JP2015174017A - Acceleration of ozone oxidation reaction using transition metal-containing oxide porous body - Google Patents

Acceleration of ozone oxidation reaction using transition metal-containing oxide porous body Download PDF

Info

Publication number
JP2015174017A
JP2015174017A JP2014051021A JP2014051021A JP2015174017A JP 2015174017 A JP2015174017 A JP 2015174017A JP 2014051021 A JP2014051021 A JP 2014051021A JP 2014051021 A JP2014051021 A JP 2014051021A JP 2015174017 A JP2015174017 A JP 2015174017A
Authority
JP
Japan
Prior art keywords
voc
ozone
transition metal
oxidation reaction
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014051021A
Other languages
Japanese (ja)
Other versions
JP6396045B2 (en
Inventor
泉 順
Jun Izumi
順 泉
香織 深堀
Kaori Fukabori
香織 深堀
川上 徹
Toru Kawakami
徹 川上
西尾 章
Akira Nishio
章 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Adsorption Technology Industries Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Adsorption Technology Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, Adsorption Technology Industries Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2014051021A priority Critical patent/JP6396045B2/en
Publication of JP2015174017A publication Critical patent/JP2015174017A/en
Application granted granted Critical
Publication of JP6396045B2 publication Critical patent/JP6396045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for treating a large air quantity and low concentration volatile organic compound (VOC) using a phenomenon accelerating the oxidation reaction of ozone and the VOC on a transition metal-containing porous body when treating the VOC whose discharge regulation is increasingly reinforced based on Clean Air Act, treating malodor whose discharge regulation is increasingly reinforced based on a malodor prevention law and removing ethylene, an aldehyde and a terpene for preserving the freshness of farm products.SOLUTION: A method and an apparatus where ozone and a VOC (an alcohol, a ketone, an ester, an ether, an aromatic and the like) are brought into contact with a transition metal-containing porous body, the VOC is highly efficiently oxidized with ozone and then unreacted ozone is converted to harmless oxygen are proposed.

Description

本発明は大気汚染防止法で排出規制が強化されつつある揮発性有機化合物(VOC)の処理、悪臭防止法で排出規制が強化されつつある悪臭処理、農作物鮮度保持に当たってのエチレン、アルデヒド、テルペンの除去にあたって、遷移金属含有多孔質体上でオゾンとVOCの酸化反応が促進される現象を利用して、大風量、低濃度のVOCを処理する方法に関する。   The present invention relates to treatment of volatile organic compounds (VOC) whose emission regulations are being tightened by the Air Pollution Control Law, malodor treatment whose emission regulations are being strengthened by the Malodor Control Law, and ethylene, aldehydes, and terpenes for maintaining the freshness of crops. The present invention relates to a method for treating a large amount of VOC at a low concentration using a phenomenon in which an oxidation reaction between ozone and VOC is promoted on a transition metal-containing porous body.

VOCを含有する排ガス処理に於いて最も頻繁に採用されている方法は、排ガスに含まれるVOCを高シリカゼオライトを充填した吸着塔に供給してVOCを吸着除去し,VOCを吸着した高シリカゼオライト吸着塔に高温熱風を供給してVOCを高温脱着させ、減容濃縮して脱着したVOCを触媒燃焼で酸化分解するハニカムローターTSA+触媒燃焼である。又今後普及が予想されるものとしては米国環境保護局(EPA)が提案している強誘電体(チタン酸バリウム等)の充填塔において強誘電体表面で延命放電を行い、ここにVOC含有ガスを供給することで酸化分解する充填塔プラズマ処理 (Packed Bed Plasma VOC Treatment)がある。これらの方法はVOCの処理に対し一定の性能を示しているが、ハニカムローターTSA+触媒燃焼では装置の複雑さと操作の煩雑さによるコスト低減の限界があり、充填塔プラズマ処理ではVOC除去率に限界があり今後のVOC排出規制に対応できない懸念がある。 The most frequently used method for treating exhaust gas containing VOC is to supply VOC contained in the exhaust gas to an adsorption tower packed with high silica zeolite to adsorb and remove VOC, and to adsorb VOC. This is honeycomb rotor TSA + catalyst combustion in which high-temperature hot air is supplied to the adsorption tower to desorb VOC at a high temperature, and the desorbed VOC is oxidized and decomposed by catalytic combustion. Also expected to be widely used in the future is a life extension discharge on the surface of a ferroelectric (barium titanate, etc.) packed by the US Environmental Protection Agency (EPA). There is a packed tower plasma treatment (Packed Bed Plasma VOC Treatment) in which oxidative decomposition is performed by supplying. These methods show a certain level of performance for VOC processing, but honeycomb rotor TSA + catalyst combustion has limitations in terms of cost reduction due to the complexity of the equipment and the complexity of operation, and the VOC removal rate is limited in packed tower plasma processing. There is a concern that it will not be able to meet future VOC emission regulations.

VOC含有ガスにオゾンを加えてVOCの均一気相反応による酸化分解をすることも考えられるが、低濃度VOCに対するオゾン酸化反応が遅いこと、未反応オゾンの処理が煩雑なこと、酸化剤として使用するオゾンの製造コストが高価なことから実用化には至っていない。又オゾン酸化反応の反応効率の向上のためVOCおよびオゾンを高シリカゼオライトに吸着して、VOCおよびオゾンを共吸着して高シリカゼオライト結晶内でオゾンによるVOCのオゾンによる酸化反応の高効率化を計ることが提案されている。この方法においてオゾン反応の高効率化は実現するが、VOCの反応が途中で停止して有機酸が生成して臭気成分になることおよびこの有機酸がゼオライト結晶に蓄積してオゾン酸化反応の反応速度が低下する課題がある。 Ozone can be added to the VOC-containing gas for oxidative decomposition by homogeneous gas phase reaction of VOC, but the ozone oxidation reaction to low concentration VOC is slow, the treatment of unreacted ozone is complicated, and it is used as an oxidizing agent Since the production cost of ozone is high, it has not been put into practical use. In order to improve the reaction efficiency of ozone oxidation reaction, VOC and ozone are adsorbed on high silica zeolite, and VOC and ozone are co-adsorbed to increase the efficiency of oxidation reaction of ozone by VOC by ozone in the high silica zeolite crystal. It is proposed to measure. In this method, the efficiency of the ozone reaction is improved, but the VOC reaction stops in the middle of the process, and an organic acid is generated and becomes an odor component, and the organic acid accumulates in the zeolite crystal and reacts with the ozone oxidation reaction. There is a problem that speed decreases.

発明者等は気相でのオゾン−VOC酸化反応試験を行う中で遷移金属を含有する多孔質体に、オゾンとVOC(アルコール、ケトン、エステル、エーテル、アルデヒド、芳香族等)が接触したあとVOCがオゾンで高効率に酸化され、未反応なオゾンは酸素に変換することを見いだした。すなわち
[1] VOCを含有するガスをオゾンと混合した後、遷移金属含有酸化物多孔質体と接触させて、VOCとオゾンの促進酸化で、VOCの高効率な分解を行なうことを特長とするVOCのオゾン酸化反応方法。
[2] 前記VOCオゾン酸化反応用遷移金属含有酸化物多孔質体としてCo、Mn、Cuを含む酸化物を単独または複数から選択して調製する酸化物超微粒子を使用する、VOCのオゾン酸化反応方法。
[3] 前記[1]または[2]に記載のVOCオゾン酸化反応用遷移金属含有酸化物の調整法として、Co、Mn、Cuの金属塩から1種類以上を選び混合水溶液を作り、アルカリ溶液と混合することにより沈殿物を生成させて濾過、水洗、乾燥した後、熱処理を施すことを特徴とする酸化物超微粒子の製造方法。
[4] 前記[1]に記載のVOCを含有するガスをオゾンと混合する際、注入オゾン濃度と原料VOC濃度(C1換算)の濃度比が0.8以上となるオゾン酸化反応方法。
[5] 前記[1]〜[3]のいずれかに記載のVOCオゾン酸化反応用遷移金属含有酸化物において、BET比表面積が80m以上である酸化物超微粒子粉末。
After the ozone and VOC (alcohol, ketone, ester, ether, aldehyde, aromatic, etc.) contacted the porous body containing the transition metal during the ozone-VOC oxidation reaction test in the gas phase. It was found that VOC was oxidized with ozone with high efficiency, and unreacted ozone was converted to oxygen. Ie
[1] A VOC characterized in that a VOC-containing gas is mixed with ozone and then brought into contact with a transition metal-containing oxide porous body to effect highly efficient decomposition of VOC by accelerated oxidation of VOC and ozone. Ozone oxidation reaction method.
[2] VOC ozone oxidation reaction using oxide ultrafine particles prepared by selecting one or more oxides containing Co, Mn, and Cu as the transition metal-containing oxide porous body for VOC ozone oxidation reaction Method.
[3] As a method for adjusting the transition metal-containing oxide for VOC ozone oxidation reaction according to [1] or [2], one or more metal salts of Co, Mn, and Cu are selected to form a mixed aqueous solution, and an alkaline solution A method for producing ultrafine oxide particles, wherein a precipitate is produced by mixing with water, filtered, washed with water, dried, and then subjected to heat treatment.
[4] An ozone oxidation reaction method in which, when the gas containing the VOC according to [1] is mixed with ozone, the concentration ratio between the injected ozone concentration and the raw material VOC concentration (converted to C1) is 0.8 or more.
[5] The oxide ultrafine particle powder having a BET specific surface area of 80 m 2 or more in the transition metal-containing oxide for VOC ozone oxidation reaction according to any one of [1] to [3].

本発明において、気相中のオゾン酸化分解反応に比べ、酸化反応速度が10〜100倍程度に達することが確認された。これは、気相に於いてはオゾンはVOC成分以外の第3物質との衝突により酸化分解に寄与することなく分解する頻度が多くなり、その効率はそれ程大きなものとはならない。一方、多孔質体内でのオゾンとVOC成分の酸化反応に於いては、遷移金属がオゾンで酸化状態となり、ここにVOC拡散して遷移金属を還元して、VOCは酸化する酸化−還元反応が進行していると推定している。この効率的なオゾンのVOCの酸化のためのオゾンの消費量は、上記気相反応に比べ大幅に低減され且つ、顕著な反応速度の上昇が達成される。これは従来のオゾン酸化反応の知見においては何ら教示されていないものである。この性質を利用するとVOC処理に於けるオゾンの使用量を大幅に削減することが可能となる。 In the present invention, it was confirmed that the oxidation reaction rate reached about 10 to 100 times as compared with the ozone oxidative decomposition reaction in the gas phase. This is because, in the gas phase, ozone frequently decomposes without contributing to oxidative decomposition due to collision with a third substance other than the VOC component, and the efficiency is not so great. On the other hand, in the oxidation reaction of ozone and the VOC component in the porous body, the transition metal is oxidized by ozone, and VOC diffuses therein to reduce the transition metal, and the oxidation-reduction reaction in which VOC is oxidized. Presumed to be progressing. The consumption of ozone for this efficient ozone VOC oxidation is greatly reduced compared to the gas phase reaction and a significant increase in reaction rate is achieved. This is not taught at all in the knowledge of the conventional ozone oxidation reaction. Utilizing this property makes it possible to greatly reduce the amount of ozone used in the VOC treatment.

本発明の一実施態様を図−1に示す。1例として、VOCとしてMEK25ppmを含有する排ガス1,000mN/hを一流路通じて遷移金属多孔体充填塔3に供給する。遷移金属多孔体としては、Co、Mn、Cu含有超微粒子酸化物、Co含有超微粒子酸化物等が考えられる。これらのスラリーを、アルミナ、アルミナシリケート、シリカのコルゲートに担持して、乾燥、焼成してモノリスに成型して使用した。同時にオゾン発生機で発生したオゾンを他の流路から前述流路に結び、VOCと混合して、充填塔3に供給する。(充填塔には遷移金属多孔質体が充填されている。ここで入口オゾン濃度/入口VOC濃度(C1換算)比を0.8以上、SV値(1mの充填塔当たりの処理ガス流量(mN/h)、単位(1/h))を、入口VOC濃度100ppm(C1換算)でSV値10,000以下、入口VOC濃度10ppm(C1換算)でSV値25,000以下、入口VOC濃度1ppm(C1換算)でSV値50,000以下とすると供給されるVOCの90%以上が分解される。 One embodiment of the present invention is shown in FIG. As an example, an exhaust gas 1,000 m 3 N / h containing 25 ppm of MEK as VOC is supplied to the transition metal porous body packed tower 3 through one flow path. As the transition metal porous body, Co, Mn, Cu-containing ultrafine oxide, Co-containing ultrafine oxide, and the like can be considered. These slurries were supported on alumina, alumina silicate, and silica corrugates, dried, fired, and molded into a monolith for use. At the same time, the ozone generated by the ozone generator is connected from the other flow path to the flow path, mixed with VOC, and supplied to the packed tower 3. (The packed tower is filled with a transition metal porous body. Here, the inlet ozone concentration / inlet VOC concentration (C1 conversion) ratio is 0.8 or more and the SV value (processing gas flow rate per packed tower of 1 m 3 ( m 3 N / h), unit (1 / h)) at an inlet VOC concentration of 100 ppm (C1 conversion), an SV value of 10,000 or less, an inlet VOC concentration of 10 ppm (C1 conversion), an SV value of 25,000 or less, an inlet VOC If the SV value is 50,000 or less at a concentration of 1 ppm (C1 conversion), 90% or more of the supplied VOC is decomposed.

VOCとしてMEK25ppmを含有する排ガス1,000mN/h 1を流路2に通じて遷移金属多孔体充填塔3に供給する。遷移金属多孔体4としては、Sample−AとしてCo、Mn、Cu含有超微粒子酸化物を、Sample−Bとしては、Co含有超微粒子酸化物を調製した。 An exhaust gas 1,000 m 3 N / h 1 containing 25 ppm of MEK as VOC is supplied to the transition metal porous body packed tower 3 through the flow path 2. As the transition metal porous body 4, Co-, Mn, and Cu-containing ultrafine oxides were prepared as Sample-A, and Co-containing ultrafine oxides were prepared as Sample-B.

Sample−Aの調製は、Co、Mn、Cuの金属塩水溶液とアルカリ水溶液を水媒体中に滴下し、各金属の共沈物を析出させた。得られた共沈物を濾過、水洗、乾燥した後100〜500℃の範囲で熱処理を行い、目的とするCo、Mn、Cu含有超微粒子酸化物を得た。この際に使用する各金属の塩は、市販の金属塩であればいずれも使用可能で、硫酸塩、硝酸塩、塩化物などが使用可能である。また使用するアルカリは苛性ソーダ、ソーダ゛灰、重曹などの一般的なアルカリが使用可能である。混合する金属塩の割合は各金属の全体に対するモル比でCoは40モル%以下、Mnは30〜70モル%、Cuは25〜45モル%の範囲が好適である。また、金属塩の濃度は概ね5〜50重量%の範囲が適当である。沈殿条件としては、沈殿pHは遷移金属が沈殿する範囲のpH領域にあれば微細な沈殿が析出でき、概ね5〜14の範囲が適当である。得られた沈殿物は無定形に近いが、結晶をより完全なものにするためには熱処理が必要で、100〜500℃の範囲が良好である。熱処理温度が高いと比表面積が減少し、VOC吸着サイトが減少するため吸着特性が劣化する。 Sample-A was prepared by dropping a metal salt aqueous solution of Co, Mn, and Cu and an aqueous alkali solution into an aqueous medium to precipitate a coprecipitate of each metal. The obtained coprecipitate was filtered, washed with water and dried, and then subjected to a heat treatment in the range of 100 to 500 ° C. to obtain the intended Co, Mn, Cu-containing ultrafine oxide. Any metal salt can be used as long as it is a commercially available metal salt, and sulfates, nitrates, chlorides, and the like can be used. As the alkali to be used, general alkalis such as caustic soda, soda ash, and baking soda can be used. The ratio of the metal salt to be mixed is preferably in the range of 40 mol% or less, Co in the range of 30 to 70 mol%, and Cu in the range of 25 to 45 mol% with respect to the total amount of each metal. The concentration of the metal salt is generally in the range of 5 to 50% by weight. As the precipitation condition, if the precipitation pH is in the pH region where the transition metal is precipitated, a fine precipitate can be precipitated, and the range of about 5 to 14 is appropriate. The obtained precipitate is almost amorphous, but heat treatment is necessary to make the crystal more complete, and the range of 100 to 500 ° C. is good. When the heat treatment temperature is high, the specific surface area decreases and the VOC adsorption sites decrease, so that the adsorption characteristics deteriorate.

Sample−Bの調整はCoの金属溶液とアルカリ水溶液を水媒体中に滴下し、Co金属の沈殿物を得た。得られた沈殿物を濾過、水洗、乾燥した後300〜800℃の範囲で熱処理を行い、目的とするCo含有微粒子酸化物を得た。この際に使用するCo金属の塩は、市販の金属塩であればいずれも使用可能で、硫酸塩、硝酸塩、塩化物などが使用可能である。また使用するアルカリは苛性ソーダ、ソーダ゛灰、重曹などの一般的なアルカリが使用可能である。また金属塩の濃度は概ね5〜50重量%の範囲が適当である。沈殿条件としては、沈殿pHはCo金属が沈殿する範囲のpH領域にあれば微細な沈殿が析出でき、概ね5〜14の範囲が適当である。得られた沈殿物は無定形に近いが、一部結晶化しており、さらに結晶を完全なものにするためには熱処理が必要で、300〜800℃の範囲が良好である。熱処理温度が高いと比表面積が減少し、VOC吸着サイトが減少するため吸着特性が劣化する。 For the adjustment of Sample-B, a Co metal solution and an alkaline aqueous solution were dropped into an aqueous medium to obtain a Co metal precipitate. The obtained precipitate was filtered, washed with water, and dried, and then heat-treated at a temperature in the range of 300 to 800 ° C. to obtain a target Co-containing fine particle oxide. Any Co metal salt can be used as long as it is a commercially available metal salt, and sulfates, nitrates, chlorides, and the like can be used. As the alkali to be used, general alkalis such as caustic soda, soda ash, and baking soda can be used. The concentration of the metal salt is generally in the range of 5 to 50% by weight. As the precipitation condition, if the precipitation pH is in the pH region where Co metal is precipitated, a fine precipitate can be precipitated, and a range of about 5 to 14 is appropriate. The obtained precipitate is almost amorphous, but is partially crystallized, and further heat treatment is necessary to complete the crystal, and the range of 300 to 800 ° C. is good. When the heat treatment temperature is high, the specific surface area decreases and the VOC adsorption sites decrease, so that the adsorption characteristics deteriorate.

上記記載の製造法によるSample−A、Sample−Bは各金属の酸化物や炭酸塩、塩基性炭酸塩、シュウ酸塩などを組み合わせて乾式混合し、焼成することにより製造が可能であるが、各金属の酸化物などの混合原料は1次粒子が大きく、焼成して得られる粉末の粒子径はサブミクロンが限界で、それ以下の粒子径を作ることは難しい。従って、比表面積も数m程度で、吸着サイトの少ない粉末になる。それに対し、上記記載の湿式法による粉末は場合により、100mを超えるサンプルを作ることができるため、当該VOC除去に極めて有用である。 Sample-A and Sample-B by the above-described production method can be produced by dry-mixing and firing oxides, carbonates, basic carbonates, oxalates and the like of each metal, A mixed raw material such as an oxide of each metal has large primary particles, and the particle size of the powder obtained by firing is limited to submicrons, and it is difficult to make a particle size smaller than that. Therefore, the specific surface area is about several m 2 and the powder has few adsorption sites. On the other hand, since the powder by the wet method described above can make a sample exceeding 100 m 2 in some cases, it is extremely useful for removing the VOC.

このようにして得られた超微粒子遷移金属酸化物を10w%のスラリーとして、アルミナシリケートで成型されたコルゲート(平板と波状板を交互に積層した基材(平板間隔2mm、波状板山−山間隔2mm、板厚0.2mm)に担持して、250℃で乾燥、焼成してモノリスに成型して使用した。また参照のために従来法であるゼオライトとしてSiO/Al比100の超安定Y型ゼオライト(USY)モノリスに成型して使用した。また同時にオゾン発生機5で発生したオゾン(最大500g/hr)を流路6から流路2に結び、VOCと混合して、充填塔3に供給する。(充填塔3は直径60cm、高さ30cmの大きさでありここに80Lの遷移金属多孔質体4が充填されている。(空塔速度は1m/sec、SV値は10,0001/hで有る。)オゾン酸化分解後の排ガスは流路7から流過するので採取ライン8から排ガスを採取して反応生成物、未反応オゾン、未反応VOCの濃度計測を行い本発明の有効性を検証した。本発明の試験条件及び各種シリカ多孔質体のオゾン酸化分解特性を吸着工程出口MEK濃度、O濃度で評価したのでこれを表−1に示す。 The thus obtained ultrafine transition metal oxide was made into a slurry of 10 w%, and a corrugated substrate made of alumina silicate (a substrate in which flat plates and corrugated plates were alternately laminated (flat plate interval 2 mm, corrugated plate crest-crest interval) 2 mm, plate thickness 0.2 mm), dried and calcined at 250 ° C., molded into a monolith and used as a conventional zeolite for reference with a SiO 2 / Al 2 O 3 ratio of 100. Used by molding into ultra-stable Y-type zeolite (USY) monolith, and at the same time, ozone (maximum 500 g / hr) generated by the ozone generator 5 is connected from the flow path 6 to the flow path 2 and mixed with VOC for filling. It is supplied to the tower 3. (The packed tower 3 has a diameter of 60 cm and a height of 30 cm, and is filled with 80 L of the transition metal porous body 4. (The superficial velocity is 1 m / sec, the SV value is The exhaust gas after ozone oxidative decomposition flows from the flow path 7, so the exhaust gas is sampled from the sampling line 8, and the concentration of the reaction product, unreacted ozone and unreacted VOC is measured. The effectiveness of the invention was verified, and the test conditions of the present invention and the ozone oxidative decomposition characteristics of various porous silica materials were evaluated by the adsorption process outlet MEK concentration and O 3 concentration, which are shown in Table 1.

以下、本発明を実施例に基づいて具体的に説明する
表−1に基づき、遷移金属多孔体として、1:共沈法で調製したCo、Mn、Cu酸化物を含有する超微粒子から構成される多孔質体モノリス(Sample−A)、2:沈殿法で調製したCo酸化物を含有する超微粒子から構成される多孔質体モノリス(Sample−B)、3:参照として公知多孔質体として超安定Y型ゼオライト(USY)(Sample−C)からなるモノリスを充填塔に充填して、VOCのオゾン酸化反応による分解性能を評価した。
試験では、1)入口ガス量/充填塔体積比(SV値(1/hr)、2)入口オゾン濃度/入口MEK濃度(C1換算)比、3)入口オゾン濃度(C1換算)を変更して、A)MEKの流過率(MEK出口/入口濃度比)、B)オゾン流過率(オゾン出口/入口濃度比)で評価した。
Hereinafter, based on Table-1 which demonstrates this invention concretely based on an Example, it is comprised from the ultrafine particle containing Co, Mn, and Cu oxide prepared by 1: coprecipitation method as a transition metal porous body. Porous monolith (Sample-A), 2: Porous monolith (Sample-B) composed of ultrafine particles containing Co oxide prepared by the precipitation method, 3: As a known porous body A monolith made of stable Y-type zeolite (USY) (Sample-C) was packed in a packed tower, and the decomposition performance of the VOC by the ozone oxidation reaction was evaluated.
In the test, 1) the inlet gas amount / packed tower volume ratio (SV value (1 / hr), 2) the inlet ozone concentration / inlet MEK concentration (C1 conversion) ratio, and 3) the inlet ozone concentration (C1 conversion) were changed. A) MEK flow rate (MEK outlet / inlet concentration ratio) and B) ozone flow rate (ozone outlet / inlet concentration ratio).

試験結果及び結果に基づく評価を表−2a、表−2b、表−2cに示す。
表−2の試験条件でRunをハイフンで結ぶ3桁の数字で表したが、左端の数字が、1は、共沈法で調製したCo、Mn、Cu含有酸化物超微粒子モノリスを表し、2は、沈殿法で調製したCo含有酸化物超微粒子モノリスを表し、3は、USYモノリスを表す。次に中央の数字が、1は、実験変数の入口ガス量の変更を表し、2は、入口オゾン量の変更を表し、3は、入口MEK濃度の変更を表した。
右端の数字は、各モノリス、実験変数に於ける実験条件を表している。
この表記に基づき、Sample−Aの試験結果を表−2aに記し、Sample−Bの結果を表−2b、Sample−Cの結果を表−2cに記した。
Test results and evaluations based on the results are shown in Table-2a, Table-2b, and Table-2c.
In the test conditions shown in Table 2, the three-digit number connecting Run with hyphens, the leftmost number 1 represents a Co, Mn, Cu-containing oxide ultrafine monolith prepared by a coprecipitation method. Represents a Co-containing oxide ultrafine particle monolith prepared by a precipitation method, and 3 represents a USY monolith. Next, the central number 1 represents a change in the inlet gas amount as an experimental variable, 2 represents a change in the inlet ozone amount, and 3 represents a change in the inlet MEK concentration.
The numbers on the right end represent the experimental conditions for each monolith and experimental variable.
Based on this notation, the test results of Sample-A are shown in Table-2a, the results of Sample-B are shown in Table-2b, and the results of Sample-C are shown in Table-2c.

(入口ガス量依存性)
入口ガス量を、5,000mN/hから250mN/h迄変更すると、SV値は、60,000から3,000に低下する。この時、Sample−Aでは、MEK流過率は、36%から1.2%に低下する。Sample−Bでは、43%から1.4%に変化し、Sample−Cでは、64.8%から5.4%に変化する。
Co,Mn,Cu酸化物超微粒子(Sample−A)が最も良い性能を示し、Co含有酸化物超微粒子(Sample−B)がこれに続き、USY(Sample−C)の性能はかなり低い。
(Depends on inlet gas amount)
When the inlet gas amount is changed from 5,000 m 3 N / h to 250 m 3 N / h, the SV value decreases from 60,000 to 3,000. At this time, in Sample-A, the MEK flow rate decreases from 36% to 1.2%. In Sample-B, it changes from 43% to 1.4%, and in Sample-C, it changes from 64.8% to 5.4%.
Co, Mn, Cu oxide ultrafine particles (Sample-A) show the best performance, followed by Co-containing oxide ultrafine particles (Sample-B), and the performance of USY (Sample-C) is considerably low.

(オゾン注入量依存性)
入口オゾン濃度/入口MEK濃度(C1換算)比が1.3から0.8の間で変更するように、オゾンの注入量を、0.27−0.17kg/hの間で注入量を変更した。
Sample−Aでは、MEK流過率は、4%から20%に上昇する。このことから、入口オゾン濃度/入口MEK濃度(C1換算)比は、1以上を保持することが必要であり、C1換算MEK濃度に対応して、入口オゾン濃度/入口MEK濃度(C1換算)比>1での、オゾンの注入でMEK流過率10%以下が達成できる。ここでも、MEK分解性能は、Sample−A,Sample−B,Sample−Cの順で有り、USYに比べ遷移金属多孔質体のVOC分解性能の顕著な優位性が確認できた。
(Dependence on ozone injection amount)
Change the injection amount of ozone between 0.27 and 0.17 kg / h so that the inlet ozone concentration / inlet MEK concentration (C1 conversion) ratio changes between 1.3 and 0.8. did.
In Sample-A, the MEK flow rate increases from 4% to 20%. Therefore, the inlet ozone concentration / inlet MEK concentration (C1 conversion) ratio needs to be maintained at 1 or more, and the inlet ozone concentration / inlet MEK concentration (C1 conversion) ratio corresponds to the C1 conversion MEK concentration. A MEK flow rate of 10% or less can be achieved by ozone injection at> 1. Here again, the MEK decomposition performance is in the order of Sample-A, Sample-B, and Sample-C, and it was confirmed that the VOC decomposition performance of the transition metal porous material was significantly superior to that of USY.

(MEK濃度依存性)
入口MEK濃度(C1換算)を100から1ppmの間で変更して、MEK流過率が10%以下となる入口流量を調整した。
(MEK concentration dependency)
The inlet MEK concentration (C1 conversion) was changed between 100 and 1 ppm, and the inlet flow rate at which the MEK flow rate was 10% or less was adjusted.

Sample−Aを例にすると、MEK濃度100ppmでは、MEK流過率10%以下を確保できる、入口流量は1,000mN/h程度(SV10,000)である。ここでMEK濃度を10ppmに下げると流過率10%以下を確保できる流量は2,500mN/h程度(SV25,000)となり、MEK濃度1ppmでは、入口ガス量5,000mN/h(SV50,000)でもMEK流過率10%以下が達成できる。これから判るように、MEK入口濃度が下がると、より大きなSV値(少ない充填量)でMEK分解性能が達成できることが判る。ここでも、MEK分解性能は、Sample−A,Sample−B,Sample−Cの順で有り、USYに比べ遷移金属多孔質体のVOC分解性能の顕著な優位性が確認できた。 Taking Sample-A as an example, at an MEK concentration of 100 ppm, an MEK flow rate of 10% or less can be secured, and the inlet flow rate is about 1,000 m 3 N / h (SV10,000). Here, when the MEK concentration is lowered to 10 ppm, the flow rate at which a flow rate of 10% or less can be secured is about 2,500 m 3 N / h (SV25,000). When the MEK concentration is 1 ppm, the inlet gas amount is 5,000 m 3 N / h. Even with (SV50,000), a MEK flow rate of 10% or less can be achieved. As can be seen from this, when the MEK inlet concentration decreases, the MEK decomposition performance can be achieved with a larger SV value (small filling amount). Here again, the MEK decomposition performance is in the order of Sample-A, Sample-B, and Sample-C, and it was confirmed that the VOC decomposition performance of the transition metal porous material was significantly superior to that of USY.

(VOCの種類への汎用性)
入口ガス量を、1,000mN/h、SV値は、12,000、使用する遷移金属多孔質体は、MEKオゾン処理で最も良好なオゾン分解性能を示した、Co,Mn,Cu系多孔質体のSample−Aを充填し、注入オゾン濃度/VOC濃度(C1換算)比1.2として、処理対象VOCとしてMEKに替えて、1)酢酸エチル100ppm asC1(25ppm as 酢酸エチル)、2)シクロヘキサノン100ppm asC1(16.6ppm as シクロヘキサノン)、3)トルエン100ppm asC1(14.3ppm as トルエン)、4)スチレン100ppm asC1(12.5ppm as スチレン)、5)キシレン100ppm asC1(12.5ppm as キシレン)、6)アセトアルデヒド100ppm asC1(50ppm as アセトアルデヒド)、7)プロピオンアルデヒド50ppm asC1(16.6ppm as プロピオンアルデヒド)、8)プロピオン酸50ppm asC1(16.6ppm as プロピオン酸)、9)酢酸150ppm asC1(75ppm as 酢酸)のオゾン酸化処理を行った。この時の流過率は、1)酢酸エチル3%、2)シクロヘキサノン6%、3)トルエン8%、4)スチレン6%、5)キシレン5%、6)アセトアルデヒド15%、7)プロピオンアルデヒド10%、8)プロピオン酸4%、9)酢酸3%の良好な分解性能を示した。
(General versatility to VOC types)
Inlet gas amount is 1,000 m 3 N / h, SV value is 12,000, and the transition metal porous body to be used is the Co, Mn, Cu system that showed the best ozonolysis performance by MEK ozone treatment. Sample-A of a porous body is filled, and the injection ozone concentration / VOC concentration (C1 conversion) ratio is 1.2. Instead of MEK as the VOC to be treated, 1) ethyl acetate 100 ppm asC1 (25 ppm as ethyl acetate), 2 ) Cyclohexanone 100 ppm asC1 (16.6 ppm as cyclohexanone), 3) Toluene 100 ppm asC1 (14.3 ppm as toluene), 4) Styrene 100 ppm asC1 (12.5 ppm as styrene), 5) Xylene 100 ppm asC1 (12.5 ppm as xylene) 6) Acetaldehyde 100 ppm a C1 (50 ppm as acetaldehyde), 7) Propionaldehyde 50 ppm asC1 (16.6 ppm as propionaldehyde), 8) Propionic acid 50 ppm asC1 (16.6 ppm as propionic acid), 9) Acetic acid 150 ppm asC1 (75 ppm as acetic acid) ozone oxidation Processed. The flow rates at this time were as follows: 1) ethyl acetate 3%, 2) cyclohexanone 6%, 3) toluene 8%, 4) styrene 6%, 5) xylene 5%, 6) acetaldehyde 15%, 7) propionaldehyde 10 %, 8) propionic acid 4%, 9) acetic acid 3%.

(気相無機還元性化合物への適用)
入口ガス量を、1,000mN/h、SV値は、12,000、使用する遷移金属多孔質体は、VOCオゾン処理で最も良好なオゾン分解性能を示した、Co、Mn、Cu系多孔質体のSample−Aを充填し、注入オゾン濃度/気相無機還元性化合物濃度比2として、処理対象気相無機還元性化合物として、1)アンモニア100ppm、2)メチルメルカプタン10ppm、3)トリメチルアミン100ppm、4)硫化水素10ppm、5)一酸化炭素10ppmのオゾン酸化処理を行った。この時1)アンモニア流過率は、0.5%、2)メチルメルカプタン流過率1%、3)トリメチルアミン流過率6%、4)硫化水素流過率1%、5)一酸化炭素流過率5%の良好な分解性能を示した。
このことから当該発明の適用により、オゾンに対して還元性化合物であるVOCに対し従来全く示唆されなかった処理効率が示された。
(Application to gas phase inorganic reducing compounds)
The inlet gas amount is 1,000 m 3 N / h, the SV value is 12,000, and the transition metal porous body used has the best ozonolysis performance in the VOC ozone treatment. Sample-A of a porous body is filled, and the injection ozone concentration / gas phase inorganic reducing compound concentration ratio is 2, the gas phase inorganic reducing compound to be treated is 1) ammonia 100 ppm, 2) methyl mercaptan 10 ppm, 3) trimethylamine 100 ppm, 4) 10 ppm of hydrogen sulfide, and 5) ozone oxidation treatment of 10 ppm of carbon monoxide. At this time, the ammonia flow rate was 0.5%, 2) methyl mercaptan flow rate 1%, 3) trimethylamine flow rate 6%, 4) hydrogen sulfide flow rate 1%, and 5) carbon monoxide flow. Good decomposition performance with an excess rate of 5% was exhibited.
From this, application of the present invention showed a treatment efficiency that has never been suggested for VOC, which is a reducing compound for ozone.

本発明は大気汚染防止法で排出規制が強化されつつある揮発性有機化合物(VOC)の処理、悪臭防止法で排出規制が強化されつつある悪臭処理、農作物鮮度保持に当たって障害因子となるエチレン、アルデヒド、テルペンの除去のための、大風量、回収するには低濃度のVOCを処理への適用が期待される。   The present invention relates to treatment of volatile organic compounds (VOC) whose emission regulations are being tightened by the Air Pollution Control Law, malodor treatment whose emissions regulations are being tightened by the Malodor Control Law, and ethylene and aldehydes which are obstacles in maintaining the freshness of crops In order to recover terpene, it is expected to apply a large amount of air to the processing, and to recover VOC at a low concentration.

本発明の方法の一実施態様を実施するフローを示す概略図である。FIG. 2 is a schematic diagram illustrating a flow for carrying out an embodiment of the method of the present invention.

流路 ―――1、2a、2b、2c、2d、5a、5b、5c、5d、6、8、11
吸着塔―――3a、3b、3c、3d
トルエン吸着塔―――4a、4b、4c、4d
オゾン発生器―――7
オゾン吸着反応器―――9
高シリカゼオライトハニカム―――10
排ガス―――1
流路 ―――2、6、7
遷移金属多孔体充填塔―――3
遷移金属多孔体―――4
オゾン発生機―――5
採取ライン―――8
Flow path --- 1, 2a, 2b, 2c, 2d, 5a, 5b, 5c, 5d, 6, 8, 11
Adsorption tower--3a, 3b, 3c, 3d
Toluene adsorption tower--4a, 4b, 4c, 4d
Ozone generator--7
Ozone adsorption reactor --- 9
High silica zeolite honeycomb--10
Exhaust gas
Flow path ――― 2, 6, 7
Transition metal porous packed tower --- 3
Transition metal porous body --- 4
Ozone generator--5
Sampling line--8

Claims (5)

VOCおよび/または気相無機還元性化合物を含有するガスをオゾンと混合した後、遷移金属含有酸化物多孔質体と接触させて、VOCおよび/または気相無機還元性化合物とオゾンの促進酸化で、VOCおよび/または気相無機還元性化合物の高効率な分解を行なうことを特長とするVOCおよび/または気相無機還元性化合物のオゾン酸化反応方法。 A gas containing VOC and / or a gas phase inorganic reducing compound is mixed with ozone, and then contacted with a porous transition metal-containing oxide porous material to promote oxidation of VOC and / or gas phase inorganic reducing compound and ozone. A method for ozone oxidation reaction of VOC and / or gas phase inorganic reducing compound, characterized in that VOC and / or gas phase inorganic reducing compound is efficiently decomposed. 請求項1記載のVOCおよび/または気相無機還元性化合物のオゾン酸化反応用遷移金属含有酸化物多孔質体としてCo,Mn,Cuを含む酸化物を単独または複数から選択して調製する酸化物超微粒子を使用する、VOCおよび/または気相無機還元性化合物のオゾン酸化反応方法。 An oxide prepared by selecting one or more oxides containing Co, Mn, and Cu as the transition metal-containing oxide porous material for ozone oxidation reaction of the VOC and / or gas phase inorganic reducing compound according to claim 1 A method for ozone oxidation reaction of VOC and / or gas phase inorganic reducing compound using ultrafine particles. 請求項1または2に記載のVOCおよび/または気相無機還元性化合物オゾン酸化反応用遷移金属含有酸化物の調製法として、Co,Mn,Cuの金属塩から1種類以上を選び混合水溶液を作り、アルカリ溶液と混合することにより沈殿物を生成させて濾過、水洗、乾燥した後、熱処理を施すことを特徴とする酸化物超微粒子の製造方法。 As a method for preparing the transition metal-containing oxide for the VOC and / or gas phase inorganic reducing compound ozone oxidation reaction according to claim 1 or 2, one or more metal salts of Co, Mn, and Cu are selected and a mixed aqueous solution is prepared. A method for producing ultrafine oxide particles, wherein a precipitate is formed by mixing with an alkali solution, filtered, washed with water, dried, and then subjected to heat treatment. 請求項1または2に記載のVOCを含有するガスをオゾンと混合する際、注入オゾン濃度と原料VOCおよび/または気相無機還元性化合物濃度(C1換算)の濃度比が0.8以上となるオゾン酸化反応方法。 When the gas containing the VOC according to claim 1 or 2 is mixed with ozone, the concentration ratio between the injected ozone concentration and the raw material VOC and / or gas phase inorganic reducing compound concentration (C1 conversion) becomes 0.8 or more. Ozone oxidation reaction method. 請求項1〜3のいずれか1項に記載のVOCおよび/または気相無機還元性化合物オゾン酸化反応用遷移金属含有酸化物において、BET比表面積が80m以上である酸化物超微粒子粉末。
The VOC and / or gas phase inorganic reducing compound transition metal containing oxide for ozone oxidation reaction according to any one of claims 1 to 3, wherein the oxide ultrafine particle powder has a BET specific surface area of 80 m 2 or more.
JP2014051021A 2014-03-14 2014-03-14 Method for ozone oxidation reaction of VOC and / or gas phase inorganic reducing compound and method for producing ultrafine oxide particles used in the method Active JP6396045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014051021A JP6396045B2 (en) 2014-03-14 2014-03-14 Method for ozone oxidation reaction of VOC and / or gas phase inorganic reducing compound and method for producing ultrafine oxide particles used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014051021A JP6396045B2 (en) 2014-03-14 2014-03-14 Method for ozone oxidation reaction of VOC and / or gas phase inorganic reducing compound and method for producing ultrafine oxide particles used in the method

Publications (2)

Publication Number Publication Date
JP2015174017A true JP2015174017A (en) 2015-10-05
JP6396045B2 JP6396045B2 (en) 2018-09-26

Family

ID=54253744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014051021A Active JP6396045B2 (en) 2014-03-14 2014-03-14 Method for ozone oxidation reaction of VOC and / or gas phase inorganic reducing compound and method for producing ultrafine oxide particles used in the method

Country Status (1)

Country Link
JP (1) JP6396045B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056517A1 (en) * 2015-09-30 2017-04-06 吸着技術工業株式会社 Ozone oxidative decomposition treatment method for vocs and/or gaseous inorganic reducing compounds in gas
CN109414647A (en) * 2016-10-07 2019-03-01 托普索公司 It is a kind of for the clean method of cryogenic gas and for the catalyst of this method
US10493423B2 (en) 2015-09-30 2019-12-03 Futamura Kagaku Kabushiki Kaisha Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method
JP2020081934A (en) * 2018-11-20 2020-06-04 フタムラ化学株式会社 Filter body used for ozone oxidization decomposition treatment, and production method of the same
CN114534662A (en) * 2022-03-08 2022-05-27 昆明理工大学 Method for removing organic matters in sodium aluminate solution by ultrasonic-heterogeneous catalytic ozonation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330978A (en) * 1976-09-03 1978-03-23 Toshiba Corp Deodorizing apparatus
JPH02251226A (en) * 1989-03-23 1990-10-09 Sakai Chem Ind Co Ltd Air cleaning apparatus
JPH04275922A (en) * 1991-02-27 1992-10-01 Dainichiseika Color & Chem Mfg Co Ltd Production of multicomponent metal oxide powder
JPH06190236A (en) * 1992-12-24 1994-07-12 Ebara Infilco Co Ltd Method of purifying gas and device therefor
JPH09313584A (en) * 1996-05-31 1997-12-09 Yuushin Eng Kk Air cleaning and deodorizing sterilizer
JP2004267621A (en) * 2003-03-11 2004-09-30 Mitsubishi Electric Corp Device and method for deodorization
JP2006528055A (en) * 2003-06-19 2006-12-14 キャリア コーポレイション Bifunctional manganese oxide / titanium dioxide photocatalyst / thermal catalyst
JP2007125509A (en) * 2005-11-04 2007-05-24 Snt Co Sulfur compound removing agent, its manufacturing method and filter for removing sulfur compound
JP2007222697A (en) * 2005-12-26 2007-09-06 National Institute Of Advanced Industrial & Technology Decomposition/removal method for volatile organic compound
JP2010274178A (en) * 2009-05-27 2010-12-09 Kri Inc Agent for removing volatile harmful material and method for manufacturing the same
JP2013501615A (en) * 2009-08-11 2013-01-17 ビー・エイ・エス・エフ、コーポレーション Particulate air filter equipped with ozone catalyst and method for producing and using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330978A (en) * 1976-09-03 1978-03-23 Toshiba Corp Deodorizing apparatus
JPH02251226A (en) * 1989-03-23 1990-10-09 Sakai Chem Ind Co Ltd Air cleaning apparatus
JPH04275922A (en) * 1991-02-27 1992-10-01 Dainichiseika Color & Chem Mfg Co Ltd Production of multicomponent metal oxide powder
JPH06190236A (en) * 1992-12-24 1994-07-12 Ebara Infilco Co Ltd Method of purifying gas and device therefor
JPH09313584A (en) * 1996-05-31 1997-12-09 Yuushin Eng Kk Air cleaning and deodorizing sterilizer
JP2004267621A (en) * 2003-03-11 2004-09-30 Mitsubishi Electric Corp Device and method for deodorization
JP2006528055A (en) * 2003-06-19 2006-12-14 キャリア コーポレイション Bifunctional manganese oxide / titanium dioxide photocatalyst / thermal catalyst
JP2007125509A (en) * 2005-11-04 2007-05-24 Snt Co Sulfur compound removing agent, its manufacturing method and filter for removing sulfur compound
JP2007222697A (en) * 2005-12-26 2007-09-06 National Institute Of Advanced Industrial & Technology Decomposition/removal method for volatile organic compound
JP2010274178A (en) * 2009-05-27 2010-12-09 Kri Inc Agent for removing volatile harmful material and method for manufacturing the same
JP2013501615A (en) * 2009-08-11 2013-01-17 ビー・エイ・エス・エフ、コーポレーション Particulate air filter equipped with ozone catalyst and method for producing and using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056517A1 (en) * 2015-09-30 2017-04-06 吸着技術工業株式会社 Ozone oxidative decomposition treatment method for vocs and/or gaseous inorganic reducing compounds in gas
JP2017064648A (en) * 2015-09-30 2017-04-06 吸着技術工業株式会社 Ozone oxidative decomposition treatment method of voc and/or gas phase inorganic reductive compound in gas
US10493423B2 (en) 2015-09-30 2019-12-03 Futamura Kagaku Kabushiki Kaisha Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method
US10549235B2 (en) 2015-09-30 2020-02-04 Futamura Kagaku Kabushiki Kaisha Ozone oxidation decomposition treatment method for VOCs and/or gaseous inorganic reducing compounds in gas
CN109414647A (en) * 2016-10-07 2019-03-01 托普索公司 It is a kind of for the clean method of cryogenic gas and for the catalyst of this method
JP2020081934A (en) * 2018-11-20 2020-06-04 フタムラ化学株式会社 Filter body used for ozone oxidization decomposition treatment, and production method of the same
JP7177671B2 (en) 2018-11-20 2022-11-24 フタムラ化学株式会社 Filter body used for ozone oxidation decomposition treatment and manufacturing method thereof
CN114534662A (en) * 2022-03-08 2022-05-27 昆明理工大学 Method for removing organic matters in sodium aluminate solution by ultrasonic-heterogeneous catalytic ozonation
CN114534662B (en) * 2022-03-08 2024-01-30 昆明理工大学 Method for removing organic matters in sodium aluminate solution by ultrasonic-heterogeneous catalytic ozonation

Also Published As

Publication number Publication date
JP6396045B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
TWI826408B (en) A catalyst for catalyzing formaldehyde oxidation and the preparation and use of the same
JP6396045B2 (en) Method for ozone oxidation reaction of VOC and / or gas phase inorganic reducing compound and method for producing ultrafine oxide particles used in the method
JP5094717B2 (en) Method and apparatus for combining catalysts for reducing NOx in combustion products
JP7120650B2 (en) Purification agent manufacturing method, purification method using purification agent, and purification agent regeneration method
JP6656866B2 (en) Ozone oxidative decomposition treatment of VOC and / or gas phase inorganic reducing compound in gas
CN111889101A (en) Modified composite oxide catalyst for synergistic purification of VOCs and NO and preparation method thereof
JP2022514874A (en) Structured monolith catalysts for reducing NOx emissions in flue gas, their manufacturing methods, and their use
CN108686651B (en) Catalyst for simultaneously denitrifying and removing mercury from flue gas, and preparation method and application thereof
JP4861018B2 (en) Nitric oxide oxidation catalyst and nitric oxide oxidation method
CN105056950B (en) A kind of microwave based on coal-based carbon takes off NOx catalyst and preparation method thereof
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
KR100540239B1 (en) Purification catalyst, preparation process therefor and gas-purifying apparatus
KR20120096171A (en) Low temperature oxidation catalyst for removal of toxic gases and preparation method thereof
KR101329828B1 (en) A tungsten/titania-based catalyst and a method of preparing the same
JP2005111436A (en) Method for catalytically eliminating nitrogen oxide and device therefor
JP6680501B2 (en) Method for purifying hazardous substance-containing liquid and apparatus for purifying hazardous substance-containing liquid for carrying out the method
JP2001009281A (en) Ammonia decomposition catalyst and treatment of ammonia-containing waste gas
CN109420508B (en) Denitration catalyst, preparation method and low-temperature denitration process
JP7177671B2 (en) Filter body used for ozone oxidation decomposition treatment and manufacturing method thereof
JP3760076B2 (en) Adsorbent such as nitrogen oxide, method for producing the same, and method for removing nitrogen oxide and the like
JP2002320847A (en) Adsorbent for nitrogen oxide and/or sulfur oxide and method for removing nitrogen oxide and/or sulfur oxide
CN117205749A (en) Method for removing carbon monoxide in flue gas by coupling plasma discharge and catalytic oxidation
JP2001286751A (en) Basic gas absorbent and method for treating basic gas- containing exhaust gas
JPH04222631A (en) Ozone decomposing catalyst
JP2014008473A (en) Catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180829

R150 Certificate of patent or registration of utility model

Ref document number: 6396045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250