JP2008024108A - Collision controller for vehicle - Google Patents

Collision controller for vehicle Download PDF

Info

Publication number
JP2008024108A
JP2008024108A JP2006197387A JP2006197387A JP2008024108A JP 2008024108 A JP2008024108 A JP 2008024108A JP 2006197387 A JP2006197387 A JP 2006197387A JP 2006197387 A JP2006197387 A JP 2006197387A JP 2008024108 A JP2008024108 A JP 2008024108A
Authority
JP
Japan
Prior art keywords
collision
vehicle
occupant
injury
cabin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006197387A
Other languages
Japanese (ja)
Other versions
JP4937656B2 (en
Inventor
Chihiro Kudo
ちひろ 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2006197387A priority Critical patent/JP4937656B2/en
Publication of JP2008024108A publication Critical patent/JP2008024108A/en
Application granted granted Critical
Publication of JP4937656B2 publication Critical patent/JP4937656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Automotive Seat Belt Assembly (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the collision damage of a crew by quantitatively grasping the collision damage of a crew without asking any collision configuration. <P>SOLUTION: A three-dimensional object is detected based on a signal from a full azimuth camera 5 and a laser radar 6 by a three-dimensional object detection part 10, and the collision possibility of the three-dimensional object and its own vehicle is judged by a collision judging part 11. Then, when it is judged that it is impossible to avoid collision, the deformation quantity of the cabin of its own vehicle due to collision is estimated by a cabin deformation estimation part 12, and the injury of a crew is estimated by a crew injury estimation part 14 based on the cabin deformation quantity and the boarding status of the crew detected based on signals from a seat sensor 7 and an in-vehicle camera 8 by a crew status detection part 13, and the vehicle controlled variables of avoidance control for minimizing the risk of the injury of the crew is calculated by a vehicle controlled variable calculation part 15. Thus, it is possible to quantitatively grasp the collision damage of the crew, and to reduce the collision damage of the crew. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、車両の衝突による乗員への被害を軽減する車両用衝突制御装置に関する。   The present invention relates to a vehicle collision control device that reduces damage to passengers caused by a vehicle collision.

最近、自動車等の車両においては、TVカメラやレーザ・レーダ等を搭載して前方の車両や障害物を検知し、それらに衝突する危険度を判定してドライバーに警報を発したり、自動的にブレーキや操舵装置を作動させる等して衝突被害を回避或いは軽減する衝突制御装置が積極的に開発されている。   Recently, vehicles such as automobiles are equipped with TV cameras, laser radars, etc. to detect vehicles and obstacles ahead, determine the risk of collision with them, and issue warnings to drivers, or automatically Collision control devices that avoid or reduce collision damage by operating brakes or steering devices have been actively developed.

このような衝突制御装置は、例えば、特許文献1に開示されている。この従来技術では、自車両の進行方向に存在する対象物を検出し、自車両と対象物との衝突を回避できないと判別された場合に、対象物の形状または自車両の搭乗人員、搭乗位置に応じて自車両の走行状態を変化させ、衝突時のダメージを小さく抑えるようにしている。
特開2000−95130号公報
Such a collision control device is disclosed in Patent Document 1, for example. In this prior art, when the target object existing in the traveling direction of the host vehicle is detected and it is determined that the collision between the host vehicle and the target object cannot be avoided, the shape of the target object, the passenger of the host vehicle, the boarding position In response to this, the traveling state of the vehicle is changed so as to suppress damage at the time of collision.
JP 2000-95130 A

ところで、特許文献1のような車両の衝突被害を小さく抑えるための車両の回避制御では、衝突時のダメージが比較的大きくなる場合においてのみ回避制御を実行するのが好ましく、衝突時のダメージが比較的小さくて済む場合には、回避制御を実行せずに車両のドライバに運転を委ねることが好ましい。特許文献1に開示の技術では、衝突被害の大きさによって回避制御の実行を判断することについて考慮していないため、衝突の被害が比較的小さくて済む場合でも回避制御を実行してしまいドライバによる回避制御を阻害する虞がある。   By the way, in the vehicle avoidance control for suppressing the collision damage of the vehicle as in Patent Document 1, it is preferable to execute the avoidance control only when the damage at the time of the collision is relatively large. If it is sufficient, it is preferable to leave the driving to the vehicle driver without executing the avoidance control. The technique disclosed in Patent Document 1 does not consider determining whether to execute avoidance control according to the magnitude of collision damage. Therefore, even if the damage of collision is relatively small, the avoidance control is executed and the driver causes There is a possibility that the avoidance control may be hindered.

本発明は上記事情に鑑みてなされたもので、乗員の衝突被害を定量的に把握し、乗員の衝突被害を軽減することのできる衝突制御装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a collision control device capable of quantitatively grasping a passenger's collision damage and reducing the passenger's collision damage.

上記目的を達成するため、本発明による衝突制御装置は、自車両の周囲に存在する立体物を検出する立体物検出手段と、上記立体物と自車両との衝突可能性を判断する衝突判断手段と、上記立体物と自車両との衝突が不可避と判断されたとき、衝突による自車両のキャビン変形量を推定するキャビン変形量推定手段と、自車両の乗員の搭乗状態を検出する乗員状態検出手段と、上記キャビン変形量と上記乗員の搭乗状態とに基づいて、上記乗員の衝突被害を推定する乗員傷害推定手段と、上記乗員の衝突被害に基づいて回避制御の車両制御量を算出する車両制御量算出手段とを備えたことを特徴とする。   In order to achieve the above object, a collision control device according to the present invention includes a three-dimensional object detection unit that detects a three-dimensional object existing around the host vehicle, and a collision determination unit that determines the possibility of a collision between the three-dimensional object and the host vehicle. And, when it is determined that a collision between the three-dimensional object and the host vehicle is unavoidable, a cabin deformation amount estimating means for estimating a cabin deformation amount of the host vehicle due to the collision, and an occupant state detection for detecting a passenger's boarding state of the host vehicle Vehicle, an occupant injury estimation means for estimating the occupant's collision damage based on the cabin deformation amount and the occupant's boarding state, and a vehicle for calculating a vehicle control amount for avoidance control based on the occupant's collision damage And a control amount calculating means.

本発明による衝突制御装置は、乗員の衝突被害を定量的に把握し、乗員の衝突被害を軽減することができる。   The collision control device according to the present invention can quantitatively grasp the passenger's collision damage and reduce the passenger's collision damage.

以下、図面を参照して本発明の実施の形態を説明する。図1〜図11は本発明の実施の第1形態に係り、図1は車両用衝突制御装置のシステム構成図、図2は衝突直前の状況を示す説明図、図3はキャビンの変形を示す説明図、図4はキャビン変形の確率分布を示す説明図、図5は乗員状況を示す説明図、図6は乗員の存在確率分布を示す説明図、図7はキャビンの変形による乗員傷害のリスクを示す説明図、図8は乗員の受傷部位別の重み付けを示す説明図、図9は衝突制御処理のフローチャート、図10は側面衝突に対する車両制御を示す説明図、図11は単独の前面衝突に対する車両制御を示す説明図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 11 relate to a first embodiment of the present invention, FIG. 1 is a system configuration diagram of a vehicle collision control device, FIG. 2 is an explanatory diagram showing a situation immediately before a collision, and FIG. 3 is a deformation of a cabin. FIG. 4 is an explanatory diagram showing the probability distribution of cabin deformation, FIG. 5 is an explanatory diagram showing the occupant situation, FIG. 6 is an explanatory diagram showing the occupant existence probability distribution, and FIG. 7 is an occupant injury risk due to cabin deformation. FIG. 8 is an explanatory diagram showing the weighting of each occupant's injury site, FIG. 9 is a flowchart of the collision control process, FIG. 10 is an explanatory diagram showing vehicle control for a side collision, and FIG. 11 is for a single frontal collision. It is explanatory drawing which shows vehicle control.

図1に示す車両用衝突制御装置1は、自車両の車外状況及び車内の乗員の搭乗状態を監視し、他車両の自車両への衝突や自車両の電柱やガードレール等の立体物への衝突が不可避の状況下にあると判断すると、その衝突不可避の状況下で自車両及び乗員の被害が最も小さくなるよう車両制御の実行を指示し、また警報出力を行うものである。この車両用衝突制御装置1は、マイクロコンピュータ等からなる制御部2に、車両状態を検出するためのセンサ、自車両の車外状況を監視するためのセンサ、自車両の車内状況を検出ためのセンサ等を接続して構成されている。   The vehicle collision control apparatus 1 shown in FIG. 1 monitors the situation outside the host vehicle and the boarding state of passengers in the vehicle, and collides with another vehicle on the host vehicle or on a three-dimensional object such as a utility pole or guardrail of the host vehicle. If it is determined that the vehicle is in an unavoidable situation, the vehicle control execution is instructed so that the damage to the own vehicle and the passenger is minimized under the collision unavoidable situation, and a warning is output. The vehicle collision control apparatus 1 includes a control unit 2 composed of a microcomputer or the like, a sensor for detecting a vehicle state, a sensor for monitoring a vehicle exterior situation of the host vehicle, and a sensor for detecting the interior situation of the host vehicle. Etc. are connected.

車両状態を検出するためのセンサとしては、車速センサ3、舵角センサ4を用い、また、自車両の車外状況を監視するセンサとして、全方位の走査或いは撮像が可能な機構を備えたレーザレーダやカメラ等を用いる。本形態においては、自車両を中心とした360°の範囲を撮像可能な全方位カメラ5と全方位の走査が可能なレーザレーダ6(ミリ波レーダでも良い)とを併用して車外状況の監視センサとしている。また、自車両の乗員の搭乗状態を監視するセンサとしては、シートに着座した乗員の荷重を検知するシートセンサ7と車内をモニタする車内カメラ8とを併用している。   As a sensor for detecting the vehicle state, a vehicle speed sensor 3 and a rudder angle sensor 4 are used, and as a sensor for monitoring a situation outside the vehicle of the own vehicle, a laser radar having a mechanism capable of scanning or imaging in all directions. Or using a camera. In this embodiment, an omnidirectional camera 5 capable of imaging a 360 ° range centering on the host vehicle and a laser radar 6 (which may be a millimeter wave radar) capable of omnidirectional scanning are used in combination to monitor outside conditions. It is a sensor. In addition, as a sensor for monitoring the boarding state of the occupant of the own vehicle, a seat sensor 7 for detecting the load of the occupant seated on the seat and an in-vehicle camera 8 for monitoring the interior of the vehicle are used in combination.

尚、乗員の搭乗状態を監視するセンサとして、シートセンサ7や車内カメラ8に加え、乗員のシートベルト装着を検出するシートベルトセンサを併用するようにしても良い。   In addition to the seat sensor 7 and the in-vehicle camera 8, a seat belt sensor that detects the occupant's seat belt wearing may be used in combination as a sensor that monitors the occupant's boarding state.

一方、制御部2は、各種センサからの信号に基づいて処理対象となる立体物を認識し、衝突被害を単一の指標で表現して衝突判断及び衝突被害の軽減処理を実行する。すなわち、衝突の際に乗員の受けるダメージは、車両前方への衝突(前突)、車両側方への衝突(側突)、或いは車両後方への衝突(後突)といった衝突形態によって異なり、従来の技術では衝突被害を定量的に把握することが困難であったが、後述するように、制御部2においては、リスク確率という単一の指標を用いて衝突被害を把握することにより、衝突形態を問わない定量的な比較を可能としている。   On the other hand, the control unit 2 recognizes a three-dimensional object to be processed based on signals from various sensors, expresses collision damage with a single index, and executes collision determination and collision damage reduction processing. That is, the damage received by the occupant at the time of the collision differs depending on the collision mode such as a collision in the front of the vehicle (front collision), a collision in the side of the vehicle (side collision), or a collision in the rear of the vehicle (rear collision). Although it was difficult to quantitatively grasp the collision damage with this technology, as will be described later, the control unit 2 grasps the collision damage using a single index called the risk probability, thereby Quantitative comparison is possible regardless of.

このため、制御部2は、全方位カメラ5及びレーザレーダ6からの信号に基づいて立体物を検出する立体物検出部10、抽出した立体物と自車両との衝突可能性を判断する衝突判断部11、衝突による自車両のキャビンの変形量を推定するキャビン変形推定部12、シートセンサ7及び車内カメラ8からの信号に基づいて乗員の搭乗状態を検出する乗員状態検出部13、キャビン変形と乗員の搭乗状態とに基づいて乗員の傷害を推定する乗員傷害推定部14、乗員傷害のリスクを最小化する回避制御の車両制御量を算出する車両制御量算出部15の各機能を有している。   For this reason, the control unit 2 detects a three-dimensional object based on signals from the omnidirectional camera 5 and the laser radar 6, and a collision determination that determines the possibility of collision between the extracted three-dimensional object and the host vehicle. Unit 11, cabin deformation estimation unit 12 that estimates the amount of deformation of the cabin of the host vehicle due to a collision, passenger state detection unit 13 that detects a passenger's boarding state based on signals from seat sensor 7 and in-vehicle camera 8, The occupant injury estimation unit 14 that estimates occupant injury based on the occupant's boarding state and the vehicle control amount calculation unit 15 that calculates vehicle control amount for avoidance control that minimizes the risk of occupant injury are provided. Yes.

尚、後述するように、制御部2は、事故発生時、GPS等により自車両の絶対位置情報を検出する車両位置情報検出部20、自車両と外部との通信を制御する外部通信制御部21に必要なデータの送信を指示し、救命救急体制を支援する。   As will be described later, the control unit 2 includes a vehicle position information detection unit 20 that detects absolute position information of the host vehicle by GPS or the like when an accident occurs, and an external communication control unit 21 that controls communication between the host vehicle and the outside. Instruct the necessary data transmission to support the lifesaving emergency system.

立体物検出部10は、全方位カメラ5とレーザレーダ6とのセンサフュージョンによる周知の技術により、自車両の周囲に存在する立体物を認識する。このセンサフュージョンによる立体物の認識においては、全方位カメラ5で撮像した画像を処理して抽出した立体物と、レーザレーダ6から送信したレーザ光の反射波を受信して生成したレーダ画像から抽出した立体物とを融合し、また、レーザ光の送光から受光までの時間に基づく距離情報を用いて最終的な認識を行う。   The three-dimensional object detection unit 10 recognizes a three-dimensional object existing around the host vehicle by a known technique using sensor fusion between the omnidirectional camera 5 and the laser radar 6. In the recognition of the three-dimensional object by the sensor fusion, the three-dimensional object extracted by processing the image captured by the omnidirectional camera 5 and the radar image generated by receiving the reflected wave of the laser beam transmitted from the laser radar 6 are extracted. The three-dimensional object is fused, and final recognition is performed using distance information based on the time from laser light transmission to light reception.

そして、車速センサ3からの自車両の速度と経過時間とで求めた車両の移動量、舵角センサ4からの舵角に基づいて、立体物の座標分布を計算する。この立体物の座標分布の計算においては、舵角により直進・旋回を判断し、直進の場合、車両移動量を前回までに計算した立体物座標の車両前後方向成分に加算し、また、旋回の場合には、移動量と舵角とから車両の回転中心及び回転角を求め、前回までに計算した立体物座標を回転中心に対して回転させる。   Then, the coordinate distribution of the three-dimensional object is calculated based on the moving amount of the vehicle obtained from the speed of the host vehicle from the vehicle speed sensor 3 and the elapsed time, and the steering angle from the steering angle sensor 4. In calculating the coordinate distribution of this three-dimensional object, straight travel and turning are determined based on the steering angle, and in the case of straight travel, the vehicle movement amount is added to the vehicle front-rear direction component of the three-dimensional object coordinates calculated up to the previous time. In this case, the rotation center and rotation angle of the vehicle are obtained from the movement amount and the steering angle, and the three-dimensional object coordinates calculated so far are rotated with respect to the rotation center.

衝突判断部11は、車速センサ3からの車両速度、舵角センサ4からの舵角、立体物検出部10からの自車両と周辺の物体との相対位置を示す座標分布に基づいて、この座標分布上で、自車両を現在の舵角及び車両速度のままで走行させた場合、自車両に対して衝突の可能性のある物体を判定し、衝突条件を算出する。例えば、図2に示すように、自車両100の側面後方に、立体物として検出した他車両150が接近してきたとき、自車両100の位置及び速度(速度ベクトル)と他車両150の位置及び速度(速度ベクトル)から衝突の可能性を判断し、車両の衝突位置及び寸法、衝突速度(自車両と衝突物との相対速度)、衝突物の重量等の衝突条件を算出する。   The collision determination unit 11 determines the coordinates based on the coordinate distribution indicating the vehicle speed from the vehicle speed sensor 3, the steering angle from the steering angle sensor 4, and the relative position between the subject vehicle and the surrounding object from the three-dimensional object detection unit 10. In the distribution, when the host vehicle is driven with the current steering angle and the vehicle speed, an object that may collide with the host vehicle is determined, and the collision condition is calculated. For example, as shown in FIG. 2, when another vehicle 150 detected as a three-dimensional object approaches the rear side of the host vehicle 100, the position and speed (speed vector) of the host vehicle 100 and the position and speed of the other vehicle 150 are detected. The possibility of a collision is determined from the (velocity vector), and collision conditions such as the collision position and size of the vehicle, the collision speed (relative speed between the host vehicle and the collision object), the weight of the collision object, and the like are calculated.

尚、この衝突判断部11で衝突の可能性有りと判断された場合には、その判断結果が警報装置22に出力され、音声や画像による警報がなされる。   If the collision determination unit 11 determines that there is a possibility of a collision, the determination result is output to the alarm device 22 and an alarm is given by sound or image.

キャビン変形推定部12は、衝突判断部11で算出した衝突条件に基づいて、立体物と自車両との衝突による自車両のキャビン変形量を推定する。例えば、図2に示す自車両100へ他車両150の衝突では、図3に示すように、自車両100のキャビン側面後方が変形することが推定される。   The cabin deformation estimation unit 12 estimates the cabin deformation amount of the host vehicle due to the collision between the three-dimensional object and the host vehicle based on the collision condition calculated by the collision determination unit 11. For example, when the other vehicle 150 collides with the host vehicle 100 illustrated in FIG. 2, it is estimated that the cabin side rear of the host vehicle 100 is deformed as illustrated in FIG. 3.

このキャビン変形量の推定は、衝突条件に応じたキャビン変形のリスクを評価するためのマップを予め作成しておき、このマップを用いて推定する。マップの作成は、実際の衝突事故に対応するため、広範囲な衝突条件でのキャビン変形量のデータを数値シミュレーションによる衝突解析で取得し、更に、衝突条件のバラツキによる誤差を加味して作成する。   The estimation of the cabin deformation amount is performed by creating a map for evaluating the risk of cabin deformation corresponding to the collision condition in advance and using this map. In order to cope with an actual collision accident, the map is created by acquiring the data of the cabin deformation amount in a wide range of collision conditions by the collision analysis by numerical simulation, and further adding the error due to the variation of the collision conditions.

すなわち、衝突条件である、相対速度、重量、寸法、衝突位置等は、衝突前に推定された推定値であるため、ある程度の誤差が発生する。条件のバラツキを考慮せずに推定した衝突条件のみでキャビンの変形量を推定すると、誤差が大きい場合、実際には推定と大きく異なる変形を起こす可能性が考えられる。従って、衝突解析の数値シミュレーションを実行する際に、衝突条件がばらついた場合のキャビン変形量データを予め全て求めておき、これらのデータの分布に基づいて、キャビンが変形する確率分布としてリスクを評価する。   That is, the relative speed, weight, size, collision position, and the like, which are the collision conditions, are estimated values estimated before the collision, and thus some error occurs. If the amount of deformation of the cabin is estimated only with the estimated collision condition without considering the variation in conditions, if the error is large, there is a possibility that the actual deformation may be greatly different from the estimation. Therefore, when performing a numerical simulation of collision analysis, all the cabin deformation amount data when the collision conditions vary are obtained in advance, and the risk is evaluated as a probability distribution of cabin deformation based on the distribution of these data To do.

キャビン変形のリスク評価は、本形態においては、図4に示すように、キャビンを含む空間を立方体形状の要素(ボクセル)に分割したボクセルモデルを用い、各ボクセル毎に評価する。すなわち、衝突不可避と判定した場合、ボクセル毎に衝突条件を照らし合わせ、ボクセルモデル全体(キャビン全体)に渡って変形のリスクを推定する。   In this embodiment, as shown in FIG. 4, the risk of cabin deformation is evaluated for each voxel using a voxel model in which a space including a cabin is divided into cubic elements (voxels). That is, when it is determined that the collision is inevitable, the collision condition is checked for each voxel, and the risk of deformation is estimated over the entire voxel model (the entire cabin).

図4においては、図3に対応して、衝突による変形のリスクが最も高い部位であるキャビン側面の後部コーナ側において、該当する3つのボクセル群VXaが最も変形の確率が高く(例えば、81%)、その次に、このボクセル群VXaにキャビン前方側で隣接する3つのボクセル群VXbの変形確率が高くなる(例えば、80−61%)。また、ボクセル群VXa,VXb周囲のボクセル群VXcは、変形の確率が低くなって(例えば、60−41%)変形の度合いが小さくなり、更に、ボクセル群VXa,VXbから離れたボクセル群VXdでは変形確率が低く(例えば、20%以下)、比較的軽微な変形で済むことを示している。   In FIG. 4, corresponding to FIG. 3, the corresponding three voxel groups VXa have the highest deformation probability (for example, 81%) on the rear corner side of the cabin side which is the highest risk of deformation due to collision. Then, the deformation probability of the three voxel groups VXb adjacent to the voxel group VXa on the front side of the cabin is increased (for example, 80 to 61%). In addition, the voxel group VXc around the voxel groups VXa and VXb has a low probability of deformation (for example, 60-41%), and the degree of deformation is small. The deformation probability is low (for example, 20% or less), which indicates that relatively slight deformation is sufficient.

尚、これらのボクセル毎の変形確率は、予め保有するマップ(予め数値シミュレーションを行って作成したマップ)から衝突条件に応じて設定され、同じ図2,図3に示す衝突形態であっても、例えば、自車両100に対する他車両150の相対位置が離れる程、また、相対速度が小さくなる程、変形確率は小さくなる。   The deformation probability for each of these voxels is set according to the collision condition from a previously held map (a map created by performing a numerical simulation in advance), and even in the collision mode shown in FIGS. 2 and 3, For example, the deformation probability decreases as the relative position of the other vehicle 150 with respect to the host vehicle 100 increases or the relative speed decreases.

また、図4のボクセルモデルは、説明を簡単にするため、便宜上、2次元で表現しているが、実際の評価は、3次元のボクセルモデルを用いる。この3次元のボクセルモデルは、衝突不可避の状況下におけるリスク空間を示すものであり、あらゆる衝突形態に対応可能なリスクマップであると言える。   The voxel model in FIG. 4 is expressed in two dimensions for convenience of explanation, but a three-dimensional voxel model is used for actual evaluation. This three-dimensional voxel model shows a risk space under a situation where collision is inevitable, and can be said to be a risk map that can cope with any collision mode.

乗員状態検出部13は、シートセンサ7により乗員の搭乗位置を検出し、検出した位置での乗員の体型や姿勢等を車内カメラ8で撮像した画像から推定する。そして、乗員の位置や姿勢、体型のバラツキを評価し、乗員の存在する確率分布をキャビン変形のボクセルモデルと同様のボクセルモデルに設定する。   The occupant state detection unit 13 detects the occupant's boarding position using the seat sensor 7, and estimates the occupant's body shape, posture, and the like at the detected position from the image captured by the in-vehicle camera 8. Then, the occupant position, posture, and body shape variation are evaluated, and the probability distribution in which the occupant exists is set to a voxel model similar to the voxel model of cabin deformation.

例えば、図5に示すように、自車両100の前席に2名の乗員101,102が搭乗している場合、シートセンサ7により検出した搭乗位置と、車内カメラ8の撮像画像から推定した体型や姿勢等を評価することにより、図6に示すような乗員の存在確率分布を設定する。図6においては、乗員101,102の搭乗位置に該当するボクセルVX1,VX2の存在確率が最も高く、乗員の体系や姿勢による乗車位置のバラツキにより、周囲のボクセルの存在確率が設定される。   For example, as shown in FIG. 5, when two passengers 101 and 102 are in the front seat of the host vehicle 100, the body shape estimated from the boarding position detected by the seat sensor 7 and the captured image of the in-vehicle camera 8. A passenger presence probability distribution as shown in FIG. 6 is set by evaluating the position and posture. In FIG. 6, the existence probabilities of the voxels VX1 and VX2 corresponding to the boarding positions of the occupants 101 and 102 are the highest, and the existence probabilities of the surrounding voxels are set according to variations in the boarding positions depending on the occupant system and posture.

乗員傷害推定部14は、キャビン変形の確率分布と乗員存在の確率分布とに基づいて、乗員が傷害を受けるリスクを推定する。すなわち、キャビンが変形する空間と乗員が存在する空間とがラップする部分を、乗員が傷害を受ける空間として、キャビンが変形する確率と、乗員が存在する確率とを掛け合わせることにより、乗員傷害のリスクを評価する。具体的には、キャビンの変形確率をPc、乗員の存在確率をPjとして、以下の(1)式でキャビン変形による乗員傷害の確率Prをボクセル毎に算出する。
Pr=Pc×Pj …(1)
The occupant injury estimation unit 14 estimates the risk of occupant injury based on the probability distribution of cabin deformation and the probability distribution of occupant presence. In other words, the space where the cabin is deformed and the space where the occupant is present is defined as the space where the occupant is injured, and the probability that the cabin is deformed is multiplied by the probability that the occupant is present. Assess the risk. Specifically, assuming that the cabin deformation probability is Pc and the occupant existence probability is Pj, the occupant injury probability Pr due to cabin deformation is calculated for each voxel by the following equation (1).
Pr = Pc × Pj (1)

図7は、キャビン変形確率のボクセルモデル(図4参照)と乗員存在確率のボクセルモデル(図6参照)とを用いて算出される乗員傷害のボクセルモデルである。この乗員傷害のボクセルモデルは、キャビン変形の確率Pcが最も高い部位と乗員存在確率Pjの最も高い部位とが離れていることから、衝突部位の前方となる乗員位置のボクセルVX2に隣接するボクセルVX3で傷害確率Prが若干大きくなり、衝突部位の反対側前方となる乗員位置のボクセルVX1では傷害確率Prが小さく、重大な傷害を回避可能であることを示している。   FIG. 7 is an occupant injury voxel model calculated using a cabin deformation probability voxel model (see FIG. 4) and an occupant existence probability voxel model (see FIG. 6). In this voxel model of occupant injury, since the part having the highest cabin deformation probability Pc and the part having the highest occupant existence probability Pj are separated from each other, the voxel VX3 adjacent to the voxel VX2 at the occupant position in front of the collision part. In this case, the injury probability Pr is slightly increased, and in the voxel VX1 at the occupant position on the opposite side of the collision site, the injury probability Pr is small, indicating that serious injury can be avoided.

この場合、キャビン変形による乗員傷害のリスクには、予想される受傷部位や乗員の個人差等による様々な要因を考慮した重み付けを行うことが望ましい。(1)式に重み係数Kを導入して書き換えると、以下の(2)式となり、より緻密なリスク評価を行うことができる。重み係数Kは、各要因毎の重み係数の掛け合わせ或いは単独で設定することができる。
Pr=Pc×Pj×K …(2)
In this case, it is desirable to weight the occupant injury risk due to cabin deformation in consideration of various factors such as an expected injury site and individual differences among occupants. When the weighting factor K is introduced and rewritten in the equation (1), the following equation (2) is obtained, and a more precise risk evaluation can be performed. The weighting factor K can be set by multiplying weighting factors for each factor or independently.
Pr = Pc × Pj × K (2)

例えば、車内カメラ8による画像から乗員の乗車姿勢、年齢、性別等を特定し、以下の(a)〜(c)に示すように、受傷部位、年齢や性別による身体耐性の差を考慮した重み付けを行うことができる。尚、乗車の年齢や性別は、乗車可能性のある乗員、例えば、家族等の年齢、性別等を予め入力しておくようにしても良い。   For example, the occupant's riding posture, age, gender, etc. are specified from the image taken by the in-vehicle camera 8, and weighting taking into account differences in body tolerance depending on the injured site, age, and gender as shown in (a) to (c) below It can be performed. In addition, as for the age and sex of the boarding, the age, sex, etc. of an occupant who may be boarded, such as a family, may be input in advance.

(a)受傷部位別の重み付け
図8に示すように、頭部や頸部と脚部といったように、予想される傷害の重度が異なる部位毎に重みを変え、例えば、頭部や頸部の重みを10とした場合、脚部の重みを1とする。尚、図8においては、乗員Hの頭部及び頸部の領域H1、領域H周囲の領域H2、胴部及び手足の領域H3の3段階に重みを設定し、領域H1の重みを最も大きくし、次に領域H2の重みを大きくする例を示している。
(A) Weighting by injury site As shown in FIG. 8, the weight is changed for each site where the expected severity of injury is different, such as the head, neck, and leg. When the weight is 10, the weight of the leg is 1. In FIG. 8, weights are set in three stages, namely, the head and neck region H1 of the occupant H, the region H2 around the region H, and the torso and limb regions H3, and the weight of the region H1 is maximized. Next, an example in which the weight of the region H2 is increased is shown.

(b)年齢別の身体耐性の重み付け
加齢による身体耐性の低下を考慮し、例えば、65歳以上の乗員に対する重みを10とした場合、20歳〜40歳の乗員に対する重みを1とする。
(B) Weighting of physical tolerance according to age Considering a decrease in physical tolerance due to aging, for example, when the weight for an occupant 65 years or older is 10, the weight for an occupant aged 20 to 40 is set to 1.

(c)性別による身体耐性の重み付け
女性と男性との身体耐性の差を考慮し、乗員の性別によって重み付けを行う。例えば、エアバッグ展開時、女性は男性よりも傷害が大きい傾向にあることから、女性に対する重みを10とした場合、男性に対する重みを5とする。
(C) Weighting of physical tolerance by gender Considering the difference in physical tolerance between women and men, weighting is performed according to the gender of the occupant. For example, when airbags are deployed, women tend to be more injured than men. Therefore, when the weight for women is 10, the weight for men is 5.

以上の乗員傷害のリスク(乗員傷害確率Pr)は、本形態においては全ボクセルで総和され、リスクの総和ΣPrを最小とする回避制御の車両制御量が車両制御量算出部15で算出される。この回避制御の車両制御量は、車両の操舵角、加速制御量、ブレーキ制御量等であり、車両挙動シミュレーションや、勾配法(GM;Gradient-based Method)、焼きなまし法(SA;Simulated Annealing)、遺伝的アルゴリズム(GA;Genetic Algorithm)等の周知の最適化手法を用いることにより、リスクの総和ΣPrを目的関数、操舵角、加速制御量、ブレーキ制御量等を設計変数とする最小設計問題を解いて得ることができる。リスクの総和ΣPrを最小とする操舵角、加速制御量、ブレーキ制御量等の車両制御量は、車両制御装置23に出力され、加減速を含む車両姿勢制御の実行により、乗員被害を最小とすることが可能となる。   In the present embodiment, the above risk of occupant injury (occupant injury probability Pr) is summed for all voxels, and the vehicle control amount calculation unit 15 calculates the vehicle control amount for avoidance control that minimizes the total risk ΣPr. The vehicle control amount of this avoidance control is the vehicle steering angle, acceleration control amount, brake control amount, etc., vehicle behavior simulation, gradient method (GM; Gradient-based Method), annealing method (SA; Simulated Annealing), By using a well-known optimization method such as genetic algorithm (GA), it solves the minimum design problem using the total risk ΣPr as design variables such as objective function, steering angle, acceleration control amount, and brake control amount. You can get it. Vehicle control amounts such as a steering angle, an acceleration control amount, and a brake control amount that minimize the total risk ΣPr are output to the vehicle control device 23 to minimize occupant damage by executing vehicle posture control including acceleration and deceleration. It becomes possible.

尚、リスクの総和ΣPrを最小化する車両制御は、リスク総量の大きさを感度とした最適化であり、あらゆる衝突形態に対して効果的にリスクを軽減することが可能であるが、リスクの高い領域がある程度限定される場合等には、ボクセル全体の総和を取ることなく、前述の重み付けを含んで乗員傷害確率Prが最も高い部位を主体とする最適化を行い、重度傷害を積極的に回避するようにしても良い。   Note that the vehicle control that minimizes the total risk sum ΣPr is an optimization based on the size of the total risk amount, and can effectively reduce the risk for any collision mode. When the high area is limited to some extent, optimization is performed mainly on the part with the highest occupant injury probability Pr including the above-mentioned weighting without taking the sum of the entire voxels to actively prevent severe injury. It may be avoided.

以上の制御部2における各機能は、具体的には、図9のフローチャートに示す衝突制御のプログラム処理として実行される。次に、この衝突制御のプログラム処理について説明する。   Specifically, each function in the control unit 2 described above is executed as a program process of the collision control shown in the flowchart of FIG. Next, the program process of this collision control will be described.

この衝突制御処理では、最初のステップS1において、車速センサ3や舵角センサ4等かの情報に基づいて自車両の走行状態を検出し、ステップS2で、全方位カメラ5やレーザレーダ6を用いて自車両の周囲に対衝突物として存在する立体物を検出する。次に、ステップS3で全方位カメラ5による画像とレーザレーダ6による距離情報とから自車両周囲の周辺状況を把握し、ステップS4で衝突が不可避か否かの判定を行う。   In this collision control process, in the first step S1, the traveling state of the host vehicle is detected based on information such as the vehicle speed sensor 3 and the rudder angle sensor 4, and in step S2, the omnidirectional camera 5 and the laser radar 6 are used. Thus, a three-dimensional object existing as a collision object around the host vehicle is detected. Next, in step S3, the surrounding situation around the host vehicle is grasped from the image from the omnidirectional camera 5 and the distance information from the laser radar 6, and in step S4, it is determined whether or not a collision is inevitable.

その結果、衝突を回避可能(可避)と判定した場合には、ステップS4からステップS5へ進み、加減速を含む車両姿勢制御による回避を要するか否かを判定する。そして、操舵や加減速を制御するまでもなく衝突を回避できると判定した場合には、そのまま処理を抜け、操舵や加減速を制御する必要があると判定した場合、ステップS6で操舵や加減速を自動的に制御して車両姿勢制御を実行する。   As a result, when it is determined that a collision can be avoided (inevitable), the process proceeds from step S4 to step S5, and it is determined whether or not avoidance by vehicle attitude control including acceleration / deceleration is required. If it is determined that the collision can be avoided without controlling the steering and acceleration / deceleration, the process is left as it is. If it is determined that the steering or acceleration / deceleration needs to be controlled, the steering or acceleration / deceleration is performed in step S6. Is automatically controlled to execute vehicle attitude control.

一方、ステップS4において、衝突回避が不可能(不可避)と判定した場合には、ステップS4からステップS7へ進み、衝突被害のリスクを推定する。この衝突被害のリスクは、前述したように、キャビン変形確率分布のボクセルモデルと乗員存在確率分布のボクセルモデルとを用い、キャビン変形確率Pcと乗員存在確率をPjとをボクセル毎に掛け合わせた乗員傷害確率Prによって推定される。   On the other hand, if it is determined in step S4 that collision avoidance is impossible (unavoidable), the process proceeds from step S4 to step S7, and the risk of collision damage is estimated. As described above, the risk of this collision damage is a passenger who uses the voxel model of the cabin deformation probability distribution and the voxel model of the passenger existence probability distribution and multiplies the cabin deformation probability Pc and the passenger existence probability Pj for each voxel. Estimated by injury probability Pr.

ステップS7で衝突被害のリスクを推定した後は、ステップS7−1に進み、乗員傷害確率Prが予め設定された閾値Psetを超えているか否か判定する。この判定により、乗員傷害確率Prが閾値Pset以下と判定した場合には、処理を抜ける。一方、乗員傷害確率Prが閾値Psetを超えていると判定した場合には、ステップS8でリスクを最小とする車両姿勢を決定し、ステップS9で加減速を含む車両姿勢制御を実行する。この車両姿勢制御の例として、図10に示すような車両Aと車両Bとの衝突が不可避の状況での制御、図11に示すような単独事故での制御について説明する。   After the risk of collision damage is estimated in step S7, the process proceeds to step S7-1, and it is determined whether the occupant injury probability Pr exceeds a preset threshold value Pset. If it is determined that the occupant injury probability Pr is equal to or less than the threshold value Pset, the process is exited. On the other hand, if it is determined that the occupant injury probability Pr exceeds the threshold value Pset, a vehicle posture that minimizes the risk is determined in step S8, and vehicle posture control including acceleration / deceleration is executed in step S9. As an example of the vehicle attitude control, control in a situation where a collision between the vehicle A and the vehicle B is inevitable as shown in FIG. 10 and control in a single accident as shown in FIG. 11 will be described.

図10の例では、車両Aにはドライバーのみが搭乗し(車両前部の右側席)、車両Bには前席側に2名の乗員が搭乗しており、車両Aが車両Bの左側面側に接近し、車両Aと車両Bとの衝突が不可避の状況下にある。このような状況下において、車両Bは、後部座席に乗員がいないため、後部のリスクが比較的低い。従って、車両Bは、現在の舵角を維持したまま急加速するといった姿勢制御を実行することにより、衝突によるキャビン変形をリスクの低い後部側として、前席側の乗員の傷害を最小限にすることが可能となる。一方、車両Aは、ドライバーのみの乗車であるため、助手席側のリスクが比較的低い。従って、車両Aは、減速しながら右に操舵する姿勢制御を実行することにより、リスクの低い助手席側を変形させ、ドライバーの傷害を最小限にすることが可能となる。   In the example of FIG. 10, only a driver is boarded in vehicle A (the right seat at the front of the vehicle), two passengers are boarded in vehicle B, and vehicle A is on the left side of vehicle B. The vehicle A and the vehicle B are in an inevitable situation. Under such circumstances, the rear risk of the vehicle B is relatively low because there is no passenger in the rear seat. Therefore, the vehicle B performs posture control such as rapid acceleration while maintaining the current rudder angle, so that the cabin deformation due to the collision is set to the rear side with a low risk, and the injury to the passenger on the front seat side is minimized. It becomes possible. On the other hand, since the vehicle A is a driver-only ride, the risk on the passenger seat side is relatively low. Accordingly, the vehicle A can perform the posture control of steering to the right while decelerating, thereby deforming the passenger seat side with low risk and minimizing the driver's injury.

また、図11は、電信柱等の固定された構造物200に車両Cが前方から衝突する場合であり、一般に、電信柱等の固定構造物は車両よりも剛性が高く、車両の変形が局所的となって被害が大きくなることが予想される。従って、図11(a)に示すように、車両Cが前部のバンパービームC1を支えるフロントフレームC2の間で構造物200に衝突すると、変形リスクが高くなる。   FIG. 11 shows a case where the vehicle C collides with a fixed structure 200 such as a telegraph pole from the front. Generally, the fixed structure such as a telegraph pole is higher in rigidity than the vehicle and the deformation of the vehicle is local. Damage is expected to increase. Therefore, as shown in FIG. 11A, when the vehicle C collides with the structure 200 between the front frames C2 supporting the front bumper beam C1, the risk of deformation increases.

このため、車両Cにおいては、図11(b)に示すように、剛性が高く変形リスクの低いフロントフレームC2の前方で構造物200に衝突させるよう、減速しながら進行方向左(或いは右)に操舵する姿勢制御を実行することで車両の変形を小さくし、乗員の傷害を最小限に抑制することが可能となる。   Therefore, in the vehicle C, as shown in FIG. 11 (b), the vehicle C is decelerated so that it collides with the structure 200 in front of the front frame C2 having high rigidity and low deformation risk. By executing the attitude control for steering, it is possible to reduce the deformation of the vehicle and to minimize the injury of the occupant.

以上のような車両姿勢制御を実行した後は、ステップS10で実際の衝突を回避できた否かを調べる。そして、衝突を回避できた場合、処理を抜け、衝突に至った場合、ステップS10からステップS11へ進み、車両位置情報検出部20でGPS等により検出した車両位置(衝突発生現場の位置)、衝突時の速度・衝突部位等から推測した乗員の受傷部位や傷害の大きさ等のデータを車載の外部通信制御部21を介して外部の救命救急センター等に連絡し、乗員の救命救急に対する支援を行う。   After executing the vehicle attitude control as described above, it is checked in step S10 whether an actual collision can be avoided. If the collision can be avoided, the process exits, and if the collision is reached, the process proceeds from step S10 to step S11, where the vehicle position information detected by the vehicle position information detection unit 20 by GPS or the like (position of the collision occurrence site), the collision Data on the injured part of the occupant and the size of the injury estimated from the speed and collision part of the vehicle are communicated to an external emergency medical center etc. via the in-vehicle external communication control unit 21 to support the occupant's lifesaving emergency. Do.

以上のように、本実施形態においては、様々な衝突形態に対して、キャビン変形による乗員傷害のリスクを確率分布という単一の指標で表現しているため、衝突形態を問うことなしに乗員の衝突被害を的確に把握し、乗員の衝突被害を軽減することが可能となる。   As described above, in the present embodiment, the risk of occupant injury due to cabin deformation is expressed by a single index called a probability distribution for various types of collisions. It is possible to accurately grasp the collision damage and reduce the passenger collision damage.

次に、本発明の実施の第2形態について説明する。図12は本発明の実施の第2形態に係り、車両用衝突制御装置のシステム構成図である。   Next, a second embodiment of the present invention will be described. FIG. 12 is a system configuration diagram of a vehicle collision control apparatus according to a second embodiment of the present invention.

第2形態は、前述の第1形態に対し、キャビン変形によるリスクに加え、乗員挙動によるリスクを考慮するものである。すなわち、衝突による乗員傷害は、キャビン変形が軽微であっても、乗員の挙動によっては重大な傷害を招く場合がある。例えば、助手席側の乗員がシートベルトを着用していない場合には、前方衝突時にインストルメントパネル等に顔面及び頭部を強打する虞があり、また、シートベルトを着用していても、着用の仕方が不適切であったり、乗車姿勢が不適切であった場合には、ベルトの拘束による急激な減速度で胸部を損傷する可能性もある。従って、キャビンの変形に加え、加速度(加減速)による乗員に傷害を評価することで、より広範囲な乗員傷害の軽減が可能となる。   The second form considers the risk due to the occupant behavior in addition to the risk due to the cabin deformation as compared with the first form described above. That is, occupant injury due to collision may cause serious injury depending on the behavior of the occupant even if the cabin deformation is slight. For example, if the passenger on the passenger's seat does not wear a seat belt, there is a risk of banging the face and head on the instrument panel, etc. at the time of a forward collision. If the method is inappropriate or the riding posture is inappropriate, there is a possibility that the chest may be damaged by a rapid deceleration due to the restraint of the belt. Therefore, in addition to the deformation of the cabin, it is possible to reduce a wider range of passenger injury by evaluating the injury to the passenger due to acceleration (acceleration / deceleration).

このため、第2形態における車両用衝突制御装置1Aは、第1形態の車両用衝突制御装置1の制御部2の構成を若干変更する。具体的には、図12に示すように、第2形態の制御部2Aは、キャビン変形による乗員の傷害を推定する乗員傷害推定部14に対して、加速度による乗員の傷害を推定する乗員傷害推定部14Aを第2の乗員傷害推定部として追加した構成とする。以下では、第1形態との機能の相違を主として説明し、同様の機能についての詳細は省略する。   For this reason, 1 A of vehicle collision control apparatuses in a 2nd form change a structure of the control part 2 of the vehicle collision control apparatus 1 of a 1st form a little. Specifically, as shown in FIG. 12, the control unit 2A of the second form estimates occupant injury estimation due to acceleration to the occupant injury estimation unit 14 that estimates occupant injury due to cabin deformation. The portion 14A is added as a second occupant injury estimation unit. In the following, differences in functions from the first embodiment will be mainly described, and details of similar functions will be omitted.

乗員傷害推定部14Aにおける乗員挙動によるリスクの評価は、実際の事故の衝突条件に対応するため、広範囲な衝突条件での乗員挙動のデータを予めマップ化しておき、このマップを用いて評価する。マップの作成は、広範囲な衝突条件での乗員挙動のデータを数値シミュレーションによる衝突解析を行って作成する。この解析は、第1形態で説明したキャビン変形を反映した解析モデル(ボクセルモデル)とし、発生する加速度をボクセル毎に評価する。   The evaluation of the risk due to the occupant behavior in the occupant injury estimator 14A corresponds to actual collision conditions of the accident, so that data on the occupant behavior under a wide range of collision conditions are previously mapped and evaluated using this map. The map is created by performing crash analysis by numerical simulation of occupant behavior data under a wide range of collision conditions. This analysis is an analysis model (voxel model) reflecting the cabin deformation described in the first embodiment, and the generated acceleration is evaluated for each voxel.

この加速度による乗員挙動のリスクは、衝突条件がばらついた場合の乗員挙動を予め数値シミュレーションによって求めておき、以下の(3)式に示すように、発生する加速度Gと、そのときの衝突条件が出現する確率Paとに基づく乗員傷害確率Pr2として、ボクセル毎に算出される。尚、加速度Gは、標準化されたデータである。
Pr2=G×Pa …(3)
The risk of occupant behavior due to acceleration is that the occupant behavior when the collision condition varies is obtained in advance by numerical simulation, and the generated acceleration G and the collision condition at that time are as shown in the following equation (3). The occupant injury probability Pr2 based on the appearance probability Pa is calculated for each voxel. The acceleration G is standardized data.
Pr2 = G × Pa (3)

第2形態においては、キャビン変形による乗員傷害確率Prと乗員挙動による乗員傷害確率Pr2とが車両制御量算出部15に入力され、以下の(4)式に示すように、キャビン変形による乗員傷害確率Prと乗員挙動による乗員傷害確率Pr2とが加算された乗員傷害確率PrTとして算出される。第2形態においては、この乗員傷害確率PrTがキャビン変形及び乗員挙動による乗員傷害の総リスクを表している。
PrT=Pr+Pr2 …(4)
In the second embodiment, the occupant injury probability Pr due to cabin deformation and the occupant injury probability Pr2 due to occupant behavior are input to the vehicle control amount calculation unit 15, and the occupant injury probability due to cabin deformation is expressed by the following equation (4). The occupant injury probability PrT is calculated by adding Pr and the occupant injury probability Pr2 due to the occupant behavior. In the second mode, this passenger injury probability PrT represents the total risk of passenger injury due to cabin deformation and passenger behavior.
PrT = Pr + Pr2 (4)

尚、乗員傷害のリスクに対する各種要因の重み付けは、第1形態と同様であり、ボクセル毎の乗員傷害確率PrTの総和ΣPrTを最小とする回避制御の車両制御量が車両挙動シミュレーション及び最適化手法によって算出され、衝突時のキャビン変形及び乗員挙動に起因する乗員被害の軽減が可能となる。   The weighting of various factors with respect to the risk of occupant injury is the same as in the first embodiment, and the vehicle control amount for avoidance control that minimizes the sum ΣPrT of the occupant injury probability PrT for each voxel is determined by the vehicle behavior simulation and optimization method. It is calculated and occupant damage due to cabin deformation and occupant behavior at the time of collision can be reduced.

第2形態においては、キャビン変形によるリスクに加えて乗員挙動によるリスクを考慮しているため、第1形態に対してより精密にリスクを把握することができ、より広範な状況で乗員の衝突被害を軽減することができる。   In the second form, in addition to the risk due to cabin deformation, the risk due to occupant behavior is taken into account. Therefore, the risk can be grasped more precisely than in the first form, and the collision damage of the occupant in a wider range of situations Can be reduced.

尚、第2形態においては、キャビン変形によるリスクと乗員挙動によるリスクとをボクセル毎に足し合わせてボクセル全体の総和を最適化し、車両姿勢制御を行うようにしているが、それぞれのリスクの総和を最小化する多目的最適化により、車両姿勢制御を行うようにしても良い。   In the second embodiment, the risk due to cabin deformation and the risk due to passenger behavior are added together for each voxel to optimize the total sum of the voxels and perform vehicle attitude control. Vehicle attitude control may be performed by multi-objective optimization that is minimized.

本発明の実施の第1形態に係り、車両用衝突制御装置のシステム構成図The system block diagram of the collision control apparatus for vehicles concerning 1st Embodiment of this invention. 同上、衝突直前の状況を示す説明図Same as above, explanatory diagram showing the situation just before the collision 同上、キャビンの変形を示す説明図Same as above, explanatory diagram showing deformation of cabin 同上、キャビン変形の確率分布を示す説明図Same as above, explanatory diagram showing the probability distribution of cabin deformation 同上、乗員状況を示す説明図Same as above, explanatory diagram showing occupant status 同上、乗員の存在確率分布を示す説明図Same as above, explanatory diagram showing occupant probability distribution 同上、キャビンの変形による乗員傷害のリスクを示す説明図As above, explanatory diagram showing the risk of passenger injury due to cabin deformation 同上、乗員の受傷部位別の重み付けを示す説明図Explanatory drawing which shows weighting according to a passenger | crew's injury site | part same as the above 同上、衝突制御処理のフローチャートSame as above, flowchart of collision control processing 同上、側面衝突に対する車両制御を示す説明図Explanatory drawing which shows vehicle control with respect to side collision as above 同上、単独の前面衝突に対する車両制御を示す説明図Same as above, explanatory diagram showing vehicle control for a single frontal collision 本発明の実施の第2形態に係り、車両用衝突制御装置のシステム構成図The system block diagram of the collision control apparatus for vehicles concerning 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1,1A 車両用衝突制御装置
2,2A 制御部
10 立体物検出部
11 衝突判断部
12 キャビン変形推定部
13 乗員状態検出部
14,14A 乗員傷害推定部
15 車両制御量算出部
Pc キャビン変形確率
Pj 乗員存在確率
Pr,Pr2,PrT 乗員傷害確率
DESCRIPTION OF SYMBOLS 1,1A Vehicle collision control apparatus 2,2A Control part 10 Solid object detection part 11 Collision judgment part 12 Cabin deformation estimation part 13 Passenger state detection part 14, 14A Passenger injury estimation part 15 Vehicle control amount calculation part Pc Cabin deformation probability Pj Crew presence probability Pr, Pr2, PrT Crew injury probability

Claims (6)

自車両の周囲に存在する立体物を検出する立体物検出手段と、
上記立体物と自車両との衝突可能性を判断する衝突判断手段と、
上記立体物と自車両との衝突が不可避と判断されたとき、衝突による自車両のキャビン変形量を推定するキャビン変形量推定手段と、
自車両の乗員の搭乗状態を検出する乗員状態検出手段と、
上記キャビン変形量と上記乗員の搭乗状態とに基づいて、上記乗員の衝突被害を推定する乗員傷害推定手段と、
上記乗員の衝突被害に基づいて回避制御の車両制御量を算出する車両制御量算出手段と を備えたことを特徴とする車両用衝突制御装置。
A three-dimensional object detecting means for detecting a three-dimensional object existing around the host vehicle;
A collision judging means for judging the possibility of collision between the three-dimensional object and the host vehicle;
When it is determined that a collision between the three-dimensional object and the host vehicle is inevitable, a cabin deformation amount estimating unit that estimates a cabin deformation amount of the host vehicle due to the collision;
Occupant state detection means for detecting the boarding state of the occupant of the own vehicle;
Occupant injury estimation means for estimating the occupant's collision damage based on the cabin deformation amount and the occupant's boarding state;
A vehicle collision control device comprising: a vehicle control amount calculation means for calculating a vehicle control amount for avoidance control based on the collision damage of the occupant.
上記キャビン変形量推定手段は、
自車両のキャビンをボクセルモデル化し、該ボクセルモデルに、予め衝突条件に対応して求めたキャビン変形量の衝突条件のバラツキによる確率分布を設定し、
上記乗員状態検出手段は、
自車両のキャビンをボクセルモデル化し、該ボクセルモデルに、センサによって検出した上記乗員の検出バラツキを考慮した上記乗員の存在確率分布を設定する
ことを特徴とする請求項1記載の車両用衝突制御装置。
The cabin deformation amount estimating means includes:
A voxel model of the cabin of the host vehicle is set, and a probability distribution due to variation in the collision condition of the cabin deformation amount obtained in advance corresponding to the collision condition is set in the voxel model,
The occupant state detection means
The vehicle collision control device according to claim 1, wherein the cabin of the host vehicle is converted into a voxel model, and the presence probability distribution of the occupant is set in the voxel model in consideration of the detection variation of the occupant detected by a sensor. .
上記乗員傷害推定手段は、
自車両のキャビンをボクセルモデル化し、該ボクセルモデルに、上記キャビン変形量の確率分布と上記乗員の存在確率分布とに基づいて上記乗員が衝突被害を受ける乗員傷害確率分布を設定する
ことを特徴とする請求項2記載の車両用衝突制御装置。
The occupant injury estimation means is
A voxel model of the cabin of the host vehicle, and an occupant injury probability distribution in which the occupant suffers collision damage based on the probability distribution of the cabin deformation amount and the presence probability distribution of the occupant is set in the voxel model. The vehicle collision control device according to claim 2.
上記乗員傷害推定手段は、
更に、上記乗員の挙動に起因する傷害発生の確率分布を設定し、この確率分布を上記乗員傷害確率分布に加算する
ことを特徴とする請求項3記載の車両用衝突制御装置。
The occupant injury estimation means is
4. The vehicle collision control device according to claim 3, further comprising setting a probability distribution of occurrence of injury caused by the behavior of the occupant and adding the probability distribution to the occupant injury probability distribution.
上記車両制御量算出手段は、
上記車両制御量を、上記乗員傷害確率分布の総和を最小化する制御量として算出する
ことを特徴とする請求項3又は4記載の車両用衝突制御装置。
The vehicle control amount calculation means includes:
5. The vehicle collision control device according to claim 3, wherein the vehicle control amount is calculated as a control amount that minimizes a total sum of the occupant injury probability distributions.
上記乗員傷害確率分布に、少なくとも上記乗員の予想受傷部位による重み付けを行う
ことを特徴とする請求項3〜5の何れか一に記載の車両用衝突制御装置。
The vehicle collision control device according to any one of claims 3 to 5, wherein the occupant injury probability distribution is weighted based on at least the occupant's expected injury site.
JP2006197387A 2006-07-19 2006-07-19 Vehicle collision control device Active JP4937656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006197387A JP4937656B2 (en) 2006-07-19 2006-07-19 Vehicle collision control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006197387A JP4937656B2 (en) 2006-07-19 2006-07-19 Vehicle collision control device

Publications (2)

Publication Number Publication Date
JP2008024108A true JP2008024108A (en) 2008-02-07
JP4937656B2 JP4937656B2 (en) 2012-05-23

Family

ID=39115194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006197387A Active JP4937656B2 (en) 2006-07-19 2006-07-19 Vehicle collision control device

Country Status (1)

Country Link
JP (1) JP4937656B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274700A (en) * 2008-05-19 2009-11-26 Advics Co Ltd Unit and method for vehicle motion control
JP2012232693A (en) * 2011-05-06 2012-11-29 Honda Motor Co Ltd Method, device and program to control vehicle
JP2013220675A (en) * 2012-04-13 2013-10-28 Mitsubishi Motors Corp Collision detection device
KR20140138214A (en) * 2012-02-27 2014-12-03 리트 모터스 코포레이션 Vehicle control system
JP2015041222A (en) * 2013-08-21 2015-03-02 株式会社デンソー Collision relaxing device
JP2015168283A (en) * 2014-03-05 2015-09-28 三菱自動車工業株式会社 Injury degree estimation method and injury degree estimation device
WO2016006705A3 (en) * 2014-07-08 2016-03-10 Toyota Jidosha Kabushiki Kaisha Vehicle control device
JP2017084367A (en) * 2015-10-26 2017-05-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Motor vehicle control
JP2017218011A (en) * 2016-06-07 2017-12-14 日本電信電話株式会社 Vehicle posture control device, method and program
JP2018062301A (en) * 2016-10-14 2018-04-19 トヨタ自動車株式会社 Occupant influence degree estimation system
JP2019064294A (en) * 2017-09-28 2019-04-25 株式会社Subaru Vehicle occupant protection device
JP2019064295A (en) * 2017-09-28 2019-04-25 株式会社Subaru Vehicle occupant protection device
CN110203293A (en) * 2019-05-27 2019-09-06 北京汽车股份有限公司 Collision accident detection method, device, system and vehicle
JP2019209909A (en) * 2018-06-07 2019-12-12 本田技研工業株式会社 Vehicle control system
JP2019209910A (en) * 2018-06-07 2019-12-12 本田技研工業株式会社 Vehicle control system
JP2020177444A (en) * 2019-04-18 2020-10-29 三井住友海上火災保険株式会社 Crew member injury estimation server, crew member injury estimation system, crew member injury estimation method and program
WO2021001071A1 (en) * 2019-07-03 2021-01-07 Audi Ag Method for operating a motor vehicle in a collision situation and motor vehicle
CN112208541A (en) * 2020-10-13 2021-01-12 清华大学 Intelligent passenger compartment parameterization determination method and device and computer equipment
WO2022097387A1 (en) * 2020-11-05 2022-05-12 日立Astemo株式会社 Vehicle control device
WO2022138991A1 (en) * 2020-12-21 2022-06-30 주식회사 모빌린트 Method and device for minimizing accident damage of autonomous vehicle
CN117371340A (en) * 2023-12-08 2024-01-09 中汽研汽车检验中心(天津)有限公司 Method, equipment and medium for optimizing deployment parameters of automobile safety airbag
WO2024055428A1 (en) * 2022-09-15 2024-03-21 苏州康惠园智能科技有限公司 5g vehicle-mounted display apparatus facilitating mounting and facing angle adjustment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004521019A (en) * 2001-06-28 2004-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for affecting at least one parameter of a vehicle
JP2005537165A (en) * 2001-12-06 2005-12-08 オートモーティブ システムズ ラボラトリー インコーポレーテッド External airbag occupant protection system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004521019A (en) * 2001-06-28 2004-07-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for affecting at least one parameter of a vehicle
JP2005537165A (en) * 2001-12-06 2005-12-08 オートモーティブ システムズ ラボラトリー インコーポレーテッド External airbag occupant protection system

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274700A (en) * 2008-05-19 2009-11-26 Advics Co Ltd Unit and method for vehicle motion control
JP2012232693A (en) * 2011-05-06 2012-11-29 Honda Motor Co Ltd Method, device and program to control vehicle
KR102154809B1 (en) 2012-02-27 2020-09-11 리트 모터스 코포레이션 Vehicle control system
KR20140138214A (en) * 2012-02-27 2014-12-03 리트 모터스 코포레이션 Vehicle control system
JP2015511551A (en) * 2012-02-27 2015-04-20 リット モーターズ コーポレイション Vehicle control system
JP2013220675A (en) * 2012-04-13 2013-10-28 Mitsubishi Motors Corp Collision detection device
JP2015041222A (en) * 2013-08-21 2015-03-02 株式会社デンソー Collision relaxing device
JP2015168283A (en) * 2014-03-05 2015-09-28 三菱自動車工業株式会社 Injury degree estimation method and injury degree estimation device
WO2016006705A3 (en) * 2014-07-08 2016-03-10 Toyota Jidosha Kabushiki Kaisha Vehicle control device
JP2017084367A (en) * 2015-10-26 2017-05-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Motor vehicle control
JP2017218011A (en) * 2016-06-07 2017-12-14 日本電信電話株式会社 Vehicle posture control device, method and program
JP2018062301A (en) * 2016-10-14 2018-04-19 トヨタ自動車株式会社 Occupant influence degree estimation system
JP7037900B2 (en) 2017-09-28 2022-03-17 株式会社Subaru Vehicle occupant protection device
JP7037901B2 (en) 2017-09-28 2022-03-17 株式会社Subaru Vehicle occupant protection device
JP2019064294A (en) * 2017-09-28 2019-04-25 株式会社Subaru Vehicle occupant protection device
JP2019064295A (en) * 2017-09-28 2019-04-25 株式会社Subaru Vehicle occupant protection device
CN110641460A (en) * 2018-06-07 2020-01-03 本田技研工业株式会社 Vehicle control system
JP2019209910A (en) * 2018-06-07 2019-12-12 本田技研工業株式会社 Vehicle control system
CN110576853A (en) * 2018-06-07 2019-12-17 本田技研工业株式会社 Vehicle control system
JP2019209909A (en) * 2018-06-07 2019-12-12 本田技研工業株式会社 Vehicle control system
JP2020177444A (en) * 2019-04-18 2020-10-29 三井住友海上火災保険株式会社 Crew member injury estimation server, crew member injury estimation system, crew member injury estimation method and program
CN110203293A (en) * 2019-05-27 2019-09-06 北京汽车股份有限公司 Collision accident detection method, device, system and vehicle
WO2021001071A1 (en) * 2019-07-03 2021-01-07 Audi Ag Method for operating a motor vehicle in a collision situation and motor vehicle
CN114126941A (en) * 2019-07-03 2022-03-01 奥迪股份公司 Method for operating a motor vehicle in the event of a collision and motor vehicle
US20220363246A1 (en) * 2019-07-03 2022-11-17 Audi Ag Method for operating a motor vehicle in a collision situation and motor vehicle
CN114126941B (en) * 2019-07-03 2024-02-06 奥迪股份公司 Method for operating a motor vehicle in the event of a crash, and motor vehicle
US11964652B2 (en) 2019-07-03 2024-04-23 Audi Ag Method for operating a motor vehicle in a collision situation and motor vehicle
CN112208541A (en) * 2020-10-13 2021-01-12 清华大学 Intelligent passenger compartment parameterization determination method and device and computer equipment
WO2022097387A1 (en) * 2020-11-05 2022-05-12 日立Astemo株式会社 Vehicle control device
JP7399312B2 (en) 2020-11-05 2023-12-15 日立Astemo株式会社 Vehicle control device
WO2022138991A1 (en) * 2020-12-21 2022-06-30 주식회사 모빌린트 Method and device for minimizing accident damage of autonomous vehicle
WO2024055428A1 (en) * 2022-09-15 2024-03-21 苏州康惠园智能科技有限公司 5g vehicle-mounted display apparatus facilitating mounting and facing angle adjustment
CN117371340A (en) * 2023-12-08 2024-01-09 中汽研汽车检验中心(天津)有限公司 Method, equipment and medium for optimizing deployment parameters of automobile safety airbag
CN117371340B (en) * 2023-12-08 2024-02-13 中汽研汽车检验中心(天津)有限公司 Method, equipment and medium for optimizing deployment parameters of automobile safety airbag

Also Published As

Publication number Publication date
JP4937656B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4937656B2 (en) Vehicle collision control device
US11772644B2 (en) Damage reduction device, damage reduction method, and program
JP6137194B2 (en) Driving support device and driving support method
CN110733501B (en) Method for automatically avoiding collisions
EP2990290B1 (en) Method and system for post-collision manoeuvre planning and vehicle equipped with such system
US8589060B2 (en) Method for automatically controlling a vehicle
US20150166058A1 (en) Vehicle control apparatus
US20150191176A1 (en) Drive assist device
CN109572690B (en) Vehicle control device
EP2302412A1 (en) System and method for evaluation of an automotive vehicle forward collision threat
US20220144259A1 (en) Method and control device for vehicle collision prevention
EP3531398B1 (en) Rear lateral side warning apparatus and method with learning of driving pattern
CN104662592A (en) Method for operating a driver assistance system of a vehicle
US9290177B2 (en) Vehicle control apparatus
KR20150041446A (en) Weight measuring device for vehicle based on a camera and method thereof
JP5846106B2 (en) Driving support device and driving support method
CN111391832A (en) Vehicle self-adaptive cruise control method and system based on information sharing
EP3932768B1 (en) Arithmetic operation device for automobiles
WO2019003792A1 (en) Control device, control method, and program
JP4982353B2 (en) External recognition device
US11639175B2 (en) Method of controlling vehicle when vehicle passes over speed bump
JP2016016743A (en) Vehicle control apparatus
JP7004534B2 (en) Vehicle control device and vehicle control method
JP2015205640A (en) Vehicular collision control device
JP2020032786A (en) Vehicle stop support apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250