JP2015168283A - Injury degree estimation method and injury degree estimation device - Google Patents

Injury degree estimation method and injury degree estimation device Download PDF

Info

Publication number
JP2015168283A
JP2015168283A JP2014042561A JP2014042561A JP2015168283A JP 2015168283 A JP2015168283 A JP 2015168283A JP 2014042561 A JP2014042561 A JP 2014042561A JP 2014042561 A JP2014042561 A JP 2014042561A JP 2015168283 A JP2015168283 A JP 2015168283A
Authority
JP
Japan
Prior art keywords
occupant
vehicle
degree
physique
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014042561A
Other languages
Japanese (ja)
Other versions
JP6331492B2 (en
Inventor
鈴木 裕之
Hiroyuki Suzuki
裕之 鈴木
藤澤 直樹
Naoki Fujisawa
直樹 藤澤
中村 真也
Shinya Nakamura
真也 中村
孝彰 二井
Takaaki Nii
孝彰 二井
俊秀 西村
Toshihide Nishimura
俊秀 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2014042561A priority Critical patent/JP6331492B2/en
Publication of JP2015168283A publication Critical patent/JP2015168283A/en
Application granted granted Critical
Publication of JP6331492B2 publication Critical patent/JP6331492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To estimate the degree of injury of an occupant more accurately during a lateral collision of a vehicle.SOLUTION: An injury degree estimation device 10 estimates a degree of injury of an occupant due to a collision at the time of a lateral collision of a vehicle. Occupant physique estimation means 104 estimates a physique of the occupant. Deformation state estimation means 108 estimates a deformation state of the vehicle based on detection values of a plurality of collision detection sensors 106 disposed at predetermined positions including both side faces of the vehicle for detecting the collision of the vehicle. Injury degree estimation means 110 estimates the degree of injury of the occupant based on the physique of the occupant and the deformation state of the vehicle.

Description

本発明は、車両の側面衝突時に当該衝突に伴う乗員の受傷度合いを推定する受傷度推定方法および受傷度推定装置に関する。   The present invention relates to an injury degree estimation method and an injury degree estimation device for estimating the degree of injury of an occupant accompanying a collision at the time of a side collision of a vehicle.

従来、車両の側面衝突を検知する手段として、車両側面に衝突検知センサを設ける技術が知られている。例えば、下記特許文献1では、車両の側部ドアやセンターピラー(Bピラー)に衝突検知センサを設け、衝突を検知している。
また、下記特許文献2では、複数の衝突検知センサによって検出された検出値から当該衝突検知センサの位置における変位量を算出し、側面衝突時に、衝突側の側面に配設された衝突検知センサの位置における変位量と衝突側と反対側の側面に対称に配設された衝突検知センサの位置における変位量の差分に基づいて車両の変形量を推定している。また、下記特許文献2では、車両の変形量の推定結果に基づいて乗員の受傷度合いについても推定している。
Conventionally, as a means for detecting a side collision of a vehicle, a technique of providing a collision detection sensor on the side of the vehicle is known. For example, in the following Patent Document 1, a collision detection sensor is provided on a side door or a center pillar (B pillar) of a vehicle to detect a collision.
Further, in Patent Document 2 below, the amount of displacement at the position of the collision detection sensor is calculated from detection values detected by a plurality of collision detection sensors, and the collision detection sensor disposed on the side surface on the collision side at the time of a side collision is calculated. The deformation amount of the vehicle is estimated based on the difference between the displacement amount at the position and the displacement amount at the position of the collision detection sensor disposed symmetrically on the side surface opposite to the collision side. Further, in Patent Document 2 below, the degree of injury to the occupant is also estimated based on the estimation result of the deformation amount of the vehicle.

特開2000−233708号公報JP 2000-233708 A 特開2013−220675号公報JP 2013-220675 A

車両の衝突時には、乗員の安全確保のための措置が必要となる。乗員の安全確保のための措置とは、例えば早期の救急搬送要請や車両の乗員保護機構(エアバックなど)の駆動などが挙げられる。このとき、乗員の受傷度合いを推定することができれば、より効率的に上記の措置を行える可能性がある。
例えば、上記特許文献2では、車両の変形量の推定結果に基づいて乗員の受傷度合いを推定しているが、乗員の体格の個人差には着目しておらず、改善の余地がある。
In the event of a vehicle collision, measures are required to ensure the safety of passengers. Examples of measures for ensuring the safety of passengers include early emergency transport requests and driving of vehicle passenger protection mechanisms (such as airbags). At this time, if the degree of injury of the occupant can be estimated, there is a possibility that the above measures can be performed more efficiently.
For example, in Patent Document 2, the degree of injury to the occupant is estimated based on the estimation result of the deformation amount of the vehicle. However, there is room for improvement because the individual difference in the physique of the occupant is not focused.

本発明は、前述した従来技術の問題点に鑑みてなされたものであり、車両の側面衝突時に精度よく乗員の受傷度合いを推定することができる受傷度推定方法および受傷度推定装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and provides an injury degree estimation method and an injury degree estimation device capable of accurately estimating the degree of injury of an occupant during a side collision of a vehicle. With the goal.

上述した問題を解決し、目的を達成するため、請求項1の発明にかかる受傷度推定方法は、車両の側面衝突時に当該衝突に伴う乗員の受傷度合いを推定する受傷度推定方法であって、前記乗員の体格を推定する乗員体格推定工程と、前記車両の両側面を含む所定の箇所に配置されて車両の衝突を検知する複数の衝突検知センサの検出値に基づいて、前記車両の変形状態を推定する変形状態推定工程と、前記乗員の体格と、前記車両の変形状態とに基づいて、前記乗員の受傷度合いを推定する受傷度推定工程と、を含んだことを特徴とする。
請求項2の発明にかかる受傷度推定方法は、前記乗員体格推定工程では、前記乗員の体格に基づいて前記車両の側面と前記乗員の体との離間距離を推定し、前記変形状態推定工程では、前記車両の両側面の同位置に左右対称に配置された前記衝突検知センサの前記検出値を用いて各衝突検知センサが配置された位置における変位量をそれぞれ算出し、前記衝突側の側面に配置された前記衝突検知センサの位置における変位量と、衝突側と反対側の側面に対称に配置された前記衝突検知センサの位置における変位量との差分に基づいて前記変形量および前記変形速度を推定し、前記受傷度推定工程では、前記衝突側の側面と前記乗員の体との離間距離が前記変形量と等しくなった時点における前記変形速度に基づいて前記受傷度合いを推定する、ことを特徴とする。
請求項3の発明にかかる受傷度推定方法は、前記受傷度推定工程では、前記変形量が前記離間距離と等しくなった時点の前記変形速度が速いほど前記受傷度合いが大きいと推定する、ことを特徴とする。
請求項4の発明にかかる受傷度推定方法は、前記乗員体格推定工程では、前記乗員の重量を測定する重量センサの検出値を取得し、前記重量が大きいほど前記乗員の体格が大きいと推定する、ことを特徴とする。
請求項5の発明にかかる受傷度推定方法は、前記乗員体格推定工程では、前記乗員が着座する座席に設けられた接触センサの検出値を取得し、前記乗員と前記座席との接触面積が大きいほど前記乗員の体格が大きいと推定する、ことを特徴とする。
請求項6の発明にかかる受傷度推定方法は、前記乗員体格推定工程では、前記乗員が搭乗する前記車両の車室内を撮像するカメラの画像を取得し、前記画像から前記乗員の体格を推定する、ことを特徴とする。
請求項7の発明にかかる受傷度推定装置は、車両の側面衝突時に当該衝突に伴う乗員の受傷度合いを推定する受傷度推定装置であって、前記乗員の体格を推定する乗員体格推定手段と、前記車両の両側面を含む所定の箇所に配置されて車両の衝突を検知する複数の衝突検知センサの検出値に基づいて、前記車両の変形状態を推定する変形状態推定手段と、前記乗員の体格と、前記車両の変形状態とに基づいて、前記乗員の受傷度合いを推定する受傷度推定手段と、を備えることを特徴とする。
請求項8の発明にかかる受傷度推定装置は、前記受傷度推定手段による推定結果を前記車両の外部に送信する送信手段をさらに備える、ことを特徴とする。
請求項9の発明にかかる受傷度推定装置は、前記乗員体格推定手段による推定結果と、前記変形状態推定手段による推定結果とを前記車両の外部に設けられた他の情報端末に送信する送信手段をさらに備え、前記乗員体格推定手段と、前記変形状態推定手段とは、前記車両に設けられており、前記受傷度推定手段は、前記他の情報端末に設けられている、ことを特徴とする。
In order to solve the above-described problems and achieve the object, the damage degree estimation method according to the invention of claim 1 is a damage degree estimation method for estimating the degree of injury of a passenger accompanying a collision at the time of a side collision of a vehicle, An occupant physique estimation step that estimates the physique of the occupant, and a deformation state of the vehicle based on detection values of a plurality of collision detection sensors that are arranged at predetermined locations including both side surfaces of the vehicle and detect a vehicle collision A deformation state estimation step for estimating the degree of injury, and an injury degree estimation step for estimating the degree of injury of the occupant based on the physique of the occupant and the deformation state of the vehicle.
According to a second aspect of the present invention, in the occupant physique estimation step, a distance between the side surface of the vehicle and the occupant's body is estimated based on the occupant physique, and in the deformation state estimation step, And calculating the displacement amount at the position where each collision detection sensor is arranged using the detection value of the collision detection sensor arranged symmetrically at the same position on both sides of the vehicle, The deformation amount and the deformation speed are calculated based on the difference between the displacement amount at the position of the collision detection sensor arranged and the displacement amount at the position of the collision detection sensor arranged symmetrically on the side surface opposite to the collision side. In the damage degree estimation step, the degree of damage is estimated based on the deformation speed at the time when the separation distance between the side surface on the collision side and the body of the occupant becomes equal to the deformation amount. It is characterized in.
According to a third aspect of the present invention, in the damage degree estimation step, it is estimated that the degree of damage is greater as the deformation speed is higher when the deformation amount becomes equal to the separation distance. Features.
According to a fourth aspect of the present invention, in the occupant physique estimation step, a detection value of a weight sensor that measures the weight of the occupant is acquired, and it is estimated that the occupant's physique is larger as the weight is larger. It is characterized by that.
According to a fifth aspect of the present invention, in the injury degree estimation method, in the occupant physique estimation step, a detection value of a contact sensor provided in a seat on which the occupant is seated is obtained, and a contact area between the occupant and the seat is large. It is estimated that the occupant has a large physique.
According to a sixth aspect of the present invention, in the injury degree estimation method, in the occupant physique estimation step, an image of a camera that captures an interior of the vehicle on which the occupant is boarded is acquired, and the physique of the occupant is estimated from the image. It is characterized by that.
An injury degree estimation device according to the invention of claim 7 is an injury degree estimation device for estimating an injury degree of an occupant accompanying the collision at the time of a side collision of the vehicle, and an occupant physique estimation means for estimating the occupant's physique, Deformation state estimation means for estimating the deformation state of the vehicle based on detection values of a plurality of collision detection sensors arranged at predetermined locations including both side surfaces of the vehicle to detect a vehicle collision; and the physique of the occupant And an injury degree estimating means for estimating an injury degree of the occupant based on the deformation state of the vehicle.
The damage degree estimation apparatus according to an eighth aspect of the present invention further includes transmission means for transmitting an estimation result by the damage degree estimation means to the outside of the vehicle.
The damage degree estimation apparatus according to the invention of claim 9 is a transmission means for transmitting the estimation result by the occupant physique estimation means and the estimation result by the deformation state estimation means to another information terminal provided outside the vehicle. The occupant physique estimation means and the deformation state estimation means are provided in the vehicle, and the damage degree estimation means is provided in the other information terminal. .

請求項1の発明によれば、車両の側面衝突時に乗員の体格と車両の変形状態とに基づいて乗員の受傷度合いを推定するので、個人差がある乗員の体格を考慮して乗員の受傷度合いを推定することができ、車両の変形量のみを用いて受傷度合いを推定する場合と比較して推定精度を向上させることができる。
請求項2および請求項3の発明によれば、衝突側の側面と乗員の体との離間距離が変形量と等しくなった時点における変形速度(車両と乗員との接触速度)に基づいて受傷度合いを推定する。車両と乗員との接触速度は、乗員の受傷度合いと相関が高いことが知られており、乗員の体格に基づいて車両と乗員との接触速度を推定することによって、より正確に受傷度合いを推定することができる。
請求項4の発明によれば、乗員の重量を測定する重量センサの検出値を用いて乗員の体格を推定する。着座センサ等は従来から車両に設けられている構成であり、これを利用することにより簡易な構成で乗員の体格を推定することができる。
請求項5の発明によれば、乗員が着座する座席に設けられた接触センサの検出値を用いて乗員の体格を推定する。乗員と座席との接触範囲がわかれば、車両の側面と乗員の体との離間距離を精度高く推定することができ、より正確に受傷度合いを推定することができる。
請求項6の発明によれば、カメラ画像を用いて乗員の体格を推定するので、車両の側面と乗員の体との離間距離を精度高く推定することができ、より正確に受傷度合いを推定することができる。
請求項7の発明によれば、車両の側面衝突時に乗員の体格と車両の変形状態とに基づいて乗員の受傷度合いを推定するので、個人差がある乗員の体格を考慮して乗員の受傷度合いを推定することができ、車両の変形量のみを用いて受傷度合いを推定する場合と比較して推定精度を向上させることができる。
請求項8の発明によれば、車両内で乗員の受傷度合いを推定して車両外部に送信するので、例えば救助者が衝突現場に到達する前に衝突による被害の度合いを把握することができ、より適切な救助活動を迅速におこなうことができる。
請求項9の発明によれば、車両外部に設けられた他の情報端末で受傷度合いを推定する。他の情報端末が例えば車両の製造メーカーが保有する情報端末などであり、車両の構造や強度等のより詳細なデータを利用することができれば、より正確な受傷度合いの推定を行うことができる可能性がある。
According to the first aspect of the present invention, the degree of injury to the occupant is estimated based on the physique of the occupant and the deformation state of the vehicle at the time of a side collision of the vehicle. The estimation accuracy can be improved as compared with the case where the degree of damage is estimated using only the deformation amount of the vehicle.
According to the second and third aspects of the invention, the degree of damage based on the deformation speed (contact speed between the vehicle and the occupant) when the separation distance between the side surface on the collision side and the occupant's body becomes equal to the deformation amount. Is estimated. The contact speed between the vehicle and the occupant is known to have a high correlation with the degree of injury of the occupant, and the degree of injury is estimated more accurately by estimating the contact speed between the vehicle and the occupant based on the physique of the occupant. can do.
According to the invention of claim 4, the physique of the occupant is estimated using the detection value of the weight sensor that measures the weight of the occupant. A seating sensor or the like has been conventionally provided in a vehicle, and by using this, the physique of the occupant can be estimated with a simple configuration.
According to the invention of claim 5, the physique of the occupant is estimated using the detection value of the contact sensor provided in the seat on which the occupant is seated. If the contact range between the occupant and the seat is known, the separation distance between the side surface of the vehicle and the body of the occupant can be estimated with high accuracy, and the degree of injury can be estimated more accurately.
According to the invention of claim 6, since the occupant's physique is estimated using the camera image, the distance between the side surface of the vehicle and the occupant's body can be estimated with high accuracy, and the degree of injury can be estimated more accurately. be able to.
According to the seventh aspect of the present invention, the degree of injury to the occupant is estimated based on the physique of the occupant and the deformation state of the vehicle at the time of a side collision of the vehicle. The estimation accuracy can be improved as compared with the case where the degree of damage is estimated using only the deformation amount of the vehicle.
According to the invention of claim 8, since the degree of injury of the occupant is estimated inside the vehicle and transmitted to the outside of the vehicle, for example, the degree of damage caused by the collision can be grasped before the rescuer reaches the collision site, A more appropriate rescue operation can be performed quickly.
According to the ninth aspect of the present invention, the degree of damage is estimated by another information terminal provided outside the vehicle. If the other information terminal is, for example, an information terminal held by a vehicle manufacturer and more detailed data such as the structure and strength of the vehicle can be used, it is possible to estimate the degree of damage more accurately. There is sex.

実施の形態にかかる受傷度推定装置10の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the damage degree estimation apparatus 10 concerning embodiment. 衝突検知センサ106の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of the collision detection sensor. 各衝突検知センサの設置位置での変位量を衝突形態別で表した説明図である。It is explanatory drawing which represented the displacement amount in the installation position of each collision detection sensor according to the collision form. 車両の変形量の一例を示すグラフである。It is a graph which shows an example of the deformation amount of a vehicle. 車両の変形速度の一例を示すグラフである。It is a graph which shows an example of the deformation speed of vehicles. 重量による体格の推定を模式的に示す説明図である。It is explanatory drawing which shows typically the estimation of the physique by a weight. 乗員の体格と離間距離Rとの関係を示すグラフである。It is a graph which shows the relationship between a passenger | crew's physique and the separation distance R. FIG. 乗員の体格と離間距離との関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between a passenger | crew's physique and separation distance. 受傷度推定装置10による受傷度度合い推定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the damage degree estimation process by the damage degree estimation apparatus.

以下に添付図面を参照して、本発明にかかる受傷度推定方法および受傷度推定装置の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a damage degree estimation method and a damage degree estimation apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.

(実施の形態)
図1は、実施の形態にかかる受傷度推定装置10の機能的構成を示すブロック図である。
受傷度推定装置10は、体格検知手段102、乗員体格推定手段104、衝突検知センサ106、変形状態推定手段108、受傷度推定手段110、送信手段112によって構成され、車両の側面衝突時に当該衝突に伴う乗員の受傷度合いを推定する。
(Embodiment)
FIG. 1 is a block diagram illustrating a functional configuration of a damage degree estimation apparatus 10 according to an embodiment.
The damage degree estimation device 10 includes a physique detection means 102, an occupant physique estimation means 104, a collision detection sensor 106, a deformation state estimation means 108, a damage degree estimation means 110, and a transmission means 112. Estimate the degree of occupant injury.

なお、乗員体格推定手段104、変形状態推定手段108、受傷度推定手段110は、CPU、制御プログラムなどを格納・記憶するROM、制御プログラムの作動領域としてのRAM、各種データを書き換え可能に保持するEEPROM、周辺回路等とのインターフェースをとるインターフェース部などを含んで構成されるECU(図示なし)が、前述CPUにより前述制御プログラムを実行することによって実現する。   The occupant physique estimation unit 104, the deformation state estimation unit 108, and the damage degree estimation unit 110 hold a CPU, a ROM that stores and stores a control program, a RAM as an operation area of the control program, and various data in a rewritable manner. An ECU (not shown) configured to include an interface unit that interfaces with an EEPROM, peripheral circuits, and the like is implemented by executing the control program by the CPU.

体格検知手段102は、車両の乗員の体格に関する情報を検知するためのセンサ等であり、例えば、乗員の重量を測定する重量センサや乗員が着座する座席に設けられた接触センサなどを用いることができる。また、これらのセンサに代えて、または加えて、例えば乗員が搭乗する車両の車室内を撮像するカメラを体格検知手段102としてもよい。   The physique detection means 102 is a sensor for detecting information related to the physique of the occupant of the vehicle. For example, a weight sensor that measures the weight of the occupant or a contact sensor provided on a seat on which the occupant is seated may be used. it can. Further, instead of or in addition to these sensors, for example, a camera that captures an interior of a vehicle in which a passenger is riding may be used as the physique detection means 102.

乗員体格推定手段104は、体格検知手段102の検知情報に基づいて、乗員の体格を推定する。
本実施の形態では、乗員の体格として乗員の幅方向の大きさ(乗員幅W)を推定するとともに、車両の側面と乗員の体との離間距離Rを推定する。
乗員体格推定手段104は、例えば体格検知手段102が重量センサである場合、重量センサで検知された乗員の重量が大きいほど、乗員の体格が大きいと推定する。
また、体格検知手段102が接触センサである場合、乗員体格推定手段104は、乗員と座席との接触面積が大きいほど乗員の体格が大きいと推定する。
また、体格検知手段102がカメラである場合、乗員体格推定手段104は、カメラで撮影された画像から乗員の体格を推定する。例えば、画像解析によって画像内で乗員が占める領域の割合を算出したり、車両の座席等との大きさの比較、天井との距離などから乗員の体格を推定することができる。
The occupant physique estimation means 104 estimates the occupant's physique based on the detection information of the physique detection means 102.
In the present embodiment, the size of the occupant in the width direction (occupant width W) is estimated as the occupant's physique, and the separation distance R between the side surface of the vehicle and the occupant's body is estimated.
For example, when the physique detection means 102 is a weight sensor, the occupant physique estimation means 104 estimates that the occupant's physique is larger as the weight of the occupant detected by the weight sensor is larger.
Further, when the physique detection means 102 is a contact sensor, the occupant physique estimation means 104 estimates that the occupant's physique is larger as the contact area between the occupant and the seat is larger.
Further, when the physique detection means 102 is a camera, the occupant physique estimation means 104 estimates the occupant's physique from an image taken by the camera. For example, the proportion of the area occupied by the occupant in the image can be calculated by image analysis, the size of the occupant can be estimated from the comparison with the size of the seat of the vehicle, the distance from the ceiling, and the like.

図6は、重量による体格の推定を模式的に示す説明図である。
図6のグラフにおいて、横軸は乗員の重量、縦軸は乗員の幅方向の大きさ(乗員幅W)を示す。
グラフ中の実線に示すように、乗員の重量が大きいほど乗員幅Wも大きいと推定することができる。
また、グラフ中の点線に示すように、小柄体型、標準体型、大柄体型などのように重量別に段階的に体格を分類してもよい。
FIG. 6 is an explanatory diagram schematically showing estimation of a physique based on weight.
In the graph of FIG. 6, the horizontal axis represents the weight of the occupant, and the vertical axis represents the size of the occupant in the width direction (occupant width W).
As indicated by the solid line in the graph, it can be estimated that the occupant width W increases as the occupant weight increases.
In addition, as indicated by the dotted line in the graph, the physiques may be classified in stages according to weight, such as a small body type, a standard body type, and a large pattern type.

また、乗員体格推定手段104は、推定した乗員幅Wから車両の側面と乗員の体との離間距離Rを推定する。
図8は、乗員の体格と離間距離Rとの関係を模式的に示す説明図である。
図8において、乗員を符号P1,P2、座席を符号ST、座席STの中心線を符号CL、乗員側のドアを符号DR、座席STとドアDRとの間の距離を符号DW、座席STの半幅は符号SW、乗員P1,P2の体の半幅を符号W1,W2、乗員P1,P2の体とドアDRとの間の離間距離を符号R1,R2で示している。
座席STとドアDRとの間の距離DWおよび座席STの半幅SWは、車両の設計データ等から既知な値である。よって、距離DW+半幅SWから乗員P1,P2の体の半幅W1,W2を引くことによって、乗員P1,P2の体とドアDRとの間の離間距離R1,R2を推定することができる。
図8Aに示すように、乗員P1の体格が大柄な場合、乗員P1の体とドアDRとの間の離間距離R1は相対的に狭くなる。
また、図8Bに示すように、乗員P2の体格が小柄な場合、乗員P2の体とドアDRとの間の離間距離R2は相対的に広くなる。
Further, the occupant physique estimation means 104 estimates a separation distance R between the side surface of the vehicle and the occupant's body from the estimated occupant width W.
FIG. 8 is an explanatory diagram schematically showing the relationship between the occupant's physique and the separation distance R. As shown in FIG.
In FIG. 8, the passengers are denoted by reference symbols P1 and P2, the seat is denoted by the symbol ST, the center line of the seat ST is denoted by the symbol CL, the passenger-side door is denoted by the symbol DR, the distance between the seat ST and the door DR is denoted by the symbol DW, and the seat ST The half width is indicated by the symbol SW, the half widths of the bodies of the occupants P1, P2 are indicated by the symbols W1, W2, and the separation distances between the bodies of the passengers P1, P2 and the door DR are indicated by the symbols R1, R2.
The distance DW between the seat ST and the door DR and the half width SW of the seat ST are known values from vehicle design data and the like. Therefore, the distances R1 and R2 between the bodies of the passengers P1 and P2 and the door DR can be estimated by subtracting the half widths W1 and W2 of the passengers P1 and P2 from the distance DW + half width SW.
As shown in FIG. 8A, when the physique of the occupant P1 is large, the separation distance R1 between the body of the occupant P1 and the door DR is relatively narrow.
Further, as shown in FIG. 8B, when the physique of the occupant P2 is small, the separation distance R2 between the body of the occupant P2 and the door DR is relatively wide.

図7は、乗員の体格と離間距離Rとの関係を示すグラフである。
図7において、縦軸は乗員の体と車両(ドアDR)との間の離間距離R、横軸は乗員の幅方向の大きさ(乗員幅W)である。
図7では、乗員幅Wが大きいほど離間距離Rは小さくなっている。すなわち、離間距離Rは乗員幅Wに反比例している。
なお、グラフ中の点線に示すように、乗員幅Wの値によって段階的に離間距離Rを分類してもよい。
FIG. 7 is a graph showing the relationship between the physique of the occupant and the separation distance R.
In FIG. 7, the vertical axis represents the separation distance R between the occupant's body and the vehicle (door DR), and the horizontal axis represents the size of the occupant in the width direction (occupant width W).
In FIG. 7, the larger the occupant width W is, the smaller the separation distance R is. That is, the separation distance R is inversely proportional to the passenger width W.
Note that the separation distance R may be classified stepwise according to the value of the occupant width W, as indicated by the dotted line in the graph.

なお、図6および図7では、乗員重量から乗員幅Wを推定し、さらに離間距離Rを推定したが、これに限らず、体格検知手段102で検知される情報(乗員重量や乗員と座席との接触面積)から、離間距離Rを直接推定できるように、関係式やマップ等を作成してもよい。
例えば、図6に示すように一般的に乗員重量と乗員幅Wとは比例の関係にあるため、図7の横軸を乗員重量と読み替えるとともにグラフの傾きを調整することにより、図7のみを用いて乗員重量から離間距離Rを推定することができるようになる。
6 and 7, the occupant width W is estimated from the occupant weight, and the separation distance R is estimated. However, the present invention is not limited to this, and information detected by the physique detection means 102 (occupant weight, occupant and seat, In other words, a relational expression, a map, or the like may be created so that the separation distance R can be directly estimated from the contact area).
For example, as shown in FIG. 6, since the occupant weight and the occupant width W are generally proportional, the horizontal axis in FIG. 7 is replaced with the occupant weight, and the inclination of the graph is adjusted, so that only FIG. The separation distance R can be estimated from the occupant weight.

図1の説明に戻り、衝突検知センサ106は、車両に対する衝撃を検知するためのセンサであり、例えば、車両にかかる加速度を検知する加速度センサや変位センサを用いることができる。本実施の形態では、衝突検知センサ106として、加速度センサを用いるものとする。
衝突検知センサ106は、車両の両側面の略同位置に左右対称となるよう複数配置されている。すなわち、衝突検知センサ106は、車両の両側面を含む所定の箇所に配置されて車両の衝突を検知する。また、衝突検知センサ106は、車両の両側面において車両前後方向で位置が異なる複数の箇所に配置されていてもよい。
本実施の形態では、衝突検知センサ106は、車両の両側面(左右側面)の前部座席用ドアと、車両の両側面(左右側面)の後部座席用ドアと、に設けられているものとする。
Returning to the description of FIG. 1, the collision detection sensor 106 is a sensor for detecting an impact on the vehicle. For example, an acceleration sensor or a displacement sensor for detecting acceleration applied to the vehicle can be used. In this embodiment, an acceleration sensor is used as the collision detection sensor 106.
A plurality of the collision detection sensors 106 are arranged so as to be bilaterally symmetrical at substantially the same position on both side surfaces of the vehicle. That is, the collision detection sensor 106 is disposed at a predetermined location including both side surfaces of the vehicle and detects a vehicle collision. Moreover, the collision detection sensor 106 may be arrange | positioned in the several location from which a position differs in the vehicle front-back direction in the both sides | surfaces of a vehicle.
In the present embodiment, the collision detection sensor 106 is provided on a front seat door on both side surfaces (left and right side surfaces) of the vehicle and on a rear seat door on both side surfaces (left and right side surfaces) of the vehicle. To do.

図2は、衝突検知センサ106の設置位置の一例を示す説明図である。
図2は車両200の上面視図である。車両200には、右側面に右側前部座席用ドアRFD、右側後部座席用ドアRRDが設けられており、左側面に左側前部座席用ドアLFD、左側後部座席用ドアLRDが設けられている。
本実施の形態では、衝突検知センサ106は、車両の両側面の前部座席用ドアと、車両の両側面の後部座席用ドアと、の計4か所に設けられているものとする。以下において、右側前部座席用ドアRFDに設けられた衝突検知センサ106を右前部ドアセンサRFDS、右側後部座席用ドアRRDに設けられた衝突検知センサ106を右後部ドアセンサRRDS、左側前部座席用ドアLFDに設けられた衝突検知センサ106を左前部ドアセンサLFDS、左側後部座席用ドアLRDに設けられた衝突検知センサ106を左後部ドアセンサLRDSという。
FIG. 2 is an explanatory diagram illustrating an example of an installation position of the collision detection sensor 106.
FIG. 2 is a top view of the vehicle 200. The vehicle 200 is provided with a right front seat door RFD and a right rear seat door RRD on the right side, and a left front seat door LFD and a left rear seat door LRD on the left side. .
In the present embodiment, it is assumed that the collision detection sensor 106 is provided at a total of four locations, that is, a front seat door on both sides of the vehicle and a rear seat door on both sides of the vehicle. In the following, the collision detection sensor 106 provided on the right front seat door RFD is the right front door sensor RFDS, the collision detection sensor 106 provided on the right rear seat door RRD is the right rear door sensor RRDS, and the left front seat door. The collision detection sensor 106 provided in the LFD is referred to as a left front door sensor LFDS, and the collision detection sensor 106 provided in the left rear seat door LRD is referred to as a left rear door sensor LRDS.

図1の説明に戻り、変形状態推定手段108は、複数の衝突検知センサ106の検出値に基づいて、車両の変形状態を推定する。
より詳細には、変形状態推定手段108は、車両の両側面の同位置に左右対称に配置された衝突検知センサ106の検出値を用いて各衝突検知センサ106が配置された位置における変位量をそれぞれ算出し、衝突側の側面に配置された衝突検知センサ106の位置における変位量と、衝突側と反対側の側面に対称に配置された衝突検知センサ106の位置における変位量との差分に基づいて車両の変形量および変形速度を推定する。
具体的には、加速度センサである衝突検知センサ106の検出値(加速度)を1階積分することによって各センサ設置位置における変位速度を、同値を2階積分することによって各センサ設置位置における変位量を、それぞれ推定することができ、さらに2つの衝突検知センサ106の位置における変位量の差を車両の変形量と推定することができる。
Returning to the description of FIG. 1, the deformation state estimation means 108 estimates the deformation state of the vehicle based on the detection values of the plurality of collision detection sensors 106.
More specifically, the deformation state estimating means 108 uses the detection values of the collision detection sensors 106 arranged symmetrically at the same positions on both side surfaces of the vehicle to calculate the displacement amount at the position where each collision detection sensor 106 is arranged. Based on the difference between the displacement amount at the position of the collision detection sensor 106 arranged on the side surface on the collision side and the displacement amount at the position of the collision detection sensor 106 arranged symmetrically on the side surface opposite to the collision side, respectively. Thus, the deformation amount and deformation speed of the vehicle are estimated.
Specifically, the displacement speed at each sensor installation position is obtained by integrating the detection value (acceleration) of the collision detection sensor 106, which is an acceleration sensor, on the first floor, and the displacement amount at each sensor installation position by integrating the same value on the second floor. Can be estimated, and the difference in displacement at the positions of the two collision detection sensors 106 can be estimated as the amount of deformation of the vehicle.

図2の設置位置を例に変形量の推定について説明する。例えば車両の左側側面が衝突した場合、変形状態推定手段108は、まず左前部ドアセンサLFDSの検出値を2階積分して、左側前部座席用ドアLFDの変位量を算出する。
つぎに、変形状態推定手段108は、右前部ドアセンサRFDSの検出値を2階積分して、右側前部座席用ドアRFDの変位量を算出する。
そして、左側前部座席用ドアLFDの変位量と右側前部座席用ドアRFDの変位量との差分から、左側前部座席周辺の変形量を算出する。後部座席についても、同様の処理をおこなうことによって変形量を算出することができる。
The estimation of the deformation amount will be described using the installation position in FIG. 2 as an example. For example, when the left side surface of the vehicle collides, the deformation state estimation means 108 first calculates the displacement of the left front seat door LFD by second-order integrating the detection value of the left front door sensor LFDS.
Next, the deformation state estimation means 108 calculates the amount of displacement of the right front seat door RFD by second-order integration of the detection value of the right front door sensor RFDS.
Then, the deformation amount around the left front seat is calculated from the difference between the displacement amount of the left front seat door LFD and the displacement amount of the right front seat door RFD. The deformation amount can be calculated for the rear seats by performing the same process.

図3を用いてさらに具体的に説明する。
図3は、車両の左側側面が衝突した場合を例に、各衝突検知センサの設置位置での変位量を衝突形態別で表した説明図であり、図3Aが柱状の静止物Mに衝突した場合、図3Bが車両CRに衝突された場合の例を示している。なお、図3の上段には、衝突形態と衝突時における各衝突検知センサ106での加速度の状態を示す模式図、下段左には、左前部ドアセンサLFDSおよび右前部ドアセンサRFDSの検出値から算出された変位量を比較したグラフ、下段右には、左後部ドアセンサLRDSおよび右後部ドアセンサRRDSの検出値から算出された変位量を比較したグラフを開示している。
図3の下段のグラフにおいて、縦軸は各ドアの変位量、横軸は時間を示している。
This will be described more specifically with reference to FIG.
FIG. 3 is an explanatory diagram showing the amount of displacement at the position where each collision detection sensor is installed according to the collision mode, taking as an example the case where the left side surface of the vehicle collides, and FIG. 3A collides with a columnar stationary object M. In this case, FIG. 3B shows an example when the vehicle CR is collided. The upper part of FIG. 3 is a schematic diagram showing the collision mode and the acceleration state of each collision detection sensor 106 at the time of the collision, and the lower left part is calculated from the detection values of the left front door sensor LFDS and the right front door sensor RFDS. A graph comparing the displacement amounts, and a graph comparing the displacement amounts calculated from the detection values of the left rear door sensor LRDS and the right rear door sensor RRDS are disclosed on the lower right.
In the lower graph of FIG. 3, the vertical axis indicates the displacement amount of each door, and the horizontal axis indicates time.

まず、図3A上段の模式図に示すように、車両の左側面(左側前部座席用ドアLFD)が柱状の静止物Mに衝突した場合には、車両の左側面の一部に対して局所的に衝撃力がかかる(図示の例では、左側前部座席用ドアLFD周辺)。このため、各衝突検知センサ106で検出する加速度の大きさが衝突検知センサ106の設置箇所によって大きく異なる。
より詳細には、静止物Mに最も近い左前部ドアセンサLFDSによる検出値が最も大きく、つぎに左後部ドアセンサLRDS、そして右前部ドアセンサRFDSおよび右後部ドアセンサRRDSの検出値は、左前部ドアセンサLFDSの検出値よりもかなり小さくほぼ同じぐらいの値となっている。
First, as shown in the schematic diagram in the upper part of FIG. 3A, when the left side surface (the left front seat door LFD) of the vehicle collides with the columnar stationary object M, the vehicle is locally applied to a part of the left side surface of the vehicle. Impact force is applied (in the example shown, around the left front seat door LFD). For this reason, the magnitude of acceleration detected by each collision detection sensor 106 varies greatly depending on the installation location of the collision detection sensor 106.
More specifically, the detection value of the left front door sensor LFDS closest to the stationary object M is the largest, and then the detection values of the left rear door sensor LRDS, and the right front door sensor RFDS and the right rear door sensor RRDS are detected by the left front door sensor LFDS. It is much smaller than the value and is about the same value.

そして、図3A下段のグラフから、これら各ドアセンサの検出値から算出した各ドアの変位量を比較してみると、左側前部座席用ドアLFDの変位量が最も大きく、つぎに左側後部座席用ドアLRDの変位量、そして右側前部座席用ドアRFDおよび右側後部座席用ドアRRDの変位量が最も小さく、ほぼ同じ値となっている。   Then, comparing the displacement amounts of the doors calculated from the detection values of the door sensors from the lower graph of FIG. 3A, the displacement amount of the left front seat door LFD is the largest, and then the left rear seat. The amount of displacement of the door LRD and the amount of displacement of the right front seat door RFD and the right rear seat door RRD are the smallest and substantially the same value.

ところで、車両の左側面が衝突した場合、通常、反対側の右側面はほとんど変形することはない。しかしながら、左側面が衝突したことによって、車両全体が右側へ押された状態となるため車両右側への加速度が生じ、各ドアセンサは、その加速度を検出することとなる。
すなわち、右前部ドアセンサRFDSおよび右後部ドアセンサRRDSは、衝突による加速度のみを検出し、左前部ドアセンサLFDSおよび左後部ドアセンサLRDSは、衝突による加速度とドアの変形により生じた加速度を加味した値を検出している。
つまり、右側前部座席用ドアRFDおよび右側後部座席用ドアRRDの変位量は、衝突による車両自体の変位量を示しており、左側前部座席用ドアLFDおよび左側後部座席用ドアLRDの変位量は、車両自体の変位量にドアの変形による変位量が加味された値である。
By the way, when the left side surface of the vehicle collides, normally, the right side surface on the opposite side hardly deforms. However, the collision of the left side surface causes the entire vehicle to be pushed to the right side, so that acceleration to the right side of the vehicle occurs, and each door sensor detects the acceleration.
That is, the right front door sensor RFDS and the right rear door sensor RRDS detect only the acceleration due to the collision, and the left front door sensor LFDS and the left rear door sensor LRDS detect the value including the acceleration caused by the collision and the acceleration caused by the deformation of the door. ing.
That is, the displacement amount of the right front seat door RFD and the right rear seat door RRD indicates the displacement amount of the vehicle itself due to the collision, and the displacement amount of the left front seat door LFD and the left rear seat door LRD. Is a value obtained by adding the displacement amount due to the deformation of the door to the displacement amount of the vehicle itself.

したがって、左側前部座席用ドアLFD(左前部ドアセンサLFDS位置)の変位量から右側前部座席用ドアRFD(右前部ドアセンサRFDS位置)での変位量を引いた差分が左側前部座席用ドアLFDの変形量として推定され、左側後部座席用ドアLRD(左後部ドアセンサLRDS位置)の変位量から右側後部座席用ドアRRD(右後部ドアセンサRRDS位置)を引いた差分が左側後部座席用ドアLRDの変形量として推定される。このように、衝突側の側面の変位量から対称の位置にある反対側の側面の変位量を引くことで、衝突側の側面の変形量を推定することができる。   Therefore, the difference obtained by subtracting the displacement amount at the right front seat door RFD (right front door sensor RFDS position) from the displacement amount of the left front seat door LFD (left front door sensor RFDS position) is the left front seat door LFD. The difference obtained by subtracting the right rear seat door RRD (right rear door sensor RRDS position) from the displacement amount of the left rear seat door LRD (left rear door sensor LRDS position) is estimated as the deformation amount of the left rear seat door LRD. Estimated as a quantity. In this way, the amount of deformation of the side surface on the collision side can be estimated by subtracting the amount of displacement of the opposite side surface at the symmetrical position from the amount of displacement of the side surface on the collision side.

このように、衝突側側面(ここでは、左側前部座席用ドアLFDおよび左側後部座席用ドアLRD)の変形量を推定することで、衝突による変形状態とともに、衝突の形態(柱状の静止物との衝突か車両との衝突か)も推定することができる。   In this way, by estimating the deformation amount of the collision side surface (here, the left front seat door LFD and the left rear seat door LRD), along with the deformation state due to the collision, the form of the collision (the columnar stationary object and Or collision with the vehicle).

一方、図3B上段の模式図に示すように、車両の左側面(左側前部座席用ドアLFDおよび左側後部座席用ドアLRD)が他の車両CRに衝突された場合であるが、このような衝突形態では、車両の左側面の比較的広い範囲に衝撃力がかかる。
このため、左側面に設けられた左前部ドアセンサLFDSおよび左後部ドアセンサLRDSの検出値は、比較的近い値となる。
On the other hand, as shown in the schematic diagram in the upper part of FIG. 3B, the left side surface of the vehicle (the left front seat door LFD and the left rear seat door LRD) is collided with another vehicle CR. In the collision mode, an impact force is applied to a relatively wide range on the left side surface of the vehicle.
For this reason, the detection values of the left front door sensor LFDS and the left rear door sensor LRDS provided on the left side surface are relatively close values.

そして、図3B下段のグラフからわかるように、左側前部座席用ドアLFDの変位量と左側後部座席用ドアLRDの変位量は、ほぼ同じぐらいの変位量となっている。
これは、図3Bの衝突形態では、図3Aの柱状の静止物Mに側突した場合のように局所的に衝突荷重を受けるのではなく、左側面全体で衝突荷重を受けていることを示している。
3B, the displacement amount of the left front seat door LFD and the displacement amount of the left rear seat door LRD are approximately the same displacement amount.
This indicates that in the collision mode of FIG. 3B, the entire left side surface is subjected to a collision load, rather than receiving a collision load locally as in the case of a side collision with the columnar stationary object M of FIG. 3A. ing.

図4は、車両の変形量の一例を示すグラフであり、例えば図3Aの下段左のグラフにおける左右ドアの変位量の差分(変形量)の時間変化を示している。
図4のグラフにおいて、縦軸は車両の変形量、横軸は時間を示す。
このような変形量の推移は、図3の下段に示す各衝突検知センサ106の変位量の差分を単位時間ごとにプロットすることによって得ることができる。
図4では、車両と静止物Mとが接触した時刻0から変形が開始し、時刻Txに最終的な変形量Yxとなっている。なお、車両が弾性変形する素材で形成されている場合、最終的な変形量Yxと最大変形量とが異なる場合がある。
FIG. 4 is a graph showing an example of the deformation amount of the vehicle. For example, FIG. 4 shows a temporal change in the difference (deformation amount) between the displacement amounts of the left and right doors in the lower left graph of FIG. 3A.
In the graph of FIG. 4, the vertical axis indicates the amount of deformation of the vehicle, and the horizontal axis indicates time.
Such a transition of the deformation amount can be obtained by plotting a difference in displacement amount of each collision detection sensor 106 shown in the lower part of FIG. 3 for each unit time.
In FIG. 4, the deformation starts at time 0 when the vehicle and the stationary object M contact each other, and the final deformation amount Yx is reached at time Tx. When the vehicle is formed of a material that is elastically deformed, the final deformation amount Yx may be different from the maximum deformation amount.

図5は車両の変形速度の一例を示すグラフである。
図5のグラフにおいて、縦軸は車両の変形速度、横軸は時間を示す。
このような変形速度の推移は、例えば図4に示す車両の変形量を時間微分してもよいし、衝突検知センサ106で得られる車両の両側面の加速度を1階積分し、その差分をプロットしてもよい。
図5では、車両と静止物Mとが接触した時刻0から変形速度が上昇し、時刻Tpで最大速度Vpとなった後、徐々に減速する。
FIG. 5 is a graph showing an example of the deformation speed of the vehicle.
In the graph of FIG. 5, the vertical axis represents the deformation speed of the vehicle, and the horizontal axis represents time.
Such a transition of the deformation speed may be obtained by, for example, differentiating the amount of deformation of the vehicle shown in FIG. 4 with respect to time, or by firstly integrating accelerations on both sides of the vehicle obtained by the collision detection sensor 106 and plotting the difference. May be.
In FIG. 5, the deformation speed increases from time 0 when the vehicle and the stationary object M come into contact with each other, and then gradually decreases after reaching the maximum speed Vp at time Tp.

このように、変形状態推定手段108では、車両に複数設けられた衝突検知センサ106の検出値に基づいて、車両の変形量および変形速度を含む変形状態を推定することができる。   Thus, the deformation state estimation means 108 can estimate the deformation state including the deformation amount and the deformation speed of the vehicle based on the detection values of the plurality of collision detection sensors 106 provided in the vehicle.

図1の説明に戻り、受傷度推定手段110は、乗員体格推定手段104によって推定された乗員の体格と、変形状態推定手段108によって推定された車両の変形状態とに基づいて、乗員の受傷度合いを推定する。
より詳細には、受傷度推定手段110は、衝突側の側面と乗員の体との離間距離が車両の変形量と等しくなった時点における変形速度に基づいて受傷度合いを推定する。
このとき、受傷度推定手段110は、車両の変形量が離間距離と等しくなった時点、すなわち変形した車両が乗員に接する時点の変形速度が速いほど乗員の受傷度合いが大きいと推定する。
Returning to the description of FIG. 1, the injury degree estimation means 110 is based on the occupant's physique estimated by the occupant physique estimation means 104 and the deformation state of the vehicle estimated by the deformation state estimation means 108. Is estimated.
More specifically, the damage degree estimation means 110 estimates the degree of damage based on the deformation speed when the separation distance between the side surface on the collision side and the occupant's body becomes equal to the deformation amount of the vehicle.
At this time, the degree-of-scratch estimation means 110 estimates that the degree of injury of the occupant increases as the deformation speed increases when the deformation amount of the vehicle becomes equal to the separation distance, that is, when the deformed vehicle contacts the occupant.

図4および図5を用いて具体的に説明すると、受傷度推定手段110は、まず、図4に示す車両の変形量のグラフを参照して、車両の変形量が離間距離Rと等しくなる時刻を特定する。例えば、図4において、変形量が図8に示す離間距離R1,R2(R1<R2)となる時刻をそれぞれT1,T2(T1<T2)と特定できる。
そして、図5に示す車両の変形速度のグラフを参照して、時刻T1,T2における変形速度を特定する。例えば、図5において、時刻T1,T2における変形速度はそれぞれV1,V2(V1>V2)と特定できる。
そして、受傷度推定手段110は、車両の変形量が離間距離Rと等しくなった時点、すなわち変形した車両が乗員に接する時点の変形速度が速いほど乗員の受傷度合いが大きいと推定する。
上記の例では、離間距離Rが小さい大柄な乗員P1の方が、小柄な乗員P2よりも接触時の変形速度が速く、受傷度合いが大きいと推定することができる。
なお、受傷度合いの大きさは、乗員の体格の大小ではなく変形した車両が乗員に接する時点の変形速度に比例することが知られている。このため、図4〜図7を用いた上記の例では大柄な乗員P1の方が受傷度合いが大きいと推定されたが、車両の変形状態や車両の構造(座席STとドアDRとの距離など)等によって推定結果は変化する。
4 and FIG. 5, the damage degree estimating means 110 first refers to the vehicle deformation amount graph shown in FIG. 4 and the time when the vehicle deformation amount becomes equal to the separation distance R. Is identified. For example, in FIG. 4, the times when the deformation amounts become the separation distances R1, R2 (R1 <R2) shown in FIG. 8 can be specified as T1, T2 (T1 <T2), respectively.
And the deformation | transformation speed in time T1, T2 is specified with reference to the graph of the deformation | transformation speed of the vehicle shown in FIG. For example, in FIG. 5, the deformation speeds at times T1 and T2 can be specified as V1, V2 (V1> V2), respectively.
The damage degree estimation means 110 estimates that the degree of damage to the occupant increases as the deformation speed increases when the deformation amount of the vehicle becomes equal to the separation distance R, that is, when the deformed vehicle contacts the occupant.
In the above example, it can be estimated that the large occupant P1 having a small separation distance R has a higher deformation speed at the time of contact than the small occupant P2, and the degree of injury is large.
It is known that the degree of injury is not proportional to the size of the occupant but proportional to the deformation speed at the time when the deformed vehicle contacts the occupant. For this reason, in the above example using FIGS. 4 to 7, it is estimated that the large passenger P1 has a greater degree of damage, but the vehicle deformation state and the vehicle structure (the distance between the seat ST and the door DR, etc.) ) Etc., the estimation result changes.

また、受傷度推定手段110は、上述した体格による受傷度合いの推定と併せて、車両の変形状態による車両の乗員の受傷度合いの推定をおこなってもよい。
この場合、例えば、車両の着座センサの検出値や車内カメラで撮影された画像を用いて乗員の乗車位置を検出し、乗車位置における変形量に基づいて、乗員の受傷度合いを推定する。具体的には、乗員の乗車位置における変形量が大きいほど、乗員の受傷度合いが大きいと推定する。
Further, the damage degree estimation means 110 may estimate the degree of damage of the vehicle occupant due to the deformation state of the vehicle, in addition to the estimation of the degree of damage based on the physique described above.
In this case, for example, the occupant's boarding position is detected using the detection value of the seating sensor of the vehicle or the image taken by the in-vehicle camera, and the degree of injury of the occupant is estimated based on the deformation amount at the boarding position. Specifically, it is estimated that the greater the amount of deformation at the boarding position of the occupant, the greater the degree of injury to the occupant.

図3を用いて具体的に説明すると、例えば、図3Aのように車両の左側面(左側前部座席用ドアLFD)が柱状の静止物Mに衝突した場合、静止物Mに近い左側前部座席用ドアLFDにおける変形量が、左側後部座席用ドアLRDにおける変形量よりもが大きくなる。すなわち、左側前部座席用ドアLFDが車室内側(左側前部座席側)に大きく変形していることがわかり、左側前部座席に乗員が搭乗している場合には、この乗員が受傷する可能性および乗員の受傷度合いが大きいと推定することができる。一方、左側後部座席の乗員は、左側前部座席の乗員に比べて受傷の可能性および受傷度合いが比較的小さいと推定することができる。   Specifically, referring to FIG. 3, for example, when the left side surface of the vehicle (the left front seat door LFD) collides with the columnar stationary object M as shown in FIG. 3A, the left front part close to the stationary object M The deformation amount in the seat door LFD is larger than the deformation amount in the left rear seat door LRD. That is, it can be seen that the left front seat door LFD is greatly deformed to the vehicle interior side (left front seat side), and the passenger is injured when the passenger is on the left front seat. It can be estimated that the possibility and the degree of injury to the occupant are large. On the other hand, it can be estimated that the occupant of the left rear seat has a relatively low possibility of injury and the degree of injury compared to the occupant of the left front seat.

また、図3Bのように車両の左側面(左側前部座席用ドアLFDおよび左側後部座席用ドアLRD)が他の車両CRに衝突された場合では、車両の左側面が全体的に車室内側(左側前後座席側)に変形しており、その変形量は、図3Aの場合の左側前部座席用ドアLFDの変形量よりも小さく、左側後部座席用ドアLRDよりも大きい。つまり、この衝突形態では、左側前部座席および左側後部座席に乗員が搭乗している場合、受傷の可能性および受傷度合いは、前後でほぼ同じと推定でき、図3Aの柱状の静止物Mに側突した場合に比べて、左側前部座席での受傷の可能性および受傷度合いは比較的小さく、左側後部座席での受傷の可能性および受傷度合いは比較的大きいと推定できる。   In addition, as shown in FIG. 3B, when the left side surface of the vehicle (the left front seat door LFD and the left rear seat door LRD) collides with another vehicle CR, the left side surface of the vehicle is entirely on the vehicle interior side. The deformation amount is smaller than the deformation amount of the left front seat door LFD in the case of FIG. 3A and larger than the left rear seat door LRD. That is, in this collision mode, when the passenger is on the left front seat and the left rear seat, the possibility of injury and the degree of injury can be estimated to be substantially the same in the front and rear, and the columnar stationary object M in FIG. It can be estimated that the possibility and degree of injury at the left front seat are relatively small and the possibility and degree of injury at the left rear seat are relatively large compared to the case of a side collision.

図1の説明に戻り、送信手段112は、電話回線やネットワーク回線と接続された通信インターフェースであり、受傷度推定手段110による推定結果を車両の外部に送信する。
送信手段112は、例えば、車両の衝突に伴って緊急通報を受けた消防本部や乗員の救助に向かう緊急車両などに対して、乗員の受傷度度合いの推定結果を送信する。これにより、救助者は、車両の衝突現場に到達する前に衝突による被害の概要を把握することができ、より迅速に救助をおこなうことができる。
なお、送信手段112は、緊急通報を受けた消防本部や乗員の救助に向かう緊急車両などからの情報送信要求を受けた場合に、情報を送信するようにしてもよい。
Returning to the description of FIG. 1, the transmission unit 112 is a communication interface connected to a telephone line or a network line, and transmits the estimation result by the damage degree estimation unit 110 to the outside of the vehicle.
For example, the transmission unit 112 transmits an estimation result of the degree of injury of the occupant to the fire department headquarters that has received an emergency call due to the collision of the vehicle or an emergency vehicle heading for rescue of the occupant. Thereby, the rescuer can grasp the outline of the damage caused by the collision before reaching the collision site of the vehicle, and can rescue more quickly.
The transmission means 112 may transmit information when receiving an information transmission request from the fire department headquarters receiving an emergency call or an emergency vehicle heading for rescue of an occupant.

図9は、受傷度推定装置10による受傷度度合い推定処理の手順を示すフローチャートである。
図9のフローチャートにおいて、受傷度推定装置10は、まず、体格検知手段102によって検知される乗員の体格に関する情報(体格検知情報)を取得する(ステップS900)。
つぎに、ステップS900で取得した情報に基づいて、乗員体格推定手段104によって、乗員の体格(乗員幅W)を推定し(ステップS902)、さらに、車両の側面(一般的にはドアDR)と乗員の体との離間距離Rを推定する(ステップS904)。
FIG. 9 is a flowchart illustrating a procedure of the degree of damage degree estimation process performed by the degree of damage estimation apparatus 10.
In the flowchart of FIG. 9, the injury degree estimation device 10 first acquires information (physique detection information) related to the physique of the occupant detected by the physique detection means 102 (step S900).
Next, based on the information acquired in step S900, the occupant physique estimation means 104 estimates the occupant's physique (occupant width W) (step S902), and further, the vehicle side surface (generally the door DR). A separation distance R from the occupant's body is estimated (step S904).

つづいて、受傷度推定装置10は、衝突検知センサ106を用いて加速度を検知する(ステップS906)。いずれかの衝突検知センサ106において側突に伴う加速度が検知されるまでは(ステップS908:Noのループ)、受傷度推定装置10は、ステップS906に戻り、加速度の検知を継続する。   Subsequently, the damage degree estimation apparatus 10 detects acceleration using the collision detection sensor 106 (step S906). Until any of the collision detection sensors 106 detects acceleration due to a side collision (step S908: No loop), the damage degree estimation apparatus 10 returns to step S906 and continues to detect acceleration.

いずれかの衝突検知センサ106で側突に伴う加速度が検知されると(ステップS908:Yes)、受傷度推定装置10は、変形状態推定手段108によって車両の変形量および変形速度を推定する(ステップS910)。
前述のように、変形状態推定手段108は、それぞれの衝突検知センサ106の検出値を2階積分して当該衝突検知センサ106の位置における変位量を算出し、左右の対となる衝突検知センサ106の位置における変位量の差分から、衝突側の衝突検知センサ106の位置における変形量を推定する。
また、変形量の時間変化率を変形速度と推定する。
When any of the collision detection sensors 106 detects an acceleration due to a side collision (step S908: Yes), the damage degree estimation device 10 estimates the deformation amount and deformation speed of the vehicle by the deformation state estimation means 108 (step S908). S910).
As described above, the deformation state estimation means 108 calculates the amount of displacement at the position of the collision detection sensor 106 by performing second-order integration of the detection values of the respective collision detection sensors 106, and forms a pair of collision detection sensors 106 on the left and right sides. The amount of deformation at the position of the collision detection sensor 106 on the collision side is estimated from the difference in the displacement amount at the position.
Also, the time change rate of the deformation amount is estimated as the deformation speed.

つぎに、受傷度推定装置10は、受傷度推定手段110によって変形した車両が乗員に接する時刻における変形速度、すなわち、乗員と車両との接触速度を推定する(ステップS912)。
そして、乗員と車両との接触速度に基づいて乗員の受傷度合いを推定する(ステップS914)。
その後、受傷度推定装置10は、送信手段112によって乗員の受傷度合いを車両外部へと送信して(ステップS914)、本フローチャートによる処理を終了する。
Next, the damage degree estimation device 10 estimates the deformation speed at the time when the vehicle deformed by the damage degree estimation means 110 comes into contact with the occupant, that is, the contact speed between the occupant and the vehicle (step S912).
Then, the degree of injury of the occupant is estimated based on the contact speed between the occupant and the vehicle (step S914).
Thereafter, the damage degree estimation device 10 transmits the degree of damage received by the occupant to the outside of the vehicle by the transmission means 112 (step S914), and the process according to this flowchart ends.

なお、本実施の形態では、車両に設けられた受傷度推定装置10で乗員の受傷度合いを推定するものとしたが、これに限らず、例えば乗員体格推定手段104による推定結果と、変形状態推定手段108による推定結果とを車両の外部に設けられた他の情報端末に送信し、当該他の情報端末に設けられた受傷度推定手段によって乗員の受傷度合いを推定してもよい。
この場合、他の情報端末は、例えば車両の製造メーカーが保有する情報端末などである。このように他の情報端末を用いて受傷度合いを推定することによって、車両の構造や強度等のより詳細なデータを利用して、より正確な受傷度合いの推定を行うことができる可能性がある。
In this embodiment, the degree of injury of the occupant is estimated by the injury degree estimation device 10 provided in the vehicle. However, the present invention is not limited to this. For example, the estimation result by the occupant physique estimation unit 104 and the deformation state estimation The estimation result by the means 108 may be transmitted to another information terminal provided outside the vehicle, and the degree of injury received by the occupant may be estimated by the degree-of-injury estimation means provided in the other information terminal.
In this case, the other information terminal is, for example, an information terminal held by a vehicle manufacturer. Thus, by estimating the degree of damage using other information terminals, there is a possibility that more detailed data such as the structure and strength of the vehicle can be used to estimate the degree of damage more accurately. .

また、本実施形態では、左右の前部座席用ドアLFD、RFDと左右の後部座席用ドアLRD、RRDにそれぞれ1つ、車両側面あたり2つずつ衝突検知センサを設けているが、他にセンターピラーや前後のフェンダ等に設けても良いし、ドアに複数衝突検知センサを設けて良い。このように車両側面あたりの検出位置を増やすことで、より詳細かつ正確に変形状態を推定することが可能となり、乗員の受傷度合いや車両の損傷度合いをより一層精度よく推定することが可能となる。   In the present embodiment, the left and right front seat doors LFD and RFD and the left and right rear seat doors LRD and RRD are each provided with two collision detection sensors. It may be provided in a pillar, front and rear fenders, or a plurality of collision detection sensors may be provided in the door. As described above, by increasing the detection positions per side of the vehicle, it is possible to estimate the deformation state in more detail and accurately, and it is possible to estimate the degree of injury to the occupant and the degree of vehicle damage more accurately. .

また、本実施形態では、左右ドア間での変位量の差分から衝突側の側面の変形量を推定しているが、例えば、車両の中央部に別途衝突検知センサを設けて、当該車両中央部の衝突検知センサの位置での変位量と衝突側の側面(前後ドア)に設置した衝突センサの位置での変位量との差分を基に変形量を推定してもよい。   Further, in the present embodiment, the deformation amount of the side surface on the collision side is estimated from the difference in displacement amount between the left and right doors. For example, a collision detection sensor is separately provided in the central portion of the vehicle, and the vehicle central portion The deformation amount may be estimated based on the difference between the displacement amount at the position of the collision detection sensor and the displacement amount at the position of the collision sensor installed on the side surface (front and rear door) on the collision side.

以上説明したように、実施の形態にかかる受傷度推定装置10は、車両の側面衝突時に乗員の体格と車両の変形状態とに基づいて乗員の受傷度合いを推定するので、個人差がある乗員の体格を考慮して乗員の受傷度合いを推定することができ、車両の変形量のみを用いて受傷度合いを推定する場合と比較して、より推定精度を向上させることができる。
また、受傷度推定装置10は、衝突側の側面と乗員の体との離間距離が変形量と等しくなった時点における変形速度(車両と乗員との接触速度)に基づいて受傷度合いを推定する。車両と乗員との接触速度は、乗員の受傷度合いと相関が高いことが知られており、乗員の体格に基づいて車両と乗員との接触速度を推定することによって、より正確に受傷度合いを推定することができる。
また、受傷度推定装置10において、乗員の重量を測定する重量センサの検出値を用いて乗員の体格を推定するようにすれば、着座センサ等は従来から車両に設けられている構成であり、これを利用することにより簡易な構成で乗員の体格を推定することができる。
また、受傷度推定装置10において、乗員が着座する座席に設けられた接触センサの検出値を用いて乗員の体格を推定するようにすれば、乗員と座席との接触範囲がわかれば、車両の側面と乗員の体との離間距離を精度高く推定することができ、より正確に受傷度合いを推定することができる。
また、受傷度推定装置10において、カメラ画像を用いて乗員の体格を推定するようにすれば、車両の側面と乗員の体との離間距離を精度高く推定することができ、より正確に受傷度合いを推定することができる。
また、受傷度推定装置10は、車両内で乗員の受傷度合いを推定して車両外部に送信するので、例えば救助者が衝突現場に到達する前に衝突による被害の度合いを把握することができ、より適切な救助活動を迅速におこなうことができる。
また、受傷度推定装置10において、車両外部に設けられた他の情報端末で受傷度合いを推定するようにすれば、他の情報端末が例えば車両の製造メーカーが保有する情報端末などであり、車両の構造や強度等のより詳細なデータを利用することができれば、より正確な受傷度合いの推定を行うことができる可能性がある。
As described above, the damage degree estimation device 10 according to the embodiment estimates the degree of damage to an occupant based on the physique of the occupant and the deformation state of the vehicle at the time of a side collision of the vehicle. The degree of injury of the occupant can be estimated in consideration of the physique, and the estimation accuracy can be further improved as compared with the case of estimating the degree of injury using only the deformation amount of the vehicle.
Further, the damage degree estimation device 10 estimates the degree of damage based on the deformation speed (contact speed between the vehicle and the occupant) when the separation distance between the collision side surface and the occupant's body becomes equal to the deformation amount. The contact speed between the vehicle and the occupant is known to have a high correlation with the degree of injury of the occupant, and the degree of injury is estimated more accurately by estimating the contact speed between the vehicle and the occupant based on the physique of the occupant. can do.
Further, if the physique of the occupant is estimated using the detection value of the weight sensor that measures the weight of the occupant in the damage degree estimation device 10, a seating sensor or the like is conventionally provided in the vehicle, By utilizing this, the physique of the occupant can be estimated with a simple configuration.
Further, in the damage degree estimation device 10, if the physique of the occupant is estimated using the detection value of the contact sensor provided in the seat where the occupant is seated, if the contact range between the occupant and the seat is known, the vehicle The distance between the side surface and the occupant's body can be estimated with high accuracy, and the degree of injury can be estimated more accurately.
Further, if the occupant's physique is estimated using the camera image in the injury degree estimation device 10, the distance between the side surface of the vehicle and the occupant's body can be estimated with high accuracy, and the degree of injury is more accurately determined. Can be estimated.
In addition, since the injury degree estimation device 10 estimates the degree of injury of the occupant in the vehicle and transmits it to the outside of the vehicle, for example, the rescuer can grasp the degree of damage caused by the collision before reaching the collision site. A more appropriate rescue operation can be performed quickly.
Further, in the damage degree estimation apparatus 10, if the degree of damage is estimated by another information terminal provided outside the vehicle, the other information terminal is, for example, an information terminal held by a vehicle manufacturer, If more detailed data, such as the structure and strength, can be used, there is a possibility that the degree of damage can be estimated more accurately.

10……受傷度推定装置、102……体格検知手段、104……乗員体格推定手段、106……衝突検知センサ、108……変形状態推定手段、110……受傷度推定手段、112……送信手段、200……車両、LFD……左側前部座席用ドア、LFDs……左前部ドアセンサ、LRD……左側後部座席用ドア、LRDS……左後部ドアセンサ、RFD……右側前部座席用ドア、RFDS……右前部ドアセンサ、RRD……右側後部座席用ドア、RRDS……右後部ドアセンサ。   DESCRIPTION OF SYMBOLS 10 ... Injury degree estimation apparatus, 102 ... Body size detection means, 104 ... Passenger physique estimation means, 106 ... Collision detection sensor, 108 ... Deformation state estimation means, 110 ... Injury degree estimation means, 112 ... Transmission Means, 200 ... vehicle, LFD ... left front seat door, LFDs ... left front door sensor, LRD ... left rear seat door, LRDS ... left rear door sensor, RFD ... right front seat door, RFDS: Right front door sensor, RRD: Right rear seat door, RRDS: Right rear door sensor.

Claims (9)

車両の側面衝突時に当該衝突に伴う乗員の受傷度合いを推定する受傷度推定方法であって、
前記乗員の体格を推定する乗員体格推定工程と、
前記車両の両側面を含む所定の箇所に配置されて車両の衝突を検知する複数の衝突検知センサの検出値に基づいて、前記車両の変形状態を推定する変形状態推定工程と、
前記乗員の体格と、前記車両の変形状態とに基づいて、前記乗員の受傷度合いを推定する受傷度推定工程と、
を含んだことを特徴とする受傷度推定方法。
Injury degree estimation method for estimating the degree of injury of an occupant associated with a side collision of a vehicle,
An occupant physique estimation step for estimating the physique of the occupant;
A deformation state estimation step of estimating a deformation state of the vehicle based on detection values of a plurality of collision detection sensors that are arranged at predetermined locations including both side surfaces of the vehicle and detect a vehicle collision;
Injury degree estimation step for estimating the degree of injury of the occupant based on the physique of the occupant and the deformation state of the vehicle,
Injury degree estimation method characterized by including.
前記乗員体格推定工程では、前記乗員の体格に基づいて前記車両の側面と前記乗員の体との離間距離を推定し、
前記変形状態推定工程では、前記車両の両側面の同位置に左右対称に配置された前記衝突検知センサの前記検出値を用いて各衝突検知センサが配置された位置における変位量をそれぞれ算出し、前記衝突側の側面に配置された前記衝突検知センサの位置における変位量と、衝突側と反対側の側面に対称に配置された前記衝突検知センサの位置における変位量との差分に基づいて前記変形量および前記変形速度を推定し、
前記受傷度推定工程では、前記衝突側の側面と前記乗員の体との離間距離が前記変形量と等しくなった時点における前記変形速度に基づいて前記受傷度合いを推定する、
ことを特徴とする請求項1記載の受傷度推定方法。
In the occupant physique estimation step, a separation distance between a side surface of the vehicle and the occupant's body is estimated based on the occupant's physique,
In the deformation state estimating step, the amount of displacement at the position where each collision detection sensor is arranged is calculated using the detection value of the collision detection sensor arranged symmetrically at the same position on both sides of the vehicle, The deformation is based on the difference between the amount of displacement at the position of the collision detection sensor disposed on the side surface on the collision side and the amount of displacement at the position of the collision detection sensor disposed symmetrically on the side surface opposite to the collision side. Estimating the amount and the deformation speed,
In the damage degree estimation step, the degree of damage is estimated based on the deformation speed at the time when the separation distance between the collision side surface and the occupant's body becomes equal to the deformation amount.
The damage degree estimation method according to claim 1.
前記受傷度推定工程では、前記変形量が前記離間距離と等しくなった時点の前記変形速度が速いほど前記受傷度合いが大きいと推定する、
ことを特徴とする請求項2記載の受傷度推定方法。
In the damage degree estimation step, it is estimated that the degree of damage is larger as the deformation speed is faster when the deformation amount becomes equal to the separation distance.
The damage degree estimation method according to claim 2.
前記乗員体格推定工程では、前記乗員の重量を測定する重量センサの検出値を取得し、前記重量が大きいほど前記乗員の体格が大きいと推定する、
ことを特徴とする請求項1から3のいずれか1項記載の受傷度推定方法。
In the occupant physique estimation step, a detection value of a weight sensor that measures the weight of the occupant is acquired, and it is estimated that the physique of the occupant is larger as the weight is larger.
The damage degree estimation method according to any one of claims 1 to 3, wherein the damage degree is estimated.
前記乗員体格推定工程では、前記乗員が着座する座席に設けられた接触センサの検出値を取得し、前記乗員と前記座席との接触面積が大きいほど前記乗員の体格が大きいと推定する、
ことを特徴とする請求項1から3のいずれか1項記載の受傷度推定方法。
In the occupant physique estimation step, a detection value of a contact sensor provided in a seat on which the occupant is seated is obtained, and it is estimated that the occupant has a larger physique as the contact area between the occupant and the seat increases.
The damage degree estimation method according to any one of claims 1 to 3, wherein the damage degree is estimated.
前記乗員体格推定工程では、前記乗員が搭乗する前記車両の車室内を撮像するカメラの画像を取得し、前記画像から前記乗員の体格を推定する、
ことを特徴とする請求項1から3のいずれか1項記載の受傷度推定方法。
In the occupant physique estimation step, an image of a camera that captures an interior of the vehicle on which the occupant is boarded is acquired, and the physique of the occupant is estimated from the image.
The damage degree estimation method according to any one of claims 1 to 3, wherein the damage degree is estimated.
車両の側面衝突時に当該衝突に伴う乗員の受傷度合いを推定する受傷度推定装置であって、
前記乗員の体格を推定する乗員体格推定手段と、
前記車両の両側面を含む所定の箇所に配置されて車両の衝突を検知する複数の衝突検知センサの検出値に基づいて、前記車両の変形状態を推定する変形状態推定手段と、
前記乗員の体格と、前記車両の変形状態とに基づいて、前記乗員の受傷度合いを推定する受傷度推定手段と、
を備えることを特徴とする受傷度推定装置。
A degree-of-injury estimation device for estimating the degree of injury of a passenger accompanying a side collision of a vehicle,
Occupant physique estimation means for estimating the occupant's physique;
Deformation state estimation means for estimating the deformation state of the vehicle based on detection values of a plurality of collision detection sensors that are arranged at predetermined locations including both side surfaces of the vehicle and detect a vehicle collision;
Injury degree estimating means for estimating the degree of injury of the occupant based on the physique of the occupant and the deformation state of the vehicle;
A wound degree estimation apparatus comprising:
前記受傷度推定手段による推定結果を前記車両の外部に送信する送信手段をさらに備える、
ことを特徴とする請求項7に記載の受傷度推定装置。
A transmission means for transmitting the estimation result by the damage degree estimation means to the outside of the vehicle;
The damage degree estimation apparatus according to claim 7.
前記乗員体格推定手段による推定結果と、前記変形状態推定手段による推定結果とを前記車両の外部に設けられた他の情報端末に送信する送信手段をさらに備え、
前記乗員体格推定手段と前記変形状態推定手段とは、前記車両に設けられており、
前記受傷度推定手段は、前記他の情報端末に設けられている、
ことを特徴とする請求項7に記載の受傷度推定装置。
A transmission means for transmitting the estimation result by the occupant physique estimation means and the estimation result by the deformation state estimation means to another information terminal provided outside the vehicle;
The occupant physique estimation means and the deformation state estimation means are provided in the vehicle,
The damage degree estimation means is provided in the other information terminal,
The damage degree estimation apparatus according to claim 7.
JP2014042561A 2014-03-05 2014-03-05 Injury degree estimation method and damage degree estimation apparatus Expired - Fee Related JP6331492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014042561A JP6331492B2 (en) 2014-03-05 2014-03-05 Injury degree estimation method and damage degree estimation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014042561A JP6331492B2 (en) 2014-03-05 2014-03-05 Injury degree estimation method and damage degree estimation apparatus

Publications (2)

Publication Number Publication Date
JP2015168283A true JP2015168283A (en) 2015-09-28
JP6331492B2 JP6331492B2 (en) 2018-05-30

Family

ID=54201427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014042561A Expired - Fee Related JP6331492B2 (en) 2014-03-05 2014-03-05 Injury degree estimation method and damage degree estimation apparatus

Country Status (1)

Country Link
JP (1) JP6331492B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201412A (en) * 1999-11-09 2001-07-27 Denso Corp Seating passenger number determining device of vehicle seat
JP2008024108A (en) * 2006-07-19 2008-02-07 Fuji Heavy Ind Ltd Collision controller for vehicle
JP2013166515A (en) * 2012-02-16 2013-08-29 Mitsubishi Motors Corp Collision discriminating device
JP2013184633A (en) * 2012-03-09 2013-09-19 Mitsubishi Motors Corp Occupant protection device
JP2013220675A (en) * 2012-04-13 2013-10-28 Mitsubishi Motors Corp Collision detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201412A (en) * 1999-11-09 2001-07-27 Denso Corp Seating passenger number determining device of vehicle seat
JP2008024108A (en) * 2006-07-19 2008-02-07 Fuji Heavy Ind Ltd Collision controller for vehicle
JP2013166515A (en) * 2012-02-16 2013-08-29 Mitsubishi Motors Corp Collision discriminating device
JP2013184633A (en) * 2012-03-09 2013-09-19 Mitsubishi Motors Corp Occupant protection device
JP2013220675A (en) * 2012-04-13 2013-10-28 Mitsubishi Motors Corp Collision detection device

Also Published As

Publication number Publication date
JP6331492B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
US20150298636A1 (en) Method and device for controlling a seat belt device, which is connected to a seat belt, of a vehicle with a predictive collision detection unit
US20150158447A1 (en) Vehicle emergency call apparatus
JP2016068905A (en) Passenger state estimation system and on-vehicle apparatus
KR101338062B1 (en) Apparatus and method for managing pre-crash system for vehicle
US11535184B2 (en) Method for operating an occupant protection device
JP2007022401A (en) Occupant information detection system, occupant restraint device and vehicle
WO2014192247A1 (en) Emergency reporting system
CN106985782A (en) Vehicular communication system, vehicle, communication system, the method for handling car crash data
US20070273139A1 (en) Device for Ascertaining an Occupant Position in a Vehicle
US20150365810A1 (en) Vehicular emergency report apparatus and emergency report system
US20170166086A1 (en) Method and device for generating a signal representing an occupation of a vehicle seat, corresponding computer program, and machine-readable storage medium
JP2015207049A (en) Vehicle accident situation prediction device, vehicle accident situation prediction system and vehicle accident notification device
JP2016068751A (en) Occupant protection device of vehicle
CN103863234A (en) Vehicle-occupant protection system
US10358847B2 (en) Pressure sensor malfunction detection device
JP6156699B2 (en) Emergency call device for vehicles
JP6331492B2 (en) Injury degree estimation method and damage degree estimation apparatus
JP5854426B2 (en) Collision discrimination device
JP5415110B2 (en) Occupant detection device
JP6187399B2 (en) Vehicle seat belt warning device
JP2015125697A (en) Vehicle accident reporting device
JP5862426B2 (en) Collision detection device
JP2013220675A (en) Collision detection device
JP6394950B2 (en) Collision detection device and vehicle emergency notification device
KR20210013743A (en) System for supporting safety device in vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180416

R151 Written notification of patent or utility model registration

Ref document number: 6331492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees