JP2015172528A - Ultrasonic measuring device and method - Google Patents

Ultrasonic measuring device and method Download PDF

Info

Publication number
JP2015172528A
JP2015172528A JP2014048518A JP2014048518A JP2015172528A JP 2015172528 A JP2015172528 A JP 2015172528A JP 2014048518 A JP2014048518 A JP 2014048518A JP 2014048518 A JP2014048518 A JP 2014048518A JP 2015172528 A JP2015172528 A JP 2015172528A
Authority
JP
Japan
Prior art keywords
probe
test body
wave
ultrasonic
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014048518A
Other languages
Japanese (ja)
Other versions
JP6440371B2 (en
Inventor
友則 木村
Tomonori Kimura
友則 木村
岡本 実
Minoru Okamoto
実 岡本
修三 和高
Shuzo Wadaka
修三 和高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014048518A priority Critical patent/JP6440371B2/en
Publication of JP2015172528A publication Critical patent/JP2015172528A/en
Application granted granted Critical
Publication of JP6440371B2 publication Critical patent/JP6440371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic measuring device capable of measuring sonic velocity requiring no complicated work even when surface wave is not identified.SOLUTION: A transmission probe 1 emits an ultrasonic to a test piece 100. A reception probe 2 receives the ultrasonic propagating on the test piece 100. A signal processing section 14 calculates the sonic velocity on the test piece 100 based on a signal received by a reception probe 2 in a reception state in which the ultrasonic propagates via longitudinal waves from the transmission probe 1 to a bottom face of the test piece 100, and propagates via transversal wave from the bottom face of the test piece 100 to the reception probe 2.

Description

この発明は、超音波を用いて試験体の音速を測定する超音波測定装置及び超音波測定方法に関するものである。   The present invention relates to an ultrasonic measurement apparatus and an ultrasonic measurement method for measuring the speed of sound of a specimen using ultrasonic waves.

近年構造物の損傷が顕在化しており、適切な維持管理が要求されている。コンクリート構造物においては強度の測定が重要である。コンクリートの強度はヤング率で表すことができ、ヤング率は音速で表すことができるため、コンクリートの音速を求める技術が望まれている。特に作業現場では、煩雑な作業を必要としない簡単な測定技術が望まれている。   In recent years, damage to structures has become obvious, and appropriate maintenance is required. Strength measurement is important for concrete structures. Since the strength of concrete can be expressed by Young's modulus, and Young's modulus can be expressed by sound velocity, a technique for obtaining the sound velocity of concrete is desired. In particular, a simple measurement technique that does not require complicated work is desired at the work site.

コンクリート中を伝搬する超音波は減衰が大きいため、音速測定では数十kHz〜数百kHz程度の周波数が用いられることが多い。このような周波数帯では波長が長いので、1個の探触子で試験体底面エコーを受信することが困難となるため、2個の探触子を用いた方法が用いられる。2個の探触子を用いた一般的な音速測定方法では、送信用探触子から超音波を発生させ、この超音波が試験体中を伝搬していく。底面方向に伝搬する超音波は、主に縦波である。縦波の超音波は試験体の底面で反射され、受信用探触子で受信される。この信号は一般に底面エコーと称されている。   Since ultrasonic waves propagating in concrete have a large attenuation, a frequency of about several tens of kHz to several hundreds of kHz is often used in sound velocity measurement. Since the wavelength in such a frequency band is long, it is difficult to receive the specimen bottom surface echo with a single probe, so a method using two probes is used. In a general sound speed measurement method using two probes, an ultrasonic wave is generated from a transmission probe, and this ultrasonic wave propagates through the specimen. Ultrasonic waves propagating in the bottom direction are mainly longitudinal waves. Longitudinal ultrasonic waves are reflected by the bottom surface of the specimen and received by a receiving probe. This signal is generally referred to as a bottom echo.

底面エコーが簡単な波形であれば、伝搬遅延時間を容易に測定できるので、試験体の音速も簡単に求めることができる。しかし送信用探触子と受信用探触子との距離によっては、測定が複雑になる場合もある。また、送信用探触子からは試験体の表面に沿って表面波が伝搬し、受信用探触子で受信される。表面波の音速は縦波よりも遅いため、受信時間が重なってしまう場合がある。底面エコーと表面波が重なると、底面エコーの伝搬遅延時間を測定することは容易ではない。   If the bottom echo is a simple waveform, the propagation delay time can be easily measured, so the sound speed of the specimen can be easily obtained. However, depending on the distance between the transmitting probe and the receiving probe, measurement may be complicated. Further, a surface wave propagates along the surface of the specimen from the transmitting probe and is received by the receiving probe. Since the speed of sound of the surface wave is slower than that of the longitudinal wave, reception times may overlap. When the bottom surface echo and the surface wave overlap, it is not easy to measure the propagation delay time of the bottom surface echo.

このような状況で音速を測定する従来技術として、例えば、特許文献1に記載されたような測定方法があった。この測定方法では、探触子間距離を変化させながら測定を繰り返し、開口合成法で音速あるいは試験体の厚さを求めるという方法である。また、例えば特許文献2に記載されているように、表面波の影響を抑制するために、受信信号から表面波の信号を差し引くようにした方法があった。   As a conventional technique for measuring the speed of sound in such a situation, for example, there is a measurement method described in Patent Document 1. In this measurement method, the measurement is repeated while changing the distance between the probes, and the sound speed or the thickness of the specimen is obtained by the aperture synthesis method. Further, as described in Patent Document 2, for example, there is a method in which a surface wave signal is subtracted from a received signal in order to suppress the influence of the surface wave.

特開平9−318607号公報JP 9-318607 A 特開平5−188043号公報Japanese Patent Laid-Open No. 5-188043

しかしながら、上記従来の測定方法のうち、特許文献1に記載された探触子間距離を変化させながら測定を繰り返す方法は、探触子間距離を変えて複数回データ採取を行う必要があり、このため、煩雑な作業を必要とするという問題があった。
また、特許文献2に記載された測定方法では、受信信号から表面波を差し引くため、表面波が特定できない場合には適用困難であるという問題があった。
However, among the conventional measurement methods described above, the method of repeating the measurement while changing the distance between the probes described in Patent Document 1 needs to perform data collection a plurality of times while changing the distance between the probes. For this reason, there was a problem of requiring complicated work.
Further, the measurement method described in Patent Document 2 has a problem that it is difficult to apply when the surface wave cannot be specified because the surface wave is subtracted from the received signal.

この発明は上記のような課題を解決するためになされたもので、表面波が特定できないといった場合でも、煩雑な作業を必要とすることなく音速測定が可能な超音波測定装置及び方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, and provides an ultrasonic measurement apparatus and method capable of measuring sound speed without requiring complicated work even when surface waves cannot be identified. With the goal.

この発明に係る超音波測定装置は、試験体中に超音波を送出する送信用探触子と、試験体中を伝搬した超音波を受信する受信用探触子と、超音波が送信用探触子から試験体の底面までは縦波で伝搬し、試験体の底面から受信用探触子までは横波で伝搬した受信状態で、受信用探触子の受信信号から試験体の音速を算出する信号処理部とを備えたものである。   An ultrasonic measurement apparatus according to the present invention includes a transmission probe that transmits ultrasonic waves into a test object, a reception probe that receives ultrasonic waves propagated through the test object, and an ultrasonic wave transmission probe. The sound velocity of the test object is calculated from the received signal of the receiving probe in the reception state where it propagates in the longitudinal wave from the probe to the bottom surface of the test object and is transmitted in the transverse wave from the bottom surface of the test object to the receiving probe. And a signal processing unit.

この発明の超音波測定装置は、超音波が送信用探触子から試験体の底面までは縦波で伝搬し、試験体の底面から受信用探触子までは横波で伝搬した受信状態で、受信用探触子の受信信号から試験体の音速を算出するようにしたので、表面波が特定できないといった場合でも、煩雑な作業を必要とせずに音速測定を行うことができる。   In the ultrasonic measurement apparatus of the present invention, ultrasonic waves propagate in a longitudinal wave from the transmitting probe to the bottom surface of the test body, and in a reception state in which the ultrasonic wave propagates from the bottom surface of the test body to the receiving probe in a transverse wave, Since the sound speed of the specimen is calculated from the reception signal of the receiving probe, the sound speed can be measured without requiring a complicated operation even when the surface wave cannot be identified.

この発明の実施の形態1による超音波測定装置を示す構成図である。It is a block diagram which shows the ultrasonic measuring apparatus by Embodiment 1 of this invention. この発明の実施の形態1による超音波測定装置の音場シミュレーション結果を示す説明図である。It is explanatory drawing which shows the sound field simulation result of the ultrasonic measuring apparatus by Embodiment 1 of this invention. この発明の実施の形態1による超音波測定装置の受信されたエコーとシミュレーション結果を示す説明図である。It is explanatory drawing which shows the echo and simulation result which were received of the ultrasonic measuring device by Embodiment 1 of this invention. この発明の実施の形態1による超音波測定装置のスパイク状の波形を生成する過程を示す説明図である。It is explanatory drawing which shows the process which produces | generates the spike-shaped waveform of the ultrasonic measuring device by Embodiment 1 of this invention. この発明の実施の形態1による超音波測定装置の異なる探触子距離の結果を示す説明図である。It is explanatory drawing which shows the result of the different probe distance of the ultrasonic measuring device by Embodiment 1 of this invention. この発明の実施の形態1による超音波測定装置の縦波底面エコーおよび横波底面エコーを用いて音速測定する場合の説明図である。It is explanatory drawing in the case of measuring a sound velocity using the longitudinal wave bottom face echo and the transverse wave bottom face echo of the ultrasonic measuring device by Embodiment 1 of this invention. この発明の実施の形態1による超音波測定装置の横波底面エコーだけを用いて音速測定する場合の説明図である。It is explanatory drawing at the time of measuring a sound speed using only the transverse wave bottom face echo of the ultrasonic measuring device by Embodiment 1 of this invention.

実施の形態1.
図1は、この発明の実施の形態1による超音波測定装置を示す構成図である。
図1に示す超音波測定装置は、送信用探触子1、受信用探触子2、送受信器10からなる。送信用探触子1は、試験体100上に設置され、送受信器10からの電気信号によって駆動されて、試験体100に対して超音波を送出するための探触子である。受信用探触子2は、試験体100上に設置され、送信用探触子1から送出されて試験体100内を伝搬した超音波を受信するための探触子であり、受信信号を送受信器10に出力するよう構成されている。送受信器10は、送信用探触子1を駆動すると共に受信用探触子2からの受信信号に基づいて試験体100の音速を測定する処理部であり、送信部11、受信部12、表示部13、信号処理部14を備えている。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing an ultrasonic measurement apparatus according to Embodiment 1 of the present invention.
The ultrasonic measurement apparatus shown in FIG. 1 includes a transmission probe 1, a reception probe 2, and a transceiver 10. The transmission probe 1 is a probe that is installed on the test body 100 and is driven by an electric signal from the transceiver 10 to transmit ultrasonic waves to the test body 100. The reception probe 2 is a probe that is installed on the test body 100 and receives ultrasonic waves transmitted from the transmission probe 1 and propagated through the test body 100, and transmits and receives reception signals. It is configured to output to the device 10. The transceiver 10 is a processing unit that drives the transmission probe 1 and measures the sound speed of the test body 100 based on the reception signal from the reception probe 2. The transmission unit 11, the reception unit 12, and the display Unit 13 and signal processing unit 14.

送信部11は、送信用探触子1から出力するための超音波の電気信号を送信用探触子1に供給するための処理部である。受信部12は、受信用探触子2からの電気信号を受信し、表示部13と信号処理部14とに送出する処理部である。表示部13は、受信用探触子2での受信結果や信号処理部14の処理結果等を表示するための表示出力部である。信号処理部14は、受信部12で受信された受信用探触子2からの受信信号に基づいて試験体100の音速を算出する演算部である。なお、図示は省略しているが、送受信器10には制御部が内蔵されており、送信部11、受信部12、表示部13および信号処理部14は、制御部からの信号により動作を制御される。   The transmission unit 11 is a processing unit for supplying an ultrasonic electrical signal to be output from the transmission probe 1 to the transmission probe 1. The receiving unit 12 is a processing unit that receives an electrical signal from the receiving probe 2 and sends it to the display unit 13 and the signal processing unit 14. The display unit 13 is a display output unit for displaying the reception result of the reception probe 2, the processing result of the signal processing unit 14, and the like. The signal processing unit 14 is a calculation unit that calculates the sound speed of the test body 100 based on the received signal from the receiving probe 2 received by the receiving unit 12. Although not shown, the transmitter / receiver 10 has a built-in control unit, and the transmission unit 11, the reception unit 12, the display unit 13, and the signal processing unit 14 are controlled in operation by signals from the control unit. Is done.

次に、実施の形態1の超音波測定装置における基本的な動作原理について説明する。
まず、コンクリート等の減衰材の音速測定を行うと、どのような信号が受信されるのかを、図2の音場シミュレーション結果を用いて説明する。図2は、試験体100として、厚さ120mmのコンクリートに対して周波数100kHzの探触子を用い、探触子間距離を100mmとしてシミュレーションを行って得られた試験体内音場である。送信用探触子1を励振してから10μs〜80μsの音場であり、時系列で並べたものである。送信用探触子1から発せられた縦波の超音波が試験体100中に伝搬していくが、受信用探触子2で一番最初に受信される信号は、試験体100の表面に沿って伝搬した縦波である。
TOFD(Time of Flight Diffraction)法ではこの縦波をラテラル波と呼んでいるので、ここでもラテラル波と呼ぶことにする。音場シミュレーション結果から、約20μs後にラテラル波が受信される様子が分かる。
Next, a basic operation principle in the ultrasonic measurement apparatus according to the first embodiment will be described.
First, what kind of signal is received when the sound velocity of an attenuation material such as concrete is measured will be described using the sound field simulation result of FIG. FIG. 2 shows an in-test body sound field obtained by performing a simulation using a probe with a frequency of 100 kHz on a concrete with a thickness of 120 mm as the test body 100 and a distance between the probes of 100 mm. The sound field is 10 μs to 80 μs after the transmission probe 1 is excited, and is arranged in time series. Longitudinal ultrasonic waves emitted from the transmission probe 1 propagate through the test body 100, but the signal received first by the reception probe 2 is transmitted to the surface of the test body 100. Longitudinal waves propagated along.
In the TOFD (Time of Flight Diffraction) method, this longitudinal wave is called a lateral wave, so it is also called a lateral wave here. From the sound field simulation result, it can be seen that the lateral wave is received after about 20 μs.

試験体100の表面に沿って伝搬する超音波は、ラテラル波だけではなく、表面波も伝搬する。音場シミュレーションから、約40μsで表面波が受信される様子が分かる。   The ultrasonic wave propagating along the surface of the test body 100 propagates not only a lateral wave but also a surface wave. It can be seen from the sound field simulation that the surface wave is received in about 40 μs.

試験体100の底面方向に伝搬した縦波は、底面で反射され、受信用探触子2で受信される。しかし音場シミュレーション結果から分かるように、反射する際に縦波だけでなく、モード変換により横波も発生する。従って、縦波底面エコーだけでなく横波底面エコーも受信される。   The longitudinal wave propagated toward the bottom surface of the test body 100 is reflected by the bottom surface and received by the receiving probe 2. However, as can be seen from the sound field simulation results, not only longitudinal waves but also transverse waves are generated by mode conversion when reflected. Therefore, not only the longitudinal bottom echo but also the transverse bottom echo is received.

音場シミュレーション結果から、受信されるエコーを時系列で並べると、
・ラテラル波
・表面波
・縦波底面エコー
・横波底面エコー
となる。
From the sound field simulation results, when the received echoes are arranged in time series,
・ Lateral waves, surface waves, longitudinal wave bottom echoes, and transverse wave bottom echoes.

図3には、シミュレーションで得られたエコーを実験結果と重ねて示す。実線が実験結果であり、破線がシミュレーション結果である。両者はほぼ一致していることから、シミュレーション結果は信頼できるものと考えられる。また図3には、音場シミュレーション結果から推定したエコーの解釈を併せて示している。図3に示すように、縦波底面エコーだけが受信される訳ではなく、4つの信号(ラテラル波、表面波、縦波、横波)が受信されており、複雑な波形となっている。   FIG. 3 shows echoes obtained by the simulation superimposed on the experimental results. A solid line is an experimental result and a broken line is a simulation result. Since both are almost the same, the simulation results are considered reliable. FIG. 3 also shows the interpretation of echoes estimated from the sound field simulation results. As shown in FIG. 3, not only the longitudinal wave bottom echo is received, but four signals (lateral wave, surface wave, longitudinal wave, and transverse wave) are received, resulting in a complex waveform.

音速を測定するだけであれば、エコーの振幅は無視できる。そこで、エコーの位相だけを強調した波形に整形し、以下説明することにする。まず、エコーの位相だけに強調した波形整形法について図4を参照しながら説明する。図4(a),(b),(c)は、それぞれ、AC波形、飽和波形、および微分波形である。   If only the speed of sound is measured, the echo amplitude can be ignored. Therefore, it is shaped into a waveform that emphasizes only the phase of the echo, and will be described below. First, a waveform shaping method emphasizing only the echo phase will be described with reference to FIG. 4A, 4B, and 4C are an AC waveform, a saturation waveform, and a differential waveform, respectively.

受信用探触子2からの信号は、図4(a)に示すようなAC波形である。このAC波形を、図4(b)に示すように増幅により飽和させ、飽和波形を求める。その後、図4(c)に示すように微分することによって、微分波形を求める。なお、このような演算は信号処理部14が行う。図4に示すように、AC波形のゼロクロス点が、微分波形ではスパイク状の波形となって現れる。スパイク状の波形であれば、伝搬遅延時間を読み取ることがAC波形よりも容易と考えられる。以下では、このスパイク状の波形で音速測定について説明する。   The signal from the receiving probe 2 has an AC waveform as shown in FIG. The AC waveform is saturated by amplification as shown in FIG. 4B to obtain a saturation waveform. Thereafter, the differential waveform is obtained by differentiating as shown in FIG. Note that such a calculation is performed by the signal processing unit 14. As shown in FIG. 4, the zero cross point of the AC waveform appears as a spike-like waveform in the differential waveform. If it is a spike-like waveform, it is considered easier to read the propagation delay time than the AC waveform. In the following, the sound velocity measurement will be described using this spike-like waveform.

図5は、探触子間距離を100mm、120mm、125mmとして実験を行って得られた受信信号を、スパイク状の波形で示したものである。図に示すように、探触子間距離100mmでは、表面波を表すスパイク状の波形、縦波底面エコーを表すスパイク状の波形(図では「縦波」として示している)、および横波底面エコーを表すスパイク状の波形(図では「横波」として示している)が、それぞれ分離して受信されている。しかし探触子間距離を離していくと、距離120mmでは表面波と縦波とが重なり始め、距離125mmでは両者が打ち消し合ってしまう。このような場合、縦波底面エコーを用いた音速測定はできない。   FIG. 5 shows received signals obtained by experiments with the inter-probe distances of 100 mm, 120 mm, and 125 mm as spike-like waveforms. As shown in the figure, at a probe distance of 100 mm, a spike-like waveform representing a surface wave, a spike-like waveform representing a longitudinal wave bottom echo (shown as “longitudinal wave” in the figure), and a transverse wave bottom echo Spike-shaped waveforms (shown as “lateral waves” in the figure) are separately received. However, when the distance between the probes is increased, the surface wave and the longitudinal wave begin to overlap at a distance of 120 mm, and both cancel each other at a distance of 125 mm. In such a case, sound velocity measurement using a longitudinal wave bottom echo cannot be performed.

一方、表面波と縦波底面エコーとが重なって音速測定ができない場合でも、図5に示すように、横波底面エコーは受信されている。従って、表面波と縦波底面エコーとが重なる場合には、横波底面エコーを用いれば、音速測定は可能である。そこで、本発明は、横波底面エコーを用いて音速測定を行うようにしたものである。以下、超音波測定装置の動作を説明する。   On the other hand, even when the surface wave and the longitudinal wave bottom echo overlap each other and the sound velocity cannot be measured, the transverse wave bottom echo is received as shown in FIG. Therefore, when the surface wave and the longitudinal wave bottom echo overlap, the sound velocity can be measured by using the transverse wave bottom echo. Therefore, the present invention is to perform sound velocity measurement using a transverse wave bottom echo. Hereinafter, the operation of the ultrasonic measurement apparatus will be described.

送信部11からの電気信号により、送信用探触子1が励振され、試験体100中には超音波が伝搬していく。図2の音場シミュレーション結果で示したように、試験体100中の超音波の伝搬経路は様々であり、試験体100の底面で反射されて受信される信号もあれば、試験体100の表面を伝搬して受信される信号もある。図1中では、矢印を付して底面エコーおよび表面波の伝搬経路を示している。試験体100中を伝搬した超音波を受信用探触子2で受信し、電気信号に変換して受信部12に送る。受信部12では、必要があれば受信信号を増幅し、結果を表示部13に送る。表示部13は、受信信号を表示する。
信号処理部14では、図4に示した波形生成プロセスに基づいて、スパイク状の波形を生成する。
The transmission probe 1 is excited by the electrical signal from the transmission unit 11, and ultrasonic waves propagate in the test body 100. As shown in the sound field simulation result of FIG. 2, there are various propagation paths of ultrasonic waves in the test body 100, and there are signals that are reflected and received by the bottom surface of the test body 100. Some signals are propagated through and received. In FIG. 1, arrows are attached to indicate bottom surface echo and surface wave propagation paths. The ultrasonic wave propagated through the test body 100 is received by the receiving probe 2, converted into an electric signal, and sent to the receiving unit 12. The receiving unit 12 amplifies the received signal if necessary, and sends the result to the display unit 13. The display unit 13 displays the received signal.
The signal processing unit 14 generates a spike-like waveform based on the waveform generation process shown in FIG.

図5に示したように、表面波と縦波が重なる場合がある。その結果、表面波によるスパイク状の波形と縦波によるスパイク状の波形は打ち消し合って消えてしまう。しかし横波によるスパイク状の波形は残る。本実施の形態では、縦波底面エコーおよび横波底面エコーに対して、それぞれに異なるゲートを掛けて、音速測定を行うというものである(図6及び図7に示すゲート20とゲート21参照)。信号処理部14では、ゲート20の波形は縦波底面エコーとして処理し、ゲート21の波形は横波底面エコーとして処理して音速を求める。なお、これらゲート20,21は、例えば、振幅が+側で所定の時間間隔の信号を対象とする、といったゲートとする。このように2個のゲートを有することで、縦波底面エコーが表面波と重なってしまう場合でも、横波底面エコーを用いた音速測定が可能となる。   As shown in FIG. 5, the surface wave and the longitudinal wave may overlap each other. As a result, the spike-like waveform due to the surface wave and the spike-like waveform due to the longitudinal wave cancel each other and disappear. However, a spike-like waveform due to the transverse wave remains. In this embodiment, the longitudinal wave bottom echo and the transverse wave bottom echo are multiplied by different gates to measure the sound velocity (see gate 20 and gate 21 shown in FIGS. 6 and 7). In the signal processing unit 14, the waveform of the gate 20 is processed as a longitudinal wave bottom echo, and the waveform of the gate 21 is processed as a transverse wave bottom echo to obtain the sound velocity. Note that these gates 20 and 21 are, for example, gates that target signals at a predetermined time interval with an amplitude of +. By having two gates in this way, even when the longitudinal wave bottom echo overlaps the surface wave, the sound velocity measurement using the transverse wave bottom echo can be performed.

図6のように縦波底面エコーおよび横波底面エコーが受信される場合には、ゲート20内およびゲート21内に、それぞれ、スパイク状の波形が受信される。音速測定は、縦波底面エコーを用いても良いし、横波底面エコーを用いても良い。あるいは両者を用いて音速測定を行い、信頼できる値の方を採用しても良いし、平均値を採用しても構わない。   When longitudinal wave bottom echoes and transverse wave bottom echoes are received as shown in FIG. 6, spike-like waveforms are received in the gate 20 and the gate 21, respectively. The sound velocity measurement may use longitudinal wave bottom echoes or transverse wave bottom echoes. Alternatively, sound velocity measurement may be performed using both, and a reliable value may be adopted, or an average value may be adopted.

一方、図7に示すように、縦波底面エコーが消失した場合、横波底面エコーは受信されるので、ゲート21内のスパイク状の波形から音速測定が可能である。すなわち、信号処理部14は、超音波が送信用探触子1から試験体100の底面までは縦波で伝搬し、試験体100の底面から受信用探触子2までは横波で伝搬したという想定の基に、受信用探触子2の受信信号から試験体100の音速を算出する。   On the other hand, as shown in FIG. 7, when the longitudinal wave bottom echo disappears, the transverse wave bottom echo is received, so that the sound velocity can be measured from the spiked waveform in the gate 21. That is, the signal processing unit 14 says that the ultrasonic wave propagated as a longitudinal wave from the transmitting probe 1 to the bottom surface of the test body 100 and as a transverse wave from the bottom surface of the test body 100 to the receiving probe 2. Based on the assumption, the sound speed of the test body 100 is calculated from the received signal of the receiving probe 2.

なお、ここではスパイク状の波形を例として音速測定装置および方法について説明したが、AC波形でも構わない。また、通常の探傷で用いられているDC波形でも構わない。   Although the sound velocity measuring apparatus and method have been described here with a spike-like waveform as an example, an AC waveform may be used. Further, a DC waveform used in normal flaw detection may be used.

以上説明したように、実施の形態1の超音波測定装置によれば、試験体中に超音波を送出する送信用探触子と、試験体中を伝搬した超音波を受信する受信用探触子と、超音波が送信用探触子から試験体の底面までは縦波で伝搬し、試験体の底面から受信用探触子までは横波で伝搬した受信状態で、受信用探触子の受信信号から試験体の音速を算出する信号処理部とを備えたので、表面波と縦波が干渉して打ち消し合うといった場合でも煩雑な作業を必要とせず、簡易な方法で音速測定を行うことができる。   As described above, according to the ultrasonic measurement apparatus of the first embodiment, a transmission probe that transmits ultrasonic waves into a test body and a reception probe that receives ultrasonic waves propagated through the test body. And the ultrasonic wave propagates from the transmitting probe to the bottom surface of the specimen with a longitudinal wave, and from the bottom surface of the specimen to the receiving probe with a transverse wave. Since it has a signal processing unit that calculates the sound speed of the test specimen from the received signal, even if surface waves and longitudinal waves interfere with each other and cancel each other, it is possible to measure the sound speed with a simple method without requiring complicated work. Can do.

また、実施の形態1の超音波測定装置によれば、信号処理部は、超音波が送信用探触子から試験体の底面までは縦波で伝搬して試験体の底面から受信用探触子までは横波で伝搬し、かつ、送信用探触子から試験体の底面までは縦波で伝搬して試験体の底面から受信用探触子まで縦波で伝搬した受信状態で、受信用探触子の受信信号から試験体の音速を算出するようにしたので、音速測定の精度を高めることができる。   In addition, according to the ultrasonic measurement apparatus of the first embodiment, the signal processing unit causes the ultrasonic wave to propagate from the transmitting probe to the bottom surface of the test body by a longitudinal wave and to receive the probe from the bottom surface of the test body. Propagating with transverse waves to the child, and receiving with the longitudinal wave propagating from the transmitting probe to the bottom surface of the specimen and propagating with longitudinal waves from the bottom surface of the specimen to the receiving probe Since the sound speed of the specimen is calculated from the received signal of the probe, the accuracy of sound speed measurement can be improved.

また、実施の形態1の超音波測定方法によれば、送信用探触子により試験体中に超音波を送信し、受信用探触子により前記試験体中を伝搬した超音波を受信し、送信用探触子から試験体の底面までは縦波で伝搬し、試験体の底面から受信用探触子までは横波で伝搬した受信状態で、試験体の音速を算出するようにしたので、表面波と縦波が干渉して打ち消し合うといった場合でも煩雑な作業を必要とせず、簡易な方法で音速測定を行うことができる。   Further, according to the ultrasonic measurement method of the first embodiment, an ultrasonic wave is transmitted into the test body by the transmitting probe, and an ultrasonic wave propagated through the test body is received by the receiving probe, The sound velocity of the test specimen was calculated from the transmitting probe to the bottom surface of the test piece with longitudinal waves, and from the bottom face of the test specimen to the receiving probe with the shear wave propagated. Even when surface waves and longitudinal waves interfere with each other and cancel each other, no complicated work is required, and sound speed can be measured by a simple method.

また、実施の形態1の超音波測定方法によれば、
超音波が送信用探触子から試験体の底面までは縦波で伝搬して試験体の底面から受信用探触子までは横波で伝搬し、かつ、送信用探触子から試験体の底面までは縦波で伝搬して試験体の底面から受信用探触子まで縦波で伝搬した受信状態で、受信用探触子の受信信号から試験体の音速を算出するようにしたので、音速測定の精度を高めることができる。
Further, according to the ultrasonic measurement method of the first embodiment,
Ultrasound propagates from the transmitting probe to the bottom surface of the specimen with a longitudinal wave, propagates from the bottom surface of the specimen to the receiving probe with a transverse wave, and from the transmitting probe to the bottom surface of the specimen. The sound velocity of the test object is calculated from the received signal of the receiving probe in the reception state where it propagated by the longitudinal wave and propagated by the longitudinal wave from the bottom surface of the test object to the receiving probe. Measurement accuracy can be increased.

なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。   In the present invention, any constituent element of the embodiment can be modified or any constituent element of the embodiment can be omitted within the scope of the invention.

1 送信用探触子、2 受信用探触子、10 送受信器、11 送信部、12 受信部、13 表示部、14 信号処理部、20,21 ゲート、100 試験体。   DESCRIPTION OF SYMBOLS 1 Probe for transmission, 2 Probe for reception, 10 Transmitter / receiver, 11 Transmission part, 12 Reception part, 13 Display part, 14 Signal processing part, 20, 21 Gate, 100 Test body.

Claims (4)

試験体中に超音波を送出する送信用探触子と、
前記試験体中を伝搬した超音波を受信する受信用探触子と、
前記超音波が前記送信用探触子から前記試験体の底面までは縦波で伝搬し、前記試験体の底面から前記受信用探触子までは横波で伝搬した受信状態で、前記受信用探触子の受信信号から前記試験体の音速を算出する信号処理部とを備えた超音波測定装置。
A probe for transmitting ultrasonic waves into the test body;
A receiving probe for receiving ultrasonic waves propagated through the test body;
In the reception state, the ultrasonic wave propagates from the transmitting probe to the bottom surface of the test body with a longitudinal wave and propagates from the bottom surface of the test body to the receiving probe with a transverse wave. An ultrasonic measurement apparatus comprising: a signal processing unit that calculates a sound speed of the test body from a reception signal of a touch element.
試験体中に超音波を送出する送信用探触子と、
前記試験体中を伝搬した超音波を受信する受信用探触子と、
前記超音波が前記送信用探触子から前記試験体の底面までは縦波で伝搬して前記試験体の底面から前記受信用探触子までは横波で伝搬し、かつ、前記送信用探触子から前記試験体の底面までは縦波で伝搬して前記試験体の底面から前記受信用探触子まで縦波で伝搬した受信状態で、前記受信用探触子の受信信号から前記試験体の音速を算出する信号処理部とを備えた超音波測定装置。
A probe for transmitting ultrasonic waves into the test body;
A receiving probe for receiving ultrasonic waves propagated through the test body;
The ultrasonic wave propagates as a longitudinal wave from the transmitting probe to the bottom surface of the test body, propagates as a transverse wave from the bottom surface of the test body to the receiving probe, and the transmitting probe. In a reception state in which a wave propagates from a child to the bottom surface of the test body by a longitudinal wave and propagates by a longitudinal wave from the bottom surface of the test body to the reception probe, the test body receives a signal from the reception signal of the reception probe. An ultrasonic measurement apparatus comprising a signal processing unit that calculates the sound speed of the sound.
送信用探触子により試験体中に超音波を送信し、受信用探触子により前記試験体中を伝搬した超音波を受信し、
前記送信用探触子から前記試験体の底面までは縦波で伝搬し、前記試験体の底面から前記受信用探触子までは横波で伝搬した受信状態で、前記受信用探触子の受信信号から前記試験体の音速を算出することを特徴とする超音波測定方法。
Sending ultrasonic waves into the test body with the transmitting probe, receiving ultrasonic waves propagated through the test body with the receiving probe,
The reception probe receives the reception probe in a reception state in which it propagates in a longitudinal wave from the transmission probe to the bottom surface of the test body, and propagates in a transverse wave from the bottom surface of the test body to the reception probe. An ultrasonic measurement method, wherein the sound velocity of the test body is calculated from a signal.
送信用探触子により試験体中に超音波を送信し、受信用探触子により前記試験体中を伝搬した超音波を受信し、
前記送信用探触子から前記試験体の底面までは縦波で伝搬して前記試験体の底面から前記受信用探触子までは横波で伝搬し、かつ、前記送信用探触子から前記試験体の底面までは縦波で伝搬して前記試験体の底面から前記受信用探触子まで縦波で伝搬した受信状態で、前記受信用探触子の受信信号から前記試験体の音速を算出することを特徴とする超音波測定方法。
Sending ultrasonic waves into the test body with the transmitting probe, receiving ultrasonic waves propagated through the test body with the receiving probe,
Propagation from the transmission probe to the bottom surface of the test body is a longitudinal wave, propagation from the bottom surface of the test body to the reception probe is a transverse wave, and from the transmission probe to the test Calculates the sound velocity of the test object from the received signal of the receiving probe in a reception state that propagates to the bottom surface of the body by a longitudinal wave and propagates from the bottom surface of the test object to the receiving probe by a longitudinal wave. An ultrasonic measurement method comprising:
JP2014048518A 2014-03-12 2014-03-12 Ultrasonic measuring apparatus and method Active JP6440371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014048518A JP6440371B2 (en) 2014-03-12 2014-03-12 Ultrasonic measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014048518A JP6440371B2 (en) 2014-03-12 2014-03-12 Ultrasonic measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2015172528A true JP2015172528A (en) 2015-10-01
JP6440371B2 JP6440371B2 (en) 2018-12-19

Family

ID=54259949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014048518A Active JP6440371B2 (en) 2014-03-12 2014-03-12 Ultrasonic measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP6440371B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053288A (en) * 2002-07-17 2004-02-19 Akita Prefecture Ultrasonic acoustic velocity measuring method, and method for obtaining young's modulus and poisson's ratio based on the same
JP2004157114A (en) * 2002-11-05 2004-06-03 Jfe Steel Kk Method and instrument for measuring material thickness
JP2005315622A (en) * 2004-04-27 2005-11-10 Fujimitsu Komuten:Kk Nondestructive inspection method and device of concrete structure
JP2005345138A (en) * 2004-05-31 2005-12-15 Nichizou Tec:Kk Method of ultrasound flaw detection and method of measuring thickness of material quality changed part
EP1780539A1 (en) * 2005-10-26 2007-05-02 Fujimitsu Engineering Co., Ltd. Method and apparatus for non-destructive ultrasonic testing of concrete structures
US20070095139A1 (en) * 2005-10-27 2007-05-03 Fujimitsu Engineering Co., Ltd. Method and apparatus for non-destructive testing of concrete structures
JP2009270824A (en) * 2008-04-30 2009-11-19 Kawasaki Heavy Ind Ltd Ultrasonic flaw detecting method and ultrasonic flaw detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053288A (en) * 2002-07-17 2004-02-19 Akita Prefecture Ultrasonic acoustic velocity measuring method, and method for obtaining young's modulus and poisson's ratio based on the same
JP2004157114A (en) * 2002-11-05 2004-06-03 Jfe Steel Kk Method and instrument for measuring material thickness
JP2005315622A (en) * 2004-04-27 2005-11-10 Fujimitsu Komuten:Kk Nondestructive inspection method and device of concrete structure
JP2005345138A (en) * 2004-05-31 2005-12-15 Nichizou Tec:Kk Method of ultrasound flaw detection and method of measuring thickness of material quality changed part
EP1780539A1 (en) * 2005-10-26 2007-05-02 Fujimitsu Engineering Co., Ltd. Method and apparatus for non-destructive ultrasonic testing of concrete structures
US20070095139A1 (en) * 2005-10-27 2007-05-03 Fujimitsu Engineering Co., Ltd. Method and apparatus for non-destructive testing of concrete structures
JP2009270824A (en) * 2008-04-30 2009-11-19 Kawasaki Heavy Ind Ltd Ultrasonic flaw detecting method and ultrasonic flaw detector

Also Published As

Publication number Publication date
JP6440371B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
EP2857834B1 (en) Ultrasonic pipe measurement apparatus
US10458871B2 (en) Apparatus and method for measuring the pressure inside a pipe or container
JP6066635B2 (en) Ultrasonic inspection apparatus and method
WO2014031254A1 (en) Integrated active ultrasonic probe
Zhou et al. Nonlinear Lamb wave based DORT method for detection of fatigue cracks
CN102636249B (en) Method for measuring acoustic velocity of material by using surface wave
JP2008128965A (en) Airborne ultrasonic flaw detection system
JP2012141230A (en) Nondestructive testing system
WO2011078691A3 (en) Measuring apparatus
JP5869548B2 (en) Ultrasonic diagnostic apparatus and control program therefor
JP4997636B2 (en) Non-destructive diagnostic method for structures
US20110048134A1 (en) Ultrasonic diagnostic apparatus
CN105116371A (en) Target positioning method and apparatus based on continuous emitting frequency modulation signals
JP6440371B2 (en) Ultrasonic measuring apparatus and method
RU2661455C1 (en) Method for determining the viscoelastic properties of liquid and solid media and the device for its implementation
JP2740872B2 (en) Method of measuring compressive strength of concrete using ultrasonic waves
JP5317176B2 (en) Object search device, object search program, and object search method
JP5059344B2 (en) Plate thickness measuring apparatus and measuring method
US9518959B2 (en) Structural health monitoring system and method
JP2008076387A (en) Ultrasonic stress measuring method and instrument
RU2442154C1 (en) Method for ultrasonic material structure inspection
RU2642503C2 (en) Method of characterizng part manufactured from composite material
Battaglini et al. The use of pulse compression and frequency modulated continuous wave to improve ultrasonic non destructive evaluation of highly-scattering materials
CN107389803B (en) Method for measuring acoustic reflection coefficient between liquid and solid delay material
RU85664U1 (en) DEVICE FOR DETERMINING THE SPEED OF ULTRASONIC WAVES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181120

R150 Certificate of patent or registration of utility model

Ref document number: 6440371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250