JP2015174085A - Electrolytic water generator - Google Patents

Electrolytic water generator Download PDF

Info

Publication number
JP2015174085A
JP2015174085A JP2014213792A JP2014213792A JP2015174085A JP 2015174085 A JP2015174085 A JP 2015174085A JP 2014213792 A JP2014213792 A JP 2014213792A JP 2014213792 A JP2014213792 A JP 2014213792A JP 2015174085 A JP2015174085 A JP 2015174085A
Authority
JP
Japan
Prior art keywords
feeder
anode
cathode
chamber
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014213792A
Other languages
Japanese (ja)
Other versions
JP5702885B1 (en
Inventor
孝士 橘
Takashi Tachibana
孝士 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Trim Co Ltd
Original Assignee
Nihon Trim Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Trim Co Ltd filed Critical Nihon Trim Co Ltd
Priority to JP2014213792A priority Critical patent/JP5702885B1/en
Application granted granted Critical
Publication of JP5702885B1 publication Critical patent/JP5702885B1/en
Publication of JP2015174085A publication Critical patent/JP2015174085A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic water generator that can increase a dissolved hydrogen concentration.SOLUTION: An electrolytic water generator comprises an anode feeder and a cathode feeder that are arranged opposite to each other in an electrolytic chamber 2, and a diaphragm that partitions the electrolytic chamber 2 into an anode feeder-side anode chamber and a cathode feeder-side cathode chamber. An inner surface of a first case piece 3A is formed with a first projecting part 32 that abuts on the anode feeder, a first groove part 31 in which water flowing into the anode chamber flows, a first diversion channel 41 that introduces the water flowing into the anode chamber to the first groove part 31, and a first water collection channel 43 that collects water flowing through the first groove part 31. An inner surface of a second case piece 3B is formed with a second projecting part 34 that abuts on the cathode feeder, a second groove part 33 in which water flowing into the cathode chamber flows, a second diversion channel 42 that introduces the water flowing into the cathode chamber to the second groove part 33, and a second water collection channel 44 that collects water flowing through the second groove part 33. The second groove part 33 is formed shallower than the second diversion channel 42 and the second water collection channel 44.

Description

本発明は、水を電気分解して電解水を生成する電解水生成装置に関する。   The present invention relates to an electrolyzed water generating apparatus that electrolyzes water to generate electrolyzed water.

従来から、隔膜で仕切られた陽極室と陰極室を有する電解槽を備え、電解槽内に導入された水道水等の原水を電気分解する電解水生成装置が知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, an electrolyzed water generating apparatus that includes an electrolytic cell having an anode chamber and a cathode chamber partitioned by a diaphragm and electrolyzes raw water such as tap water introduced into the electrolyzer is known (for example, Patent Documents). 1).

電解水生成装置の陰極室で生成される水素ガスが溶け込んだ電解水素水は、胃腸症状の改善に優れた効果を発揮することが期待されている。また、近年、電解水生成装置で生成された電解水素水は、血液透析治療の際に活性酸素の除去に適しているとして注目されている。   Electrolyzed hydrogen water in which hydrogen gas produced in the cathode chamber of the electrolyzed water generator is dissolved is expected to exert an excellent effect on improving gastrointestinal symptoms. In recent years, electrolytic hydrogen water generated by an electrolyzed water generating apparatus has attracted attention as being suitable for removing active oxygen during hemodialysis treatment.

特開2012−240037号公報JP 2012-240037 A

電解水生成装置において、隔膜は、陽極室と陰極室との間でイオンを効率よく通過させるために薄く形成されていることから、陽極室と陰極室との間で生ずる圧力差が過度に大きくなると、隔膜が損傷を受けるおそれがある。   In the electrolyzed water generating apparatus, the diaphragm is formed thin in order to efficiently pass ions between the anode chamber and the cathode chamber, so that the pressure difference generated between the anode chamber and the cathode chamber is excessively large. As a result, the diaphragm may be damaged.

また、電解水生成装置では、電解水素水に溶け込んだ水素分子(水素ガス)の濃度(溶存水素濃度)の制御が重要である。例えば、電解水素水が血液透析に用いられる場合、高い溶存水素濃度が望ましいとされている。   Further, in the electrolyzed water generating device, it is important to control the concentration of hydrogen molecules (hydrogen gas) dissolved in the electrolyzed hydrogen water (dissolved hydrogen concentration). For example, when electrolytic hydrogen water is used for hemodialysis, a high dissolved hydrogen concentration is desirable.

本発明は、以上のような実状に鑑み案出されたもので、溶存水素濃度を高めることが可能な電解水生成装置を提供することを主たる目的としている。   The present invention has been devised in view of the actual situation as described above, and has as its main object to provide an electrolyzed water generating apparatus capable of increasing the dissolved hydrogen concentration.

本発明は、電気分解される水が流入する電解室が形成された電解槽と、前記電解室内で、互いに対向して配置された陽極給電体及び陰極給電体と、前記陽極給電体と前記陰極給電体との間に配され、かつ、前記電解室を前記陽極給電体側の陽極室と、前記陰極給電体側の陰極室とに区分する隔膜とを備えた電解水生成装置であって、前記隔膜が、前記陽極給電体及び前記陰極給電体で挟持され、前記電解槽は、前記陽極給電体側の第1ケース片と、前記陰極給電体側の第2ケース片が固着されることにより前記電解室を形成し、前記第1ケース片の前記電解室側を向く内面には、前記陽極給電体と当接する第1凸状部と、前記第1凸状部とは交互に設けられ、前記陽極室に流入した水が流通する複数の第1溝部と、前記第1凸状部及び前記第1溝部の一端側に設けられ、前記陽極室に流入した水を各第1溝部に導く第1分水路と、前記第1凸状部及び前記第1溝部の他端側に設けられ、前記各第1溝部を流通した水を集める第1集水路とが形成され、前記第2ケース片の前記電解室側を向く内面には、前記陰極給電体と当接する第2凸状部と、前記第2凸状部とは交互に設けられ、前記陰極室に流入した水が流通する複数の第2溝部と、前記第2凸状部及び前記第2溝部の一端側に設けられ、前記陰極室に流入した水を各第2溝部に導く第2分水路と、前記第2凸状部及び前記第2溝部の他端側に設けられ、前記各第2溝部を流通した水を集める第2集水路とが形成され、前記第1溝部は、前記第1分水路及び第1集水路よりも浅く形成され、前記第2溝部は、前記第2分水路及び第2集水路よりも浅く形成されていることを特徴とする。   The present invention includes an electrolytic cell in which an electrolysis chamber into which water to be electrolyzed flows is formed, an anode power feeding body and a cathode power feeding body arranged to face each other in the electrolysis chamber, the anode power feeding body, and the cathode An electrolyzed water generating apparatus, comprising: a diaphragm disposed between a power feeding body and a diaphragm separating the electrolysis chamber into an anode chamber on the anode power feeding side and a cathode chamber on the cathode power feeding side; Is sandwiched between the anode power supply body and the cathode power supply body, and the electrolytic cell is formed by fixing the first case piece on the anode power supply side and the second case piece on the cathode power supply side. Formed on the inner surface of the first case piece facing the electrolysis chamber side, the first convex portions that contact the anode feeder and the first convex portions are alternately provided, A plurality of first groove portions through which the inflowing water flows, the first convex portion, and the first A first diversion channel provided on one end side of the groove portion and guiding the water flowing into the anode chamber to each first groove portion; and provided on the other end side of the first convex portion and the first groove portion. A first water collecting passage for collecting water flowing through the one groove portion is formed, and on the inner surface of the second case piece facing the electrolysis chamber side, a second convex portion that comes into contact with the cathode power feeder, and the second Protruding portions are provided alternately, a plurality of second groove portions through which water flowing into the cathode chamber circulates, provided at one end side of the second protruding portions and the second groove portions, and flows into the cathode chamber A second diversion channel that guides the water to each second groove, and a second water collecting channel that is provided on the other end side of the second convex portion and the second groove and collects the water that has circulated through each second groove. The first groove portion is formed shallower than the first water diversion channel and the first water collecting channel, and the second groove portion includes the second water diversion channel and the second water diversion channel. Characterized in that it is shallower than 2 Vol waterways.

本発明に係る前記電解水生成装置において、前記第1ケース片の前記第1凸状部は、前記陽極給電体を前記陰極給電体側に突出させると共に、前記第2ケース片の前記第2凸状部は、前記陰極給電体を前記陽極給電体側に突出させることが望ましい。   In the electrolyzed water generating apparatus according to the present invention, the first convex portion of the first case piece causes the anode feeder to protrude toward the cathode feeder, and the second convex portion of the second case piece. The part desirably projects the cathode power feeder toward the anode power feeder.

本発明に係る前記電解水生成装置において、前記陽極給電体、前記陰極給電体及び前記隔膜は、波形に形成されていることが望ましい。   In the electrolyzed water generating apparatus according to the present invention, it is preferable that the anode power supply body, the cathode power supply body, and the diaphragm are formed in a waveform.

本発明に係る前記電解水生成装置において、前記第1凸状部が前記陽極給電体を前記陰極給電体側に突出させると共に、前記第2凸状部が前記陰極給電体を前記陽極給電体側に突出させることによって、前記陽極給電体と前記陰極給電体と前記隔膜とが同じ波形の形状に矯正されることが望ましい。   In the electrolyzed water generating apparatus according to the present invention, the first convex portion causes the anode feeder to protrude toward the cathode feeder, and the second convex portion projects the cathode feeder toward the anode feeder. By doing so, it is desirable that the anode feeder, the cathode feeder and the diaphragm are corrected to the same corrugated shape.

本発明の電解水生成装置は、電気分解される水が流入する電解室が形成された電解槽と、電解室内で、互いに対向して配置された陽極給電体及び陰極給電体と、陽極給電体と陰極給電体との間に配され、電解室を陽極室と陰極室とに区分する隔膜とを備える。隔膜は陽極給電体及び陰極給電体で挟持されているので、隔膜の形状は陽極給電体及び陰極給電体によって保持され、隔膜にかかる応力は減少する。従って、電解槽の陽極室と陰極室との間で大きな圧力差が生じても隔膜の損傷が抑制される。   The electrolyzed water generating apparatus of the present invention includes an electrolyzer in which an electrolysis chamber into which water to be electrolyzed flows is formed, an anode feeder and a cathode feeder that are disposed to face each other in the electrolysis chamber, and an anode feeder. And a diaphragm, which is disposed between the cathode power supply body and divides the electrolysis chamber into an anode chamber and a cathode chamber. Since the diaphragm is sandwiched between the anode feeder and the cathode feeder, the shape of the diaphragm is held by the anode feeder and the cathode feeder, and the stress applied to the diaphragm is reduced. Therefore, even if a large pressure difference occurs between the anode chamber and the cathode chamber of the electrolytic cell, damage to the diaphragm is suppressed.

また、第2溝部が、第2分水路及び第2集水路よりも浅く形成されているので、第2溝部が、第2分水路等と同等以上の深さで形成されている場合と比較して、第2溝部の流路の断面積が小さくなる傾向となる。これにより、第2溝部を流れる水の流速が高められ、水素分子が水に溶け込みやすくなり、溶存水素濃度を高めることが可能となる。   In addition, since the second groove is formed shallower than the second diversion channel and the second water collection channel, the second groove is compared with a case where the second groove is formed with a depth equal to or greater than the second diversion channel. Thus, the cross-sectional area of the flow path of the second groove portion tends to be small. Thereby, the flow velocity of the water flowing through the second groove is increased, hydrogen molecules are easily dissolved in water, and the dissolved hydrogen concentration can be increased.

本発明の電解水生成装置の一実施形態の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of one Embodiment of the electrolyzed water generating apparatus of this invention. 図1の電解槽の構造を示す断面図である。It is sectional drawing which shows the structure of the electrolytic cell of FIG. 図1の電解槽の組立て斜視図である。It is an assembly perspective view of the electrolytic cell of FIG. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 電解室に収容される前の第1網状給電体及び第2網状給電体を拡大して示す正面図である。It is a front view which expands and shows the 1st net-like electric power feeding body and the 2nd net-like electric power feeding body before being accommodated in an electrolysis chamber. 図2の第1ケース片及び第2ケース片を示す斜視図である。It is a perspective view which shows the 1st case piece and 2nd case piece of FIG. 図1の電解水生成装置の製造方法の主要工程を示す断面図である。It is sectional drawing which shows the main processes of the manufacturing method of the electrolyzed water generating apparatus of FIG. 図4の電解槽の変形例を示すA−A線断面図である。It is the sectional view on the AA line which shows the modification of the electrolytic cell of FIG. 図6の第1ケース片及び第2ケース片の変形例を示す斜視図である。It is a perspective view which shows the modification of the 1st case piece of FIG. 6, and a 2nd case piece. 図6の第1ケース片及び第2ケース片の別の変形例を示す斜視図である。It is a perspective view which shows another modification of the 1st case piece of FIG. 6, and a 2nd case piece.

以下、本発明の実施の一形態が図面に基づき説明される。
図1は、本実施形態の電解水生成装置1の概略構成を示している。電解水生成装置1は、家庭の飲料用及び料理用の水の生成や血液透析の透析液の生成に用いられてもよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of an electrolyzed water generating apparatus 1 of the present embodiment. The electrolyzed water generating apparatus 1 may be used for generating water for domestic beverages and cooking and for generating dialysate for hemodialysis.

電解水生成装置1は、電気分解される水が流入する電解室2が形成された電解槽3と、電解室2内で、互いに対向して配置された陽極給電体4及び陰極給電体5と、陽極給電体4と陰極給電体5との間に配された隔膜6とを備えている。隔膜6は、電解室2を陽極給電体4側の陽極室2Aと、陰極給電体5側の陰極室2Bとに区分する。隔膜6は、電気分解で生じたイオンを通過させ、隔膜6を介して陽極給電体4と、陰極給電体5とが電気的に接続される。陽極給電体4と陰極給電体5との間に電圧が印加されると、電解室2内で水が電気分解され、電解水が得られる。   The electrolyzed water generating apparatus 1 includes an electrolyzer 3 in which an electrolyzer 2 into which water to be electrolyzed flows is formed, and an anode feeder 4 and a cathode feeder 5 disposed opposite to each other in the electrolyzer 2. And a diaphragm 6 disposed between the anode feeder 4 and the cathode feeder 5. The diaphragm 6 divides the electrolysis chamber 2 into an anode chamber 2A on the anode feeder 4 side and a cathode chamber 2B on the cathode feeder 5 side. The diaphragm 6 allows ions generated by electrolysis to pass therethrough, and the anode feeder 4 and the cathode feeder 5 are electrically connected via the diaphragm 6. When a voltage is applied between the anode feeder 4 and the cathode feeder 5, water is electrolyzed in the electrolysis chamber 2 to obtain electrolyzed water.

電解水生成装置1は、電源部11と、極性切替部12と、電流計13と、流量計14と、流量制御弁15a及び15bと、流路切替弁16a及び16bと、制御部17を備えている。   The electrolyzed water generating apparatus 1 includes a power supply unit 11, a polarity switching unit 12, an ammeter 13, a flow meter 14, flow control valves 15a and 15b, flow path switching valves 16a and 16b, and a control unit 17. ing.

電源部11は、プラグ11aを介して商用交流電源に接続され、制御部17から入力された制御信号に応じて、陽極給電体4及び陰極給電体5に直流電圧を印加する。極性切替部12は、制御部17から入力された制御信号に応じて、陽極給電体4及び陰極給電体5に印加する直流電圧の極性を切り替える。極性切替部12が、陽極給電体4及び陰極給電体5に印加する直流電圧の極性を切り替えることにより、図1中の陽極給電体4と陰極給電体5の極性が相互に入れ替わり、これに伴い、陽極室2Aと陰極室2Bとが相互に入れ替わる(以下、図2以降においても同様である)。極性切替部12が、所定時間、所定流量又は所定の動作毎に給電体4、5の極性を切り替えることにより、陰極側の給電体にスケールが付着し続けることが防止される。電流計13は、電源部11、極性切替部12、陽極給電体4及び陰極給電体5等によって構成される回路を流れる電流を検知して、対応する信号を制御部17に出力する。   The power supply unit 11 is connected to a commercial AC power supply via a plug 11 a and applies a DC voltage to the anode power supply 4 and the cathode power supply 5 in accordance with a control signal input from the control unit 17. The polarity switching unit 12 switches the polarity of the DC voltage applied to the anode power supply 4 and the cathode power supply 5 in accordance with the control signal input from the control unit 17. The polarity switching unit 12 switches the polarity of the DC voltage applied to the anode power supply body 4 and the cathode power supply body 5 so that the polarity of the anode power supply body 4 and the cathode power supply body 5 in FIG. The anode chamber 2A and the cathode chamber 2B are interchanged with each other (hereinafter, the same applies to FIG. 2 and subsequent figures). The polarity switching unit 12 switches the polarity of the power feeding bodies 4 and 5 at a predetermined time, a predetermined flow rate, or every predetermined operation, thereby preventing the scale from continuing to adhere to the cathode power feeding body. The ammeter 13 detects a current flowing through a circuit configured by the power supply unit 11, the polarity switching unit 12, the anode power supply 4, the cathode power supply 5, and the like, and outputs a corresponding signal to the control unit 17.

流量計14は、給水路18に設けられ、電解水生成装置1に流入する水量を検知して、制御部17に出力する。給水路18には、浄化された水が供給される。流量計14の下流に設けられた給水路18は、第1給水路18a及び第2給水路18bに分岐する。   The flow meter 14 is provided in the water supply channel 18, detects the amount of water flowing into the electrolyzed water generating device 1, and outputs the detected amount to the control unit 17. Purified water is supplied to the water supply channel 18. A water supply path 18 provided downstream of the flow meter 14 branches into a first water supply path 18a and a second water supply path 18b.

流量制御弁15aは、第1給水路18aに設けられ、電解室2に流入する水量を制御する。流量制御弁15bは、排水路20に設けられ、電解室2から流出する水量を制御する。流量制御弁15a及び15bが陽極室2A又は陰極室2Bを流入出する水量を制限することにより、陽極室2Aを流入出する水量と陰極室2Bを流入出する水量との間に差が生ずる。これにより、排水路20から排出される排水を減らして、水の有効利用を図ることができる。陽極室2Aを流入出する水量と陰極室2Bを流入出する水量との比は、固定されてもよいし、手動又は制御部17の制御によって適宜変更可能に構成されていてもよい。陽極室2Aを流入出する水量と陰極室2Bを流入出する水量との比を変更することにより、陽極室2Aと陰極室2Bとの間で圧力差が生ずる場合がある。   The flow control valve 15 a is provided in the first water supply path 18 a and controls the amount of water flowing into the electrolysis chamber 2. The flow control valve 15 b is provided in the drainage channel 20 and controls the amount of water flowing out from the electrolysis chamber 2. Since the flow control valves 15a and 15b limit the amount of water flowing into and out of the anode chamber 2A or the cathode chamber 2B, a difference occurs between the amount of water flowing into and out of the anode chamber 2A and the amount of water flowing into and out of the cathode chamber 2B. Thereby, the waste_water | drain discharged | emitted from the drainage channel 20 can be reduced, and effective use of water can be aimed at. The ratio of the amount of water flowing into and out of the anode chamber 2 </ b> A and the amount of water flowing into and out of the cathode chamber 2 </ b> B may be fixed, or may be configured to be appropriately changeable manually or under the control of the control unit 17. By changing the ratio of the amount of water flowing into and out of the anode chamber 2A and the amount of water flowing into and out of the cathode chamber 2B, a pressure difference may occur between the anode chamber 2A and the cathode chamber 2B.

流路切替弁16aは、制御部17から入力された制御信号に応じて、第1給水路18a及び第2給水路18bと陽極室2A及び陰極室2Bとの接続を切り替える。流路切替弁16bは、制御部17から入力された制御信号に応じて、陽極室2A及び陰極室2Bと、送水路19及び排水路20との接続を切り替える。流路切替弁16aと流路切替弁16bとは、例えばモーター(図示せず)によって駆動される。送水路19は、陰極室2Bで生成された電解水素水を送出する。   The flow path switching valve 16a switches the connection between the first water supply path 18a and the second water supply path 18b and the anode chamber 2A and the cathode chamber 2B in accordance with a control signal input from the control unit 17. The flow path switching valve 16 b switches the connection between the anode chamber 2 </ b> A and the cathode chamber 2 </ b> B, the water supply path 19, and the drainage path 20 in accordance with the control signal input from the control unit 17. The flow path switching valve 16a and the flow path switching valve 16b are driven by, for example, a motor (not shown). The water supply path 19 delivers the electrolytic hydrogen water generated in the cathode chamber 2B.

制御部17は、各部の制御を司る。例えば、制御部17は、電流計13から入力される信号に基づいて、電源部11の出力をフィードバック制御する。   The control unit 17 controls each unit. For example, the control unit 17 feedback-controls the output of the power supply unit 11 based on a signal input from the ammeter 13.

さらに、制御部17は、時間を計数し、所定時間が経過する毎に、極性切替部12及び流路切替弁16a及び16bの切替動作を制御する。極性切替部12及び流路切替弁16a及び16bの切替動作の制御は、上記時間によって管理する形態に替えて、又は上記時間によって管理する形態に加えて、送水路19から送水される水量によって管理する形態であってもよい。この場合、制御部17は、流量計14から入力される信号に基づいて、送水路19から送水される水量を積算し、所定水量が送水される毎に、極性切替部12及び流路切替弁16a及び16bの切替動作を制御するものであってもよい。さらに、極性切替部12及び流路切替弁16a及び16bの切替動作の制御は、所定の動作が行なわれる毎になされるものであってもよい。   Furthermore, the control part 17 counts time, and controls switching operation | movement of the polarity switching part 12 and the flow path switching valves 16a and 16b, whenever predetermined time passes. Control of the switching operation of the polarity switching unit 12 and the flow path switching valves 16a and 16b is managed by the amount of water fed from the water supply channel 19 instead of the form managed by the time or in addition to the form managed by the time. It may be a form to do. In this case, the control unit 17 integrates the amount of water supplied from the water supply channel 19 based on the signal input from the flow meter 14, and each time a predetermined amount of water is supplied, the polarity switching unit 12 and the flow path switching valve. The switching operation of 16a and 16b may be controlled. Further, the switching operation of the polarity switching unit 12 and the flow path switching valves 16a and 16b may be controlled every time a predetermined operation is performed.

制御部17による管理の下で、極性切替部12及び流路切替弁16a及び16bが同期して動作することにより、送水路19から常に陰極室2Bで生成された電解水素水が送出され、排水路20から常に陽極室2Aで生成された酸性水が送出される。なお、陽極室2Aで生成された酸性水を送水路19から送水させる場合は、流路切替弁16bの動作を反転させればよい。この場合、送水路19から陽極室2Aで生成された酸性水が送出され、排水路20から陰極室2Bで生成された電解水素水が送出される。   Under the control of the control unit 17, the polarity switching unit 12 and the flow path switching valves 16a and 16b operate synchronously, so that the electrolytic hydrogen water generated in the cathode chamber 2B is always sent out from the water supply channel 19 and discharged. The acidic water produced in the anode chamber 2A is always sent out from the passage 20. In addition, what is necessary is just to reverse the operation | movement of the flow-path switching valve 16b, when sending the acidic water produced | generated in the anode chamber 2A from the water supply path 19. FIG. In this case, the acidic water generated in the anode chamber 2A is sent out from the water supply channel 19, and the electrolytic hydrogen water generated in the cathode chamber 2B is sent out from the drainage channel 20.

図2は、電解槽3の構造を示している。図3は、電解槽3の組立て斜視図である。電解槽3は、陽極給電体4側の第1ケース片3Aと、陰極給電体5側の第2ケース片3Bとを有している。互いに対向して配置された第1ケース片3Aと第2ケース片3Bとが固着されることにより、その内部に電解室2が形成される。   FIG. 2 shows the structure of the electrolytic cell 3. FIG. 3 is an assembled perspective view of the electrolytic cell 3. The electrolytic cell 3 has a first case piece 3A on the anode feeder 4 side and a second case piece 3B on the cathode feeder 5 side. The first case piece 3 </ b> A and the second case piece 3 </ b> B arranged to face each other are fixed, whereby the electrolysis chamber 2 is formed inside thereof.

陽極給電体4及び陰極給電体5の外周縁の外側には、第1ケース片3Aと第2ケース片3Bとの合わせ面からの水漏れを防止するための封止部材3Cが設けられている。隔膜6の外周部は、封止部材3Cによって挟持されている。   A sealing member 3 </ b> C for preventing water leakage from the mating surfaces of the first case piece 3 </ b> A and the second case piece 3 </ b> B is provided outside the outer peripheral edges of the anode power supply body 4 and the cathode power supply body 5. . The outer peripheral part of the diaphragm 6 is clamped by the sealing member 3C.

図3に示されるように、電解槽3は、電解室2内に、陽極給電体4、隔膜6及び陰極給電体5が重ねられてなる積層体10を収容している。本実施形態では、隔膜6として、例えば、スルホン酸基を有するフッ素系の樹脂材料からなる固体高分子膜6aが用いられている。固体高分子膜6aの両面には、白金からなるめっき層6bが形成されている。固体高分子膜6aを隔膜6に用いた電解槽3では、隔膜6の陽極側と陰極側とで以下に示される反応が生ずる。
陽極側 : 6HO → 4H + O + 4e
陰極側 : 4H + 4e → 2H + 4H
このとき、陽極側で生じたオキソニウムイオン4Hは、固体高分子膜6aを通過して陰極側に移動し、電子4eと結合して、水素分子2Hが発生する。陰極側にて生じた水素分子Hは、陰極室2B内の水に溶け込み、電解水素水を構成する。陰極室2Bで生じた電解水素水は、送水路19を介して送水される。一方、陽極室2Aで生じた酸性水は、排水路20を介して排出される。
As shown in FIG. 3, the electrolytic cell 3 accommodates a laminated body 10 in which an anode feeder 4, a diaphragm 6 and a cathode feeder 5 are stacked in an electrolytic chamber 2. In this embodiment, as the diaphragm 6, for example, a solid polymer film 6a made of a fluorine-based resin material having a sulfonic acid group is used. Plating layers 6b made of platinum are formed on both surfaces of the solid polymer film 6a. In the electrolytic cell 3 using the solid polymer membrane 6a as the diaphragm 6, the following reactions occur on the anode side and the cathode side of the diaphragm 6.
Anode side: 6H 2 O → 4H 3 O + + O 2 + 4e
Cathode side: 4H 3 O + + 4e → 2H 2 + 4H 2 O
At this time, the oxonium ion 4H 3 O + generated on the anode side passes through the solid polymer film 6a and moves to the cathode side, and is combined with electrons 4e to generate hydrogen molecules 2H 2 . Hydrogen molecules H 2 generated on the cathode side dissolve in the water in the cathode chamber 2B and constitute electrolytic hydrogen water. The electrolytic hydrogen water generated in the cathode chamber 2 </ b> B is sent through the water supply path 19. On the other hand, the acidic water generated in the anode chamber 2 </ b> A is discharged through the drainage channel 20.

隔膜6は、電解室2内で、陽極給電体4及び陰極給電体5によって挟持されている。従って、隔膜6の形状は陽極給電体4及び陰極給電体5によって保持されている。このような、隔膜6の保持構造を有する本実施形態によれば、電解槽3の陽極室2Aと陰極室2Bとの間に生ずる圧力差に起因する応力の大部分は、陽極給電体4及び陰極給電体5によって負担され、隔膜6にかかる応力は減少する。これにより、陽極室2Aと陰極室2Bとの間で大きな圧力差が生ずる状態で電解水生成装置1を動作させても、隔膜6には大きな応力が生じない。従って、水の利用効率を高めることが可能となる。また、隔膜6が陽極給電体4及び陰極給電体5で挟持されているので、隔膜6のめっき層6bと陽極給電体4との間及び隔膜6のめっき層6bと陰極給電体5との間での接触抵抗が減少し、電圧降下が抑制される。これにより、電解室2内での電気分解が促進され、高い溶存水素濃度の電解水素水が生成可能となる。   The diaphragm 6 is sandwiched between the anode feeder 4 and the cathode feeder 5 in the electrolysis chamber 2. Therefore, the shape of the diaphragm 6 is held by the anode power supply 4 and the cathode power supply 5. According to the present embodiment having such a structure for holding the diaphragm 6, most of the stress caused by the pressure difference generated between the anode chamber 2 </ b> A and the cathode chamber 2 </ b> B of the electrolytic cell 3 is the anode feeder 4 and The stress applied to the diaphragm 6 by the cathode power supply 5 is reduced. Thereby, even if the electrolyzed water generating apparatus 1 is operated in a state where a large pressure difference is generated between the anode chamber 2A and the cathode chamber 2B, no great stress is generated on the diaphragm 6. Therefore, it becomes possible to improve the utilization efficiency of water. Further, since the diaphragm 6 is sandwiched between the anode power supply 4 and the cathode power supply 5, between the plating layer 6 b of the diaphragm 6 and the anode power supply 4 and between the plating layer 6 b of the diaphragm 6 and the cathode power supply 5. The contact resistance is reduced and the voltage drop is suppressed. Thereby, electrolysis in the electrolysis chamber 2 is promoted, and electrolytic hydrogen water having a high dissolved hydrogen concentration can be generated.

図4は、図2で示される電解槽3のA−A線断面を示している。図4に示されるように、陽極給電体4は、第1ケース片3Aと第2ケース片3Bとによって矯正されることにより、波形に形成されている。このような波板状の陽極給電体4は、大きな曲げ剛性を有しているので、隔膜6を介して陽極給電体4が電解室2内での圧力差により大きな応力を受けても、その変形が抑制され、隔膜6の損傷が抑制される。   FIG. 4 shows a cross section taken along line AA of the electrolytic cell 3 shown in FIG. As shown in FIG. 4, the anode power supply 4 is formed into a waveform by being corrected by the first case piece 3 </ b> A and the second case piece 3 </ b> B. Since the corrugated plate-like anode feeder 4 has a large bending rigidity, even if the anode feeder 4 receives a large stress due to a pressure difference in the electrolytic chamber 2 through the diaphragm 6, Deformation is suppressed, and damage to the diaphragm 6 is suppressed.

隔膜6は、陽極給電体4に沿って波形に形成されている。すなわち、陽極給電体4と隔膜6とは、同振幅、同波長かつ同位相の波形に形成されている。これにより、隔膜6と陽極給電体4との間の接触抵抗が小さくなることから、隔膜6と陽極給電体4との間の導通が良好となり、電解室2内での電気分解が促進される。   The diaphragm 6 is formed in a waveform along the anode feeder 4. That is, the anode feeder 4 and the diaphragm 6 are formed in waveforms having the same amplitude, the same wavelength, and the same phase. Thereby, since the contact resistance between the diaphragm 6 and the anode feeder 4 becomes small, the electrical connection between the diaphragm 6 and the anode feeder 4 becomes good, and the electrolysis in the electrolytic chamber 2 is promoted. .

陰極給電体5は、第1ケース片3Aと第2ケース片3Bとによって矯正されることにより、波形に形成されている。すなわち、陰極給電体5と隔膜6とは、同振幅、同波長かつ同位相の波形に形成されている。このような波板状の陰極給電体5は、大きな曲げ剛性を有しているので、隔膜6を介して陰極給電体5が電解室2内での圧力差により大きな応力を受けても、その変形が抑制され、隔膜6の損傷が抑制される。また、隔膜6と陰極給電体5との間の接触抵抗が小さくなることから、隔膜6と陰極給電体5との間の導通が良好となり、電解室2内での電気分解が促進される。   The cathode power supply 5 is formed into a waveform by being corrected by the first case piece 3A and the second case piece 3B. That is, the cathode power supply 5 and the diaphragm 6 are formed in waveforms having the same amplitude, the same wavelength, and the same phase. Since such a corrugated cathode power supply 5 has a large bending rigidity, even if the cathode power supply 5 receives a large stress due to a pressure difference in the electrolysis chamber 2 via the diaphragm 6, Deformation is suppressed, and damage to the diaphragm 6 is suppressed. In addition, since the contact resistance between the diaphragm 6 and the cathode power supply 5 is reduced, electrical conduction between the diaphragm 6 and the cathode power supply 5 is improved, and electrolysis in the electrolytic chamber 2 is promoted.

本実施形態では、陽極給電体4、隔膜6及び陰極給電体5が、それぞれ対応する波形に形成されている。従って、極性切替部12が給電体の極性を反転させた場合であっても、隔膜6は、少なくとも一方の給電体によって保持されるので、電解槽3の陽極室2Aと陰極室2Bとの間で大きな圧力差が生じても、隔膜6の変形が抑制され、隔膜6の損傷が抑制される。   In the present embodiment, the anode power feeding body 4, the diaphragm 6 and the cathode power feeding body 5 are formed in corresponding waveforms. Therefore, even when the polarity switching unit 12 reverses the polarity of the power feeding body, the diaphragm 6 is held by at least one power feeding body, and therefore, between the anode chamber 2A and the cathode chamber 2B of the electrolytic cell 3. Even if a large pressure difference occurs, deformation of the diaphragm 6 is suppressed, and damage to the diaphragm 6 is suppressed.

陽極給電体4及び陰極給電体5は、それぞれ、その板厚方向で水が行き来可能に構成されている。本実施形態では、図3によく示されるように、陽極給電体4及び陰極給電体5の各々は、第1網状給電体7と第2網状給電体8とを含む。このような、網状の陽極給電体4及び陰極給電体5は、隔膜6を挟持しながら、隔膜6の表面に水を行き渡らせることができ、電解室2内での電気分解を促進する。   The anode power supply 4 and the cathode power supply 5 are each configured to allow water to go back and forth in the plate thickness direction. In this embodiment, as well shown in FIG. 3, each of the anode power supply 4 and the cathode power supply 5 includes a first mesh power supply 7 and a second mesh power supply 8. Such a net-like anode feeder 4 and cathode feeder 5 can distribute water to the surface of the diaphragm 6 while sandwiching the diaphragm 6, and promote electrolysis in the electrolytic chamber 2.

第1網状給電体7と第2網状給電体8とは、互いに重ねられた状態で、電解室2に収容されている。隔膜6と、隔膜6を挟んで設けられた一対の第2網状給電体8及び一対の第1網状給電体7とによって、積層体10が構成される。第1網状給電体7には、電解槽3の外部に突出する端子7aが設けられている。第2網状給電体8は、隔膜6の側に配されている。端子7aを介して、陽極給電体4及び陰極給電体5に直流電圧が印加される。   The first mesh-like power feeder 7 and the second mesh-like power feeder 8 are accommodated in the electrolysis chamber 2 in a state of being overlapped with each other. A laminated body 10 is configured by the diaphragm 6, and the pair of second net-like power feeders 8 and the pair of first net-like power feeders 7 provided with the diaphragm 6 interposed therebetween. The first net-like power feeder 7 is provided with a terminal 7 a that protrudes outside the electrolytic cell 3. The second reticulated power supply 8 is disposed on the diaphragm 6 side. A DC voltage is applied to the anode power supply 4 and the cathode power supply 5 via the terminal 7a.

図5は、電解室2に収容される前の第1網状給電体7及び第2網状給電体8を拡大して示している。本実施形態の第1網状給電体7及び第2網状給電体8は、エクスパンドメタルによって構成されている。第1網状給電体7及び第2網状給電体8は、織金網等によって構成されていてもよい。   FIG. 5 shows an enlarged view of the first mesh power feeder 7 and the second mesh power feeder 8 before being accommodated in the electrolysis chamber 2. The 1st net-like electric power feeder 7 and the 2nd net-like electric power feeder 8 of this embodiment are comprised by the expanded metal. The first mesh-like power feeder 7 and the second mesh-like power feeder 8 may be constituted by a woven wire mesh or the like.

第1網状給電体7及び第2網状給電体8は、例えば、チタニウムからなり、その表面には白金からなるめっき層(図示せず)が形成されている。めっき層は、チタニウムの酸化を防止する。   The first mesh-like power feeder 7 and the second mesh-like power feeder 8 are made of, for example, titanium, and a plating layer (not shown) made of platinum is formed on the surface thereof. The plating layer prevents oxidation of titanium.

第2網状給電体8の曲げ剛性は、第1網状給電体7の曲げ剛性よりも小さく設定されている。より具体的には、第2網状給電体8のストランド幅S2は、第1網状給電体7のストランド幅S1よりも小さく設定されている。このような第1網状給電体7は、隔膜6と共に柔軟に変形可能であり、隔膜6の損傷を抑制する。   The bending rigidity of the second mesh power supply 8 is set to be smaller than the bending rigidity of the first mesh power supply 7. More specifically, the strand width S2 of the second mesh power feeder 8 is set to be smaller than the strand width S1 of the first mesh power feeder 7. Such a first mesh-like power supply body 7 can be deformed flexibly together with the diaphragm 6 and suppresses damage to the diaphragm 6.

さらに、第2網状給電体8のピッチP2は、第1網状給電体7のピッチP1よりも小さく設定されている。このような第2網状給電体8は、隔膜6との接触抵抗を少なくする。これにより、隔膜6と第2網状給電体8との間の導通が良好となり、電解室2内での電気分解が促進される。   Furthermore, the pitch P <b> 2 of the second mesh power feeder 8 is set smaller than the pitch P <b> 1 of the first mesh power feeder 7. Such a second reticulated power supply 8 reduces the contact resistance with the diaphragm 6. Thereby, the electrical connection between the diaphragm 6 and the 2nd mesh | network electric power feeder 8 becomes favorable, and the electrolysis in the electrolysis chamber 2 is accelerated | stimulated.

一方、図4に示されるように、陽極給電体4及び陰極給電体5の外側に設けられている第1網状給電体7の厚さT1は、第2網状給電体8の厚さT2よりも大きく設定されている。このような第1網状給電体7は、曲げ剛性が大きいので、積層体10に曲げ応力が加えられたとき、より大きな応力を負担することが可能であり、隔膜6には生ずる応力を抑制する。これにより、隔膜6の損傷をより一層抑制することが可能となる。   On the other hand, as shown in FIG. 4, the thickness T1 of the first mesh power supply 7 provided outside the anode power supply 4 and the cathode power supply 5 is larger than the thickness T2 of the second mesh power supply 8. It is set large. Since such a first mesh-like power feeder 7 has a large bending rigidity, it is possible to bear a larger stress when a bending stress is applied to the laminate 10, and to suppress the stress generated in the diaphragm 6. . Thereby, damage to the diaphragm 6 can be further suppressed.

本実施形態では、積層体10の外側に曲げ剛性の高い第1網状給電体7が配設されているので、積層体10全体の曲げ剛性が高くなり、隔膜6には生ずる応力がより一層抑制される。さらに、隔膜6と第1網状給電体7との間に配設されている第2網状給電体8が、両者の緩衝材として機能し、隔膜6の損傷をより一層抑制する。   In the present embodiment, since the first mesh power supply body 7 having high bending rigidity is disposed outside the laminated body 10, the bending rigidity of the entire laminated body 10 is increased, and the stress generated in the diaphragm 6 is further suppressed. Is done. Furthermore, the 2nd mesh | network electric power feeder 8 arrange | positioned between the diaphragm 6 and the 1st mesh-like electric power feeder 7 functions as both buffer materials, and suppresses the damage of the diaphragm 6 further.

図6は、第1ケース片3A及び第2ケース片3Bを示している。図4、6に示されるように、第1ケース片3Aの電解室2側を向く内面には、電解室2に流入した水が流通する複数の第1溝部31と、陽極給電体4と当接する複数の第1凸状部32とが交互に形成されている。第1溝部31及び第1凸状部32は、縦長形状の第1ケース片3Aの長手方向に沿って連続的にのびている。第1溝部31は、陽極室2Aを構成する。   FIG. 6 shows the first case piece 3A and the second case piece 3B. As shown in FIGS. 4 and 6, the inner surface of the first case piece 3 </ b> A facing the electrolysis chamber 2 side has a plurality of first grooves 31 through which water flowing into the electrolysis chamber 2 circulates, and the anode feeder 4 and the contact. The several 1st convex-shaped part 32 which touches is formed alternately. The 1st groove part 31 and the 1st convex part 32 are continuously extended along the longitudinal direction of 3 A of vertically long 1st case pieces. The first groove portion 31 constitutes the anode chamber 2A.

一方、第2ケース片3Bの電解室2側を向く内面には、電解室2に流入した水が流通する複数の第2溝部33と、陰極給電体5と当接する複数の第2凸状部34とが交互に形成されている。第2溝部33及び第2凸状部34は、縦長形状の第2ケース片3Bの長手方向に沿って連続的にのびている。第2溝部33は、陰極室2Bを構成する。   On the other hand, on the inner surface of the second case piece 3B facing the electrolysis chamber 2 side, there are a plurality of second groove portions 33 through which water flowing into the electrolysis chamber 2 flows, and a plurality of second convex portions that abut against the cathode power supply 5. 34 are alternately formed. The 2nd groove part 33 and the 2nd convex-shaped part 34 have extended continuously along the longitudinal direction of the vertically long 2nd case piece 3B. The second groove portion 33 constitutes the cathode chamber 2B.

第1凸状部32は、陽極給電体4、隔膜6及び陰極給電体5を挟んで、第2溝部33に対向する位置に設けられている。一方、第2凸状部34は、陰極給電体5、隔膜6及び陽極給電体4を挟んで、第1溝部31に対向する位置に設けられている。第1凸状部32と第2凸状部34とは、第1ケース片3Aと第2ケース片3Bとが固着されたときに交互に位置するように形成されている。   The first convex portion 32 is provided at a position facing the second groove portion 33 with the anode power supply body 4, the diaphragm 6 and the cathode power supply body 5 interposed therebetween. On the other hand, the second convex portion 34 is provided at a position facing the first groove portion 31 with the cathode power supply body 5, the diaphragm 6 and the anode power supply body 4 interposed therebetween. The first convex portions 32 and the second convex portions 34 are formed to be alternately positioned when the first case pieces 3A and the second case pieces 3B are fixed.

図4に示されるように、第1ケース片3Aの第1凸状部32の先端部は、陽極給電体4の第1網状給電体7と当接し、陽極給電体4を陰極給電体5の側に突出させる。一方、第2ケース片3Bの第2凸状部34は、陰極給電体5の第1網状給電体7と当接し 、陰極給電体5を陽極給電体4の側に突出させる。これにより、陰極給電体5、隔膜6及び陽極給電体4からなる積層体10が波形の形状に矯正される。すなわち、陽極給電体4と陰極給電体5と隔膜6とが同じ波形に矯正される。   As shown in FIG. 4, the tip of the first convex portion 32 of the first case piece 3 </ b> A is in contact with the first mesh-like power feeder 7 of the anode power feeder 4, and the anode power feeder 4 is connected to the cathode power feeder 5. Project to the side. On the other hand, the second convex portion 34 of the second case piece 3B is in contact with the first mesh-like power feeder 7 of the cathode power feeder 5 and causes the cathode power feeder 5 to protrude toward the anode power feeder 4 side. Thereby, the laminated body 10 which consists of the cathode electric power feeder 5, the diaphragm 6, and the anode electric power feeder 4 is corrected by the waveform shape. That is, the anode power supply body 4, the cathode power supply body 5, and the diaphragm 6 are corrected to the same waveform.

第1凸状部32の先端部は、陽極給電体4の第1網状給電体7と当接しているので、陽極室2Aと陰極室2Bとの圧力差によって陽極給電体4が隔膜6を介して第1ケース片3Aの側に力を受けたとき、陽極給電体4を支持しながら陽極給電体4の変形を抑制する。同様に、第2凸状部34の先端部は、陰極給電体5の第1網状給電体7と当接しているので、陽極室2Aと陰極室2Bとの圧力差によって陰極給電体5が隔膜6を介して第2ケース片3Bの側に力を受けたとき、陰極給電体5を支持しながら陰極給電体5の変形を抑制する。   Since the tip end portion of the first convex portion 32 is in contact with the first mesh-like power feeder 7 of the anode power feeder 4, the anode power feeder 4 passes through the diaphragm 6 due to the pressure difference between the anode chamber 2A and the cathode chamber 2B. When the force is applied to the first case piece 3 </ b> A side, deformation of the anode power feeder 4 is suppressed while supporting the anode power feeder 4. Similarly, since the tip of the second convex portion 34 is in contact with the first mesh-like power feeder 7 of the cathode power feeder 5, the cathode power feeder 5 is separated by the pressure difference between the anode chamber 2A and the cathode chamber 2B. When the force is applied to the second case piece 3 </ b> B side through 6, the cathode power supply 5 is supported and the deformation of the cathode power supply 5 is suppressed.

図2、3に示されるように、電解槽3には、L字状の継手35、36、37、38が設けられている。継手35、36は、第1ケース片3A、第2ケース片3Bの下部に装着され、流路切替弁16aと接続される。継手37、38は、第1ケース片3A、第2ケース片3Bの上部に装着され、流路切替弁16bと接続される。   As shown in FIGS. 2 and 3, the electrolytic cell 3 is provided with L-shaped joints 35, 36, 37, and 38. The joints 35 and 36 are attached to lower portions of the first case piece 3A and the second case piece 3B, and are connected to the flow path switching valve 16a. The joints 37 and 38 are attached to the upper portions of the first case piece 3A and the second case piece 3B, and are connected to the flow path switching valve 16b.

図3、6に示されるように、第1ケース片3Aの内面の下部には、第1分水路41が形成されている。第1分水路41は、第1ケース片3Aの短手方向に沿ってのび、第1溝部31と連通している。同様に、第2ケース片3Bの内面の下部には、第2分水路42が形成されている。第2分水路42は、第2ケース片3Bの短手方向に沿ってのび、第2溝部33と連通している。継手35、36から流入した水は、それぞれ第1分水路41又は第2分水路42を介して、第1溝部31又は第2溝部33に流れ込み、第1溝部31又は第2溝部33に沿って上方に流れる。   As shown in FIGS. 3 and 6, a first water diversion channel 41 is formed at the lower part of the inner surface of the first case piece 3 </ b> A. The first diversion channel 41 extends along the short direction of the first case piece 3 </ b> A and communicates with the first groove portion 31. Similarly, the 2nd water diversion channel 42 is formed in the lower part of the inner surface of the 2nd case piece 3B. The second diversion channel 42 extends along the short direction of the second case piece 3 </ b> B and communicates with the second groove portion 33. The water flowing in from the joints 35 and 36 flows into the first groove 31 or the second groove 33 via the first diversion channel 41 or the second diversion channel 42, respectively, and along the first groove 31 or the second groove 33. Flows upward.

一方、第1ケース片3Aの内面の上部には、第1集水路43が形成されている。第1集水路43は、第1ケース片3Aの短手方向に沿ってのび、第1溝部31と連通している。同様に、第2ケース片3Bの内面の上部には、第2集水路44が形成されている。第2集水路44は、第2ケース片3Bの短手方向に沿ってのび、第2溝部33と連通している。第1溝部31又は第2溝部33に沿って上方に移動した水は、それぞれ第1集水路43又は第2集水路44によって集められて、継手37又は38から流出する。   On the other hand, a first water collecting channel 43 is formed at the upper part of the inner surface of the first case piece 3A. The first water collecting channel 43 extends along the short direction of the first case piece 3 </ b> A and communicates with the first groove portion 31. Similarly, the 2nd water collection channel 44 is formed in the upper part of the inner surface of the 2nd case piece 3B. The second water collecting channel 44 extends along the short direction of the second case piece 3 </ b> B and communicates with the second groove portion 33. The water moved upward along the first groove portion 31 or the second groove portion 33 is collected by the first water collecting passage 43 or the second water collecting passage 44 and flows out from the joint 37 or 38, respectively.

陰極室2Bにて発生した水素分子は、微小な気泡となって陰極室2Bの上方に移動する。本実施形態では、電解室2の下部に設けられた継手35、36から流入した水は、第2溝部33を上方に流れる。従って、水素分子の移動方向と水の流れる方向が一致するため、水素分子が水に溶け込み易くなり、溶存水素濃度が高められる。さらには、第2溝部33が縦長形状の第2ケース片3Bの長手方向に沿ってすなわち短手方向に垂直にのびているので、流路の断面積が小さくなる。これにより、第2溝部33を流れる水の流速が高くなるため、水素分子が水に溶け込み易くなり、溶存水素濃度が高められる。   Hydrogen molecules generated in the cathode chamber 2B move to the upper side of the cathode chamber 2B as minute bubbles. In the present embodiment, the water that flows in from the joints 35 and 36 provided at the lower part of the electrolysis chamber 2 flows upward in the second groove portion 33. Therefore, since the movement direction of hydrogen molecules and the direction in which water flows match, hydrogen molecules are easily dissolved in water, and the dissolved hydrogen concentration is increased. Furthermore, since the second groove portion 33 extends along the longitudinal direction of the vertically long second case piece 3B, that is, perpendicularly to the lateral direction, the cross-sectional area of the flow path is reduced. Thereby, since the flow velocity of the water which flows through the 2nd groove part 33 becomes high, a hydrogen molecule becomes easy to melt | dissolve in water and dissolved hydrogen concentration is raised.

第1ケース片3Aの第1分水路41及び第1集水路43には、複数の凸部45が設けられている。凸部45の先端は、陽極給電体4の第1網状給電体7と当接する。同様に第2ケース片3Bの第2分水路42及び第2集水路44には、複数の凸部46が設けられている。凸部46の先端は、陰極給電体5の第1網状給電体7と当接する。凸部45及び凸部46の先端が陽極給電体4及び陰極給電体5とそれぞれ当接することにより、陽極給電体4及び陰極給電体5がそれらの上部及び下部で挟持され、積層体10が保持される。   A plurality of convex portions 45 are provided in the first water diversion channel 41 and the first water collecting channel 43 of the first case piece 3A. The tip of the convex portion 45 is in contact with the first net-like power feeder 7 of the anode power feeder 4. Similarly, a plurality of convex portions 46 are provided in the second water diversion channel 42 and the second water collecting channel 44 of the second case piece 3B. The tip of the convex portion 46 is in contact with the first net-like power feeder 7 of the cathode power feeder 5. The tips of the protrusions 45 and 46 are brought into contact with the anode power supply body 4 and the cathode power supply body 5, respectively, so that the anode power supply body 4 and the cathode power supply body 5 are sandwiched between the upper part and the lower part thereof, and the laminate 10 is held. Is done.

図7は、電解水生成装置1の製造方法の主要工程を示している。図7(a)に示される給電体配置工程では、陽極給電体4、隔膜6及び陰極給電体5の積層体10が、第1ケース片3Aと、第2ケース片3Bとの間に配置される。すなわち、第1網状給電体7、第2網状給電体8、隔膜6、第2網状給電体8及び第1網状給電体7の積層体10が、第1ケース片3Aと、第2ケース片3Bとの間に配置される。   FIG. 7 shows the main steps of the method for manufacturing the electrolyzed water generator 1. In the feeder arrangement step shown in FIG. 7A, the laminate 10 of the anode feeder 4, the diaphragm 6 and the cathode feeder 5 is arranged between the first case piece 3A and the second case piece 3B. The That is, the laminated body 10 of the first mesh power feeder 7, the second mesh power feeder 8, the diaphragm 6, the second mesh power feeder 8, and the first mesh power feeder 7 includes the first case piece 3A and the second case piece 3B. Between.

図7(b)乃至(c)に示される積層体押圧工程では、第1ケース片3Aと第2ケース片3Bとが固着される。すなわち、図7(b)の矢印Aに示されるように、第1ケース片3Aと第2ケース片3Bとが接近され、第1ケース片3Aの第1凸状部32が陽極給電体4の第1網状給電体7と当接する。このとき、第2ケース片3Bの第2凸状部34も、陰極給電体5の第1網状給電体7と当接する。   In the laminated body pressing step shown in FIGS. 7B to 7C, the first case piece 3A and the second case piece 3B are fixed. That is, as shown by an arrow A in FIG. 7B, the first case piece 3A and the second case piece 3B are brought close to each other, and the first convex portion 32 of the first case piece 3A is It abuts on the first mesh power supply 7. At this time, the second convex portion 34 of the second case piece 3 </ b> B also contacts the first mesh-like power feeder 7 of the cathode power feeder 5.

さらに、図7(c)の矢印Bに示されるように、第1ケース片3Aと第2ケース片3Bとが接近され、両者が接合される。このとき、第1ケース片3Aの第1凸状部32と、第2ケース片3Bの第2凸状部34とが、積層体10を挟み込んで押圧する。これに伴い、第1ケース片3Aの第1凸状部32は、積層体10を第2ケース片3Bの第2溝部33の側に突出させる。同様に、第2ケース片3Bの第2凸状部34は、積層体10を第1ケース片3Aの第1溝部31の側に突出させる。これにより、積層体10は波形に変形され、波形の陽極給電体4、隔膜6及び陰極給電体5を有する電解水生成装置1を安価かつ容易に製造できる。なお、第1ケース片3Aと第2ケース片3Bとは、例えば、ボルト(図示せず)等によって接合され、固着される。   Further, as indicated by an arrow B in FIG. 7C, the first case piece 3A and the second case piece 3B are brought close to each other and joined together. At this time, the first convex portion 32 of the first case piece 3A and the second convex portion 34 of the second case piece 3B sandwich and press the laminate 10. In connection with this, the 1st convex-shaped part 32 of 3 A of 1st case pieces makes the laminated body 10 protrude in the 2nd groove part 33 side of the 2nd case piece 3B. Similarly, the 2nd convex part 34 of the 2nd case piece 3B makes the laminated body 10 protrude in the 1st groove part 31 side of 3 A of 1st case pieces. Thereby, the laminated body 10 is deform | transformed into a waveform, and the electrolyzed water generating apparatus 1 which has the corrugated anode feeder 4, the diaphragm 6, and the cathode feeder 5 can be manufactured cheaply and easily. The first case piece 3A and the second case piece 3B are joined and fixed by, for example, a bolt (not shown) or the like.

(変形例1)
図8は、電解槽3の変形例を示している。電解槽3は、第1ケース片3Aの第1凸状部32が、陰極給電体5、隔膜6及び陽極給電体4を挟んで、第2ケース片3Bの第2凸状部34と対向するように配置されている点で、図3等に示される電解槽3とは異なる。これに伴い、第1ケース片3Aの第1溝部31は、陰極給電体5、隔膜6及び陽極給電体4を挟んで、第2ケース片3Bの第2溝部33と対向するように配置される。
(Modification 1)
FIG. 8 shows a modification of the electrolytic cell 3. In the electrolytic cell 3, the first convex portion 32 of the first case piece 3 </ b> A faces the second convex portion 34 of the second case piece 3 </ b> B with the cathode power supply body 5, the diaphragm 6 and the anode power supply body 4 interposed therebetween. This is different from the electrolytic cell 3 shown in FIG. Accordingly, the first groove portion 31 of the first case piece 3A is disposed so as to face the second groove portion 33 of the second case piece 3B with the cathode power supply body 5, the diaphragm 6 and the anode power supply body 4 interposed therebetween. .

この電解槽3では、陽極給電体4、隔膜6及び陰極給電体5の形状は、平板状のまま維持されている。陽極給電体4、隔膜6及び陰極給電体5の積層体10は、第1凸状部32及び第2凸状部34によって挟持されている。すなわち、陽極給電体4の第1網状給電体7は、第1ケース片3Aの第1凸状部32によって支持されている。同様に、陰極給電体5の第1網状給電体7は、第2ケース片3Bの第2凸状部34によって支持されている。従って、電解槽3の陽極室2Aと陰極室2Bとの間に生ずる圧力差に起因する応力の大部分は、陽極給電体4、第1凸状部32又は陰極給電体5、第2凸状部34によって負担され、隔膜6にかかる応力は減少する。これにより、陽極室2Aと陰極室2Bとの間で大きな圧力差が生ずる状態で電解水生成装置1を動作させても、隔膜6には大きな応力が生じないので、隔膜6の損傷が抑制される。   In this electrolytic cell 3, the shapes of the anode power supply body 4, the diaphragm 6 and the cathode power supply body 5 are maintained flat. The laminated body 10 of the anode power supply body 4, the diaphragm 6 and the cathode power supply body 5 is sandwiched between the first convex portion 32 and the second convex portion 34. That is, the first mesh-like power feeder 7 of the anode power feeder 4 is supported by the first convex portion 32 of the first case piece 3A. Similarly, the first net-like power feeder 7 of the cathode power feeder 5 is supported by the second convex portion 34 of the second case piece 3B. Therefore, most of the stress caused by the pressure difference generated between the anode chamber 2A and the cathode chamber 2B of the electrolytic cell 3 is the anode feeder 4, the first convex portion 32 or the cathode feeder 5, the second convex shape. The stress applied to the diaphragm 6 by the portion 34 is reduced. Thereby, even if the electrolyzed water generating apparatus 1 is operated in a state where a large pressure difference is generated between the anode chamber 2A and the cathode chamber 2B, no large stress is generated in the diaphragm 6, so that damage to the diaphragm 6 is suppressed. The

(変形例2)
図9は、図6に示される第1ケース片3A及び第2ケース片3Bの変形例である第1ケース片9A及び第2ケース片9Bを示している。第1ケース片9Aは、第1凸状部32に替えて第1ケース片9Aの長手方向に沿って断続的にのびる複数の第1凸状部92を有している点で、第1ケース片3Aとは相違している。第1凸状部92は、第1ケース片9Aの電解室2側を向く内底面91から電解室2側に隆起して形成されている。電解室2に流入した水は、第1ケース片9Aの短手方向に隣り合う第1凸状部92の間を流通する。
(Modification 2)
FIG. 9 shows a first case piece 9A and a second case piece 9B, which are modifications of the first case piece 3A and the second case piece 3B shown in FIG. The first case piece 9A has a plurality of first convex portions 92 that extend intermittently along the longitudinal direction of the first case piece 9A instead of the first convex portion 32. It is different from the piece 3A. The first convex portion 92 is formed so as to protrude from the inner bottom surface 91 facing the electrolysis chamber 2 side of the first case piece 9A toward the electrolysis chamber 2 side. The water flowing into the electrolysis chamber 2 flows between the first convex portions 92 adjacent to each other in the short direction of the first case piece 9A.

同様に、第2ケース片9Bは、第2凸状部34に替えて第2ケース片9Bの長手方向に沿って断続的にのびる複数の第2凸状部94を有している点で、第2ケース片3Bとは相違している。第2凸状部94は、第2ケース片9Bの電解室2側を向く内底面93から電解室2側に隆起して形成されている。電解室2に流入した水は、第2ケース片9Bの短手方向に隣り合う第2凸状部94の間を流通する。   Similarly, the second case piece 9B has a plurality of second convex portions 94 extending intermittently along the longitudinal direction of the second case piece 9B instead of the second convex portion 34. This is different from the second case piece 3B. The second convex portion 94 is formed so as to protrude from the inner bottom surface 93 of the second case piece 9B facing the electrolysis chamber 2 side to the electrolysis chamber 2 side. The water that has flowed into the electrolysis chamber 2 flows between the second convex portions 94 adjacent to each other in the short direction of the second case piece 9B.

第1凸状部92と第2凸状部94とは、第1ケース片9Aと第2ケース片9Bとが固着されたときに交互に位置するように形成されている。このとき、第1凸状部92及び第2凸状部94は、陽極給電体4及び陰極給電体5と当接し、陽極給電体4及び陰極給電体5を波形に矯正する。   The first convex portions 92 and the second convex portions 94 are formed so as to be alternately positioned when the first case pieces 9A and the second case pieces 9B are fixed. At this time, the 1st convex part 92 and the 2nd convex part 94 contact | abut with the anode power supply body 4 and the cathode power supply body 5, and correct the anode power supply body 4 and the cathode power supply body 5 to a waveform.

(変形例3)
図10は、図6に示される第1ケース片3A及び第2ケース片3Bの別の変形例である第1ケース片9C及び第2ケース片9Dを示している。第1ケース片9Cは、第1凸状部32に替えて離散的に設けられた複数の第1凸状部97を有している点で、第1ケース片3Aとは相違している。第1凸状部97は、平面視でドット状の円柱にて形成されている。第1凸状部97は、平面視で楕円形に形成されていてもよい。第1凸状部97は、第1ケース片9Aの電解室2側を向く内底面96から電解室2側に隆起して形成されている。電解室2に流入した水は、第1ケース片9Cの短手方向に隣り合う第1凸状部97の間を流通する。
(Modification 3)
FIG. 10 shows a first case piece 9C and a second case piece 9D, which are another modification of the first case piece 3A and the second case piece 3B shown in FIG. The first case piece 9C is different from the first case piece 3A in that the first case piece 9C includes a plurality of first convex portions 97 provided discretely instead of the first convex portion 32. The first convex portion 97 is formed of a dot-like cylinder in plan view. The 1st convex part 97 may be formed in the ellipse by planar view. The first convex portion 97 is formed to protrude from the inner bottom surface 96 facing the electrolysis chamber 2 side of the first case piece 9A to the electrolysis chamber 2 side. The water flowing into the electrolysis chamber 2 flows between the first convex portions 97 adjacent to each other in the short direction of the first case piece 9C.

同様に、第2ケース片9Dは、第2凸状部34に替えて離散的に設けられた複数の第2凸状部99を有している点で、第2ケース片3Bとは相違している。第2凸状部99は、平面視でドット状の円柱にて形成されている。第2凸状部99は、平面視で楕円形に形成されていてもよい。第2凸状部99は、第2ケース片9Dの電解室2側を向く内底面98から電解室2側に隆起して形成されている。電解室2に流入した水は、第2ケース片9Dの短手方向に隣り合う第2凸状部99の間を流通する。   Similarly, the second case piece 9 </ b> D is different from the second case piece 3 </ b> B in that it has a plurality of second convex portions 99 provided discretely instead of the second convex portions 34. ing. The second convex portion 99 is formed of a dot-like cylinder in plan view. The 2nd convex part 99 may be formed in the ellipse by planar view. The second convex portion 99 is formed to protrude from the inner bottom surface 98 of the second case piece 9D facing the electrolysis chamber 2 to the electrolysis chamber 2 side. The water that has flowed into the electrolysis chamber 2 flows between the second convex portions 99 adjacent to each other in the short direction of the second case piece 9D.

第1凸状部97と第2凸状部99とは、第1ケース片9Cと第2ケース片9Dとが固着されたときに交互に位置するように形成されている。このとき、第1凸状部97及び第2凸状部99は、陽極給電体4及び陰極給電体5と当接し、陽極給電体4及び陰極給電体5を波形に矯正する。   The first convex portions 97 and the second convex portions 99 are formed so as to be alternately positioned when the first case pieces 9C and the second case pieces 9D are fixed. At this time, the 1st convex part 97 and the 2nd convex part 99 contact | abut with the anode power supply body 4 and the cathode power supply body 5, and correct the anode power supply body 4 and the cathode power supply body 5 to a waveform.

以上のような構成を有する本実施形態の電解水生成装置1によれば、隔膜6が、陽極給電体4及び陰極給電体5で挟持されているので、隔膜6の形状は陽極給電体4及び陰極給電体5によって保持され、隔膜6にかかる応力は減少する。従って、電解槽3の陽極室2Aと陰極室2Bとの間で大きな圧力差が生じても隔膜6の損傷が抑制される。   According to the electrolyzed water generating device 1 of the present embodiment having the above-described configuration, the diaphragm 6 is sandwiched between the anode feeder 4 and the cathode feeder 5, so that the shape of the diaphragm 6 is the anode feeder 4 and The stress applied to the diaphragm 6 by the cathode power supply 5 is reduced. Therefore, even if a large pressure difference occurs between the anode chamber 2A and the cathode chamber 2B of the electrolytic cell 3, damage to the diaphragm 6 is suppressed.

以上、本発明の電解水生成装置1が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、電解水生成装置1は、少なくとも、電気分解される水が流入する電解室2を区画する電解槽3と、電解室2内で、互いに対向して配置された陽極給電体4及び陰極給電体5と、陽極給電体4と陰極給電体5との間に配され、かつ、電解室2を陽極給電体4側の陽極室2Aと、陰極給電体5側の陰極室2Bとに区分する隔膜6とを備え、隔膜6が、陽極給電体4及び陰極給電体5で挟持されていればよい。   As mentioned above, although the electrolyzed water generating apparatus 1 of this invention was demonstrated in detail, this invention is changed and implemented in various aspects, without being limited to said specific embodiment. That is, the electrolyzed water generating apparatus 1 includes at least an electrolysis tank 3 that partitions an electrolysis chamber 2 into which water to be electrolyzed flows, and an anode feeder 4 and a cathode feed that are disposed to face each other in the electrolysis chamber 2. And the electrolytic chamber 2 is divided into an anode chamber 2A on the anode feeder 4 side and a cathode chamber 2B on the cathode feeder 5 side. The diaphragm 6 may be provided, and the diaphragm 6 may be sandwiched between the anode feeder 4 and the cathode feeder 5.

また、複数の電解槽3を直列に設けることにより、透析装置に供給する電解水素水の溶存水素濃度を高めることができる。   Moreover, the dissolved hydrogen concentration of the electrolytic hydrogen water supplied to a dialysis apparatus can be raised by providing the some electrolytic vessel 3 in series.

陽極給電体4及び陰極給電体5は、それぞれ、その板厚方向で水が行き来可能な導電体から構成されていればよい。例えば、陽極給電体4及び陰極給電体5は、パンチングメタルから構成されていてもよい。また、陽極給電体4及び陰極給電体5の各々が第1網状給電体7と第2網状給電体8とを含む構成を示したが、陽極給電体4及び陰極給電体5は1枚の網状給電体から構成されていてもよい。   The anode power feeder 4 and the cathode power feeder 5 only need to be made of a conductor capable of moving water in the thickness direction. For example, the anode feeder 4 and the cathode feeder 5 may be made of punching metal. In addition, each of the anode power supply 4 and the cathode power supply 5 has a configuration including the first mesh power supply 7 and the second mesh power supply 8, but the anode power supply 4 and the cathode power supply 5 are each in a single mesh shape. You may be comprised from the electric power feeding body.

1 電解水生成装置
2 電解室
2A 陽極室
2B 陰極室
3 電解槽
3A 第1ケース片
3B 第2ケース片
4 陽極給電体
5 陰極給電体
6 隔膜
6a 固体高分子膜
7 第1網状給電体
8 第2網状給電体
31 第1溝部
32 第1凸状部
33 第2溝部
34 第2凸状部
DESCRIPTION OF SYMBOLS 1 Electrolyzed water production | generation apparatus 2 Electrolytic chamber 2A Anode chamber 2B Cathode chamber 3 Electrolytic tank 3A 1st case piece 3B 2nd case piece 4 Anode feeder 5 Cathode feeder 6 Separator 6a Solid polymer membrane 7 1st net-like feeder 8 8th 2 Reticulated Power Supply 31 First Groove 32 First Protrusion 33 Second Groove 34 Second Convex

Claims (4)

電気分解される水が流入する電解室が形成された電解槽と、
前記電解室内で、互いに対向して配置された陽極給電体及び陰極給電体と、
前記陽極給電体と前記陰極給電体との間に配され、かつ、前記電解室を前記陽極給電体側の陽極室と、前記陰極給電体側の陰極室とに区分する隔膜とを備えた電解水生成装置であって、
前記隔膜が、前記陽極給電体及び前記陰極給電体で挟持され、
前記電解槽は、前記陽極給電体側の第1ケース片と、前記陰極給電体側の第2ケース片が固着されることにより前記電解室を形成し、
前記第1ケース片の前記電解室側を向く内面には、
前記陽極給電体と当接する第1凸状部と、
前記第1凸状部とは交互に設けられ、前記陽極室に流入した水が流通する複数の第1溝部と、
前記第1凸状部及び前記第1溝部の一端側に設けられ、前記陽極室に流入した水を各第1溝部に導く第1分水路と、
前記第1凸状部及び前記第1溝部の他端側に設けられ、前記各第1溝部を流通した水を集める第1集水路とが形成され、
前記第2ケース片の前記電解室側を向く内面には、
前記陰極給電体と当接する第2凸状部と、
前記第2凸状部とは交互に設けられ、前記陰極室に流入した水が流通する複数の第2溝部と、
前記第2凸状部及び前記第2溝部の一端側に設けられ、前記陰極室に流入した水を各第2溝部に導く第2分水路と、
前記第2凸状部及び前記第2溝部の他端側に設けられ、前記各第2溝部を流通した水を集める第2集水路とが形成され、
前記第1溝部は、前記第1分水路及び第1集水路よりも浅く形成され、前記第2溝部は、前記第2分水路及び第2集水路よりも浅く形成されていることを特徴とする電解水生成装置。
An electrolytic cell in which an electrolytic chamber into which water to be electrolyzed flows is formed;
An anode feeder and a cathode feeder disposed opposite to each other in the electrolytic chamber;
Electrolyzed water generation comprising a diaphragm disposed between the anode feeder and the cathode feeder and dividing the electrolysis chamber into an anode chamber on the anode feeder side and a cathode chamber on the cathode feeder side A device,
The diaphragm is sandwiched between the anode feeder and the cathode feeder,
The electrolytic cell forms the electrolytic chamber by fixing the first case piece on the anode feeder side and the second case piece on the cathode feeder side,
On the inner surface of the first case piece facing the electrolytic chamber side,
A first convex portion in contact with the anode feeder,
A plurality of first groove portions provided alternately with the first convex portions, and through which the water flowing into the anode chamber flows;
A first diversion channel that is provided on one end side of the first convex portion and the first groove portion and guides the water flowing into the anode chamber to each first groove portion;
A first catchment channel that is provided on the other end side of the first convex part and the first groove part and collects water that has circulated through the first groove part;
On the inner surface of the second case piece facing the electrolytic chamber side,
A second convex portion in contact with the cathode power supply;
A plurality of second grooves that are alternately provided with the second convex portions and through which the water flowing into the cathode chamber flows;
A second diversion channel that is provided on one end side of the second convex portion and the second groove portion and guides the water flowing into the cathode chamber to each second groove portion;
Provided on the other end side of the second convex part and the second groove part, and a second water collecting channel for collecting water flowing through each second groove part is formed;
The first groove is formed shallower than the first diversion channel and the first water collection channel, and the second groove is formed shallower than the second diversion channel and the second water collection channel. Electrolyzed water generator.
前記第1ケース片の前記第1凸状部は、前記陽極給電体を前記陰極給電体側に突出させると共に、
前記第2ケース片の前記第2凸状部は、前記陰極給電体を前記陽極給電体側に突出させる請求項1記載の電解水生成装置。
The first convex portion of the first case piece causes the anode power feeder to protrude toward the cathode power feeder,
2. The electrolyzed water generating device according to claim 1, wherein the second convex portion of the second case piece causes the cathode power feeder to protrude toward the anode power feeder.
前記陽極給電体、前記陰極給電体及び前記隔膜は、波形に形成されている請求項1又は2に記載の電解水生成装置。   The electrolyzed water generating apparatus according to claim 1 or 2, wherein the anode power supply body, the cathode power supply body, and the diaphragm are formed in a waveform. 前記第1凸状部が前記陽極給電体を前記陰極給電体側に突出させると共に、前記第2凸状部が前記陰極給電体を前記陽極給電体側に突出させることによって、前記陽極給電体と前記陰極給電体と前記隔膜とが同じ波形の形状に矯正される請求項3記載の電解水生成装置。

The first convex portion projects the anode power feeder toward the cathode power feeder, and the second convex portion projects the cathode power feeder toward the anode power feeder, whereby the anode power feeder and the cathode The electrolyzed water generating apparatus according to claim 3, wherein the power feeder and the diaphragm are corrected to have the same waveform.

JP2014213792A 2014-10-20 2014-10-20 Electrolyzed water generator Active JP5702885B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014213792A JP5702885B1 (en) 2014-10-20 2014-10-20 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014213792A JP5702885B1 (en) 2014-10-20 2014-10-20 Electrolyzed water generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014053875A Division JP5639724B1 (en) 2014-03-17 2014-03-17 ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF

Publications (2)

Publication Number Publication Date
JP5702885B1 JP5702885B1 (en) 2015-04-15
JP2015174085A true JP2015174085A (en) 2015-10-05

Family

ID=52875943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014213792A Active JP5702885B1 (en) 2014-10-20 2014-10-20 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP5702885B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112730A (en) * 2020-01-21 2021-08-05 株式会社バイオレドックス研究所 Electrolytic water production apparatus and method for producing electrolytic water using the same
WO2022195708A1 (en) * 2021-03-16 2022-09-22 株式会社バイオレドックス研究所 Electrolyzed water production apparatus, and electrolyzed water production method using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536951B2 (en) * 2014-11-14 2019-07-03 有限会社ターナープロセス Device for adjusting the quality of aqueous liquid
JP6190424B2 (en) * 2015-07-07 2017-08-30 株式会社日本トリム Electrolysis tank and electrolyzed water generator
JP6182182B2 (en) * 2015-07-07 2017-08-16 株式会社日本トリム Electrolysis tank and electrolyzed water generator
JP6154859B2 (en) * 2015-07-08 2017-06-28 株式会社日本トリム Electrolysis tank and electrolyzed water generator
JP6190426B2 (en) * 2015-07-14 2017-08-30 株式会社日本トリム Electrolysis tank and electrolyzed water generator
CN113044933A (en) * 2021-04-07 2021-06-29 湖南满缘红水科技有限公司 Low-salt EOW electrolytic cell, low-salt EOW electrolytic device and low-salt EOW preparation method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194272A (en) * 1981-05-26 1982-11-29 Asahi Glass Co Ltd Production of hydrogen
US5635039A (en) * 1993-07-13 1997-06-03 Lynntech, Inc. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
JPH08318277A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Electrolytic cell
JPH1133559A (en) * 1997-07-23 1999-02-09 V M C:Kk Ozone water making apparatus
JP3746932B2 (en) * 2000-01-07 2006-02-22 本田技研工業株式会社 Electrolyzed water generator
JP3718096B2 (en) * 2000-01-31 2005-11-16 株式会社荏原製作所 Electric regenerative desalination equipment
JP2002292370A (en) * 2001-01-23 2002-10-08 Silver Seiko Ltd Ozone water producer
US6855233B2 (en) * 2002-11-15 2005-02-15 Kinji Sawada Apparatus for production of strong alkali and acid electrolytic solution
JP2004188336A (en) * 2002-12-12 2004-07-08 Hoshizaki Electric Co Ltd Electrolytic cell having diaphragm
JP4249693B2 (en) * 2004-11-25 2009-04-02 本田技研工業株式会社 Electrolyzer for electrolyzed water generator
JP4142039B2 (en) * 2005-10-26 2008-08-27 島崎電機株式会社 Electrolyzed water generator
JP4925658B2 (en) * 2005-12-21 2012-05-09 株式会社プロトンコーポレーション Electrolytic cell
JP5133592B2 (en) * 2007-05-09 2013-01-30 日科ミクロン株式会社 Ozone water generator
JP5574877B2 (en) * 2010-08-13 2014-08-20 日科ミクロン株式会社 Ozone water generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021112730A (en) * 2020-01-21 2021-08-05 株式会社バイオレドックス研究所 Electrolytic water production apparatus and method for producing electrolytic water using the same
WO2022195708A1 (en) * 2021-03-16 2022-09-22 株式会社バイオレドックス研究所 Electrolyzed water production apparatus, and electrolyzed water production method using same

Also Published As

Publication number Publication date
JP5702885B1 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5639724B1 (en) ELECTROLYTIC WATER GENERATING DEVICE AND MANUFACTURING METHOD THEREOF
JP5702885B1 (en) Electrolyzed water generator
JP5753638B1 (en) Electrolyzed water generator
JP5756579B1 (en) Electrolyzed water generator
KR101895525B1 (en) Sodium hydroxide manufacturing apparatus using reverse electrodialysis device and hybrid system using the same
KR102567678B1 (en) Electrolyzer and electrolyzed water generator
JP2009209378A (en) Ozone water production apparatus
JP6190426B2 (en) Electrolysis tank and electrolyzed water generator
KR101749909B1 (en) The electrolyzer having structure for increasing dissolved hydrogen
CN107531519B (en) Electrolytic cell and electrolyzed water generation device
JP6190424B2 (en) Electrolysis tank and electrolyzed water generator
JP6132234B2 (en) Electrolyzed water generator
JP6190427B2 (en) Electrolysis tank and electrolyzed water generator
JP2018188710A (en) Water electrolysis apparatus
JP2012241201A (en) Differential pressure type water electrolysis apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150220

R150 Certificate of patent or registration of utility model

Ref document number: 5702885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250