JP2015170825A - Manufacturing method of power module substrate with radiation plate - Google Patents

Manufacturing method of power module substrate with radiation plate Download PDF

Info

Publication number
JP2015170825A
JP2015170825A JP2014046953A JP2014046953A JP2015170825A JP 2015170825 A JP2015170825 A JP 2015170825A JP 2014046953 A JP2014046953 A JP 2014046953A JP 2014046953 A JP2014046953 A JP 2014046953A JP 2015170825 A JP2015170825 A JP 2015170825A
Authority
JP
Japan
Prior art keywords
power module
heat sink
pressure plate
plate
module substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014046953A
Other languages
Japanese (ja)
Other versions
JP6201827B2 (en
Inventor
石塚 博弥
Hiroya Ishizuka
博弥 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014046953A priority Critical patent/JP6201827B2/en
Publication of JP2015170825A publication Critical patent/JP2015170825A/en
Application granted granted Critical
Publication of JP6201827B2 publication Critical patent/JP6201827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease warpage during manufacturing, and join composition surfaces between a power module substrate and a radiation plate over the entire area.SOLUTION: A radiation plate 20 is formed by an AlSiC composite material which is made by impregnation of aluminium or aluminium alloy in a madreporic body of silicon carbide. The maximum length 13L of a metal layer 13 is smaller than the maximum length 20L of the radiation plate 20. A pair of pressure plates consist of an upper side pressure plate 110A which presses a surface of a circuit layer 12 and a lower side pressure plate 110B which presses a back face of the radiation plate 20. A curvature radius R1 of a convex 110a on the upper side pressure plate 110A is 3500 mm or more and 6300 mm or less. A curvature radius R2 of a concave 110b on the lower side pressure plate 110B is formed to be larger than the curvature radius R1 so that a gap is provided to be 0.025 mm or less between the upper side pressure plate 110A and the lower side pressure plate 110B at positions α of the radiation plate 20 corresponding to both ends of the metal layer 13 at the maximum length 13L when superimposing the convex 110a on the concave 110b.

Description

本発明は、大電流、高電圧を制御する半導体装置に用いられる放熱板付パワーモジュール用基板の製造方法に関する。   The present invention relates to a method of manufacturing a power module substrate with a heat sink used in a semiconductor device that controls a large current and a high voltage.

パワーモジュールとして、窒化アルミニウムを始めとするセラミックス基板の一方の面にアルミニウム板が接合されるとともに、他方の面にアルミニウム板を介してアルミニウム系の放熱板が接合された放熱板付パワーモジュール用基板が用いられている。   As a power module, there is a power module substrate with a radiator plate in which an aluminum plate is bonded to one surface of a ceramic substrate including aluminum nitride and an aluminum-based radiator plate is bonded to the other surface via an aluminum plate. It is used.

従来、放熱板付パワーモジュール用基板は、次のように製造されてきた。
まず、セラミックス基板表面に、セラミックス基板とアルミニウム板との接合に適するろう材を介して、セラミックス基板の一方の面及び他方の面にアルミニウム板を積層し、所定の圧力で加圧しながら、ろう材が溶融する温度以上まで加熱し冷却することにより、セラミックス基板と両面のアルミニウム板とを接合してパワーモジュール用基板を製造する。
Conventionally, power module substrates with heat sinks have been manufactured as follows.
First, an aluminum plate is laminated on one surface and the other surface of the ceramic substrate via a brazing material suitable for joining the ceramic substrate and the aluminum plate to the surface of the ceramic substrate, and the brazing material is pressed with a predetermined pressure. The power module substrate is manufactured by joining the ceramic substrate and the aluminum plates on both sides by heating and cooling to a temperature equal to or higher than the temperature at which the material melts.

次に、パワーモジュール用基板の他方の面側のアルミニウム板に、そのアルミニウム板と放熱板との接合に適するろう材を介して放熱板を積層し、所定の圧力で加圧しながら、ろう材が溶融する温度以上まで加熱し冷却する。これにより、アルミニウム板と放熱板とを接合して放熱板付パワーモジュール用基板を製造することができる。そして、この放熱板付パワーモジュール用基板は、冷却器(水冷等)に締結された状態で使用される。
また、このように構成される放熱板付パワーモジュール用基板の一方の面側に接合されたアルミニウム板は、回路層として形成され、この回路層上にはんだ材を介してパワー素子等の電子部品が搭載される。
Next, a heat radiating plate is laminated on the aluminum plate on the other surface side of the power module substrate through a brazing material suitable for joining the aluminum plate and the heat radiating plate, and the brazing material is pressed while being pressed at a predetermined pressure. Heat to cool above melting temperature and cool. Thereby, an aluminum plate and a heat sink can be joined and a power module board with a heat sink can be manufactured. And this power module board | substrate with a heat sink is used in the state fastened by the cooler (water cooling etc.).
Moreover, the aluminum plate joined to one surface side of the power module substrate with a heat sink configured as described above is formed as a circuit layer, and electronic components such as power elements are placed on the circuit layer via a solder material. Installed.

ところが、セラミックス基板とアルミニウム板のような熱膨張係数の異なる部材の接合においては、接合後の冷却時における熱収縮により反りが発生する。
この反り対策として、特許文献1では、セラミックス基板をたわませながら回路用金属板と金属放熱板とを接合し、回路用金属板が凹面となる反りを有する回路基板を製造することとしている。
一般的に、回路用基板を用いてモジュールを形成する際には、モジュールを平面的になるように放熱板に接合し、固定部品に固定して用いられる。そこで、特許文献1には、回路基板の回路用金属板側に凹面となる反りを形成しておくことで、回路基板を平坦に固定した際に回路基板に圧縮応力が残留し、モジュールへの組立時やその実使用下においてクラックの発生、成長を低減することができることが記載されている。
However, in the joining of members having different thermal expansion coefficients such as a ceramic substrate and an aluminum plate, warpage occurs due to thermal contraction during cooling after joining.
As a countermeasure against the warp, in Patent Document 1, a circuit board having a warp in which the circuit metal plate becomes a concave surface is manufactured by joining the circuit metal plate and the metal heat sink while bending the ceramic substrate.
In general, when a module is formed using a circuit board, the module is joined to a heat sink so as to be planar and fixed to a fixed component. Therefore, in Patent Document 1, by forming a concave warp on the circuit metal plate side of the circuit board, when the circuit board is fixed flat, compressive stress remains on the circuit board, It is described that the generation and growth of cracks can be reduced during assembly and actual use.

また、特許文献2には、セラミックス回路基板と放熱板(ヒートシンク材)とのはんだリフロー時に生じる反りは、金属放熱板と金属回路板の体積比、及び厚さ比が主たる支配要因であり、これらの構成を適当な範囲とすることで加熱中に好ましい反り形状を実現することができることが記載されている。   Moreover, in patent document 2, the curvature which arises at the time of the solder reflow of a ceramic circuit board and a heat sink (heat sink material) is the dominant factors which are the volume ratio and thickness ratio of a metal heat sink and a metal circuit board. It is described that a preferable warp shape can be realized during heating by setting the above structure to an appropriate range.

特開平10‐247763号公報Japanese Patent Laid-Open No. 10-247763 特開2006‐245437号公報JP 2006-245437 A

しかし、パワーモジュール用基板に望まれるのは、パワーモジュールとしての要求仕様を満たすための反りを低減することである。このため、特許文献1及び特許文献2に記載されるように、パワーモジュール用基板として反りを制御したとしても、放熱板が接合されたパワーモジュールとして反りを低減できなければならない。
また、パワーモジュール用基板と放熱板とが接合された放熱板付パワーモジュール用基板においては、パワーモジュール用基板と放熱板との熱伸縮差(反り量)の違いから、これらを接合面の全面にわたって密着させて接合することが難しく、放熱性能の低下が懸念される。また、放熱板への接合後においても、半導体素子のはんだ付け等の熱処理過程において、放熱板付パワーモジュール用基板の反り変形が少ないことが望まれる。
However, what is desired for a power module substrate is to reduce warpage to satisfy the required specifications of the power module. For this reason, as described in Patent Document 1 and Patent Document 2, even when the warpage is controlled as a power module substrate, the warpage must be reduced as a power module to which a heat sink is bonded.
In addition, in a power module substrate with a heat sink, in which the power module substrate and the heat sink are joined, due to the difference in thermal expansion and contraction (warpage) between the power module substrate and the heat sink, these are spread over the entire joint surface. It is difficult to bond them closely, and there is a concern about deterioration of heat dissipation performance. Further, it is desired that the power module substrate with a heat sink is less warped and deformed in the heat treatment process such as soldering of the semiconductor element even after joining to the heat sink.

本発明は、このような事情に鑑みてなされたもので、パワーモジュール用基板と放熱板との接合時に生じる反りを低減することができるとともに、パワーモジュール用基板と放熱板との接合面の全面にわたって接合することができる放熱板付パワーモジュール用基板の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and can reduce the warpage generated when the power module substrate and the heat radiating plate are bonded together, and the entire bonding surface between the power module substrate and the heat radiating plate. It aims at providing the manufacturing method of the board | substrate for power modules with a heat sink which can be joined over.

本発明は、セラミックス基板の一方の面に回路層が配設され、前記セラミックス基板の他方の面にアルミニウム又はアルミニウム合金からなる金属層が配設されてなるパワーモジュール用基板を、放熱板に接合する放熱板付パワーモジュール用基板の製造方法であって、前記パワーモジュール用基板の前記金属層に前記放熱板を重ねて配置した積層体を一対の加圧板の間に挟んで積層方向に加圧しながら加熱することにより、前記パワーモジュール用基板と前記放熱板とをろう付けするろう付け工程を有し、前記放熱板は、炭化ケイ素の多孔体にアルミニウム又はアルミニウム合金を含浸して形成されたAlSiC系複合材料により形成され、前記金属層の最大長さが30mm以上200mm以下で前記放熱板の最大長さよりも小さく形成されており、前記ろう付け工程において、前記一対の加圧板は、前記回路層表面を押圧する凸面を有する上側加圧板と、前記放熱板背面を押圧する凹面を有する下側加圧板とからなり、前記上側加圧板の凸面の曲率半径R1が3500mm以上6300mm以下とされ、前記下側加圧板の凹面の曲率半径R2は、前記上側加圧板の凸面と前記下側加圧板の凹面とを重ね合せた状態とした場合に、前記金属層の最大長さの両端位置に対応する位置において前記上側加圧板と前記下側加圧板との間に0.025mm以下のギャップが設けられるように、前記曲率半径R1よりも大きく形成されていることを特徴とする。   In the present invention, a power module substrate in which a circuit layer is disposed on one surface of a ceramic substrate and a metal layer made of aluminum or an aluminum alloy is disposed on the other surface of the ceramic substrate is bonded to a heat sink. A method for manufacturing a power module substrate with a heat sink, wherein a laminate in which the heat sink is placed on the metal layer of the power module substrate is sandwiched between a pair of pressure plates and heated while being pressed in the stacking direction. And a brazing step of brazing the power module substrate and the heat sink, wherein the heat sink is formed by impregnating a silicon carbide porous body with aluminum or an aluminum alloy. The maximum length of the metal layer is 30 mm or more and 200 mm or less and smaller than the maximum length of the heat sink. In the brazing step, the pair of pressure plates includes an upper pressure plate having a convex surface that presses the surface of the circuit layer and a lower pressure plate having a concave surface that presses the back surface of the heat dissipation plate, The curvature radius R1 of the convex surface of the upper pressure plate is 3500 mm or more and 6300 mm or less, and the curvature radius R2 of the concave surface of the lower pressure plate is a state where the convex surface of the upper pressure plate and the concave surface of the lower pressure plate are overlapped. The radius of curvature R1 so that a gap of 0.025 mm or less is provided between the upper pressure plate and the lower pressure plate at positions corresponding to both end positions of the maximum length of the metal layer. It is characterized by being formed larger than.

放熱板付パワーモジュール(パワーモジュール)の使用時においては、放熱板付パワーモジュール用基板と冷却器との密着性を良好に維持する観点から、冷却器側に対して凹状の反り(回路層側に凸状の反り)であることよりも、凸状の反りであることが望まれる。
本発明の放熱板付パワーモジュール用基板においては、放熱板を低熱膨張係数のAlSiC系複合材料により形成し、放熱板とパワーモジュール用基板との接合時において、放熱板とパワーモジュール用基板との積層体を、一対の加圧板で挟持して、積層方向の回路層側を上側とする凹状の反りを生じさせた状態とし、ろう材が溶融する温度以上で所定時間保持した後に冷却することで、凹状に沿った形状でろう材を固めて、積層方向の加圧状態を解放した後も、回路層を上側として凹状に反る、あるいは凸状でも反り量が小さい接合体が得られる。
When using a power module with a heat sink (power module), from the standpoint of maintaining good adhesion between the power module substrate with a heat sink and the cooler, a concave warp (convex to the circuit layer side) with respect to the cooler side. It is more desirable to be a convex warp than a warp.
In the power module substrate with a heat sink of the present invention, the heat sink is formed of an AlSiC-based composite material having a low thermal expansion coefficient, and the heat sink and the power module substrate are laminated at the time of joining the heat sink and the power module substrate. By sandwiching the body between a pair of pressure plates and causing a concave warp with the circuit layer side in the stacking direction on the upper side, by cooling for a predetermined time above the temperature at which the brazing material melts, Even after the brazing material is hardened in a shape along the concave shape and the pressurization state in the stacking direction is released, a joined body that warps in a concave shape with the circuit layer as the upper side, or has a small warpage amount even in the convex shape.

また、パワーモジュール用基板と放熱板とのろう付け時においては、パワーモジュール用基板と放熱板との熱伸縮差(反り量)の違いから、これらを接合面の全面にわたって密着させて接合することが難しいが、上側加圧板の凸面の曲率半径R1に対して、下側加圧板の凹面の曲率半径R2を、金属層の最大長さ位置において0.025mm以下のギャップが設けられるように、曲率半径R1よりも大きく形成することにより、パワーモジュール用基板と放熱板とを、接合面全面において密着させて接合することができる。
さらに、放熱板を形成するAlSiC系複合材料は、炭化ケイ素の低熱膨張性とアルミニウムの高熱伝導性とを兼ね備えた材料であるので、熱応力を緩和しつつ、優れた放熱特性を発揮させることができる。
したがって、熱処理過程における反り変形を抑制することができ、素子をはんだ付けする工程における作業性の向上や、熱サイクル負荷による基板信頼性を改善することができる。
Also, when brazing the power module substrate and the heat sink, due to the difference in thermal expansion and contraction (warping amount) between the power module substrate and the heat sink, they should be bonded together over the entire joint surface. Although it is difficult, the curvature radius R2 of the concave surface of the lower pressure plate is set so that a gap of 0.025 mm or less is provided at the maximum length position of the metal layer with respect to the curvature radius R1 of the convex surface of the upper pressure plate. By forming it larger than the radius R1, it is possible to bond the power module substrate and the heat sink in close contact with each other over the entire bonding surface.
Furthermore, the AlSiC-based composite material that forms the heat sink is a material that combines the low thermal expansion of silicon carbide and the high thermal conductivity of aluminum, so that it can exhibit excellent heat dissipation characteristics while reducing thermal stress. it can.
Therefore, warpage deformation in the heat treatment process can be suppressed, workability can be improved in the process of soldering the element, and substrate reliability due to thermal cycle load can be improved.

本発明によれば、パワーモジュール用基板と放熱板との接合時に生じる反りを低減することができるとともに、パワーモジュール用基板と放熱板との接合面の全面にわたって接合することができることから、パワーモジュール用基板と放熱板との間の熱抵抗を低減させることができ、熱サイクル負荷による基板信頼性を向上させることができる。   According to the present invention, it is possible to reduce the warpage generated when the power module substrate and the heat radiating plate are joined, and to join the entire surface of the joining surface between the power module substrate and the heat radiating plate. The thermal resistance between the circuit board and the heat radiating plate can be reduced, and the substrate reliability due to the thermal cycle load can be improved.

放熱板付パワーモジュール用基板を用いたパワーモジュールを示す断面図である。It is sectional drawing which shows the power module using the board | substrate for power modules with a heat sink. 本発明に係る放熱板付パワーモジュール用基板の製造方法を説明する断面図であり、(a)がパワーモジュール用基板と放熱板との接合前、(b)が接合後の状態を示す。It is sectional drawing explaining the manufacturing method of the board | substrate for power modules with a heat sink which concerns on this invention, (a) is before joining of a board | substrate for power modules and a heat sink, (b) shows the state after joining. 本発明に係る放熱板付パワーモジュール用基板の製造方法に用いる治具を説明する側面図である。It is a side view explaining the jig | tool used for the manufacturing method of the board | substrate for power modules with a heat sink which concerns on this invention. 上側加圧板と下側加圧板との間のギャップを説明する要部図である。It is a principal part figure explaining the gap between an upper side pressure plate and a lower side pressure plate.

以下、本発明の実施形態について、図面を参照しながら説明する。
本発明に係る放熱板付パワーモジュール用基板の製造方法により製造される放熱板付パワーモジュール用基板1は、図1に示すように、パワーモジュール用基板10と、パワーモジュール用基板10に接合された放熱板20とを備え、この放熱板付パワーモジュール用基板1の表面に半導体チップ等の電子部品30が搭載されることにより、パワーモジュール100が製造される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a power module substrate 1 with a heat dissipation plate manufactured by the method for manufacturing a power module substrate with a heat dissipation plate according to the present invention has a heat dissipation bonded to the power module substrate 10 and the power module substrate 10. The power module 100 is manufactured by mounting an electronic component 30 such as a semiconductor chip on the surface of the power module substrate 1 with a heat sink.

放熱板付パワーモジュール用基板1の製造工程においては、まず図2(a)に示すようにパワーモジュール用基板10を製造し、このパワーモジュール用基板10と放熱板20とをろう付けすることにより、図2(b)に示すような放熱板付パワーモジュール用基板1を製造する。   In the manufacturing process of the power module substrate 1 with a heat sink, first, the power module substrate 10 is manufactured as shown in FIG. 2A, and the power module substrate 10 and the heat sink 20 are brazed. A power module substrate 1 with a heat sink as shown in FIG.

パワーモジュール用基板10は、セラミックス基板11と、セラミックス基板11の一方の面に積層された回路層12と、セラミックス基板11の他方の面に積層された金属層13とを備える。そして、パワーモジュール用基板10の回路層12の表面に電子部品30がはんだ付けされ、金属層13の表面に放熱板20が取り付けられる。   The power module substrate 10 includes a ceramic substrate 11, a circuit layer 12 laminated on one surface of the ceramic substrate 11, and a metal layer 13 laminated on the other surface of the ceramic substrate 11. The electronic component 30 is soldered to the surface of the circuit layer 12 of the power module substrate 10, and the heat sink 20 is attached to the surface of the metal layer 13.

セラミックス基板11は、例えばAlN(窒化アルミニウム)、Si(窒化珪素)等の窒化物系セラミックス、もしくはAl(アルミナ)等の酸化物系セラミックスにより矩形状に形成され、本実施形態ではAlNを用いた。また、セラミックス基板11の厚さは0.2〜1.5mmの範囲内に設定されており、本実施形態では0.635mmに設定されている。 The ceramic substrate 11 is formed in a rectangular shape by nitride ceramics such as AlN (aluminum nitride) and Si 3 N 4 (silicon nitride), or oxide ceramics such as Al 2 O 3 (alumina). In the form, AlN was used. Further, the thickness of the ceramic substrate 11 is set within a range of 0.2 to 1.5 mm, and in this embodiment is set to 0.635 mm.

回路層12は、純度99質量%以上のアルミニウムが用いられ、JIS規格では1000番台のアルミニウム、特に1N90(純度99.9質量%以上:いわゆる3Nアルミニウム)又は1N99(純度99.99質量%以上:いわゆる4Nアルミニウム)を用いることができる。また、回路層12には、アルミニウム以外にもアルミニウム合金や、銅又は銅合金を用いることもできる。   The circuit layer 12 is made of aluminum having a purity of 99% by mass or more. According to JIS standards, aluminum in the 1000s, particularly 1N90 (purity 99.9% by mass or more: so-called 3N aluminum) or 1N99 (purity 99.99% by mass or more: So-called 4N aluminum) can be used. The circuit layer 12 may be made of aluminum alloy, copper, or copper alloy in addition to aluminum.

金属層13は、純度99質量%以上のアルミニウム又はアルミニウム合金が用いられ、JIS規格では1000番台のアルミニウム、特に1N99(純度99.99質量%以上:いわゆる4Nアルミニウム)を用いることができる。
また、金属層13の最大長さ13Lは、30mm以上200mm以下とされ、後述する放熱板20の最大長さ20Lよりも小さくなっている。なお、金属層13の形状は矩形に限られるものではないが、矩形の場合の最大長さ13Lは、金属層13の平面サイズの最大辺の長さとなる。
The metal layer 13 is made of aluminum or an aluminum alloy having a purity of 99% by mass or more, and can be made of aluminum in the 1000s, particularly 1N99 (purity 99.99% by mass or more: so-called 4N aluminum) according to JIS standards.
Further, the maximum length 13L of the metal layer 13 is set to 30 mm or more and 200 mm or less, and is smaller than the maximum length 20L of the heat sink 20 described later. The shape of the metal layer 13 is not limited to a rectangle, but the maximum length 13L in the case of a rectangle is the length of the maximum side of the planar size of the metal layer 13.

本実施形態においては、回路層12及び金属層13は、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなるアルミニウム板とされ、その厚さは0.2mm〜3.0mmに設定されており、回路層12が0.6mm、金属層13が2.1mmの厚さとされている。   In this embodiment, the circuit layer 12 and the metal layer 13 are aluminum plates made of a rolled plate of aluminum (so-called 4N aluminum) having a purity of 99.99% or more, and the thickness thereof is 0.2 mm to 3.0 mm. The circuit layer 12 has a thickness of 0.6 mm, and the metal layer 13 has a thickness of 2.1 mm.

そして、これら回路層12及び金属層13とセラミックス基板11とは、例えばろう付けにより接合される。ろう材としては、Al‐Si系、Al‐Ge系、Al‐Cu系、Al‐Mg系又はAl‐Mn系等の合金が使用される。   The circuit layer 12, the metal layer 13, and the ceramic substrate 11 are joined by, for example, brazing. As the brazing material, an alloy such as Al-Si, Al-Ge, Al-Cu, Al-Mg, or Al-Mn is used.

なお、パワーモジュール100を構成する電子部品30は、回路層12の表面に形成されたNiめっき(不図示)上に、Sn‐Ag‐Cu系、Zn‐Al系、Sn‐Ag系、Sn‐Cu系、Sn‐Sb系もしくはPb‐Sn系等のはんだ材を用いて接合される。図1中の符号31が、そのはんだ接合層を示す。また、電子部品30と回路層12の端子部との間は、アルミニウムからなるボンディングワイヤ(不図示)により接続される。   The electronic component 30 constituting the power module 100 is formed on a Ni plating (not shown) formed on the surface of the circuit layer 12 with a Sn—Ag—Cu, Zn—Al, Sn—Ag, Sn— Bonding is performed using a solder material such as Cu, Sn—Sb, or Pb—Sn. Reference numeral 31 in FIG. 1 indicates the solder joint layer. The electronic component 30 and the terminal portion of the circuit layer 12 are connected by a bonding wire (not shown) made of aluminum.

また、パワーモジュール用基板10に接合される放熱板20は、炭化ケイ素(SiC)の多孔体にアルミニウム又はアルミニウム合金を含浸して形成されたAlSiC系複合材料により形成される。また、放熱板20は矩形の平板状に形成されており、厚さが3mm以上10mm以下で、最大長さ20Lが45mm以上240mm以下とされている。なお、放熱板20の形状は矩形に限られるものではないが、矩形の場合の最大長さ20Lは、放熱板20の平面サイズの最大辺の長さとなる。また、放熱板20が接合されるパワーモジュール用基板10は、図2に示すように、放熱板20の平面サイズよりも小さく形成されており、金属層13の最大長さ13L(最大辺の長さ)は、放熱板20の最大長さ20Lよりも小さくなっている。   Moreover, the heat sink 20 joined to the power module substrate 10 is formed of an AlSiC-based composite material formed by impregnating a porous body of silicon carbide (SiC) with aluminum or an aluminum alloy. Moreover, the heat sink 20 is formed in a rectangular flat plate shape, and has a thickness of 3 mm to 10 mm and a maximum length 20L of 45 mm to 240 mm. In addition, although the shape of the heat sink 20 is not limited to a rectangle, the maximum length 20L in the case of a rectangle is the length of the maximum side of the planar size of the heat sink 20. Further, as shown in FIG. 2, the power module substrate 10 to which the heat sink 20 is joined is formed smaller than the planar size of the heat sink 20, and the maximum length 13L (the length of the maximum side of the metal layer 13). ) Is smaller than the maximum length 20L of the heat sink 20.

本実施形態においては、放熱板20は、炭化ケイ素の多孔体に、Siが5質量%以上12質量%以下の範囲で含有されるアルミニウム合金が含浸するとともに、多孔体の表面にそのアルミニウム合金の被覆層が形成されたAlSiC系複合材料により形成されている。なお、このAlSiC系複合材料の線膨張係数は、8×10−6/K〜12×10−6/Kとされる。
また、ここで放熱板20としては、板状の放熱板、フィンが形成された板状の放熱板などが含まれる。
In this embodiment, the heat sink 20 is impregnated with a silicon carbide porous body impregnated with an aluminum alloy containing Si in a range of 5 mass% to 12 mass%, and the surface of the porous body is made of the aluminum alloy. It is made of an AlSiC composite material on which a coating layer is formed. Incidentally, the coefficient of linear expansion of the AlSiC composite material is a 8 × 10 -6 / K~12 × 10 -6 / K.
Further, the heat radiating plate 20 includes a plate-shaped heat radiating plate, a plate-shaped heat radiating plate formed with fins and the like.

次に、放熱板付パワーモジュール用基板1の製造方法を説明する。
まず、回路層12及び金属層13として、それぞれ99.99質量%以上の純アルミニウム圧延板を準備し、これらの純アルミニウム圧延板を、セラミックス基板11の一方の面及び他方の面にそれぞれろう材を介して積層し、加圧・加熱することによって、セラミックス基板11の一方の面及び他方の面に純アルミニウム圧延板が接合されたパワーモジュール用基板10を製造する。なお、本実施形態では、Al-10%Si系ろう材を用いてろう付けが行われ、この際のろう付け温度は600℃〜655℃に設定される。
Next, the manufacturing method of the board | substrate 1 for power modules with a heat sink is demonstrated.
First, as the circuit layer 12 and the metal layer 13, 99.99 mass% or more of pure aluminum rolled sheets are prepared, and these pure aluminum rolled sheets are brazed on one surface and the other surface of the ceramic substrate 11, respectively. The power module substrate 10 in which a pure aluminum rolled plate is bonded to one surface and the other surface of the ceramic substrate 11 is manufactured by laminating the film through the pressure and heating. In this embodiment, brazing is performed using an Al-10% Si brazing material, and the brazing temperature at this time is set to 600 ° C to 655 ° C.

このように構成されたパワーモジュール用基板10に放熱板20を接合するには、まず、図3に示すように、一対の加圧板110A,110Bとその四隅に設けられた支柱111によって構成された治具112を用いて、加圧板110A,110B間に放熱板20及びパワーモジュール用基板10を積層して配置する。
治具112の一対の加圧板110A,110Bは、ステンレス鋼材の表面にカーボン板が積層されたものであり、パワーモジュール用基板10の回路層12表面を押圧する凸面110aを有する上側加圧板110Aと、放熱板20の背面を押圧する凹面110bを有する下側加圧板110Bとからなり、これら加圧板110A,110Bの対向する面110a,110bが、放熱板20のパワーモジュール用基板10との接合面20aを凹状とするような曲面に形成されている。
In order to join the heat dissipation plate 20 to the power module substrate 10 configured as described above, first, as shown in FIG. 3, it was configured by a pair of pressure plates 110A and 110B and columns 111 provided at the four corners. Using the jig 112, the heat sink 20 and the power module substrate 10 are stacked and arranged between the pressure plates 110A and 110B.
The pair of pressure plates 110A and 110B of the jig 112 is formed by laminating a carbon plate on the surface of a stainless steel material, and includes an upper pressure plate 110A having a convex surface 110a that presses the surface of the circuit layer 12 of the power module substrate 10. The lower pressure plate 110B having a concave surface 110b that presses the back surface of the heat radiating plate 20, and the opposing surfaces 110a and 110b of the pressure plates 110A and 110B are the joint surfaces of the heat radiating plate 20 and the power module substrate 10. It is formed in the curved surface which makes 20a concave.

また、これら一対の加圧板110A,110Bは、図3及び図4に示すように、上側加圧板110Aの凸面110aの曲率半径R1が3500mm以上6300mm以下とされるのに対して、下側加圧板110Bの凹面110bの曲率半径R2は、これら上側加圧板110Aの凸面110aと下側加圧板110Bの凹面110bとを重ね合せた状態とした場合に、金属層13の最大長さ13Lの両端位置に対応する位置αにおいて上側加圧板110Aと下側加圧板110Bとの間に0.025mm以下のギャップGが設けられるように、曲率半径R1よりも大きく形成されている。   Further, as shown in FIGS. 3 and 4, the pair of pressure plates 110A and 110B has a curvature radius R1 of the convex surface 110a of the upper pressure plate 110A of 3500 mm to 6300 mm, whereas the lower pressure plate When the convex surface 110a of the upper pressure plate 110A and the concave surface 110b of the lower pressure plate 110B are overlapped with each other, the curvature radius R2 of the concave surface 110b of 110B is set at both end positions of the maximum length 13L of the metal layer 13. It is formed larger than the curvature radius R1 so that a gap G of 0.025 mm or less is provided between the upper pressure plate 110A and the lower pressure plate 110B at the corresponding position α.

そして、支柱111の両端には螺子が切られており、加圧板110A,110Bを挟むようにナット113が締結されている。また、支柱111に支持された天板114と上側加圧板110Aと間に、その上側加圧板110Aを下方に付勢するばね等の付勢手段115が備えられており、加圧力は、この付勢手段115とナット113の締付けによって調整される。   And the screw | thread is cut at the both ends of the support | pillar 111, and the nut 113 is fastened so that pressure plate 110A, 110B may be pinched | interposed. Further, an urging means 115 such as a spring for urging the upper pressure plate 110A downward is provided between the top plate 114 supported by the support column 111 and the upper pressure plate 110A. Adjustment is made by tightening the biasing means 115 and the nut 113.

そして、本実施形態の放熱板付パワーモジュール用基板1の製造工程においては、パワーモジュール用基板10及び放熱板20を治具112に取り付けた状態とすることにより、製造時において放熱板付パワーモジュール用基板1に発生する回路層12側に凸状の反りを抑制することができる。   And in the manufacturing process of the power module substrate 1 with a heat sink of this embodiment, by setting the power module substrate 10 and the heat sink 20 to the jig 112, the power module substrate with a heat sink at the time of manufacturing. 1 can be prevented from projecting to the circuit layer 12 side.

まず、下側に配置される凹面110bを有する下側加圧板110Bの上に放熱板20を載置し、その上にろう材箔(図示略)を介してパワーモジュール用基板10を重ねて載置して、これら放熱板20とパワーモジュール用基板10との積層体を、凸面110aを有する上側加圧板110Aとの間で挟んだ状態とする。この際、放熱板20とパワーモジュール用基板10との積層体は、一対の加圧板110A,110Bの凹凸面110a,110bにより厚み方向に加圧され、放熱板20の接合面20aを凹状の反りとする変形を生じさせた状態とされる。そして、放熱板20とパワーモジュール用基板10との積層体を加圧状態で加熱することにより、放熱板20とパワーモジュール用基板10の金属層13とをろう付けにより固着する。
なお、本実施形態では、ろう付けは、Al-10%Si系ろう材を用いてろう付けが行われ、真空雰囲気中で、荷重0.1MPa〜3MPa、加熱温度580℃〜620℃の条件で行われる。
First, the heat radiating plate 20 is placed on the lower pressure plate 110B having the concave surface 110b disposed on the lower side, and the power module substrate 10 is placed thereon with a brazing filler metal foil (not shown) interposed therebetween. The laminated body of the heat sink 20 and the power module substrate 10 is sandwiched between the upper pressure plate 110A having the convex surface 110a. At this time, the laminated body of the heat sink 20 and the power module substrate 10 is pressed in the thickness direction by the concave and convex surfaces 110a and 110b of the pair of pressure plates 110A and 110B, and the joint surface 20a of the heat sink 20 is concavely warped. The deformation is caused to occur. And the heat sink 20 and the metal layer 13 of the power module substrate 10 are fixed by brazing by heating the laminated body of the heat sink 20 and the power module substrate 10 in a pressurized state.
In the present embodiment, the brazing is performed using an Al-10% Si brazing material, in a vacuum atmosphere under the conditions of a load of 0.1 MPa to 3 MPa and a heating temperature of 580 ° C. to 620 ° C. Done.

次に、これら放熱板20とパワーモジュール用基板10との接合体を、治具112に取り付けた状態、つまり、変形を生じさせた状態で、常温(25℃)まで冷却する。
この場合、放熱板20とパワーモジュール用基板10との接合体は、治具112によって厚み方向に加圧され、放熱板20の接合面20aを凹状の反りとする変形を生じさせた状態で拘束されている。このため、冷却に伴う放熱板20とパワーモジュール用基板10との接合体の形状は見かけ上は変化がないように見えるが、応力に抗して加圧され、冷却時に反りとしての変形が出来ない状態に拘束されている結果、塑性変形が生じることとなる。
Next, the joined body of the heat radiating plate 20 and the power module substrate 10 is cooled to room temperature (25 ° C.) in a state where it is attached to the jig 112, that is, in a state where deformation is caused.
In this case, the joined body of the radiator plate 20 and the power module substrate 10 is pressed in the thickness direction by the jig 112 and restrained in a state in which the joint surface 20a of the radiator plate 20 is deformed into a concave warp. Has been. For this reason, the shape of the joined body of the heat sink 20 and the power module substrate 10 due to cooling does not seem to change, but it is pressurized against the stress and can be deformed as a warp during cooling. As a result of being constrained in the absence, plastic deformation occurs.

このようにして製造された放熱板付パワーモジュール用基板1においては、積層方向の加圧状態を解放した後も、図2(b)に示すように、回路層12を上側として凹状に反る、あるいは凸状でも反り量が小さくなり、製造時に生じる反りが低減される。
また、上側加圧板110Aの凸面110aの曲率半径R1に対して、下側加圧板110Bの凹面110bの曲率半径R2を金属層13の最大長さ13Lの両端位置に対応する位置αおいて0.025mm以下のギャップGが設けられるように曲率半径R1よりも大きく形成した一対の加圧板110A,110Bで加圧することにより、パワーモジュール用基板10と放熱板20とを、その接合面全面において密着させて接合することができる。
さらに、放熱板20を形成するAlSiC系複合材料は、炭化ケイ素の低熱膨張性とアルミニウムの高熱伝導性とを兼ね備えた材料であるので、熱応力を緩和しつつ、優れた放熱特性を発揮させることができる。
したがって、熱処理過程における反り変形を抑制することができ、素子はんだ付け工程における作業性の向上や、熱サイクル負荷による基板信頼性を改善することができる。
In the power module substrate 1 with a heat sink manufactured in this way, even after releasing the pressurization state in the stacking direction, as shown in FIG. Or even if it is convex, the amount of warpage is reduced, and the warpage that occurs during manufacturing is reduced.
Further, the curvature radius R2 of the concave surface 110b of the lower pressure plate 110B is set to 0. at a position α corresponding to both end positions of the maximum length 13L of the metal layer 13 with respect to the curvature radius R1 of the convex surface 110a of the upper pressure plate 110A. By applying pressure with a pair of pressure plates 110A and 110B formed to be larger than the curvature radius R1 so that a gap G of 025 mm or less is provided, the power module substrate 10 and the heat radiating plate 20 are brought into close contact with each other over the entire joint surface. Can be joined together.
Furthermore, since the AlSiC-based composite material forming the heat sink 20 is a material that combines the low thermal expansion of silicon carbide and the high thermal conductivity of aluminum, it can exhibit excellent heat dissipation characteristics while reducing thermal stress. Can do.
Therefore, warpage deformation in the heat treatment process can be suppressed, workability in the element soldering process can be improved, and substrate reliability due to thermal cycle load can be improved.

次に、本発明の効果を確認するために行った実施例及び比較例について説明する。
前述した放熱板付パワーモジュール用基板1の製造工程において、上側加圧板110Aの凸面110aの曲率半径R1を表1に記載されるように変更して、パワーモジュール用基板10と放熱板20とを接合した放熱板付パワーモジュール用基板1の試料を複数製造した。なお、比較例1、比較例5及び比較例9については、上側加圧板110Aの凸面110aを平坦面で形成した。
Next, examples and comparative examples performed for confirming the effects of the present invention will be described.
In the manufacturing process of the power module substrate 1 with a heat sink described above, the curvature radius R1 of the convex surface 110a of the upper pressure plate 110A is changed as shown in Table 1, and the power module substrate 10 and the heat sink 20 are joined. A plurality of samples of the heat-dissipating plate-equipped power module substrate 1 were manufactured. In Comparative Example 1, Comparative Example 5, and Comparative Example 9, the convex surface 110a of the upper pressure plate 110A was formed as a flat surface.

各放熱板付パワーモジュール用基板1を構成するパワーモジュール用基板10としては、下記の構成とした。
実施例1〜6及び比較例1〜4については、30mm×25mm、厚み0.4mmの4N‐Alからなる回路層と、30mm×25mm、厚み0.4mmの4N‐Alからなる金属層とが、34mm×29mm、厚み0.635mmのAlNからなるセラミックス基板にAl‐Si系ろう材により接合されたものを用いた。
実施例7〜12及び比較例5〜8については、100mm×50mm、厚み0.4mmの4N‐Alからなる回路層と、100mm×50mm、厚み0.4mmの4N‐Alからなる金属層とが、104mm×54mm、厚み0.635mmのAlNからなるセラミックス基板にAl‐Si系ろう材により接合されたものを用いた。
実施例13〜18及び比較例9〜12については、200mm×65mm、厚み0.4mmの4N‐Alからなる回路層と、200mm×65mm、厚み0.4mmの4N‐Alからなる金属層とが、204mm×69mm、厚み0.635mmのAlNからなるセラミックス基板にAl‐Si系ろう材により接合されたものを用いた。
The power module substrate 10 constituting the power module substrate 1 with each heat sink has the following configuration.
For Examples 1 to 6 and Comparative Examples 1 to 4, a circuit layer made of 4N—Al having a thickness of 30 mm × 25 mm and a thickness of 0.4 mm and a metal layer made of 4N—Al having a thickness of 30 mm × 25 mm and a thickness of 0.4 mm were obtained. A ceramic substrate made of AlN having a thickness of 34 mm × 29 mm and a thickness of 0.635 mm and bonded with an Al—Si brazing material was used.
For Examples 7 to 12 and Comparative Examples 5 to 8, a circuit layer made of 4N—Al having a size of 100 mm × 50 mm and a thickness of 0.4 mm and a metal layer made of 4N—Al having a size of 100 mm × 50 mm and a thickness of 0.4 mm were obtained. A ceramic substrate made of AlN having a size of 104 mm × 54 mm and a thickness of 0.635 mm and bonded with an Al—Si brazing material was used.
For Examples 13 to 18 and Comparative Examples 9 to 12, a circuit layer made of 4N-Al having a thickness of 200 mm × 65 mm and a thickness of 0.4 mm and a metal layer made of 4N—Al having a thickness of 200 mm × 65 mm and a thickness of 0.4 mm were obtained. A ceramic substrate made of AlN having a thickness of 204 mm × 69 mm and a thickness of 0.635 mm joined with an Al—Si brazing material was used.

また、放熱板20には、炭化ケイ素の多孔体に、Siが5質量%以上12質量%以下の範囲で含有されるアルミニウム合金が含浸するとともに、多孔体の表面にそのアルミニウム合金の被覆層が形成されたAlSiC系複合材料を用いた。放熱板20として、実施例1〜6及び比較例1〜4については、45mm×35mm、厚み5mmの矩形板を用いた。また、実施例7〜12及び比較例5〜8については140mm×60mm、厚み5mmの矩形板、実施例13〜18及び比較例9〜12については240mm×75mm、厚み5mmの矩形板を用いた。   The heat sink 20 is impregnated with a silicon carbide porous body impregnated with an aluminum alloy containing Si in a range of 5 mass% to 12 mass%, and a coating layer of the aluminum alloy is formed on the surface of the porous body. The formed AlSiC composite material was used. As Examples 1 to 6 and Comparative Examples 1 to 4, a rectangular plate having a size of 45 mm × 35 mm and a thickness of 5 mm was used as the heat sink 20. Further, for Examples 7 to 12 and Comparative Examples 5 to 8, a rectangular plate of 140 mm × 60 mm and a thickness of 5 mm was used, and for Examples 13 to 18 and Comparative Examples 9 to 12 a rectangular plate of 240 mm × 75 mm and a thickness of 5 mm was used. .

そして、これらの放熱板付パワーモジュール用基板1の試料について、パワーモジュール用基板10(金属層13)と放熱板20との接合率と、これらの放熱板付パワーモジュール用基板1の試料に生じた反り量Zとをそれぞれ評価した。
接合率の評価は、超音波深傷装置を用いて金属層13と放熱板20との接合面を評価したもので、接合率=(接合面積−剥離面積)/接合面積×100(%)の式から算出した。なお、金属層13と放熱板20との接合面を撮影した超音波深傷像において剥離部分は白色部で示されることから、剥離面積は、白色部の面積を測定することにより求めた。また、接合面積は、接合前における接合すべき面積である金属層13の接合面の面積とした。そして、接合率90%未満を不良「×」、接合率90%以上95%未満を良好「○」、接合率95%以上を最適「◎」と評価した。
And about the sample of these power module board | substrates 1 with a heat sink, the joining rate of the power module board | substrate 10 (metal layer 13) and the heat sink 20, and the curvature which arose in the sample of these power module board | substrates 1 with a heat sink The amount Z was evaluated respectively.
The evaluation of the bonding rate is an evaluation of the bonding surface between the metal layer 13 and the heat sink 20 using an ultrasonic deep wound device, and the bonding rate = (bonding area−peeling area) / bonding area × 100 (%). Calculated from the formula. In addition, in the ultrasonic deep wound image which image | photographed the joining surface of the metal layer 13 and the heat sink 20, since the peeling part is shown by a white part, the peeling area was calculated | required by measuring the area of a white part. Further, the bonding area was the area of the bonding surface of the metal layer 13 that is the area to be bonded before bonding. Then, a bonding rate of less than 90% was evaluated as defective “x”, a bonding rate of 90% to less than 95% was evaluated as “good”, and a bonding rate of 95% or more was evaluated as optimal “◎”.

また、反り量Zの測定は、25℃の常温時において、放熱板20の背面の平面度の変化を、モアレ式三次元形状測定機を使用して測定したものを反り量Zとして評価した。なお、反り量Zは、回路層側に凸状に反った場合を正の反り量(+)、回路層側に凹状に反った場合を負の反り量(−)とした。即ち、図2(b)のように反った場合を、負の反り量(−)とした。 これら接合率の評価結果と反り量の測定結果を、表1〜表3に示す。なお、表1は金属層の最大長さL13を30mmとした場合、表2は金属層の最大長さL13を100mmとした場合、表3は金属層の最大長さL13を200mmとした場合の結果である。   The warpage amount Z was measured as a warpage amount Z by measuring the change in flatness of the back surface of the heat sink 20 using a moire type three-dimensional shape measuring machine at room temperature of 25 ° C. The warpage amount Z was defined as a positive warpage amount (+) when warped convexly toward the circuit layer side, and a negative warpage amount (−) when warped concavely toward the circuit layer side. That is, the case of warping as shown in FIG. Tables 1 to 3 show the evaluation results of the joining ratio and the measurement results of the warpage amount. Table 1 shows the case where the maximum length L13 of the metal layer is 30 mm, Table 2 shows the case where the maximum length L13 of the metal layer is 100 mm, and Table 3 shows the case where the maximum length L13 of the metal layer is 200 mm. It is a result.

Figure 2015170825
Figure 2015170825

Figure 2015170825
Figure 2015170825

Figure 2015170825
Figure 2015170825

表1〜表3からわかるように、位置αにおけるギャップGが0.025mm以下とされる一対の加圧板110A,110Bで加圧することにより、パワーモジュール用基板10と放熱板20との接合率を90%以上とすることができ、接合面のほぼ全域において密着させて接合することができた。また、上側加圧板110Aの凸面110aの曲率半径R1を3500mm以上6300mm以下として形成することで、上側加圧板110Aを平坦面で形成した場合と比べて、同サイズの放熱板パワーモジュール用基板における放熱板の反り量Zを、いずれも低減することができた。   As can be seen from Tables 1 to 3, by applying pressure with a pair of pressure plates 110A and 110B in which the gap G at the position α is 0.025 mm or less, the joining ratio between the power module substrate 10 and the heat radiating plate 20 is increased. It was possible to be 90% or more, and it was possible to bond with almost the entire bonding surface in close contact. Further, by forming the curvature radius R1 of the convex surface 110a of the upper pressure plate 110A as 3500 mm or more and 6300 mm or less, the heat radiation in the heat sink power module substrate of the same size as compared with the case where the upper pressure plate 110A is formed as a flat surface. The warp amount Z of the plate could be reduced in all cases.

なお、本発明は、上記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、銅製の回路層とセラミックス基板とのろう付けには、活性金属ろう材を用いて接合する方法を採用することもできる。例えば、活性金属であるTiを含む活性金属ろう材(例えば、Ag‐27.4質量%Cu‐2.0質量%Ti等)を用い、銅製の回路層とセラミックス基板との積層体を加圧した状態のまま真空中で加熱し、活性金属であるTiをセラミックス基板に優先的に拡散させて、Ag‐Cu合金を介して回路層とセラミックス基板とを接合できる。
In addition, this invention is not limited to the thing of the structure of the said embodiment, In a detailed structure, it is possible to add a various change in the range which does not deviate from the meaning of this invention.
For example, a method of joining using an active metal brazing material may be employed for brazing a copper circuit layer and a ceramic substrate. For example, an active metal brazing material containing active metal Ti (for example, Ag-27.4 mass% Cu-2.0 mass% Ti, etc.) is used to pressurize a laminate of a copper circuit layer and a ceramic substrate. In this state, the circuit layer and the ceramic substrate can be joined via the Ag-Cu alloy by preferentially diffusing Ti, which is an active metal, into the ceramic substrate.

1 放熱板付パワーモジュール用基板
10 パワーモジュール用基板
11 セラミックス基板
12 回路層
13 金属層
20 放熱板
20a 接合面
30 電子部品
31 はんだ接合層
110A 上側加圧板
110B 下側加圧板
111 支柱
112 治具
113 ナット
114 天板
115 付勢手段
DESCRIPTION OF SYMBOLS 1 Power module board | substrate with a heat sink 10 Power module board | substrate 11 Ceramic substrate 12 Circuit layer 13 Metal layer 20 Heat sink 20a Joint surface 30 Electronic component 31 Solder joint layer 110A Upper pressure plate 110B Lower pressure plate 111 Post 112 Jig 113 Nut 114 Top plate 115 Energizing means

Claims (1)

セラミックス基板の一方の面に回路層が配設され、前記セラミックス基板の他方の面にアルミニウム又はアルミニウム合金からなる金属層が配設されてなるパワーモジュール用基板を、放熱板に接合する放熱板付パワーモジュール用基板の製造方法であって、
前記パワーモジュール用基板の前記金属層に前記放熱板を重ねて配置した積層体を一対の加圧板の間に挟んで積層方向に加圧しながら加熱することにより、前記パワーモジュール用基板と前記放熱板とをろう付けするろう付け工程を有し、
前記放熱板は、炭化ケイ素の多孔体にアルミニウム又はアルミニウム合金を含浸して形成されたAlSiC系複合材料により形成され、前記金属層の最大長さが30mm以上200mm以下で前記放熱板の最大長さよりも小さく形成されており、
前記ろう付け工程において、前記一対の加圧板は、前記回路層表面を押圧する凸面を有する上側加圧板と、前記放熱板背面を押圧する凹面を有する下側加圧板とからなり、
前記上側加圧板の凸面の曲率半径R1が3500mm以上6300mm以下とされ、前記下側加圧板の凹面の曲率半径R2は、前記上側加圧板の凸面と前記下側加圧板の凹面とを重ね合せた状態とした場合に、前記金属層の最大長さの両端位置に対応する位置において前記上側加圧板と前記下側加圧板との間に0.025mm以下のギャップが設けられるように、前記曲率半径R1よりも大きく形成されていることを特徴とする放熱板付パワーモジュール用基板の製造方法。
A power module with a heat dissipation plate for joining a power module substrate having a circuit layer disposed on one surface of a ceramic substrate and a metal layer made of aluminum or an aluminum alloy disposed on the other surface of the ceramic substrate. A method of manufacturing a module substrate,
The power module substrate and the heat dissipation plate are heated by pressing a laminate in which the heat dissipation plate is placed on the metal layer of the power module substrate between a pair of pressure plates while being pressed in the stacking direction. A brazing process for brazing,
The heat sink is formed of an AlSiC-based composite material formed by impregnating a porous body of silicon carbide with aluminum or an aluminum alloy, and the maximum length of the metal layer is 30 mm or more and 200 mm or less than the maximum length of the heat sink. Is also formed small,
In the brazing step, the pair of pressure plates includes an upper pressure plate having a convex surface that presses the surface of the circuit layer and a lower pressure plate having a concave surface that presses the back surface of the heat sink.
The curvature radius R1 of the convex surface of the upper pressure plate is 3500 mm or more and 6300 mm or less, and the curvature radius R2 of the concave surface of the lower pressure plate is obtained by superimposing the convex surface of the upper pressure plate and the concave surface of the lower pressure plate. The curvature radius is set so that a gap of 0.025 mm or less is provided between the upper pressure plate and the lower pressure plate at positions corresponding to both end positions of the maximum length of the metal layer in the state. A method for manufacturing a power module substrate with a heat sink, wherein the substrate is formed larger than R1.
JP2014046953A 2014-03-10 2014-03-10 Manufacturing method of power module substrate with heat sink Active JP6201827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014046953A JP6201827B2 (en) 2014-03-10 2014-03-10 Manufacturing method of power module substrate with heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014046953A JP6201827B2 (en) 2014-03-10 2014-03-10 Manufacturing method of power module substrate with heat sink

Publications (2)

Publication Number Publication Date
JP2015170825A true JP2015170825A (en) 2015-09-28
JP6201827B2 JP6201827B2 (en) 2017-09-27

Family

ID=54203262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014046953A Active JP6201827B2 (en) 2014-03-10 2014-03-10 Manufacturing method of power module substrate with heat sink

Country Status (1)

Country Link
JP (1) JP6201827B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026836A1 (en) * 2017-08-04 2019-02-07 デンカ株式会社 Power module
CN109982513A (en) * 2019-04-27 2019-07-05 宏俐(汕头)电子科技有限公司 A kind of circuit board sticks up correcting tool
WO2019175949A1 (en) * 2018-03-13 2019-09-19 新電元工業株式会社 Power source device and electronic module fixing method
WO2019188885A1 (en) * 2018-03-26 2019-10-03 三菱マテリアル株式会社 Method of manufacturing bonded body for insulating circuit board, and bonded body for insulating circuit board
CN110383469A (en) * 2017-03-07 2019-10-25 三菱综合材料株式会社 Flange-cooled power module substrate
CN110729253A (en) * 2019-09-11 2020-01-24 东南大学 IGBT compression joint type press mounting structure capable of introducing double-shaft strain
WO2022211329A1 (en) * 2021-03-31 2022-10-06 주식회사 아모센스 Method of manufacturing power module
US11501980B2 (en) 2019-05-15 2022-11-15 Fuji Electric Co., Ltd. Semiconductor module, method for manufacturing semiconductor module, and level different jig
CN115401352A (en) * 2022-08-18 2022-11-29 深圳基本半导体有限公司 Welding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065075A (en) * 1996-08-22 1998-03-06 Mitsubishi Materials Corp Ceramic circuit board with heat sink
JP2004047619A (en) * 2002-07-10 2004-02-12 Denki Kagaku Kogyo Kk Manufacturing method of heat dissipating component
JP2013197246A (en) * 2012-03-19 2013-09-30 Nippon Light Metal Co Ltd Substrate integrated with radiator, and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1065075A (en) * 1996-08-22 1998-03-06 Mitsubishi Materials Corp Ceramic circuit board with heat sink
JP2004047619A (en) * 2002-07-10 2004-02-12 Denki Kagaku Kogyo Kk Manufacturing method of heat dissipating component
JP2013197246A (en) * 2012-03-19 2013-09-30 Nippon Light Metal Co Ltd Substrate integrated with radiator, and method of manufacturing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383469A (en) * 2017-03-07 2019-10-25 三菱综合材料株式会社 Flange-cooled power module substrate
CN110383469B (en) * 2017-03-07 2023-06-02 三菱综合材料株式会社 Substrate with radiating fin for power module
JP7144419B2 (en) 2017-08-04 2022-09-29 デンカ株式会社 power module
US11094648B2 (en) 2017-08-04 2021-08-17 Denka Company Limited Power module
WO2019026836A1 (en) * 2017-08-04 2019-02-07 デンカ株式会社 Power module
JPWO2019026836A1 (en) * 2017-08-04 2020-07-16 デンカ株式会社 Power module
WO2019175949A1 (en) * 2018-03-13 2019-09-19 新電元工業株式会社 Power source device and electronic module fixing method
JP7060084B2 (en) 2018-03-26 2022-04-26 三菱マテリアル株式会社 Manufacturing method of bonded body for insulated circuit board and bonded body for insulated circuit board
JPWO2019188885A1 (en) * 2018-03-26 2021-01-14 三菱マテリアル株式会社 Manufacturing method of joints for insulated circuit boards and joints for insulated circuit boards
US11289400B2 (en) 2018-03-26 2022-03-29 Mitsubishi Materials Corporation Method of manufacturing bonded body for insulation circuit substrate board and bonded body for insulation circuit substrate board
WO2019188885A1 (en) * 2018-03-26 2019-10-03 三菱マテリアル株式会社 Method of manufacturing bonded body for insulating circuit board, and bonded body for insulating circuit board
TWI799555B (en) * 2018-03-26 2023-04-21 日商三菱綜合材料股份有限公司 Method for producing junction for insulated circuit board, and junction for insulated circuit board
US11908768B2 (en) 2018-03-26 2024-02-20 Mitsubishi Materials Corporation Method of manufacturing bonded body for insulation circuit substrate board and bonded body for insulation circuit substrate board
CN109982513A (en) * 2019-04-27 2019-07-05 宏俐(汕头)电子科技有限公司 A kind of circuit board sticks up correcting tool
US11501980B2 (en) 2019-05-15 2022-11-15 Fuji Electric Co., Ltd. Semiconductor module, method for manufacturing semiconductor module, and level different jig
CN110729253B (en) * 2019-09-11 2021-06-11 东南大学 IGBT compression joint type press mounting structure capable of introducing double-shaft strain
CN110729253A (en) * 2019-09-11 2020-01-24 东南大学 IGBT compression joint type press mounting structure capable of introducing double-shaft strain
WO2022211329A1 (en) * 2021-03-31 2022-10-06 주식회사 아모센스 Method of manufacturing power module
CN115401352A (en) * 2022-08-18 2022-11-29 深圳基本半导体有限公司 Welding method

Also Published As

Publication number Publication date
JP6201827B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6201827B2 (en) Manufacturing method of power module substrate with heat sink
KR102232098B1 (en) Substrate for heat sink-equipped power module, and production method for same
JP5892281B2 (en) Power module substrate with heat sink and power module
TWI727146B (en) Substrate for power module with heat sink attached
WO2016002803A1 (en) Substrate unit for power modules, and power module
JP6213291B2 (en) Manufacturing method of power module substrate with heat sink
JP5957862B2 (en) Power module substrate
JP6417834B2 (en) Power module substrate with cooler and method for manufacturing power module substrate with cooler
JP6361532B2 (en) Manufacturing method of power module substrate with heat sink
JP6011552B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP6201828B2 (en) Manufacturing method of power module substrate with heat sink
JP6455056B2 (en) Manufacturing method and pressure device for power module substrate with heat sink
JP6375818B2 (en) Manufacturing apparatus and manufacturing method for power module substrate with heat sink
TWI750332B (en) Substrate for power module with heat sink attached
JP5966512B2 (en) Manufacturing method of power module substrate with heat sink
JP5786569B2 (en) Power module substrate manufacturing method
JP5640610B2 (en) Power module substrate manufacturing equipment
JP6028497B2 (en) Power module substrate and manufacturing method thereof
JP6264822B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP2017011293A (en) Power module substrate with heat sink and manufacturing method of the same
JP6264889B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP6471465B2 (en) Power module board with cooler
JP5900559B2 (en) Power module substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6201827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150