JP2015169466A - hydrogen embrittlement evaluation method - Google Patents
hydrogen embrittlement evaluation method Download PDFInfo
- Publication number
- JP2015169466A JP2015169466A JP2014042731A JP2014042731A JP2015169466A JP 2015169466 A JP2015169466 A JP 2015169466A JP 2014042731 A JP2014042731 A JP 2014042731A JP 2014042731 A JP2014042731 A JP 2014042731A JP 2015169466 A JP2015169466 A JP 2015169466A
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- time
- test
- steel
- tensile load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 50
- 239000001257 hydrogen Substances 0.000 title claims abstract description 50
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 49
- 238000011156 evaluation Methods 0.000 title claims abstract description 27
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 102
- 239000010959 steel Substances 0.000 claims abstract description 102
- 238000012360 testing method Methods 0.000 claims abstract description 49
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 88
- 238000005259 measurement Methods 0.000 claims description 40
- 239000008151 electrolyte solution Substances 0.000 claims description 23
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 239000003792 electrolyte Substances 0.000 claims 2
- 238000009864 tensile test Methods 0.000 description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
本発明は、鋼材における水素脆化を評価する水素脆化評価方法に関する。 The present invention relates to a hydrogen embrittlement evaluation method for evaluating hydrogen embrittlement in a steel material.
鋼材は、ある使用環境において水素を含むと延性が失われ、強度が著しく低下する(非特許文献1参照)。この現象は、水素脆化と呼ばれている。鋼材の水素脆化特性の評価法の1つとして、試験片に水素を吸蔵させた状態で荷重をかけ、破断する最低荷重を比較する方法がある。破断しない荷重値を確認するための試験時間として、200時間を推奨している例がある(非特許文献2参照)。水素脆化特性評価試験は、結果にばらつきがあり、ばらつきを抑えるために試験条件について議論がなされている(非特許文献2参照)。また、鋼材などに対して水素を吸蔵させる手法には、電位制御による陰極チャージ法がある(非特許文献3参照)。 When steel contains hydrogen in a certain usage environment, the ductility is lost and the strength is significantly reduced (see Non-Patent Document 1). This phenomenon is called hydrogen embrittlement. As one method for evaluating the hydrogen embrittlement characteristics of steel, there is a method in which a load is applied in a state where hydrogen is occluded in a test piece, and the minimum load at which fracture occurs is compared. There is an example in which 200 hours is recommended as a test time for confirming a load value that does not break (see Non-Patent Document 2). In the hydrogen embrittlement characteristic evaluation test, there are variations in the results, and the test conditions are discussed in order to suppress the variations (see Non-Patent Document 2). Further, as a method for storing hydrogen in a steel material or the like, there is a cathode charging method by potential control (see Non-Patent Document 3).
しかしながら、上述した鋼材の水素脆化評価では、評価に多大な時間を要すると言う問題があった。上述した水素脆化試験の結果にはばらつきが出るため、6回試験することが推奨されている。このため、破断しない荷重を確認するなどの評価を実施するためには、200時間×6=1200時間を必要とすることになる。 However, in the above-described evaluation of hydrogen embrittlement of steel materials, there is a problem that a long time is required for the evaluation. Since the results of the hydrogen embrittlement test described above vary, it is recommended that the test be performed six times. For this reason, 200 hours × 6 = 1200 hours are required to perform an evaluation such as confirming a load that does not break.
本発明は、以上のような問題点を解消するためになされたものであり、より短時間で、鋼材の水素脆化評価が実施できるようにすることを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to enable hydrogen embrittlement evaluation of steel materials in a shorter time.
本発明に係る水素脆化評価方法は、鋼材を電解質水溶液に浸漬し、鋼材が腐食しない電気化学条件で、電解質水溶液に浸漬している鋼材に負電位を印加して鋼材の表面に水素を発生させた状態で、鋼材に所定の荷重値の引っ張り荷重を第1の時間加え、引っ張り荷重を加えている時間の経過において鋼材に流れる電流密度の変化を測定して基準変化とする第1ステップと、鋼材と同じ組成の試験鋼材を電解質水溶液に浸漬し、電気化学条件で、電解質水溶液に浸漬している試験鋼材に負電位を印加して試験鋼材の表面に水素を発生させた状態で、試験鋼材に所定の荷重値の引っ張り荷重を、第1の時間より短い第2の時間加え、引っ張り荷重を加えている試験鋼材に流れる電流密度を測定して評価対象測定値とする第2ステップと、基準変化の第2の時間における値と評価対象測定値との比較により、試験鋼材の水素脆化を評価する第3ステップとを備え、第1の時間は、鋼材に負電位を印加して鋼材の表面に水素を発生させながら鋼材に所定の荷重値の引っ張り荷重を加えた状態で、鋼材が破断しない範囲の時間とする。 In the hydrogen embrittlement evaluation method according to the present invention, a steel material is immersed in an aqueous electrolyte solution. Under electrochemical conditions in which the steel material does not corrode, a negative potential is applied to the steel material immersed in the aqueous electrolyte solution to generate hydrogen on the surface of the steel material. In this state, a tensile load having a predetermined load value is applied to the steel material for a first time, and a change in the current density flowing in the steel material is measured over the course of the time during which the tensile load is applied. The test steel material having the same composition as the steel material is immersed in an aqueous electrolyte solution, and under electrochemical conditions, a negative potential is applied to the test steel material immersed in the aqueous electrolyte solution to generate hydrogen on the surface of the test steel material. A second step in which a tensile load having a predetermined load value is applied to the steel material for a second time shorter than the first time, and the current density flowing in the test steel material to which the tensile load is applied is measured to obtain an evaluation object measurement value; Standard change A third step of evaluating hydrogen embrittlement of the test steel material by comparing the value at the second time with the measurement value to be evaluated, and applying a negative potential to the steel material during the first time on the surface of the steel material In a state where a tensile load of a predetermined load value is applied to the steel material while generating hydrogen, the time is set so that the steel material does not break.
上記水素脆化評価方法において、電解質水溶液はアルカリ水溶液であればよい。 In the hydrogen embrittlement evaluation method, the aqueous electrolyte solution may be an alkaline aqueous solution.
以上説明したことにより、本発明によれば、より短時間で、鋼材の水素脆化評価が実施できるようになるという優れた効果が得られる。 As described above, according to the present invention, it is possible to obtain an excellent effect that hydrogen embrittlement evaluation of a steel material can be performed in a shorter time.
以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における水素脆化評価方法を説明するためのフローチャートである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart for explaining a hydrogen embrittlement evaluation method in an embodiment of the present invention.
まず、ステップS101で、鋼材に負電位を印加して鋼材の表面に水素を発生させながら鋼材に所定の荷重値の引っ張り荷重を第1の時間加え、引っ張り荷重を加えている時間の経過において鋼材に流れる電流密度の変化を測定して基準変化とする(第1ステップ)。鋼材を電解質水溶液に浸漬し、鋼材が腐食しない電気化学条件で、電解質水溶液に浸漬している鋼材に負電位を印加して鋼材の表面に水素を発生させる。引っ張り荷重を加えてから上記水素の発生をさせてもよく、水素を発生させた状態としてから、引っ張り荷重を加えるようにしてもよい。 First, in step S101, a tensile load having a predetermined load value is applied to the steel material for a first time while applying a negative potential to the steel material to generate hydrogen on the surface of the steel material. The change in the current density flowing through is measured and used as a reference change (first step). A steel material is immersed in an aqueous electrolyte solution, and a negative potential is applied to the steel material immersed in the aqueous electrolyte solution under electrochemical conditions in which the steel material does not corrode to generate hydrogen on the surface of the steel material. The hydrogen may be generated after the tensile load is applied, or the tensile load may be applied after the hydrogen is generated.
ここで、上述した負電位を印加して引っ張り荷重を加えている第1の時間は、鋼材に負電位を印加して鋼材の表面に水素を発生させながら鋼材に所定の荷重値の引っ張り荷重を加えた状態で、鋼材が破断しない範囲の時間とするとよい。また、加える引っ張り荷重は、対象とする鋼材の弾性領域応力範囲(降伏応力以下)とするとよい。 Here, in the first time during which the negative potential is applied and the tensile load is applied, the tensile load having a predetermined load value is applied to the steel material while applying a negative potential to the steel material to generate hydrogen on the surface of the steel material. It is good to set it as the time of the range which does not fracture | rupture steel materials in the added state. Moreover, it is good for the tensile load to add to the elastic region stress range (below yield stress) of the steel material made into object.
次に、ステップS102で、鋼材と同じ組成の試験鋼材を用意し、試験鋼材に上述と同じ負電位を印加して試験鋼材の表面に水素を発生させながら試験鋼材に上述と同じ所定の荷重値の引っ張り荷重を第2の時間加え、引っ張り荷重を加えている試験鋼材に流れる電流密度を測定して評価対象測定値とする(第2ステップ)。第2の時間が経過した時点で電流密度の測定を実施して評価対象測定値を得る。前述同様に、試験鋼材を電解質水溶液に浸漬し、試験鋼材が腐食しない電気化学条件で、電解質水溶液に浸漬している鋼材に負電位を印加して試験鋼材の表面に水素を発生させる。引っ張り荷重を加えてから上記水素の発生をさせてもよく、水素を発生させた状態としてから、引っ張り荷重を加えるようにしてもよい。例えば、鋼材(試験鋼材)の破壊荷重の0.9倍の荷重とした定荷重試験とすればよい。ここで、第2の時間は、第1の時間より短い条件とする。 Next, in step S102, a test steel material having the same composition as that of the steel material is prepared, and the same negative load as described above is applied to the test steel material while applying the same negative potential to the test steel material to generate hydrogen on the surface of the test steel material. The tensile load is applied for a second time, and the current density flowing through the test steel material to which the tensile load is applied is measured to obtain a measurement value for evaluation (second step). When the second time elapses, the current density is measured to obtain an evaluation target measurement value. As described above, the test steel material is immersed in an aqueous electrolyte solution, and a negative potential is applied to the steel material immersed in the aqueous electrolyte solution under electrochemical conditions in which the test steel material does not corrode to generate hydrogen on the surface of the test steel material. The hydrogen may be generated after the tensile load is applied, or the tensile load may be applied after the hydrogen is generated. For example, a constant load test may be used in which the load is 0.9 times the fracture load of the steel material (test steel material). Here, the second time is set to be shorter than the first time.
以上のようにして基準変化および評価対象測定値が得られたら、ステップS103で、基準変化の第2の時間における値と評価対象測定値との比較により、試験鋼材の水素脆化を評価する(第3ステップ)。この評価では、第2の時間における評価対象測定値が、第2の時間における基準変化の電流密度より低い範囲となっていれば、試験鋼材は、基準変化の測定条件において、第1の時間が経過した後でも、水素脆化による破断が発生しないと判断する。 When the reference change and the evaluation target measurement value are obtained as described above, hydrogen embrittlement of the test steel material is evaluated in step S103 by comparing the value of the reference change at the second time with the evaluation target measurement value ( (3rd step). In this evaluation, if the measurement value to be evaluated in the second time is in a range lower than the current density of the reference change in the second time, the test steel material has the first time in the measurement condition of the reference change. Even after the lapse of time, it is determined that the fracture due to hydrogen embrittlement does not occur.
従来の評価においては、200時間を推奨している例もあり(非特許文献2参照)、第1の時間を少なくとも100時間とすることが必要とされている。このため、試験鋼材を評価する場合、試験鋼材毎に最低でも100時間の試験時間を必要としていた。例えば、2つの試験鋼材を評価する場合、100×2時間=200時間が必要となっていた。 In the conventional evaluation, there is an example in which 200 hours are recommended (see Non-Patent Document 2), and the first time is required to be at least 100 hours. For this reason, when test steel materials are evaluated, a test time of at least 100 hours is required for each test steel material. For example, when two test steel materials are evaluated, 100 × 2 hours = 200 hours are required.
これに対し、本発明によれば、試験鋼材の測定においては、第1の時間より短い第2の時間をかければよく、第2の時間は、10時間程度で十分である。このため、例えば2つの試験鋼材を評価する場合、基準変化を求める時間を含め、100時間+10×2時間=120時間であればよく、より短時間で鋼材の水素脆化評価が実施できるようになる。 On the other hand, according to the present invention, in the measurement of the test steel material, a second time shorter than the first time may be used, and about 10 hours is sufficient for the second time. For this reason, for example, when two test steel materials are evaluated, it is sufficient that 100 hours + 10 × 2 hours = 120 hours including the time for obtaining the reference change so that the hydrogen embrittlement evaluation of the steel materials can be performed in a shorter time. Become.
ここで、上述した測定は、例えば、図2に示す装置を用いて実施すればよい。この装置は、アクリル樹脂などから構成された容器201と、同様にアクリル樹脂から構成された蓋202と、容器201に収容された電解質溶液203とを備える。電解質溶液203は、例えば1%チオシアン酸アンモニウムを添加した0.1Mの水酸化ナトリウム水溶液である。電解質溶液203は、アルカリ水溶液であればよい。また、この装置は、電解質溶液203中に配置された参照極204,対極205を備える。参照極204は、Ag/AgCl(銀塩化銀)電極であり、対極205は、Pt電極である。また、対象となる鋼材206は、容器201の底部から蓋202を貫通して電解質溶液203に接触する状態とされている。
Here, the above-described measurement may be performed using, for example, the apparatus shown in FIG. The apparatus includes a
鋼材206は、直径9mm、長さ450mmの棒状とし、容器201の底部の貫通部では、シリコーンゴムによる栓207により電解質溶液203が漏れないようにシールされている。また、参照極204は、蓋202を貫通して先端部が電解質溶液203に接触する状態としており、蓋202に栓208で固定されている。
The
この状態で、ポテンショスタット(不図示)を用い、鋼材206を作用極とし、参照極204および対極205を用いた3極構成で、鋼材206に、参照極204に対して負の電位を印加する。この電位印加により、電解質溶液203に触れている鋼材206の表面には、水素が発生する。印加する電位は、電解質溶液203に触れている鋼材206の表面が、腐食しない電気化学条件の電位とすればよい。また、このように電位を印加している状態で、対極205と鋼材206との間に流れる電流を測定し、鋼材206の寸法などにより、電流密度を得る。
In this state, a potentiostat (not shown) is used, the
本発明は、定電位制御により鋼材に対して水素を吸蔵させながら引っ張り荷重を加え、図3に示すように、予め決めた測定時間(t0)の電流値(i0)を読み取ることで、実施した試験条件で予め決めた試験時間内に破断するかどうかを早期に判断し、試験時間を飛躍的に短縮するようにしたものである。 The present invention applies a tensile load while absorbing hydrogen into the steel material by constant potential control, and reads the current value (i 0 ) of a predetermined measurement time (t 0 ) as shown in FIG. Whether or not to break within a predetermined test time under the test conditions carried out is judged at an early stage, and the test time is drastically shortened.
以下、本発明の実施例について説明する。以下では、実施例として、引っ張り強度σB1450MPa、φ9mmの一般的な高強度鋼(Fe−0.25%Si)を対象の鋼材として、本発明の水素脆化評価方法を実施した評価結果について説明する。 Examples of the present invention will be described below. Below, the evaluation result which implemented the hydrogen embrittlement evaluation method of this invention is made into the steel material made into general high strength steel (Fe-0.25% Si) of tensile strength (sigma) B1450MPa and (phi) 9mm as an Example. .
まず、1wt%チオシアン酸アンモニウムを添加した1MのNaHCO3水溶液を電解質水溶液として用いた。また、参照極として銀塩化銀電極、対極として白金線を用い、前述したように、鋼材(試験片)は作用極とした。これらの電極構成で、−1000mVvs.SSEに電位を制御した。陰極チャージすることで試験片表面に水素を発生させる。これにより、試験片に水素が吸蔵(吸収)する状態となる。定荷重による引っ張り試験で加える荷重は、0.90σB、0.88σBとし、各々の条件で3回ずつ測定を実施した。 First, a 1M NaHCO 3 aqueous solution to which 1 wt% ammonium thiocyanate was added was used as an aqueous electrolyte solution. In addition, a silver / silver chloride electrode was used as the reference electrode and a platinum wire was used as the counter electrode, and as described above, the steel material (test piece) was the working electrode. With these electrode configurations, -1000 mVvs. The potential was controlled to SSE. Hydrogen is generated on the surface of the test piece by cathodic charging. Thereby, it will be in the state which hydrogen occludes (absorbs) to a test piece. The load applied in the tensile test with a constant load was 0.90σB and 0.88σB, and measurement was performed three times under each condition.
以下の表1に、引っ張り試験の結果を示す。 Table 1 below shows the results of the tensile test.
表1に示すように、測定時間内に破断したのは、0.90σBでは3回中3回、0.88σBでは3回中1回であった。破断時間は、上記荷重条件の差により倍以上の差があることもあった。 As shown in Table 1, the breakage within the measurement time was 3 times in 3 times for 0.90σB and 1 time in 3 times for 0.88σB. The rupture time may be more than double due to the difference in the load conditions.
次に、上述した引っ張り試験とともに実施している電流測定で測定された電流変化について図4に示す。いずれの試験片においても、測定時間とともに電流値が低下しているが、電流値は、試験片によって異なった。また、0.90σBの測定では、電流値が大きいほど定荷重測定の破断時間が短い。また、0.88σBの測定では、唯一破断したときの電流値は、3回の測定で最大であった。 Next, FIG. 4 shows the current change measured by the current measurement performed together with the tensile test described above. In any test piece, the current value decreased with the measurement time, but the current value varied depending on the test piece. Further, in the measurement of 0.90σB, the breaking time of the constant load measurement is shorter as the current value is larger. Moreover, in the measurement of 0.88σB, the current value at the time of the only breakage was the maximum in three measurements.
これらのことから、同じ測定条件であれば、予め決めた測定時間において検出された電流値を、予め実施してある測定の電流値(基準値)と比較することで、以下の表2に示すように、より長い測定時間の後で破断するかしないかを判断することができると推察される。 From these, under the same measurement conditions, the current value detected at a predetermined measurement time is compared with the current value (reference value) of the measurement that has been performed in advance, as shown in Table 2 below. Thus, it is assumed that it can be determined whether or not the fracture occurs after a longer measurement time.
結果が未破断になる測定は、従来では測定を最低100時間継続しなければならないが、本発明により、測定中に読み取った電流値(電流密度)より、これまで未破断であったときの電流値の方が大きい場合に即座に未破断と判定し、測定を終了させることができ、飛躍的に測定時間を短縮することができる。電流値を読み取る測定時間については、予め決めることができるが、黒皮が形成されたままの試験片では、電位印加により黒皮がほとんど還元されるチャージ開始6時間後の電流値を読むとよい。 In the measurement in which the result is unbroken, conventionally, the measurement has to be continued for at least 100 hours. However, according to the present invention, the current when unruptured has been obtained from the current value (current density) read during the measurement. When the value is larger, it is immediately determined that the sample has not broken, and the measurement can be terminated, and the measurement time can be dramatically shortened. The measurement time for reading the current value can be determined in advance. However, in the test piece with the black skin formed, it is better to read the current value 6 hours after the start of the charge when the black skin is almost reduced by the potential application. .
ここで、鉄筋コンクリートなどに用いられる鋼材の表面には、熱処理工程をしたときに黒皮と呼ばれる酸化膜が形成されている。この黒皮は、鋼材の化学組成が同一であっても、製造者によって厚さや均一性が異なり、必ずしも制御されているわけではない(非特許文献4参照)。このような状態の黒皮であるが、黒皮を研磨することにより、塩化物イオンに対する感受性が低下し、さらに評価結果も安定するとの報告がある(非特許文献5参照)。しかしながら、黒皮が形成されたままの試験片では従来技術に記載したとおり測定結果の変動が多く、条件によっては測定回数をさらに増やす必要があり、さらに測定時間が長期化する。これに対し、本発明によれば、測定時間の長期化が防げるようになる。 Here, an oxide film called black skin is formed on the surface of a steel material used for reinforced concrete or the like when a heat treatment process is performed. Even if the chemical composition of the steel material is the same, the thickness and uniformity of the black skin differ depending on the manufacturer, and are not necessarily controlled (see Non-Patent Document 4). Although it is a black skin of such a state, there exists a report that the sensitivity with respect to a chloride ion falls by polishing a black skin, and also the evaluation result is stabilized (refer nonpatent literature 5). However, as described in the prior art, a test piece with a black skin still formed has many fluctuations in measurement results, and depending on the conditions, it is necessary to further increase the number of measurements, which further increases the measurement time. On the other hand, according to the present invention, the measurement time can be prevented from being prolonged.
以上に説明したように、本発明によれば、水素を吸蔵させている状態で引っ張り試験を行う測定において、より短い測定時間の結果を、同じ測定時間における基準変化と比較するようにしたので、対象となる鋼材(試験鋼材)の評価を、より短い測定時間の結果で行えるようになる。このように、本発明によれば、より短時間で、鋼材の水素脆化評価が実施できるようになる。 As described above, according to the present invention, in the measurement in which the tensile test is performed in a state where hydrogen is occluded, the result of the shorter measurement time is compared with the reference change in the same measurement time. The target steel material (test steel material) can be evaluated with a shorter measurement time. Thus, according to the present invention, it becomes possible to perform hydrogen embrittlement evaluation of a steel material in a shorter time.
なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。例えば、第2の時間が経過した時点の電流密度に限るものではなく、第2の時間の間の電流密度の変化を評価対象測定値として用いるようにしてもよい。 The present invention is not limited to the embodiment described above, and many modifications and combinations can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious. For example, it is not limited to the current density at the time when the second time has elapsed, and a change in current density during the second time may be used as the measurement value to be evaluated.
201…容器、202…蓋、203…電解質溶液、204…参照極、205…対極、206…鋼材、207…栓、208…栓。 201 ... container, 202 ... lid, 203 ... electrolyte solution, 204 ... reference electrode, 205 ... counter electrode, 206 ... steel material, 207 ... stopper, 208 ... stopper.
Claims (2)
前記鋼材と同じ組成の試験鋼材を前記電解質水溶液に浸漬し、前記電気化学条件で、前記電解質水溶液に浸漬している前記試験鋼材に負電位を印加して前記試験鋼材の表面に水素を発生させた状態で、前記試験鋼材に前記所定の荷重値の引っ張り荷重を、前記第1の時間より短い第2の時間加え、引っ張り荷重を加えている前記試験鋼材に流れる電流密度を測定して評価対象測定値とする第2ステップと、
前記基準変化の前記第2の時間における値と前記評価対象測定値との比較により、前記試験鋼材の水素脆化を評価する第3ステップと
を備え、
前記第1の時間は、前記鋼材に前記負電位を印加して前記鋼材の表面に水素を発生させながら前記鋼材に前記所定の荷重値の引っ張り荷重を加えた状態で、前記鋼材が破断しない範囲の時間とする
ことを特徴とする水素脆化評価方法。 In the state in which the steel material is immersed in an aqueous electrolyte solution, and a negative potential is applied to the steel material immersed in the aqueous electrolyte solution under electrochemical conditions in which the steel material is not corroded to generate hydrogen on the surface of the steel material. A first step of applying a tensile load of a predetermined load value to the first time, measuring a change in current density flowing through the steel material in the lapse of time when the tensile load is applied, and a first step as a reference change;
A test steel material having the same composition as the steel material is immersed in the electrolyte aqueous solution, and under the electrochemical conditions, a negative potential is applied to the test steel material immersed in the electrolyte aqueous solution to generate hydrogen on the surface of the test steel material. In this state, a tensile load having the predetermined load value is applied to the test steel material for a second time shorter than the first time, and a current density flowing through the test steel material to which the tensile load is applied is measured for evaluation. A second step of measuring values;
A third step of evaluating hydrogen embrittlement of the test steel material by comparing the value at the second time of the reference change with the measurement value to be evaluated, and
The first time is a range in which the steel material is not broken in a state where a tensile load of the predetermined load value is applied to the steel material while applying a negative potential to the steel material to generate hydrogen on the surface of the steel material. A method for evaluating hydrogen embrittlement, characterized by:
前記電解質水溶液はアルカリ水溶液であることを特徴とする水素脆化評価方法。 In the hydrogen embrittlement evaluation method according to claim 1,
The method for evaluating hydrogen embrittlement, wherein the aqueous electrolyte solution is an alkaline aqueous solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014042731A JP5986126B2 (en) | 2014-03-05 | 2014-03-05 | Hydrogen embrittlement evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014042731A JP5986126B2 (en) | 2014-03-05 | 2014-03-05 | Hydrogen embrittlement evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015169466A true JP2015169466A (en) | 2015-09-28 |
JP5986126B2 JP5986126B2 (en) | 2016-09-06 |
Family
ID=54202335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014042731A Expired - Fee Related JP5986126B2 (en) | 2014-03-05 | 2014-03-05 | Hydrogen embrittlement evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5986126B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019211328A (en) * | 2018-06-05 | 2019-12-12 | 日本電信電話株式会社 | Crack occurrence detection method, crack occurrence detection device, and crack occurrence detection program |
WO2023058086A1 (en) * | 2021-10-04 | 2023-04-13 | 日本電信電話株式会社 | Hydrogen embrittlement risk assessment method and device therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000329726A (en) * | 1999-05-19 | 2000-11-30 | Nippon Steel Corp | Evaluation method for hydrogen embrittlement susceptibility of steel product |
JP2004309197A (en) * | 2003-04-03 | 2004-11-04 | Sumitomo Metal Ind Ltd | Method for evaluating resistance to delayed fracture |
JP2010054494A (en) * | 2008-07-28 | 2010-03-11 | Kobe Steel Ltd | Method for evaluating hydrogen cracking resistivity of steel products |
JP2012184992A (en) * | 2011-03-04 | 2012-09-27 | Japan Steel Works Ltd:The | Determination method for fatigue crack life under high pressure hydrogen atmosphere |
JP2013057612A (en) * | 2011-09-09 | 2013-03-28 | Nippon Telegr & Teleph Corp <Ntt> | Hydrogen occlusion method |
-
2014
- 2014-03-05 JP JP2014042731A patent/JP5986126B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000329726A (en) * | 1999-05-19 | 2000-11-30 | Nippon Steel Corp | Evaluation method for hydrogen embrittlement susceptibility of steel product |
JP2004309197A (en) * | 2003-04-03 | 2004-11-04 | Sumitomo Metal Ind Ltd | Method for evaluating resistance to delayed fracture |
JP2010054494A (en) * | 2008-07-28 | 2010-03-11 | Kobe Steel Ltd | Method for evaluating hydrogen cracking resistivity of steel products |
JP2012184992A (en) * | 2011-03-04 | 2012-09-27 | Japan Steel Works Ltd:The | Determination method for fatigue crack life under high pressure hydrogen atmosphere |
JP2013057612A (en) * | 2011-09-09 | 2013-03-28 | Nippon Telegr & Teleph Corp <Ntt> | Hydrogen occlusion method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019211328A (en) * | 2018-06-05 | 2019-12-12 | 日本電信電話株式会社 | Crack occurrence detection method, crack occurrence detection device, and crack occurrence detection program |
WO2019235303A1 (en) * | 2018-06-05 | 2019-12-12 | 日本電信電話株式会社 | Method for detecting occurrence of cracks and the like, device for detecting occurrence of cracks and the like, and program for detecting occurrence of cracks and the like |
US20210231596A1 (en) * | 2018-06-05 | 2021-07-29 | Nippon Telegraph And Telephone Corporation | Method for Detecting Occurrence of Cracks and the Like, Device for Detecting Occurrence of Cracks and the Like, And Program for Detecting Occurrence of Cracks and the Like |
JP7029061B2 (en) | 2018-06-05 | 2022-03-03 | 日本電信電話株式会社 | Rhagades occurrence detection method, crack occurrence detection device and crack occurrence detection program |
US11913895B2 (en) | 2018-06-05 | 2024-02-27 | Nippon Telegraph And Telephone Corporation | Method for detecting occurrence of cracks and the like, device for detecting occurrence of cracks and the like, and program for detecting occurrence of cracks and the like |
WO2023058086A1 (en) * | 2021-10-04 | 2023-04-13 | 日本電信電話株式会社 | Hydrogen embrittlement risk assessment method and device therefor |
Also Published As
Publication number | Publication date |
---|---|
JP5986126B2 (en) | 2016-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6163433B2 (en) | Crevice corrosion test method and crevice corrosion test equipment | |
JP2018204949A (en) | Evaluation method for hydrogen embrittlement resistance characteristic of steel material | |
JP6354476B2 (en) | Characterization method for hydrogen embrittlement of steel | |
JP2014041073A (en) | Steel material evaluation method | |
JP5986126B2 (en) | Hydrogen embrittlement evaluation method | |
JP6470716B2 (en) | Method for calculating test piece area and test cell size in hydrogen embrittlement property evaluation test | |
JP2015031554A (en) | Hydrogen penetration potential prediction method | |
JP6740176B2 (en) | Hydrogen permeation test device | |
JP6342783B2 (en) | Hydrogen penetration evaluation method | |
CN115931538B (en) | Method for measuring influence degree of hydrogen in acidic environment on metal stress corrosion cracking | |
JP6973193B2 (en) | Hydrogen embrittlement resistance evaluation method | |
JP6278839B2 (en) | Crevice corrosion test equipment and crevice corrosion test method | |
JP6724761B2 (en) | Hydrogen embrittlement evaluation apparatus, hydrogen embrittlement evaluation method, and test piece used therein | |
JP6309826B2 (en) | Fracture stress estimation method and fracture stress estimation device for oxide film fracture | |
JP2000329726A (en) | Evaluation method for hydrogen embrittlement susceptibility of steel product | |
JP7029061B2 (en) | Rhagades occurrence detection method, crack occurrence detection device and crack occurrence detection program | |
JP2020030187A (en) | Hydrogen filling method and hydrogen embrittlement characteristics evaluation method | |
JP6001581B2 (en) | Hydrogen embrittlement characteristics evaluation method | |
JP6042772B2 (en) | Method of evaluating hydrogen penetration characteristics for metal members | |
JP2015135302A (en) | Hydrogen occlusion method | |
JP6112617B2 (en) | Black skin evaluation method for steel | |
JP2010281687A (en) | Method for predicting amount of corrosion of metal material in contact state of different metal | |
JP2016130638A (en) | Method for evaluating hydrogen embrittlement characteristics | |
JP2019196918A (en) | Method, device, and program for estimating fracture starting point in steel material | |
JP2019039794A (en) | Measurement method of hydrogen embrittlement resistance characteristic value |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160804 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5986126 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |