bunkyo-ku, Tokyo (72) Inventor Yoichiro Komori             2-4-4 Nishitenma, Kita-ku, Osaka-shi, Osaka             Sekisui Chemical Co., Ltd. F term (reference) 4H045 AA10 BA70 CA40 DA70 EA20                       EA50 EA61 FA50

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 極性官能基を有する高分子が表面に物理
的及び/又は化学的に接合していることを特徴とする発
光性微粒子。
1. A luminescent fine particle, wherein a polymer having a polar functional group is physically and / or chemically bonded to the surface.
【請求項2】 極性官能基を有する高分子は、酸性条件
下及び/又は塩基性条件下でイオン化する官能基を有す
ることを特徴とする請求項1記載の発光性微粒子。
2. The luminescent fine particle according to claim 1, wherein the polymer having a polar functional group has a functional group which is ionized under acidic conditions and / or basic conditions.
【請求項3】 極性官能基を有する高分子は、天然高分
子であることを特徴とする請求項1又は2記載の発光性
微粒子。
3. The luminescent fine particle according to claim 1 or 2, wherein the polymer having a polar functional group is a natural polymer.
【請求項4】 極性官能基を有する高分子は、タンパク
質であることを特徴とする請求項1、2又は3記載の発
光性微粒子。
4. The luminescent fine particle according to claim 1, 2 or 3, wherein the polymer having a polar functional group is a protein.
【請求項5】 タンパク質は、免疫反応不活性タンパク
質であることを特徴とする請求項4記載の発光性微粒
子。
5. The luminescent fine particle according to claim 4, wherein the protein is an immunoreactive inactive protein.
【請求項6】 タンパク質は、アルブミンであることを
特徴とする請求項4又は5記載の発光性微粒子。
6. The luminescent fine particle according to claim 4 or 5, wherein the protein is albumin.
【請求項7】 請求項1、2、3、4、5又は6記載の
発光性微粒子に分子認識物質を吸着又は結合してなるこ
とを特徴とする分子認識発光性微粒子。
7. A molecule-recognizing luminescent particle, which is obtained by adsorbing or binding a molecule-recognizing substance to the luminescent particle according to claim 1.
【請求項8】 発光性微粒子と分子認識物質とがビオチ
ン及びアビジンを介して結合してなることを特徴とする
請求項7記載の分子認識発光性微粒子。
8. The molecular recognition luminescent particles according to claim 7, wherein the luminescent particles and the molecular recognition substance are bound to each other via biotin and avidin.
【請求項9】 請求項7又は8記載の分子認識発光性微
粒子を用いることを特徴とする標的物質の検出キット。
9. A detection kit for a target substance, which comprises the molecular recognition luminescent fine particle according to claim 7 or 8.
JP2002134676A 2002-05-09 2002-05-09 Luminescent fine particles Expired - Fee Related JP4107873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134676A JP4107873B2 (en) 2002-05-09 2002-05-09 Luminescent fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134676A JP4107873B2 (en) 2002-05-09 2002-05-09 Luminescent fine particles

Publications (2)

Publication Number Publication Date
JP2003329686A true JP2003329686A (en) 2003-11-19
JP4107873B2 JP4107873B2 (en) 2008-06-25

Family

ID=29697244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134676A Expired - Fee Related JP4107873B2 (en) 2002-05-09 2002-05-09 Luminescent fine particles

Country Status (1)

Country Link
JP (1) JP4107873B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170853A (en) * 2004-12-16 2006-06-29 Sekisui Chem Co Ltd Analysis device, reading device and information management system
JP2007512542A (en) * 2003-12-01 2007-05-17 デイド・ベーリング・マルブルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Complexes and their use in detection methods
WO2007125812A1 (en) * 2006-04-28 2007-11-08 Konica Minolta Medical & Graphic, Inc. Inorganic nanoparticle, process for producing the same, and biosubstance labeling agent having inorganic nanoparticle linked thereto
WO2008032534A1 (en) 2006-09-14 2008-03-20 Konica Minolta Medical & Graphic, Inc. Fluorescent semiconductor microparticle assembly, fluorescent labeling agent assembly for biological substance, and bioimaging method and biological substance analysis method using the assemblies
WO2008032535A1 (en) 2006-09-15 2008-03-20 Konica Minolta Medical & Graphic, Inc. Fluorescent semiconductor microparticle, method for production of the microparticle, fluorescent labeling agent for biological substance using the microparticle, and bioimaging method using the microparticle
WO2008152891A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near-infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance using the same
WO2008152868A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near-infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance
WO2008152892A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near-infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance using the same
WO2008152969A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance using the same
WO2009051016A1 (en) * 2007-10-17 2009-04-23 Konica Minolta Medical & Graphic, Inc. Silicon quantum dots and biological labeling agent using the same
JPWO2007086501A1 (en) * 2006-01-27 2009-06-25 コニカミノルタエムジー株式会社 Fluorescent labeling substance for biological material and fluorescent labeling method for biological substance
JP2009249507A (en) * 2008-04-07 2009-10-29 Konica Minolta Medical & Graphic Inc Rare earth element-doped fluorescent substance nanoparticles, and biological substance labeling agent using the same
WO2010128604A1 (en) 2009-05-08 2010-11-11 コニカミノルタエムジー株式会社 Silica nanoparticle having quantum dots encapsulated therein, method for producing same and biological labeling agent using same
US8399209B2 (en) 2003-12-01 2013-03-19 Siemens Healthcare Diagnostics Products Gmbh Homogeneous detection method
US8658432B2 (en) 2006-01-27 2014-02-25 Konica Minolta Medical & Graphic, Inc. Si/Si3N4 system nanosized particles, biosubstance labeling agent employing the nanosized particles, and method of manufacturing the nanosized particles
JP2015174910A (en) * 2014-03-14 2015-10-05 京セラ株式会社 Semiconductor particle paste and photoelectric conversion device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512542A (en) * 2003-12-01 2007-05-17 デイド・ベーリング・マルブルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Complexes and their use in detection methods
US8628933B2 (en) 2003-12-01 2014-01-14 Siemens Healthcare Diagnostics Products Gmbh Homogeneous detection method
US8399209B2 (en) 2003-12-01 2013-03-19 Siemens Healthcare Diagnostics Products Gmbh Homogeneous detection method
JP2006170853A (en) * 2004-12-16 2006-06-29 Sekisui Chem Co Ltd Analysis device, reading device and information management system
JPWO2007086501A1 (en) * 2006-01-27 2009-06-25 コニカミノルタエムジー株式会社 Fluorescent labeling substance for biological material and fluorescent labeling method for biological substance
US8658432B2 (en) 2006-01-27 2014-02-25 Konica Minolta Medical & Graphic, Inc. Si/Si3N4 system nanosized particles, biosubstance labeling agent employing the nanosized particles, and method of manufacturing the nanosized particles
WO2007125812A1 (en) * 2006-04-28 2007-11-08 Konica Minolta Medical & Graphic, Inc. Inorganic nanoparticle, process for producing the same, and biosubstance labeling agent having inorganic nanoparticle linked thereto
WO2008032534A1 (en) 2006-09-14 2008-03-20 Konica Minolta Medical & Graphic, Inc. Fluorescent semiconductor microparticle assembly, fluorescent labeling agent assembly for biological substance, and bioimaging method and biological substance analysis method using the assemblies
WO2008032535A1 (en) 2006-09-15 2008-03-20 Konica Minolta Medical & Graphic, Inc. Fluorescent semiconductor microparticle, method for production of the microparticle, fluorescent labeling agent for biological substance using the microparticle, and bioimaging method using the microparticle
WO2008152969A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance using the same
JPWO2008152891A1 (en) * 2007-06-13 2010-08-26 コニカミノルタエムジー株式会社 Near-infrared emitting phosphor nanoparticle, method for producing the same, and biomaterial labeling agent using the same
WO2008152892A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near-infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance using the same
WO2008152868A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near-infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance
WO2008152891A1 (en) * 2007-06-13 2008-12-18 Konica Minolta Medical & Graphic, Inc. Near-infrared light-emitting phosphor nanoparticle, method for producing the same, and agent for labeling biological substance using the same
WO2009051016A1 (en) * 2007-10-17 2009-04-23 Konica Minolta Medical & Graphic, Inc. Silicon quantum dots and biological labeling agent using the same
JP2009249507A (en) * 2008-04-07 2009-10-29 Konica Minolta Medical & Graphic Inc Rare earth element-doped fluorescent substance nanoparticles, and biological substance labeling agent using the same
WO2010128604A1 (en) 2009-05-08 2010-11-11 コニカミノルタエムジー株式会社 Silica nanoparticle having quantum dots encapsulated therein, method for producing same and biological labeling agent using same
US9023659B2 (en) 2009-05-08 2015-05-05 Konica Minolta Medical & Graphic, Inc. Silica nanoparticle embedding quantum dots, preparation method thereof and biosubstance labeling agent by use thereof
JP2015174910A (en) * 2014-03-14 2015-10-05 京セラ株式会社 Semiconductor particle paste and photoelectric conversion device

Also Published As

Publication number Publication date
JP4107873B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP4107873B2 (en) Luminescent fine particles
Goftman et al. Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their application for mycotoxin detection
Li et al. A “turn-on” fluorescent receptor for detecting tyrosine phosphopeptide using the surface imprinting procedure and the epitope approach
JP5448369B2 (en) Method for producing silica particle having amino group on particle surface, silica particle having amino group on particle surface, and composite particle using the same
US20090258355A1 (en) Nanoscale Clusters and Methods of Making Same
US20110226995A1 (en) Compositions and methods for functionalizing or crosslinking ligands on nanoparticle surfaces
JP5367915B2 (en) Method for producing functional molecule-containing silica nanoparticles bonded with biomolecules
US20070059734A1 (en) Reagent for detecting biopolymer and method for detecting biopolymer
JP5224330B2 (en) Method for producing core-shell structured silica nanoparticles, core-shell structured silica nanoparticles, and labeling reagent using the same
JP2007506084A (en) Nanoparticle conjugate and method for producing the same
WO2008032534A1 (en) Fluorescent semiconductor microparticle assembly, fluorescent labeling agent assembly for biological substance, and bioimaging method and biological substance analysis method using the assemblies
JP5202857B2 (en) Composite particles having high dispersibility and preventing non-specific adsorption, composite particle colloid, analytical reagent using the same, and method for producing composite particles
JPWO2003066644A1 (en) Ferrite-binding organic substance and method for producing the same
JP2006508095A (en) Bioactivation of particles
JP2008273790A (en) Method for producing silica nanoparticles using reverse micelle disperse system, silica nanoparticles obtained by the method and labelling reagent using the nanoparticles
Qiao et al. Antibody and DNA dual-labeled gold nanoparticles: Stability and reactivity
Chiu et al. Nanomaterial based affinity matrix-assisted laser desorption/ionization mass spectrometry for biomolecules and pathogenic bacteria
JP2010229440A (en) Water-dispersible metal nanoparticle
US8658381B2 (en) Detection conjugate
KR100877187B1 (en) Protein chip and detection method of the same comprising protein nanoparticles linked with epitope recognizing disease marker for diagnosis
JP4245415B2 (en) Method for producing molecular recognition phosphor
JP5024291B2 (en) Fluorescent semiconductor fine particles, method for producing the same, fluorescent labeling agent for biological material using the same, and bioimaging method using the same
JP2009162537A (en) Composite particle having polysaccharide on surface, composite particle colloid, analytical reagent using the same, and composite particle manufacturing method
Zhao et al. Fluorescent nanoparticle for bacteria and DNA detection
JP4355190B2 (en) Fast detection method for biological specimens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4107873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees