JP2015167982A - Bonding material, bonding method and manufacturing method of semiconductor device - Google Patents

Bonding material, bonding method and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2015167982A
JP2015167982A JP2014045726A JP2014045726A JP2015167982A JP 2015167982 A JP2015167982 A JP 2015167982A JP 2014045726 A JP2014045726 A JP 2014045726A JP 2014045726 A JP2014045726 A JP 2014045726A JP 2015167982 A JP2015167982 A JP 2015167982A
Authority
JP
Japan
Prior art keywords
based metal
metal material
bonding
layer
bonding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014045726A
Other languages
Japanese (ja)
Inventor
小田 祐一
Yuichi Oda
祐一 小田
一真 黒木
Kazuma Kuroki
一真 黒木
黒田 洋光
Hiromitsu Kuroda
洋光 黒田
佐藤 巧
Takumi Sato
佐藤  巧
辻 隆之
Takayuki Tsuji
隆之 辻
康太郎 田中
Kotaro Tanaka
康太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014045726A priority Critical patent/JP2015167982A/en
Publication of JP2015167982A publication Critical patent/JP2015167982A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bonding material, a bonding method and a manufacturing method of a semiconductor device capable of preventing positional deviation from a supply position when a specified bonding material is used.SOLUTION: In a bonding method, such a bonding material 10, in which first and second X type metal material (Cu layer 3A, 3B) which primarily contain Cu, Au, Ag or Sn as the outermost layer and [Zn layer 1/Al layer 2] disposed between the first and second X type metal material are laminated, and the first X type metal material (Cu layer 3A) is thicker than the second X type metal material (Cu layer 3B) and has a thickness of 3% or more of the total thickness of the bonding material, is bonded onto material to be bonded (heat block 100) which is located on the lower side while turning the first X type metal material (Cu layer 3A) to the upper side.

Description

本発明は、接合材料及び接合方法並びに半導体装置の製造方法に関する。   The present invention relates to a bonding material, a bonding method, and a method for manufacturing a semiconductor device.

電機・電子機器の部品の電気的接合に使用されている接合材料であるはんだには、従来、鉛が含まれていた。しかし、2003年頃から、人体への有害性が指摘される鉛の使用を規制する動きが欧州を中心に広がり、鉛を含有しない、鉛フリー代替材料の開発が進められてきている。   In the past, lead has been included in solder, which is a joining material used for electrical joining of parts of electric and electronic equipment. However, since around 2003, the movement to regulate the use of lead, which has been pointed out to be harmful to the human body, has spread mainly in Europe, and the development of lead-free alternative materials that do not contain lead has been underway.

はんだは、融点により高温、中温、低温の3種類に分けられる。このうち、高温はんだについては、市場要求(260℃耐熱性、高熱電導性、接合信頼性、低コスト)のすべてを満たす鉛フリー高温はんだが存在していなかった。   There are three types of solder, high temperature, medium temperature, and low temperature, depending on the melting point. Among these, as for high-temperature solder, there has been no lead-free high-temperature solder that satisfies all the market requirements (260 ° C. heat resistance, high thermal conductivity, bonding reliability, and low cost).

そこで、市場要求のすべてを満たす鉛フリー高温はんだの開発が求められており、開発されたものとして、特許文献1に記載の鉛フリー接合材料がある。   Therefore, development of a lead-free high-temperature solder that satisfies all of the market requirements has been demanded, and a lead-free bonding material described in Patent Document 1 has been developed.

特開2012−71347号公報JP 2012-71347 A

特許文献1に記載の接合材料は、Zn/Al界面から溶融するため、基板に濡れる前に表面張力により収縮する。収縮の際、拡散ムラが発生したり、被接合部材と接触する銅などからなる最外層の薄い部分で局所的な濡れが発生して、そこを中心として収縮するため、被接合部材へ接合材料を供給した際の中心位置から実装位置の中心位置がずれることがあるという点で改善の余地があった。   Since the bonding material described in Patent Document 1 melts from the Zn / Al interface, it shrinks due to surface tension before it gets wet with the substrate. When shrinkage occurs, diffusion unevenness occurs or local wetting occurs in the thinnest part of the outermost layer made of copper or the like that comes into contact with the member to be joined. There is room for improvement in that the center position of the mounting position may deviate from the center position when supplying the.

そこで、本発明の目的は、特定の接合材料を使用した場合における供給位置からの位置ずれを防ぐことができる接合材料及び接合方法並びに半導体装置の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a bonding material, a bonding method, and a method for manufacturing a semiconductor device that can prevent displacement from a supply position when a specific bonding material is used.

本発明は、上記目的を達成するために、下記[1]〜[6]の接合材料及び接合方法並びに半導体装置の製造方法を提供する。   In order to achieve the above object, the present invention provides the following bonding materials and bonding methods [1] to [6] and a method for manufacturing a semiconductor device.

[1]最外層としてのCu、Au、Ag又はSnを主成分として含有する第1及び第2のX系金属材と、前記第1及び第2のX系金属材の間に設けられたZnを主成分として含有するZn系金属材及びAlを主成分として含有する第1のAl系金属材とが積層された接合材料であって、前記第1のX系金属材は、前記第2のX系金属材よりも厚く、前記接合材料の総厚の3%以上の厚さを有することを特徴とする接合材料。
[2]前記第1のX系金属材は、前記接合材料の総厚の5%以上100%未満の厚さを有することを特徴とする前記[1]に記載の接合材料。
[3]前記第1及び第2のX系金属材の間にAlを主成分として含有する第2のAl系金属材がさらに設けられており、前記第1及び第2のX系金属材の間の積層構造が、前記第1のAl系金属材/前記Zn系金属材/前記第2のAl系金属材であることを特徴とする前記[1]又は前記[2]に記載の接合材料。
[4]前記[1]〜[3]の何れか1つに記載の接合材料を前記第1のX系金属材を上側に向けて下側にある被接合材に接合することを特徴とする接合方法。
[5]前記Zn系金属材、前記第1のAl系金属材、及び前記第2のX系金属材が溶融し、前記被接合材に濡れ広がった後に、前記第1のX系金属材を除去する工程を有することを特徴とする前記[4]に記載の接合方法。
[6]前記[1]〜[3]の何れか1つに記載の接合材料を用いてはんだ接合する工程を含むことを特徴とする半導体装置の製造方法。
[1] Zn provided between the first and second X-based metal materials containing Cu, Au, Ag or Sn as the main component as the outermost layer and the first and second X-based metal materials A bonding material in which a Zn-based metal material containing Al as a main component and a first Al-based metal material containing Al as a main component are laminated, wherein the first X-based metal material includes the second X A joining material characterized by being thicker than an X-based metal material and having a thickness of 3% or more of the total thickness of the joining material.
[2] The bonding material according to [1], wherein the first X-based metal material has a thickness of 5% or more and less than 100% of the total thickness of the bonding material.
[3] A second Al-based metal material containing Al as a main component is further provided between the first and second X-based metal materials, and the first and second X-based metal materials The bonding material according to the above [1] or [2], wherein the laminated structure is the first Al-based metal material / the Zn-based metal material / the second Al-based metal material .
[4] The bonding material according to any one of [1] to [3] is bonded to a material to be bonded on the lower side with the first X-based metal material facing upward. Joining method.
[5] After the Zn-based metal material, the first Al-based metal material, and the second X-based metal material are melted and spread to the material to be joined, the first X-based metal material is The bonding method according to [4], further including a removing step.
[6] A method for manufacturing a semiconductor device, comprising a step of soldering using the bonding material according to any one of [1] to [3].

本発明によれば、特定の接合材料を使用した場合における供給位置からの位置ずれを防ぐことができる接合材料及び接合方法並びに半導体装置の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the joining material and joining method which can prevent the position shift from a supply position at the time of using a specific joining material, and the manufacturing method of a semiconductor device are provided.

本発明の実施の形態に係る接合材料の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the joining material which concerns on embodiment of this invention. 図1に示す接合材料を用いてヒートブロック上に接合する際の接合材料の状態変化を模式的に示す断面図である。It is sectional drawing which shows typically the state change of the joining material at the time of joining on a heat block using the joining material shown in FIG.

(接合材料の構成)
本発明の実施の形態に係る接合材料は、最外層としてのCu、Au、Ag又はSnを主成分として含有する第1及び第2のX系金属材と、前記第1及び第2のX系金属材の間に設けられたZnを主成分として含有するZn系金属材及びAlを主成分として含有する第1のAl系金属材とが積層された接合材料であって、前記第1のX系金属材は、前記第2のX系金属材よりも厚く、前記接合材料の総厚の3%以上の厚さを有する。
(Composition of bonding material)
The bonding material according to the embodiment of the present invention includes first and second X-based metal materials containing Cu, Au, Ag, or Sn as an outermost layer as a main component, and the first and second X-based materials. A bonding material obtained by laminating a Zn-based metal material containing Zn as a main component and a first Al-based metal material containing Al as a main component provided between the metal materials, the first X The metallic metal material is thicker than the second X metallic material and has a thickness of 3% or more of the total thickness of the bonding material.

図1は、本発明の実施の形態に係る接合材料の一例を模式的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing an example of a bonding material according to an embodiment of the present invention.

図1に示される本発明の実施形態に係る接合材料は板状であり、平角状の断面を有するZn系金属材の片面に、Al系金属材、及びX系金属材が順に設けられ、他方の面にX系金属材が設けられている。Al系金属材は、Zn系金属材の片面にのみ設ける場合に限られず、Zn系金属材の両面に設ける構成であってもよい。   The bonding material according to the embodiment of the present invention shown in FIG. 1 is plate-shaped, and an Al-based metal material and an X-based metal material are sequentially provided on one side of a Zn-based metal material having a flat rectangular cross section. An X-based metal material is provided on the surface. The Al-based metal material is not limited to being provided only on one surface of the Zn-based metal material, and may be configured to be provided on both surfaces of the Zn-based metal material.

図1に示される接合材料10は、X系金属材としてCuを例示したものであり、大部分が前述の特許文献1に記載の構成と同じであるが、主として第1のX系金属材が第2のX系金属材よりも厚く、接合材料10の総厚の3%以上の厚さを有するものとしている点において異なる。具体的には、最外層としてのCu系金属材(Cu層3A,3B)と、Cu系金属材3A,3Bの間にZn系金属材(Zn層1)/Al系金属材(Al層2)の順で設けられた2層とが積層された4層構造の積層材である。   The bonding material 10 shown in FIG. 1 exemplifies Cu as an X-based metal material, and most of the structure is the same as that described in Patent Document 1, but the first X-based metal material is mainly used. It differs in that it is thicker than the second X-based metal material and has a thickness of 3% or more of the total thickness of the bonding material 10. Specifically, a Cu-based metal material (Cu layer 3A, 3B) as the outermost layer and a Zn-based metal material (Zn layer 1) / Al-based metal material (Al layer 2) between the Cu-based metal materials 3A, 3B. ) Is a laminated material having a four-layer structure in which two layers provided in this order are laminated.

接合材料10は、第1のX系金属材(Cu層3A)を上側に向けて、すなわち第2のX系金属材(Cu層3B)を下側に向けて、下側にある被接合材に接合されるものである。   The bonding material 10 has the first X-based metal material (Cu layer 3A) facing upward, that is, the second X-based metal material (Cu layer 3B) facing downward, and the material to be bonded on the lower side. To be joined.

Zn系金属材(Zn層1)(以下、単にZnと記載することがある)は、Znを主成分(最も多く含まれる成分、以下同じ)としており、Znが90質量%以上であることが好ましい。すなわち、Zn単体、又は不純物が10質量%以下のZn合金が好ましい。   The Zn-based metal material (Zn layer 1) (hereinafter may be simply referred to as Zn) contains Zn as a main component (the most abundant component, the same applies hereinafter), and Zn is 90% by mass or more. preferable. That is, Zn alone or a Zn alloy containing 10% by mass or less of impurities is preferable.

Al系金属材(Al層2)(以下、単にAlと記載することがある)は、Alを主成分としており、Alが90質量%以上であることが好ましい。すなわち、Al単体、又は不純物が10質量%以下のAl合金が好ましい。   The Al-based metal material (Al layer 2) (hereinafter sometimes simply referred to as Al) is mainly composed of Al, and Al is preferably 90% by mass or more. That is, Al alone or an Al alloy having impurities of 10% by mass or less is preferable.

第1及び第2のX系金属材(以下、単にXと記載することがある)は、Cu、Au、Ag又はSnを主成分としており、Cu、Au、Ag又はSnが90質量%以上であることが好ましい。特に、図に示される、Cuを主成分としており、Cuが90質量%以上であるCu系金属材(Cu層3A,3B)(以下、単にCuと記載することがある)であることが好ましい。すなわち、Cu単体、又は不純物が10質量%以下のCu合金が好ましい。例えば、無酸素銅、タフピッチ銅等の純銅や、3〜15質量ppmの硫黄と、2〜30質量ppmの酸素と、5〜55質量ppmのTiとを含む希薄銅合金等を使用することができる。   The first and second X-based metal materials (hereinafter sometimes simply referred to as X) are mainly composed of Cu, Au, Ag, or Sn, and Cu, Au, Ag, or Sn is 90% by mass or more. Preferably there is. In particular, it is preferable to be a Cu-based metal material (Cu layers 3A and 3B) (hereinafter, simply referred to as Cu) which is mainly composed of Cu and whose Cu content is 90% by mass or more, as shown in the figure. . That is, Cu simple substance or Cu alloy whose impurity is 10 mass% or less is preferable. For example, pure copper such as oxygen-free copper or tough pitch copper, or a dilute copper alloy containing 3 to 15 mass ppm of sulfur, 2 to 30 mass ppm of oxygen, and 5 to 55 mass ppm of Ti or the like may be used. it can.

X(第1)/Zn/Al/X(第2)の4層構造については、溶融時に十分な液相を生じさせ、濡れを向上させる目的から、後に除去されるX(第1)以外のZn/Al/X(第2)の3層構造の総厚が25μm以上であることが望ましい。また、接合部の熱抵抗を下げ、信頼性確保するため、Zn/Al/X(第2)の3層構造の総厚を500μm以下にすることが望ましい。   For the four-layer structure of X (first) / Zn / Al / X (second), in order to generate a sufficient liquid phase at the time of melting and improve wetting, other than X (first) to be removed later The total thickness of the Zn / Al / X (second) three-layer structure is preferably 25 μm or more. Further, in order to reduce the thermal resistance of the junction and ensure reliability, it is desirable that the total thickness of the three-layer structure of Zn / Al / X (second) is 500 μm or less.

X(第1)/Al/Zn/Al/X(第2)の5層構造の場合には、Al/Zn/Al/X(第2)の4層構造の総厚を25μm以上500μm以下にすることが望ましい。   In the case of a five-layer structure of X (first) / Al / Zn / Al / X (second), the total thickness of the four-layer structure of Al / Zn / Al / X (second) is 25 μm or more and 500 μm or less. It is desirable to do.

(Alの合計の層厚)/(Znの層厚)は、1/60〜1/3であることが望ましい。また、382〜420℃の接合温度範囲内で、積層材全体を均一に溶融させるため、X/Al/Zn/Al/Xの5層構造の場合には、Al、Zn、Alの層厚比は、Al:Zn:Al=1:6:1〜1:60:1の比率にすることが望ましい。さらに、溶融組織の均一性の観点から、Al:Zn:Al=1:8:1〜1:30:1の範囲がより望ましい。X/Al/Zn/Xの4層構造の場合には、Al、Znの層厚比は、Al:Zn=1:3〜1:60の比率にすることが望ましい。   (Al total layer thickness) / (Zn layer thickness) is preferably 1/60 to 1/3. In addition, in order to uniformly melt the entire laminated material within a bonding temperature range of 382 to 420 ° C., the layer thickness ratio of Al, Zn, and Al in the case of a five-layer structure of X / Al / Zn / Al / X Is preferably a ratio of Al: Zn: Al = 1: 6: 1 to 1: 60: 1. Further, from the viewpoint of the uniformity of the molten structure, the range of Al: Zn: Al = 1: 8: 1 to 1: 30: 1 is more desirable. In the case of a four-layer structure of X / Al / Zn / X, the layer thickness ratio of Al and Zn is preferably Al: Zn = 1: 3 to 1:60.

また、X系金属材はZnとAlの酸化を防止する機能を持たせるため、一定以上の厚さが必要となる。一方、第2のX系金属材は、ZnとAlが反応し溶融したZn−Al合金内に溶融し、Zn−Al−Cu合金を構成することになるが、元素XがZn−Al合金の硬さや融点に与える影響を最小限にとどめることが望ましい。そのため、第2のX系金属材はZnとAlに比べて薄い必要がある。層厚比は(Alの合計の層厚+Znの層厚):第2のXの層厚=1:0.0001〜0.10の比率にすることが望ましく、1:0.000175〜0.075の比率にすることがより望ましく、1:0.00025〜0.05の比率にすることがさらに望ましい。   In addition, the X-based metal material needs to have a certain thickness or more in order to have a function of preventing oxidation of Zn and Al. On the other hand, the second X-based metal material melts in a Zn-Al alloy in which Zn and Al react and melt to form a Zn-Al-Cu alloy, but the element X is a Zn-Al alloy. It is desirable to minimize the effect on hardness and melting point. Therefore, the second X-based metal material needs to be thinner than Zn and Al. The ratio of the layer thicknesses is preferably a ratio of (total layer thickness of Al + layer thickness of Zn): layer thickness of second X = 1: 0.0001 to 0.10, 1: 0.000175 to 0.00. A ratio of 075 is more desirable, and a ratio of 1: 0.00025 to 0.05 is even more desirable.

また、本実施の形態において、第1のX系金属材は、第2のX系金属材よりも厚く、4層構造の接合材料10の総厚の3%以上の厚さを有する。第1のX系金属材の厚さの上限は、接合材料10の総厚の100%未満であることが好ましく、80%以下であることがより好ましく、50%以下であることがさらに好ましい。100%以上であると、廃棄する部分が増える点で実用性が低下する。第1のX系金属材の厚さの下限は、除去(特に後述する吸着除去の場合)を容易化する点において、接合材料10の総厚の5%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましい。   In the present embodiment, the first X-based metal material is thicker than the second X-based metal material and has a thickness of 3% or more of the total thickness of the bonding material 10 having a four-layer structure. The upper limit of the thickness of the first X-based metal material is preferably less than 100% of the total thickness of the bonding material 10, more preferably 80% or less, and even more preferably 50% or less. When it is 100% or more, the practicality is lowered in that the portion to be discarded increases. The lower limit of the thickness of the first X-based metal material is preferably 5% or more of the total thickness of the bonding material 10 in terms of facilitating removal (particularly in the case of adsorption removal described later), and is preferably 10% or more. It is more preferable that it is 15% or more.

X/Al/Zn/Al/Xの5層構造の場合においても、第1のX系金属材の厚さは、上記4層構造の場合と同様である。   Even in the case of a five-layer structure of X / Al / Zn / Al / X, the thickness of the first X-based metal material is the same as in the case of the four-layer structure.

(接合材料の製造方法)
次に、本実施の形態に係る接合材料の製造方法について説明する。
本実施の形態に係る接合材料は、クラッド圧延法、めっき法、又は蒸着法により製造することができる。詳細は、特許文献1(特開2012−71347号公報)に記載の方法により製造できるため、説明を省略する。
(Method of manufacturing joining material)
Next, a method for manufacturing the bonding material according to the present embodiment will be described.
The bonding material according to the present embodiment can be manufactured by a clad rolling method, a plating method, or a vapor deposition method. Details can be manufactured by the method described in Patent Document 1 (Japanese Patent Laid-Open No. 2012-71347), and thus the description thereof is omitted.

但し、上記特許文献1に記載の製造方法において、第1のX系金属材は、第2のX系金属材よりも厚く、接合材料の総厚に対して前述の範囲の厚さとなるようにする点で異なる。   However, in the manufacturing method described in Patent Document 1, the first X-based metal material is thicker than the second X-based metal material and has a thickness in the above-described range with respect to the total thickness of the bonding material. It is different in point to do.

(接合方法)
本発明の実施の形態に係る接合方法は、上記本発明の実施の形態に係る接合材料を第1のX系金属材を上側に向けて下側にある被接合材に接合することを特徴とする。
(Joining method)
A bonding method according to an embodiment of the present invention is characterized in that the bonding material according to the embodiment of the present invention is bonded to a material to be bonded on the lower side with the first X-based metal material facing upward. To do.

図2は、図1に示す接合材料を用いてヒートブロック上に接合する際の接合材料の状態変化を模式的に示す断面図である。   FIG. 2 is a cross-sectional view schematically showing a change in the state of the bonding material when bonding onto the heat block using the bonding material shown in FIG.

接合材料10のCu層3A(第1のX系金属材)を上側に向け、Cu層3B(第2のX系金属材)を下側に向けて下側にある被接合材であるヒートブロック100(加熱された基板等)に接合する際、ヒートブロック100上に供給された接合材料10は、図2中の中央図に示されるように、Cu層3Aの大部分を残してZn層1、Al層2、及びCu層3Bの一部が先にZn−Al−Cu融液20となる。次いで、図2中の右図に示されるように、Cu層3Bの残部も溶融し、Zn−Al−Cu融液20の一部となり、ヒートブロック100上に濡れ広がる。溶融時、上層に厚いCu層3Aがあるため、Zn−Al−Cu融液20の収縮は抑えられる。   A heat block which is a material to be joined, with the Cu layer 3A (first X-based metal material) of the bonding material 10 facing upward and the Cu layer 3B (second X-based metal material) facing downward. When bonding to 100 (heated substrate or the like), the bonding material 10 supplied onto the heat block 100 is the Zn layer 1 leaving most of the Cu layer 3A, as shown in the central view in FIG. A part of the Al layer 2 and the Cu layer 3B becomes the Zn-Al-Cu melt 20 first. Next, as shown in the right diagram in FIG. 2, the remaining part of the Cu layer 3 </ b> B is also melted to become part of the Zn—Al—Cu melt 20 and spread on the heat block 100. At the time of melting, since there is a thick Cu layer 3A in the upper layer, the shrinkage of the Zn-Al-Cu melt 20 can be suppressed.

Zn−Al−Cu融液20がヒートブロック100上に濡れ広がった後に、残っているCu層3Aを除去する(図2中の右下図)。除去する方法としては、例えばコレットでCu層3Aを吸着させて除去する方法が挙げられる。   After the Zn-Al-Cu melt 20 spreads on the heat block 100, the remaining Cu layer 3A is removed (lower right diagram in FIG. 2). As a method of removing, for example, a method of removing the Cu layer 3A by adsorbing with a collet can be mentioned.

(用途)
本発明の実施の形態に係る接合材料は、様々な構造の半導体装置のダイボンディング材料、リード材、封止用材料、絶縁基板の接合材料として使用できる。適用例としては、オルタネータ用ダイオード、IGBTモジュール、RFモジュール等のフロントエンドモジュール、自動車用パワーモジュール、LED、リチウムイオン電池の保護回路用MOSFET、DBC基板やDBA基板などのセラミック基板が挙げられる。ゆえに、本発明の実施の形態に係る接合材料を用いてはんだ接合する工程を経て製造された種々の半導体装置を得ることができる。
また、自動車用熱交換器等に用いられるアルミニウムブレージングシートのAl合金上に積層されるろう材として適用することも出来る。
(Use)
The bonding material according to the embodiment of the present invention can be used as a bonding material for die bonding materials, lead materials, sealing materials, and insulating substrates for semiconductor devices having various structures. Application examples include diodes for alternators, IGBT modules, front-end modules such as RF modules, automotive power modules, LEDs, MOSFETs for lithium ion battery protection circuits, ceramic substrates such as DBC substrates and DBA substrates. Therefore, various semiconductor devices manufactured through a solder bonding process using the bonding material according to the embodiment of the present invention can be obtained.
Moreover, it can also be applied as a brazing material laminated on an Al alloy of an aluminum brazing sheet used for an automotive heat exchanger or the like.

(実施の形態の効果)
本発明の実施の形態によれば、特定の接合材料を使用した場合において、上層に厚いCu層3A(第1のX系金属材)があるため、溶融時に局所的に濡れても融液が収縮しないので、被接合材へ接合材料を供給した供給位置からの位置ずれを防ぐことができる接合材料及び接合方法並びに半導体装置の製造方法を提供することができる。
(Effect of embodiment)
According to the embodiment of the present invention, when a specific bonding material is used, since there is a thick Cu layer 3A (first X-based metal material) in the upper layer, the melt is not affected even when locally wet during melting. Since it does not shrink, it is possible to provide a bonding material, a bonding method, and a method for manufacturing a semiconductor device that can prevent displacement from the supply position where the bonding material is supplied to the material to be bonded.

なお、本発明は、上記実施の形態に限定されず種々に変形実施が可能である。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible.

10:接合材料
1:Zn層、2:Al層、3A,3B:Cu層
20:Zn−Al−Cu融液、100:ヒートブロック
10: Bonding material 1: Zn layer, 2: Al layer, 3A, 3B: Cu layer 20: Zn—Al—Cu melt, 100: Heat block

Claims (6)

最外層としてのCu、Au、Ag又はSnを主成分として含有する第1及び第2のX系金属材と、前記第1及び第2のX系金属材の間に設けられたZnを主成分として含有するZn系金属材及びAlを主成分として含有する第1のAl系金属材とが積層された接合材料であって、
前記第1のX系金属材は、前記第2のX系金属材よりも厚く、前記接合材料の総厚の3%以上の厚さを有することを特徴とする接合材料。
The main component is Zn provided between the first and second X-based metal materials containing Cu, Au, Ag, or Sn as the main component as the outermost layer, and the first and second X-based metal materials. A bonding material in which a Zn-based metal material contained as a first Al-based metal material containing Al as a main component is laminated,
The bonding material, wherein the first X-based metal material is thicker than the second X-based metal material and has a thickness of 3% or more of the total thickness of the bonding material.
前記第1のX系金属材は、前記接合材料の総厚の5%以上100%未満の厚さを有することを特徴とする請求項1に記載の接合材料。   2. The bonding material according to claim 1, wherein the first X-based metal material has a thickness of 5% or more and less than 100% of the total thickness of the bonding material. 前記第1及び第2のX系金属材の間にAlを主成分として含有する第2のAl系金属材がさらに設けられており、前記第1及び第2のX系金属材の間の積層構造が、前記第1のAl系金属材/前記Zn系金属材/前記第2のAl系金属材であることを特徴とする請求項1又は請求項2に記載の接合材料。   A second Al-based metal material containing Al as a main component is further provided between the first and second X-based metal materials, and a stack between the first and second X-based metal materials is provided. The bonding material according to claim 1 or 2, wherein the structure is the first Al-based metal material / the Zn-based metal material / the second Al-based metal material. 請求項1〜3のいずれか1項に記載の接合材料を前記第1のX系金属材を上側に向けて下側にある被接合材に接合することを特徴とする接合方法。   A joining method according to any one of claims 1 to 3, wherein the joining material according to any one of claims 1 to 3 is joined to a material to be joined on the lower side with the first X-based metal material facing upward. 前記Zn系金属材、前記第1のAl系金属材、及び前記第2のX系金属材が溶融し、前記被接合材に濡れ広がった後に、前記第1のX系金属材を除去する工程を有することを特徴とする請求項4に記載の接合方法。   A step of removing the first X-based metal material after the Zn-based metal material, the first Al-based metal material, and the second X-based metal material are melted and wetted and spread on the material to be joined. The bonding method according to claim 4, further comprising: 請求項1〜3のいずれか1項に記載の接合材料を用いてはんだ接合する工程を含むことを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device, comprising a step of solder bonding using the bonding material according to claim 1.
JP2014045726A 2014-03-07 2014-03-07 Bonding material, bonding method and manufacturing method of semiconductor device Pending JP2015167982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045726A JP2015167982A (en) 2014-03-07 2014-03-07 Bonding material, bonding method and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045726A JP2015167982A (en) 2014-03-07 2014-03-07 Bonding material, bonding method and manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2015167982A true JP2015167982A (en) 2015-09-28

Family

ID=54201236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045726A Pending JP2015167982A (en) 2014-03-07 2014-03-07 Bonding material, bonding method and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2015167982A (en)

Similar Documents

Publication Publication Date Title
TWI523724B (en) A bonding material, a method for producing the same, and a method of manufacturing the bonding structure
JP6323522B2 (en) Power module board with cooler
KR102130868B1 (en) Bonded body, substrate for power modules, and substrate with heat sink for power modules
JP6696215B2 (en) Bonded body, power module substrate with heat sink, heat sink, and method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, and method of manufacturing heat sink
KR101690820B1 (en) Method for producing substrate for power module with heat sink, substrate for power module with heat sink, and power module
JP5725060B2 (en) Bonded body, power module substrate, and power module substrate with heat sink
WO2014148425A1 (en) Method for manufacturing bonded body and method for manufacturing power-module substrate
CN109755208B (en) Bonding material, semiconductor device and manufacturing method thereof
WO2014103955A1 (en) Power module
JP5725061B2 (en) Power module substrate and power module substrate with heat sink
JP6432208B2 (en) Method for manufacturing power module substrate, and method for manufacturing power module substrate with heat sink
JP6904094B2 (en) Manufacturing method of insulated circuit board
KR101795812B1 (en) Substrate for power module, substrate for power module equiptted with heat sink, power module, and manufacturing method of substrate for power module
KR101774586B1 (en) Manufacturing method of substrate for power module equiptted with heat sink, substrate for power module equiptted with heat sink, and power module
TWI708754B (en) Bonded body, power module substrate, power mosule, method of producing bonded body and method of producing power module substrate
JP2015167982A (en) Bonding material, bonding method and manufacturing method of semiconductor device
WO2016167217A1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP5533223B2 (en) Bonding material and manufacturing method thereof, semiconductor device and manufacturing method thereof
JP2017168635A (en) Substrate for power module and manufacturing method of power module
JP2015167983A (en) Bonding method, bonding material and manufacturing method of semiconductor device
JP2020107671A (en) Insulation circuit board manufacturing method and insulation circuit board manufactured using the method
JP5821991B2 (en) Semiconductor module and bonding material
JP2015160224A (en) Joint material
WO2016060079A1 (en) Substrate with cooler for power modules and method for producing same
JP2012142320A (en) Semiconductor device manufacturing method