JP2004053288A - Ultrasonic acoustic velocity measuring method, and method for obtaining young's modulus and poisson's ratio based on the same - Google Patents
Ultrasonic acoustic velocity measuring method, and method for obtaining young's modulus and poisson's ratio based on the same Download PDFInfo
- Publication number
- JP2004053288A JP2004053288A JP2002207759A JP2002207759A JP2004053288A JP 2004053288 A JP2004053288 A JP 2004053288A JP 2002207759 A JP2002207759 A JP 2002207759A JP 2002207759 A JP2002207759 A JP 2002207759A JP 2004053288 A JP2004053288 A JP 2004053288A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- echo
- mode conversion
- ultrasonic
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、比較的簡単な操作で精度良く材料(試料)の音速を測定できる、超音波を用いた音速測定方法及びこれらに基づいてヤング率及びポアソン比を求める方法に関する。
【0002】
【従来の技術】
現在、メーカー、大学、研究機関等における材料開発において、ヤング率やポアソン比などの機械的性質の評価に超音波が多用されている。
従来の超音波による音速測定方法は、規定の寸法に仕上げた音速が既知の標準試験片を基にして超音波探傷装置の時間軸を調整し、板厚が明らかであるが音速が未知の試料に対して縦波垂直探触子及び横波垂直探触子を直接接触して超音波を入射するものであり、これによって得られた底面エコーのビーム路程、未知試料の厚さ及び標準試験片の既知音速から求めるのが普通である。
【0003】
また、このような音速測定法として知られているSing Around法があるが、これも縦波垂直探触子と横波垂直探触子の2種類の垂直探触子を使用し、伝播時間と試料厚さから音速を求めるものである。
この他、縦波垂直探触子を使用し、底面エコーと横波による遅れエコーや円柱面エコーを利用した縦波、横波の音速測定方法もある。
【0004】
上記のように、標準試験片を基に超音波探傷装置の時間軸を調整し、縦波垂直探触子や横波垂直探触子を直接接触して超音波を入射して得られた底面エコーのビーム路程、未知試料の厚さ、及び標準試験片音速から縦波及び横波音速を求める方法は、縦波用と横波用の2種類の垂直探触子が必要であると共に、音速が既知の標準試験片が必要なので、試験装置や操作が煩雑であり、正確な測定が得られ難いという問題があった。
【0005】
また、上記の通り材料開発において、ヤング率やポアソン比などの機械的性質の評価に超音波が多用されているが、材料の種類や研究内容によっては、これまでの超音波法に適した厚さや大きさの試料を作製するのが困難な場合があり、材料評価に苦慮することも多々ある。
実際、探触子径より極度に小さい試料及び薄い試料ではパルス幅や分解能などの制約により底面エコーが得られないという問題があった。これは、Sing Around法においても同様である。
さらに、縦波垂直探触子を使用し、底面エコーと横波による遅れエコーや円柱面エコーを利用する上記の方法は、試料が細長である場合又は丸棒である場合にのみ測定ができるという形状的制約があり、薄くて小さい試料の測定は難しいという問題があった。
【0006】
【発明が解決しょうとする課題】
本発明は、薄くて小さい試料でも、一探触子により比較的簡単な操作で精度良く材料(試料)の音速を同時に測定できる、超音波を用いた音速測定方法及びこれらに基づいてヤング率及びポアソン比を求める方法を提供する。
【0007】
【課題を解決するための手段】
以上から、本発明は
1.試料の横波音速を測定する超音波音速測定方法であって、媒質に浸漬した試料に探触子から超音波を入射し、試料内を縦波で伝播して試料底面で反射して戻ったモード変換を伴わない底面エコーと、試料底面で反射したときにモード変換により発生した横波による遅れエコーとを検出し、モード変換による遅れエコーの伝播時間(TX1)からモード変換を伴わない底面エコーの縦波の伝播時間(TB/2)を引いた横波伝播時間と試料の厚さ(t)から横波音速CSをCS=t/(TX1−TB/2)として求める超音波音速測定方法
2.試料の縦波音速及び横波音速を測定する超音波音速測定方法であって、媒質に浸漬した試料に探触子から超音波を入射し、試料内を縦波で伝播して試料底面で反射して戻ったモード変換を伴わない底面エコーと、試料底面で反射したときにモード変換により発生した横波による遅れエコーとを検出し、モード変換を伴わない底面エコーの伝播時間(TB)と試料の厚さ(t)から縦波音速CLをCL=2t/TBとして求め、モード変換による遅れエコーの伝播時間(TX1)から縦波の伝播時間(TB/2)を引いた横波伝播時間と平板状試料の厚さ(t)から横波音速CSをCS=t/(TX1−TB/2)として求める超音波音速測定方法
3.探触子から媒質を通して超音波が試料に入射した時に、モード変換により発生した横波が試料内を往復伝播した横波だけの遅れエコーの伝播時間(TX2)と試料の厚さ(t)から横波音速CSをCS=2t/TX2として求める超音波音速測定方法
4.試料の縦波音速及び横波音速を測定する超音波音速測定方法であって、媒質に浸漬した試料に探触子から超音波を入射し、試料内を縦波で伝播して試料底面で反射して戻ったモード変換を伴わない底面エコーと、試料底面で反射したときにモード変換により発生した横波による遅れエコーとを検出し、モード変換を伴わない底面エコーの伝播時間(TB)と試料の厚さ(t)から縦波音速CLをCL=2t/TBとして求め、モード変換により発生した横波が試料内を往復伝播した横波だけの遅れエコーの伝播時間(TX2)と試料の厚さ(t)から横波音速CSをCS=2t/TX2として求める超音波音速測定方法
5.一探触子による測定であることを特徴とする前記1〜4のそれぞれに記載の超音波音速測定方法
6.焦点型垂直探触子であることを特徴とする前記1〜5のそれぞれに記載の超音波音速測定方法
7.平板状の試料であることを特徴とする前記1〜6のそれぞれに記載の超音波音速測定方法
8.媒質が超音波を伝播し探触子に損傷を与えない不活性液であることを特徴とする前記1〜7のそれぞれに記載の超音波音速測定方法
9.媒質が水であることを特徴とする前記1〜8のそれぞれに記載の超音波音速測定方法
10.前記1〜9のそれぞれの方法により求めた縦波音速CL及び横波音速CS並びに密度ρから、下記式によりヤング率E及びポアソン比νを求める方法
E=ρ(3CS 2・CL 2−4CS 4)/( CL 2−CS 2)
ν=(CL 2−2CS 2)/2(CL 2−CS 2)
を提供する。
【0008】
【発明の実施の形態】
本発明を、図に基づいて具体的に説明する。図1において、符号1は超音波装置のCRTモニター、符号2は超音波を送受信する探触子(例えば焦点型垂直探触子)、符号3は測定される試料、符号4は探触子から送信された超音波が試料へ到達するまでに伝播する水や不活性液などの媒質を示す。このような媒質には、超音波を伝播し探触子に損傷を与えない不活性液であることが望ましく、通常水を使用する。
本発明においては、一探触子を用いて同時に縦波と横波の音速を測定することができ、探触子には、焦点型垂直探触子を使用する。
【0009】
従来の探触子を直接試料に接触して超音波を入射する、いわゆる直接接触法による測定法では、試料が薄いと底面エコーが送信パルス内に包含され、試験周波数が低い場合にはパルス幅が広いため近接するエコーを分解できないことが多い。
しかし、本発明の水や不活性液などの媒質を通して超音波を入射する水浸法では、送信パルスは試料表面から遠ざかるので底面エコーを確実に検出することができるという特徴がある。また、本発明のように焦点型垂直探触子を使用すると、超音波ビームが絞られ探触子径よりはるかに小さい試料でも確実に底面エコーを得ることができるという利点がある。
【0010】
すなわち、従来の測定法では難しかった厚さが1mm以下の材料や面積が非常に小さい材料(平板状の試料)についても、容易に縦波音速及び横波音速を同時に測定することができるという優れた効果が得られた。
例えば、セラミックスなどに多く用いられている周波数25MHzの焦点型垂直探触子は焦点距離20mmで超音波ビーム径が0.4mm、焦点距離10mmではビーム径0.2mmと言われているので、試料の大きさはこのビーム径以上の大きさがあると十分ということになる。
厚さが1mm以下の材料でも1mm×1mm程度の大きさがあると、1個の焦点型垂直探触子で、その縦波音速と横波音速を同時に測定でき、これらからヤング率やポアソン比を瞬時に求めることができるという著しい効果を有する。
【0011】
次に、本発明の一探触子による縦波音速CL及び横波音速CSを求める方法について具体的に説明する。
図1に示すように、水や不活性液などの媒質4に試料3を浸漬し、焦点型垂直探触子2から送信された超音波を試料3に入射すると、CRTモニター1に図2に示すような波形が現れる。
はじめの波形Tは送信パルスであり、次のエコーS1は表面エコー、順に縦波が試料中を往復した底面エコーB1、試料底面で縦波が反射したときにモード変換により発生した横波による遅れエコーX1、超音波が試料に入射した時にモード変換により発生した横波が試料中を往復した遅れエコーX2、底面で2回反射した底面エコーB2である。
【0012】
各エコーの伝播経路は図3に示すように、底面エコーB1は実線で表した縦波が試料中を往復したエコーであり、遅れエコーX1は片道が縦波、残りの片道が破線で表した横波が伝播したエコー、遅れエコーX2は横波が往復したエコーである。そして、底面エコーB2は縦波が2回往復したエコーである。
【0013】
縦波音速CLは、底面エコーB1から試料中を縦波が往復した伝播時間TBを読み取り、あらかじめ測定してある試料厚さをtとすると、 CL=2t/TBから求めることができる。
【0014】
遅れエコーX1から横波音速CSを求めるためには、縦波と横波からなる遅れエコーX1の伝播時間TX1を読み取り、これから縦波による片道の伝播時間TB/2を引いた横波の伝播時間TX1−TB/2を求め、 CS=t/(TX1−TB/2)から横波音速CSを求めることができる。
また、遅れエコーX2から横波音速CSを求める方法、すなわち遅れエコーX2から横波が試料中を往復した伝播時間TX2を読み取り、 CS=2t/TX2から横波音速CSを求めることもできる。
【0015】
伝播時間TB、伝播時間TX1、伝播時間TX2をCRTモニター1から読み取る場合の表面エコーS1波形の基準位置は、図4に示すように感度が高い場合には表面エコーS1の波形は数本が同じ高さとなり基準位置の決定が困難となるが、感度を下げることにより図5に示すように最も高い波形が現れるので、プラス側のこの最も高い波形を基準とし各伝播時間を読み取る。
以上により求めた縦波音速CL及び横波音速CS並びに密度ρから、下記式によりヤング率E及びポアソン比νを求めることができる。
E=ρ(3CS 2・CL 2−4CS 4)/( CL 2−CS 2)
ν=(CL 2−2CS 2)/2(CL 2−CS 2)
【0016】
図6は、ステンレス鋼、アルミニウム、ジルコニア、導電性サイアロン、アルミナの各種材料について、本発明の一探触子による縦波音速測定法と、従来のSing Around法による縦波音速の測定値を比較したものであり、ほぼ同様の値となっていることが分かる。
図7は、同様にステンレス鋼、アルミニウム、ジルコニア、導電性サイアロン、アルミナの各種材料について、本発明の一探触子による横波音速測定法と、従来のSing Around法による横波音速の測定値を比較したものであり、ほぼ同様の値となっている。
図8は、上記の測定結果に基づいて得た、本発明のヤング率とSing Around法によるヤング率の結果である。いずれの材料についてもほぼ同様の結果が得られているのが分かる。
【0017】
遅れエコーX2が底面エコーB2の前後のどちらに現れるかは、CS/CLの比率によって決定される。
遅れエコーX2が底面エコーB2の前に現れる場合は、TB<TX2<2TBの関係が成り立っている。この不等式にTB=2t/CL TX2=2t/CSを代入して整理すると、
0.5<CS/CL<1となる。この条件を満たす材料には、鋼、アルミナ、ジルコニア、石英ガラスなどがある。
遅れエコーX2が底面エコーB2の後に現れる場合は、2TB<TX2の関係が成り立っている。この不等式にTB=2t/CL TX2=2t/CSを代入して整理すると、CS/CL<0.5となる。この条件を満たす材料には、銅などが挙げられる。
また、遅れエコーX2が底面エコーB2とほぼ同位置に現れるのは、CS/CL=0.5のときであり、アルミニウムなどがこれに該当する。
【0018】
【発明の効果】
上記の通り、本発明の超音波音速測定方法により、これまでは難しかった厚さが1mm以下の材料や面積が非常に小さい材料についても、容易に縦波音速及び横波音速を同時に測定することができるという著しい効果を有する。すなわち、本発明により1個の焦点型垂直探触子で、厚さが1mm以下の材料でも1mm×1mm程度の大きさがあると、その縦波音速と横波音速を同時にかつ精度良く測定でき、これらからヤング率やポアソン比を瞬時に求めることができるという優れた特徴を有する。これによって、本発明は材料開発の材料特性評価に大きな効果が期待でき、この分野に大きく貢献できる発明である。
【図面の簡単な説明】
【図1】本発明に使用される装置、試料などの構成を示す概略説明図である。
【図2】本発明に使用される超音波エコーが超音波装置のCRTモニターに現れる状態を示した説明図である。
【図3】超音波が試料内を伝播するときの各エコーの形態を表した説明図である。
【図4】超音波の伝播時間を測定する場合において、感度が高すぎたときの表面エコーの形態を示す説明図である。
【図5】超音波の伝播時間を測定する場合において、感度を高い状態から下げてきた時の表面エコーの形態を示す説明図である。
【図6】本発明の方法とSing Around法により求めた各種材料の縦波音速を比較した図である。
【図7】本発明の方法とSing Around法により求めた各種材料の横波音速を比較した図である。
【図8】本発明の方法とSing Around法により求めた各種材料のヤング率を比較した図である。
【符号の説明】
1:CRTモニター
2:焦点型垂直探触子
3:試料
4:媒質[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of measuring the speed of sound using ultrasonic waves, which can accurately measure the speed of sound of a material (sample) with a relatively simple operation, and a method of determining the Young's modulus and Poisson's ratio based on these methods.
[0002]
[Prior art]
At present, in material development at manufacturers, universities, research institutes, and the like, ultrasonic waves are frequently used for evaluating mechanical properties such as Young's modulus and Poisson's ratio.
The conventional method of measuring sound velocity using ultrasonic waves is to adjust the time axis of an ultrasonic flaw detector based on a standard test piece with a known sound velocity finished to a specified size, and to obtain a sample whose thickness is clear but whose sound velocity is unknown. The ultrasonic wave is incident by directly contacting the vertical probe and the vertical probe, and the beam path of the bottom echo, the thickness of the unknown sample, and the Usually, it is obtained from the known sound velocity.
[0003]
Also, there is a Sing Around method known as such a sound velocity measuring method, which also uses two types of vertical probes, a longitudinal vertical probe and a transverse vertical probe, and has a propagation time and a sample. The speed of sound is determined from the thickness.
In addition, there is also a method of measuring the speed of sound of longitudinal waves and transverse waves using a vertical echo and a delayed echo due to a bottom echo and a transverse wave and a cylindrical echo.
[0004]
As described above, the time axis of the ultrasonic flaw detector is adjusted based on the standard test piece, and the bottom echo obtained by directly contacting the vertical vertical and horizontal transducers and injecting ultrasonic waves. The method of obtaining the longitudinal and shear wave velocities from the beam path of the unknown sample, the thickness of the unknown sample, and the sound velocity of the standard test piece requires two types of vertical probes, one for the longitudinal wave and the other for the shear wave, and has a known sound velocity. Since a standard test piece is required, there is a problem that a test device and operation are complicated, and it is difficult to obtain an accurate measurement.
[0005]
As described above, in material development, ultrasonic waves are often used to evaluate mechanical properties such as Young's modulus and Poisson's ratio, but depending on the type of material and the content of research, a thickness suitable for the conventional ultrasonic method may be used. In some cases, it is difficult to prepare a sample having a pod size, and it is often difficult to evaluate a material.
Actually, there is a problem that a bottom echo cannot be obtained for a sample extremely smaller than the probe diameter and a sample thinner due to restrictions on pulse width, resolution, and the like. This is the same in the Sing Around method.
Furthermore, the above-mentioned method using a vertical echo and a delayed echo and a cylindrical echo due to a bottom echo and a transverse wave can be measured only when the sample is elongated or a round bar. There is a problem in that it is difficult to measure a thin and small sample because of the mechanical limitations.
[0006]
[Problems to be solved by the invention]
The present invention provides a sound velocity measuring method using ultrasonic waves, which can simultaneously measure the sound velocity of a material (sample) with a relatively simple operation with a relatively simple operation using a single probe, even for a thin and small sample. A method for determining Poisson's ratio is provided.
[0007]
[Means for Solving the Problems]
From the above, the present invention provides: An ultrasonic sound velocity measurement method that measures the transverse sound velocity of a sample, in which ultrasonic waves enter the sample immersed in a medium from a probe, propagate through the sample as longitudinal waves, and reflect back at the sample bottom surface. A bottom echo without conversion and a delayed echo due to a transverse wave generated by mode conversion when reflected on the bottom surface of the sample are detected, and the propagation time of the delayed echo due to mode conversion (T X1 ) is used to detect the bottom echo without mode conversion. ultrasonic sound velocity obtaining the propagation time of the longitudinal wave (T B / 2) a minus transverse propagation time and the thickness of the sample from (t) the shear wave velocity C S as C S = t / (T X1 -T B / 2) Measurement method 2. An ultrasonic sound velocity measurement method for measuring the longitudinal wave velocity and the transverse wave velocity of a sample, in which ultrasonic waves are incident on a sample immersed in a medium from a probe, propagate in the sample as longitudinal waves, and are reflected at the bottom of the sample. A back echo without mode conversion and a delayed echo due to a transverse wave generated by mode conversion when reflected at the bottom of the sample are detected, and the propagation time (T B ) of the bottom echo without mode conversion and the determined as the thickness (t) from the longitudinal acoustic velocity C L to C L = 2t / T B, minus mode conversion due to the delay echo propagation time (T X1) longitudinal wave propagation time from a (T B / 2) transverse waves ultrasonic sound velocity measuring method 3 to determine the propagation time and the thickness of the tabular sample from (t) the shear wave velocity C S as C S = t / (T X1 -T B / 2). When an ultrasonic wave enters a sample from a probe through a medium, a transverse wave generated by mode conversion is a transverse wave based on a propagation time ( TX2 ) of a delayed echo of only a transverse wave reciprocatingly propagating in the sample and a thickness (t) of the sample. ultrasonic sound velocity measuring method for determining the speed of sound C S as C S = 2t / T X2 4 . An ultrasonic sound velocity measurement method for measuring the longitudinal wave velocity and the transverse wave velocity of a sample, in which ultrasonic waves are incident on a sample immersed in a medium from a probe, propagate in the sample as longitudinal waves, and are reflected at the bottom of the sample. A back echo without mode conversion and a delayed echo due to a transverse wave generated by mode conversion when reflected at the bottom of the sample are detected, and the propagation time (T B ) of the bottom echo without mode conversion and the thick (t) determine the longitudinal wave acoustic velocity C L as C L = 2t / T B, the shear wave generated by mode conversion is only transverse wave through the sample was round trip delay echo propagation time (T X2) and the sample ultrasonic sound velocity determined from the thickness (t) of the shear wave velocity C S as C S = 2t / T X2 measurement method 5. 5. The ultrasonic sound velocity measuring method according to any one of the
ν = (C L 2 -2C S 2) / 2 (C L 2 -C S 2)
I will provide a.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be specifically described with reference to the drawings. In FIG. 1,
In the present invention, the sound speeds of the longitudinal wave and the transverse wave can be measured simultaneously using one probe, and a focus type vertical probe is used as the probe.
[0009]
In the conventional direct contact method in which a probe is brought into direct contact with a sample and ultrasonic waves are applied, the bottom echo is included in the transmitted pulse when the sample is thin, and the pulse width is used when the test frequency is low. Is too large to resolve close echoes.
However, the water immersion method of the present invention in which ultrasonic waves are incident through a medium such as water or an inert liquid has a feature that the bottom surface echo can be reliably detected because the transmission pulse is far from the sample surface. In addition, when a focus type vertical probe is used as in the present invention, there is an advantage that an ultrasonic beam is narrowed down and a bottom echo can be reliably obtained even with a sample which is much smaller than the probe diameter.
[0010]
That is, it is easy to simultaneously measure the longitudinal wave velocity and the transverse wave velocity even for a material having a thickness of 1 mm or less or a material having a very small area (a flat sample), which is difficult with the conventional measuring method. The effect was obtained.
For example, the focus type vertical probe with a frequency of 25 MHz, which is often used for ceramics, is said to have an ultrasonic beam diameter of 0.4 mm at a focal length of 20 mm and a beam diameter of 0.2 mm at a focal length of 10 mm. It is sufficient that the size is larger than this beam diameter.
Even if the thickness of the material is 1 mm or less, if it has a size of about 1 mm x 1 mm, the longitudinal wave velocity and the transverse wave velocity can be measured simultaneously with one focus type vertical probe, and the Young's modulus and Poisson's ratio can be measured from these. It has a remarkable effect that it can be obtained instantaneously.
[0011]
Next, specifically described method of obtaining the longitudinal wave acoustic velocity C L and transverse wave C S according to one probe of the present invention.
As shown in FIG. 1, a sample 3 is immersed in a medium 4 such as water or an inert liquid, and an ultrasonic wave transmitted from a focus type vertical probe 2 is incident on the sample 3. A waveform as shown appears.
The first waveform T is a transmission pulse, the next echo S 1 is a surface echo, a bottom echo B 1 in which a longitudinal wave reciprocates in the sample in order, and a transverse wave generated by mode conversion when the longitudinal wave is reflected on the sample bottom surface. A delayed echo X 1 , a delayed echo X 2 in which a transverse wave generated by mode conversion when an ultrasonic wave is incident on the sample reciprocates in the sample, and a bottom echo B 2 reflected twice on the bottom surface.
[0012]
Propagation path of each echo, as shown in FIG. 3, bottom echo B 1 represents a echo longitudinal wave expressed by the solid line is reciprocated in the sample, delayed echo X 1 is one way that a longitudinal wave, the remaining one-way is by a broken line echoes transverse waves expressed is propagated, delay echo X 2 are echoes transverse wave back and forth. The bottom echo B 2 are echoes reciprocating longitudinal wave twice.
[0013]
Longitudinal acoustic velocity C L reads the propagation time T B which longitudinal waves through the sample from the bottom echo B 1 is the reciprocal, when the sample thickness that is measured in advance and t, be obtained from the C L = 2t / T B Can be.
[0014]
From late echo X 1 in order to determine the shear wave velocity C S reads the propagation time T X1 delay echo X 1 consisting of transverse wave, the transverse wave obtained by subtracting the propagation time T B / 2 of the way now by longitudinal waves The propagation time T X1 −T B / 2 is obtained, and the transverse sound speed C S can be obtained from C S = t / (T X1 −T B / 2).
Further, a method of the late echo X 2 Request shear wave velocity C S, i.e. delayed transverse from the echo X 2 reads the propagation time T X2 which reciprocates in a sample, to obtain the C S = 2t / T X2 from shear wave velocity C S You can also.
[0015]
Propagation time T B, the propagation time T X1, the reference position of the surface echo S 1 waveform when reading a propagation time T X2 from the
From longitudinal acoustic velocity C L and transverse wave C S and the density ρ determined by the above, it is possible to determine the Young's modulus E and Poisson's ratio ν according to the following equation.
E = ρ (3C S 2 · C L 2 -4C S 4) / (C L 2 -C S 2)
ν = (C L 2 -2C S 2) / 2 (C L 2 -C S 2)
[0016]
Fig. 6 compares the longitudinal wave velocity measured by one probe of the present invention and the longitudinal wave velocity measured by the conventional Sing Around method for various materials such as stainless steel, aluminum, zirconia, conductive sialon, and alumina. It can be seen that the values are almost the same.
FIG. 7 similarly compares the measured values of the shear wave velocity by the probe of the present invention with the conventional Sing Round method for various materials such as stainless steel, aluminum, zirconia, conductive sialon, and alumina. It is almost the same value.
FIG. 8 shows the results of the Young's modulus of the present invention and the Young's modulus according to the Sing Around method obtained based on the above measurement results. It can be seen that almost the same results were obtained for all the materials.
[0017]
Or delayed echo X 2 appears on either of the front and rear of the bottom echo B 2 is determined by the ratio of C S / C L.
If delayed echo X 2 appears in front of the bottom echo B 2 is made up relationship T B <T X2 <2T B . And rearranging by substituting T B = 2t / C L T X2 = 2t / C S in this inequality,
0.5 < CS / CL <1. Materials satisfying this condition include steel, alumina, zirconia, and quartz glass.
If delayed echo X 2 appears after the bottom echo B 2 is made up relationship 2T B <T X2. And rearranging by substituting T B = 2t / C L T X2 = 2t / C S in this inequality, the C S / C L <0.5. Materials satisfying this condition include copper and the like.
Further, a delay echo X 2 appear at almost the same position as the bottom echo B 2 is when the C S / C L = 0.5, aluminum corresponds to this.
[0018]
【The invention's effect】
As described above, the ultrasonic sound velocity measuring method of the present invention makes it possible to easily simultaneously measure the longitudinal wave velocity and the transverse wave velocity even for a material having a thickness of 1 mm or less and a material having a very small area, which has been difficult until now. It has a remarkable effect that it can be done. In other words, according to the present invention, if a single focus type vertical probe has a size of about 1 mm × 1 mm even in a material having a thickness of 1 mm or less, its longitudinal wave velocity and transverse wave velocity can be measured simultaneously and accurately, There is an excellent feature that the Young's modulus and Poisson's ratio can be obtained instantaneously from these. As a result, the present invention can be expected to have a great effect on the evaluation of material properties in material development, and can greatly contribute to this field.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a configuration of an apparatus, a sample, and the like used in the present invention.
FIG. 2 is an explanatory diagram showing a state in which an ultrasonic echo used in the present invention appears on a CRT monitor of an ultrasonic device.
FIG. 3 is an explanatory diagram showing a form of each echo when an ultrasonic wave propagates in a sample.
FIG. 4 is an explanatory diagram showing a form of a surface echo when sensitivity is too high in measuring the propagation time of an ultrasonic wave.
FIG. 5 is an explanatory diagram showing a form of a surface echo when the sensitivity is lowered from a high state in measuring the propagation time of an ultrasonic wave.
FIG. 6 is a diagram comparing longitudinal wave velocities of various materials obtained by the method of the present invention and the Sing Around method.
FIG. 7 is a diagram comparing the shear wave velocities of various materials obtained by the method of the present invention and the Sing Around method.
FIG. 8 is a diagram comparing the Young's modulus of various materials obtained by the method of the present invention and the Sing Around method.
[Explanation of symbols]
1: CRT monitor 2: Focus type vertical probe 3: Sample 4: Medium
Claims (10)
E=ρ(3CS 2・CL 2−4CS 4)/( CL 2−CS 2)
ν=(CL 2−2CS 2)/2(CL 2−CS 2)From longitudinal acoustic velocity C L and transverse wave C S and the density determined by the respective methods of claims 1 to 9 [rho, a method for determining the Young's modulus E and Poisson's ratio ν according to the following equation.
E = ρ (3C S 2 · C L 2 -4C S 4) / (C L 2 -C S 2)
ν = (C L 2 -2C S 2) / 2 (C L 2 -C S 2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002207759A JP3597182B2 (en) | 2002-07-17 | 2002-07-17 | Ultrasonic sound velocity measurement method and method for determining Young's modulus and Poisson's ratio based on these methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002207759A JP3597182B2 (en) | 2002-07-17 | 2002-07-17 | Ultrasonic sound velocity measurement method and method for determining Young's modulus and Poisson's ratio based on these methods |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004053288A true JP2004053288A (en) | 2004-02-19 |
JP3597182B2 JP3597182B2 (en) | 2004-12-02 |
Family
ID=31932086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002207759A Expired - Fee Related JP3597182B2 (en) | 2002-07-17 | 2002-07-17 | Ultrasonic sound velocity measurement method and method for determining Young's modulus and Poisson's ratio based on these methods |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3597182B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005315622A (en) * | 2004-04-27 | 2005-11-10 | Fujimitsu Komuten:Kk | Nondestructive inspection method and device of concrete structure |
JP2008232622A (en) * | 2007-03-16 | 2008-10-02 | Ryoden Shonan Electronics Kk | Ultrasonic flaw detection device and ultrasonic flaw detection program |
CN102636249A (en) * | 2012-05-09 | 2012-08-15 | 河北省电力研究院 | Method for measuring acoustic velocity of material by using surface wave |
KR101242888B1 (en) | 2011-04-04 | 2013-03-12 | 니뽄스틸코포레이션 | Measuring Method and Measruting Apparatus of Poisson's Ratio |
JP2015500495A (en) * | 2011-12-19 | 2015-01-05 | スネクマ | Method for measuring elastic properties using ultrasound |
JP2015172528A (en) * | 2014-03-12 | 2015-10-01 | 三菱電機株式会社 | Ultrasonic measuring device and method |
-
2002
- 2002-07-17 JP JP2002207759A patent/JP3597182B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005315622A (en) * | 2004-04-27 | 2005-11-10 | Fujimitsu Komuten:Kk | Nondestructive inspection method and device of concrete structure |
JP2008232622A (en) * | 2007-03-16 | 2008-10-02 | Ryoden Shonan Electronics Kk | Ultrasonic flaw detection device and ultrasonic flaw detection program |
KR101242888B1 (en) | 2011-04-04 | 2013-03-12 | 니뽄스틸코포레이션 | Measuring Method and Measruting Apparatus of Poisson's Ratio |
JP2015500495A (en) * | 2011-12-19 | 2015-01-05 | スネクマ | Method for measuring elastic properties using ultrasound |
CN102636249A (en) * | 2012-05-09 | 2012-08-15 | 河北省电力研究院 | Method for measuring acoustic velocity of material by using surface wave |
JP2015172528A (en) * | 2014-03-12 | 2015-10-01 | 三菱電機株式会社 | Ultrasonic measuring device and method |
Also Published As
Publication number | Publication date |
---|---|
JP3597182B2 (en) | 2004-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6082180A (en) | Ultrasonic fluid densitometer for process control | |
Edwards et al. | Depth gauging of defects using low frequency wideband Rayleigh waves | |
US5708191A (en) | Ultrasonic fluid densitometry and densitometer | |
CN103543206A (en) | Method for carrying out ultrasonic inspection on residual stress of aluminium alloy pre-stretching board by water immersion | |
JP3597182B2 (en) | Ultrasonic sound velocity measurement method and method for determining Young's modulus and Poisson's ratio based on these methods | |
JP2004150875A (en) | Method and system for imaging internal flaw using ultrasonic waves | |
Spratt et al. | Torsional ultrasonic waveguide sensor | |
JP2011122827A (en) | Array probe measuring method and array probe measuring instrument | |
Simonetti et al. | Ultrasonic interferometry for the measurement of shear velocity and attenuation in viscoelastic solids | |
JP2001343365A (en) | Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet | |
US4380929A (en) | Method and apparatus for ultrasonic detection of near-surface discontinuities | |
JPS6228869B2 (en) | ||
US6497151B1 (en) | Non-destructive testing method and apparatus to determine microstructure of ferrous metal objects | |
JP3478178B2 (en) | Ultrasonic flaw detection method and apparatus | |
Wan et al. | Direct measurement of ultrasonic velocity of thin elastic layers | |
FOUDZI et al. | Numerical study on optimum design of a clad waveguide for ultrasonic pulse-echo measurements with high signal-to-noise ratio | |
SU815614A1 (en) | Ultrasonic method of young's modulus measurement | |
SU1742632A1 (en) | Measurement technique for determining temperature coefficient of ultrasonic speed | |
JPS61245055A (en) | Ultrasonic flaw inspecting device | |
SU1460620A1 (en) | Method of measuring the mean ultrasound velocity in positively nonhomogeneous layer | |
JPH08189923A (en) | Method for measuring physical properties of solid material | |
RU2005126996A (en) | METHOD FOR DETERMINING THE ATTENUATION FACTOR OF THE ULTRASONIC OSCILLATIONS IN THE MATERIAL | |
RU2034236C1 (en) | Ultrasound echo thickness gage | |
JP4549512B2 (en) | Ultrasonic flaw detection apparatus and method | |
JP2008008844A (en) | Ultrasonic flaw inspection method and ultrasonic flaw inspection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20040604 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040629 |
|
A521 | Written amendment |
Effective date: 20040728 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040907 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070917 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20080917 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080917 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090917 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20100917 |
|
LAPS | Cancellation because of no payment of annual fees |