JP2012142320A - Semiconductor device manufacturing method - Google Patents

Semiconductor device manufacturing method Download PDF

Info

Publication number
JP2012142320A
JP2012142320A JP2010291915A JP2010291915A JP2012142320A JP 2012142320 A JP2012142320 A JP 2012142320A JP 2010291915 A JP2010291915 A JP 2010291915A JP 2010291915 A JP2010291915 A JP 2010291915A JP 2012142320 A JP2012142320 A JP 2012142320A
Authority
JP
Japan
Prior art keywords
substrate
solder
solder layer
metal
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010291915A
Other languages
Japanese (ja)
Inventor
Masayuki Takano
雅幸 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010291915A priority Critical patent/JP2012142320A/en
Publication of JP2012142320A publication Critical patent/JP2012142320A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor manufacturing method in which a substrate and the like and a semiconductor element and the like are bonded via a solder layer, which has excellent solderability and high strength at a bonded interface between the substrate and the like, and the solder layer.SOLUTION: A manufacturing method of a semiconductor device 10 in which a substrate 1 and a semiconductor element 5 are bonded via a solder layer 3, comprises: a step of forming a thin film 2 including a Ni metal, a Sn metal, an Au metal or either one of alloys of the metals at least on a surface 1a to be located on the solder layer side of the substrate 1 by performing a dry process such as spattering; and a step of manufacturing the semiconductor device 10 by coating a solder paste 3' on the thin film 2 formed on the surface of the substrate 1, forming the solder layer 3 with placing the semiconductor element 5 on the solder paste 3' under a high temperature atmosphere in a heating furnace, and bonding the substrate 1 and the semiconductor element 5 via the solder layer 3.

Description

本発明は、半導体装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor device.

ICチップ(シリコンチップ)やトランジスタ、ダイオードなどの半導体素子と、これが搭載される基板やダイパット等を接合してパワーモジュールや半導体パッケージなどの半導体装置を製造する方法として、はんだによる接続方法が一般に適用されている。そして、従来のはんだには鉛が85%以上含有された鉛合金(Sn−Pb系はんだなど)が使用されてきたが、昨今の環境影響負荷低減の高まりの中で、世界規模で各国、各共同体における各種製品に対する使用材料規制が厳しくなってきており、はんだ接合に際しても鉛フリー化が進展しており、Sn−Ag系はんだ、Sn−Cu系はんだ、Sn−Ag−Cu系はんだ、Sn−Zn系はんだ、Sn−Sb系はんだなどが適用されている。   As a method of manufacturing a semiconductor device such as a power module or a semiconductor package by joining a semiconductor element such as an IC chip (silicon chip), a transistor, or a diode, and a substrate or die pad on which the semiconductor element is mounted, a solder connection method is generally applied. Has been. In addition, lead alloys containing 85% or more of lead (such as Sn—Pb solder) have been used for conventional solders. The regulations on the materials used for various products in the community are becoming stricter, and lead-free soldering is also progressing at the time of soldering. Sn—Ag solder, Sn—Cu solder, Sn—Ag—Cu solder, Sn— Zn-based solder, Sn—Sb-based solder and the like are applied.

たとえば、上記する基板は銅やアルミニウム、さらにはそれらの合金などをその素材とするものであるが、たとえば銅製基板の表面にはんだ層を直接形成し、このはんだ層上に素子を搭載してリフロー炉にて接合するのが一般的なはんだ接合方法である。   For example, the substrate described above is made of copper, aluminum, or an alloy thereof. For example, a solder layer is directly formed on the surface of a copper substrate, and an element is mounted on the solder layer to perform reflow. Joining in a furnace is a common solder joining method.

Sn−Pb系はんだ等の鉛はんだを使用していた場合には、その融点が183℃程度と比較的低温であることからリフロー炉内でのはんだ接合時に基板やシリコーン素材の素子等の被接合部品に熱負荷を与え難いというメリットがあり、また、基板等との濡れ性も良好であるというメリットがあり、製品信頼性の高い半導体装置が製造されていた。   When lead solder such as Sn-Pb solder is used, its melting point is about 183 ° C, which is relatively low, so substrates to be joined such as substrates and silicon elements when soldering in a reflow furnace There is an advantage that it is difficult to apply a thermal load to a component, and there is an advantage that wettability with a substrate or the like is good, and a semiconductor device with high product reliability has been manufactured.

これに対し、たとえば銅製基板(もしくは基板表面の銅箔配線パターンなど)の表面に鉛フリーはんだであるたとえばSn−Zn系はんだを使用して素子との接合をおこなおうとした際に、基板のCuとはんだのZnが反応してCu−Zn化合物層を形成してしまい、この化合物層が150℃程度で脆弱となることからはんだ層と基板等との接合界面での接合強度の極めて低い半導体装置とならざるを得ない。   On the other hand, for example, when the surface of a copper substrate (or a copper foil wiring pattern on the surface of the substrate, etc.) is to be joined with an element using a lead-free solder such as Sn-Zn solder, Cu and solder Zn react to form a Cu—Zn compound layer, and this compound layer becomes brittle at about 150 ° C. Therefore, a semiconductor with extremely low bonding strength at the bonding interface between the solder layer and the substrate, etc. It must be a device.

そこで、特許文献1には、基板表面の銅箔表面に鉛フリーはんだ層を直接形成する代わりに、銅箔表面にNiメッキ層を形成し、さらにこのNiメッキ層表面にAuメッキ層を形成する表面処理をおこない、この表面処理層を介して鉛フリーはんだ層を形成する技術が開示されている。   Therefore, in Patent Document 1, instead of directly forming a lead-free solder layer on the surface of the copper foil on the substrate surface, an Ni plating layer is formed on the surface of the copper foil, and an Au plating layer is further formed on the surface of the Ni plating layer. A technique for performing a surface treatment and forming a lead-free solder layer via the surface treatment layer is disclosed.

この開示技術によれば、銅箔表面に形成されているNiメッキ層がバリア層となり、Sn−Zn系はんだによるはんだ付けをおこなった際に、界面の接合強度低下の要因となるCu−Zn反応層(化合物層)の形成が防止されるというものである。   According to this disclosed technique, the Ni-plated layer formed on the copper foil surface becomes a barrier layer, and the Cu-Zn reaction that causes a decrease in the bonding strength at the interface when soldering with Sn-Zn solder is performed. The formation of a layer (compound layer) is prevented.

しかしながら、本発明者等によれば、Niメッキ層は往々にしてその厚みが5〜6μmかそれ以上となること、このNiメッキ層中のNi金属と基板素材のCuやはんだ層のSn等が合金化して金属間化合物となり易く、この金属間化合物は脆いことから、これがクラックの起点となり、その進展によって基板とはんだ層の界面の強度低下の大きな要因になるといった課題が指摘されている。   However, according to the present inventors, the Ni plating layer often has a thickness of 5 to 6 μm or more, Ni metal in this Ni plating layer, Cu of the substrate material, Sn of the solder layer, etc. It has been pointed out that the alloy tends to be alloyed to become an intermetallic compound, and this intermetallic compound is brittle, so that this becomes a starting point of a crack, and that the progress causes a great factor in reducing the strength of the interface between the substrate and the solder layer.

特開2002−359459号公報Japanese Patent Laid-Open No. 2002-359459

本発明は上記する問題に鑑みてなされたものであり、基板等と半導体素子等がはんだ層を介して接合された半導体装置に関し、はんだ付け性が良好であり、かつ、基板等とはんだ層の界面の接合強度の高い半導体装置を製造する方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and relates to a semiconductor device in which a substrate or the like and a semiconductor element or the like are joined via a solder layer, and has good solderability, and the substrate or the like and the solder layer. It is an object of the present invention to provide a method for manufacturing a semiconductor device having high bonding strength at an interface.

前記目的を達成すべく、本発明による半導体装置の製造方法は、基板と半導体素子がはんだ層を介して接合されてなる半導体装置の製造方法であって、少なくとも基板のはんだ層側となる表面にドライプロセスにてNi金属、Sn金属、Au金属もしくはそれらの合金のいずれか一種からなる薄膜を形成するステップ、基板の表面に形成された前記薄層の上にはんだペーストを塗工し、はんだペーストの上に半導体素子を載置して加熱炉内の高温雰囲気下ではんだ層を形成し、はんだ層を介して基板と半導体素子を接合して半導体装置を製造するステップからなるものである。   In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention is a method of manufacturing a semiconductor device in which a substrate and a semiconductor element are joined via a solder layer, and at least on the surface on the solder layer side of the substrate. A step of forming a thin film made of any one of Ni metal, Sn metal, Au metal or an alloy thereof by a dry process; and applying a solder paste on the thin layer formed on the surface of the substrate; The semiconductor element is placed on the substrate, a solder layer is formed in a high-temperature atmosphere in a heating furnace, and the substrate and the semiconductor element are joined via the solder layer to manufacture a semiconductor device.

本発明の製造方法では、少なくとも基板の表面にNi金属、Sn金属、Au金属もしくはそれらの合金のいずれか一種からなる薄層を形成するべく、ドライプロセスを適用して当該薄層を形成するものであり、このドライプロセスとしては、PVD法(Physical Vaper Deposition 物理気相成長法)に包含される真空蒸着法やスパッタリング法などを挙げることができ、さらに、CVD法(Chemical Vaper Deposition 化学気相成長法)などを挙げることができる。   In the manufacturing method of the present invention, a dry process is applied to form a thin layer made of at least one of Ni metal, Sn metal, Au metal, or an alloy thereof on the surface of the substrate. Examples of the dry process include a vacuum deposition method and a sputtering method included in the PVD method (Physical Vapor Deposition physical vapor deposition method), and a CVD method (Chemical Vapor Deposition chemical vapor deposition). Law).

上記するPVD法やCVD法からなるドライプロセスを経ることで、電解メッキ処理等のウェットプロセスを経る場合に比して、格段に薄層の金属層を基板等表面に形成することができる。   By passing through the dry process which consists of the above-mentioned PVD method and CVD method, compared with the case where it passes through wet processes, such as an electrolytic plating process, a remarkably thin metal layer can be formed in the surfaces, such as a board | substrate.

より具体的には、電解メッキ処理等のウェットプロセスの場合には5〜6μmほどの厚みの処理膜が形成されるのに対して、ドライプロセスを経ることで数百nm以下でたとえば5nm程度の極薄の薄膜を形成することができる。   More specifically, in the case of a wet process such as an electrolytic plating process, a treatment film having a thickness of about 5 to 6 μm is formed, but by a dry process, it is several hundred nm or less, for example, about 5 nm. An extremely thin film can be formed.

そして、5〜6μmほどの厚みの処理膜が基板表面や半導体素子表面に形成された場合には、この処理膜によってはんだ濡れ性は良好になるものの、はんだ接合のための高温処理の際に処理膜を形成する金属と基板やはんだ層を形成する金属の間で双方の金属からなる金属間化合物が生成され易く、これが界面に層状に形成されることになる。そして、この層状の金属間化合物は一般に脆く、これがクラック等の起点となってはんだ層と基板の間の界面剥離の原因となり易い。そのため、本来的には、はんだ濡れ性を良好とするために基板等の表面に処理された処理層を形成する金属がはんだ接合時の高温処理の際にはんだ層等の内部に拡散してくれることで、はんだ層を形成する金属と基板を形成する金属が金属結合され、はんだ層と基板の間の界面強度の高い半導体装置となる。   When a treatment film having a thickness of about 5 to 6 μm is formed on the substrate surface or the semiconductor element surface, the treatment film improves the solder wettability, but the treatment film is processed during the high-temperature treatment for solder joining. Between the metal forming the film and the metal forming the substrate and the solder layer, an intermetallic compound composed of both metals is easily generated, and this is formed in a layered manner at the interface. The layered intermetallic compound is generally brittle, and this tends to be a starting point for cracks and the like and cause interface peeling between the solder layer and the substrate. Therefore, the metal that forms the treatment layer treated on the surface of the substrate or the like in order to improve the solder wettability inherently diffuses inside the solder layer or the like during the high-temperature treatment at the time of soldering. As a result, the metal forming the solder layer and the metal forming the substrate are metal-bonded, so that a semiconductor device having high interface strength between the solder layer and the substrate is obtained.

本発明者等によれば、基板等の表面処理をドライプロセスにて実行することで薄膜を形成することができ、たとえば200nm程度かそれ以下の薄膜の処理層とすることで、はんだ付けの際の高温雰囲気下で処理層を形成する金属がはんだ層や基板内に拡散され、金属間化合物が形成されるに十分な金属が存在しなくなることで、はんだ層と基板の界面に金属間化合物が形成されていない、もしくはわずかな金属間化合物しか形成されていない半導体装置を得ることができる。   According to the present inventors, a thin film can be formed by performing a surface treatment of a substrate or the like by a dry process. For example, a thin film treatment layer of about 200 nm or less can be used for soldering. The metal that forms the treatment layer in a high-temperature atmosphere is diffused into the solder layer and the substrate, and there is not enough metal to form an intermetallic compound, so that the intermetallic compound is formed at the interface between the solder layer and the substrate. A semiconductor device which is not formed or has only a few intermetallic compounds formed can be obtained.

はんだ層と基板の間に金属間化合物が形成されていない、もしくはわずかしか形成されていないことから、半導体素子が発熱して半導体装置を構成する基板とはんだ層が相互に異なる変位量で熱変形した際にも、高い界面強度によって界面にクラック等が生じ難く、耐久性の高い半導体装置となる。   Since no or little intermetallic compound is formed between the solder layer and the substrate, the semiconductor element generates heat and the substrate and the solder layer constituting the semiconductor device are thermally deformed with different amounts of displacement. Even in this case, the interface is not easily cracked due to the high interface strength, and the semiconductor device has high durability.

ここで、「少なくとも基板のはんだ層側となる表面」とは、基板のはんだ層側となる表面の全面、基板のはんだ層側となる表面のうちではんだ層が形成される領域、この基板表面に加えて半導体素子のはんだ層側となる表面、などを含む意味である。   Here, “at least the surface on the solder layer side of the substrate” means the entire surface of the surface on the solder layer side of the substrate, the region of the surface on the solder layer side of the substrate, where the solder layer is formed, this substrate surface In addition to the surface on the solder layer side of the semiconductor element.

製造される半導体装置は、銅やアルミニウム、もしくはこれらの合金を素材とする基板と半導体素子がはんだ層を介して接続された構造を有するものであり、この「基板」には、回路基板のほか、ダイパッド、回路基板と絶縁基板の組み合わせ、もしくは回路基板と絶縁基板と応力緩和基板の組み合わせなども含まれるものである。また、この絶縁基板には、たとえば純アルミニウムからなる基板と窒化アルミニウムからなる基盤とを積層してなる積層体(DBA)などが含まれるものである。また、半導体素子は、ICチップ(シリコンチップ)やトランジスタ、ダイオードなどの素子全般を示称している。   A semiconductor device to be manufactured has a structure in which a substrate made of copper, aluminum, or an alloy thereof and a semiconductor element are connected through a solder layer. , A die pad, a combination of a circuit board and an insulating substrate, or a combination of a circuit board, an insulating substrate, and a stress relaxation substrate. The insulating substrate includes a laminate (DBA) formed by laminating a substrate made of pure aluminum and a base made of aluminum nitride, for example. Further, the semiconductor element indicates all elements such as an IC chip (silicon chip), a transistor, and a diode.

また、半導体装置には、上記基板の下方に、ヒートシンク板や、ヒートシンク板と冷媒還流路を具備する冷却器とのアルミダイキャスト一体成形体を具備するものであってもよく、さらには、半導体素子、上記基板、ヒートシンク板等の積層体が絶縁素材(セラミックス、熱硬化性もしくは熱可塑性の樹脂素材、アルミニウムやその合金素材など)のケース内に収容されるものであっても、ケースレス構造のものであってもよい。さらに、半導体素子や基板表面に絶縁性を付与するべく、比較的高剛性なポッティング樹脂体、低剛性で可撓性に富むゲル状のポッティング樹脂体などを、半導体素子や回路基板表面上に具備する形態であってもよい。さらに、はんだ層は、Pb系はんだやPbフリーはんだの双方を包含しているが、既述するように、環境影響負荷低減を図るべく、Sn−Ag系はんだ、Sn−Cu系はんだ、Sn−Ag−Cu系はんだ、Sn−Zn系はんだ、Sn−Sb系はんだなどのPbフリーはんだからなるものが好ましい。   In addition, the semiconductor device may include a heat sink plate or an aluminum die-cast integrated molded body of a heat sink plate and a cooler including a refrigerant return path below the substrate. Even if the laminated body of the element, the substrate, the heat sink plate, etc. is housed in a case of insulating material (ceramics, thermosetting or thermoplastic resin material, aluminum or its alloy material, etc.) It may be. In addition, a relatively high-rigidity potting resin body, a low-rigidity and highly flexible gel-like potting resin body, etc. are provided on the surface of the semiconductor element or circuit board in order to provide insulation to the semiconductor element or substrate surface. It may be a form to do. Furthermore, although the solder layer includes both Pb-based solder and Pb-free solder, as described above, in order to reduce environmental impact load, Sn-Ag solder, Sn-Cu solder, Sn-- It is preferable to use a Pb-free solder such as an Ag—Cu solder, Sn—Zn solder, or Sn—Sb solder.

ドライプロセスにて形成されるNi金属等からなる「薄膜」とは、既述するように、5μm程度以上の厚みのメッキ処理層に比して格段に薄い厚みの層のことであり、たとえば、薄膜が200nm程度となることではんだ接合時の高温雰囲気下で生成され得る金属間化合物の生成量が格段に低減されることから、薄膜の厚みは200nm程度かそれ以下が好ましく、より好ましくは100nm以下がよく、形成できる範囲で可及的に薄層であるのがよい。そして、ドライプロセスを適用することで5nm程度の超極薄な薄膜を形成できることも本発明者等によって特定されており、このような超極薄の薄膜を基板上に形成することで、良好なはんだ濡れ性を保証しながら、はんだ接合時の高温雰囲気下でこの薄膜が完全に消失され、はんだ層と基板の界面は双方の金属が金属結合してなる高い接合強度を有する半導体装置となる。   As described above, the “thin film” made of Ni metal or the like formed by a dry process is a layer that is much thinner than a plating layer having a thickness of about 5 μm or more. Since the amount of intermetallic compounds that can be generated in a high-temperature atmosphere at the time of soldering is significantly reduced when the thin film is about 200 nm, the thickness of the thin film is preferably about 200 nm or less, more preferably 100 nm. The following is good, and it is preferable that the layer be as thin as possible within the range that can be formed. And it has also been specified by the present inventors that an ultra-thin thin film of about 5 nm can be formed by applying a dry process, and by forming such an ultra-thin thin film on a substrate, it is favorable While guaranteeing solder wettability, the thin film is completely lost in a high-temperature atmosphere during solder bonding, and the interface between the solder layer and the substrate becomes a semiconductor device having high bonding strength formed by metal bonding of both metals.

上記する製造方法にて製造された半導体装置は、基板の表面に半導体素子がはんだ層を介して良好にはんだ付けされるとともにこのはんだ層と基板の界面強度も高いことから、その車載機器に高性能かつ高耐久が要求される、近時のハイブリッド車や電気自動車に車載されるインバータ等への適用に最適である。   The semiconductor device manufactured by the manufacturing method described above is highly suitable for in-vehicle devices because the semiconductor element is well soldered to the surface of the substrate via the solder layer and the interface strength between the solder layer and the substrate is high. It is optimal for application to inverters mounted on recent hybrid vehicles and electric vehicles that require high performance and high durability.

以上の説明から理解できるように、本発明の半導体装置の製造方法によれば、少なくとも基板のはんだ層側となる表面にドライプロセスにてNi金属等からなる薄膜を形成し、この上にはんだ層を形成することで、薄膜によって基盤のはんだ濡れ性を保証しながら、はんだ層形成時の高温雰囲気下で薄膜を形成する金属成分をはんだ層や基板内に拡散させてはんだ層と基板の界面に脆弱な金属化合物が形成されるのを効果的に解消することができ、はんだ層を形成する金属と基板を形成する金属の金属結合を促進させ、この金属結合によって界面の接合強度の高い半導体装置を製造することができる。   As can be understood from the above description, according to the method of manufacturing a semiconductor device of the present invention, a thin film made of Ni metal or the like is formed by a dry process on at least the surface of the substrate on the solder layer side, and the solder layer is formed thereon. In this way, the metal components that form the thin film are diffused into the solder layer and the board at the interface between the solder layer and the board while guaranteeing the solder wettability of the substrate by the thin film, while the solder layer is formed in a high temperature atmosphere. A semiconductor device that can effectively eliminate the formation of a fragile metal compound, promotes the metal bond between the metal forming the solder layer and the metal forming the substrate, and has high bonding strength at the interface by this metal bond. Can be manufactured.

(a)、(b)は順に、本発明の半導体装置の製造方法を説明するフロー図である。(A), (b) is a flowchart explaining the manufacturing method of the semiconductor device of this invention in order. 図1に続いて本発明の半導体装置の製造方法を説明するフロー図であって、かつ製造された半導体装置を示す図である。FIG. 2 is a flowchart for explaining the semiconductor device manufacturing method of the present invention following FIG. 1 and showing the manufactured semiconductor device. 本発明の製造方法による半導体装置(実施例)と従来の製造方法による半導体装置(比較例)に対する液相冷熱サイクル試験の結果であって、はんだ層と基板の界面〜はんだ層の母材内におけるボイド率を測定した結果を示すグラフである。FIG. 6 is a result of a liquid-phase cooling / heating cycle test on a semiconductor device (Example) according to the manufacturing method of the present invention and a semiconductor device (Comparative Example) according to a conventional manufacturing method, in the interface between the solder layer and the substrate to the base material of the solder layer; It is a graph which shows the result of having measured the void rate. (a)は実施例の半導体素子、はんだ層および基板の液相冷熱サイクル試験後の断面写真図であり、(b)は比較例の半導体素子、はんだ層および基板の断面写真図である。(A) is the cross-sectional photograph figure after the liquid phase thermal cycle test of the semiconductor element of an Example, a solder layer, and a board | substrate, (b) is a cross-sectional photograph figure of the semiconductor element of a comparative example, a solder layer, and a board | substrate.

以下、図面を参照して本発明の実施の形態を説明する。なお、本発明の製造方法では、スパッタリング等のドライプロセスで使用する機器やリフロー炉は公知のものが適用されるものとし、それらの図示を省略している。   Embodiments of the present invention will be described below with reference to the drawings. In addition, in the manufacturing method of this invention, the apparatus and reflow furnace used by dry processes, such as sputtering, shall apply a well-known thing, and those illustration is abbreviate | omitted.

図1a、b、図2は順に、本発明の半導体装置の製造方法を説明するフロー図である。   1a, 1b, and 2 are sequential flowcharts for explaining a method of manufacturing a semiconductor device of the present invention.

まず、図1aで示すように、銅やアルミニウム、もしくはこれらの合金を素材とする基板1のうち、はんだ層側の表面1aにドライプロセスにてはんだ濡れ性を良好とするための薄膜2を形成する。   First, as shown in FIG. 1a, a thin film 2 for improving solder wettability is formed on a surface 1a on the solder layer side of a substrate 1 made of copper, aluminum, or an alloy thereof by a dry process. To do.

この基板1には、回路基板のほか、ダイパッド、回路基板と絶縁基板の組み合わせ、もしくは回路基板と絶縁基板と応力緩和基板の組み合わせなどのうちのいずれかの一種が適用でき、この絶縁基板には、たとえば純アルミニウムからなる基板と窒化アルミニウムからなる基盤とを積層してなる積層体(DBA)などが含まれる。   In addition to the circuit board, any one of a combination of a die pad, a circuit board and an insulating board, or a combination of a circuit board, an insulating board, and a stress relaxation board can be applied to the board 1. For example, a laminate (DBA) formed by laminating a substrate made of pure aluminum and a base made of aluminum nitride is included.

この薄膜2は、Ni金属、Sn金属、Au金属もしくはそれらの合金のいずれか一種から形成されるものであり、ドライプロセスとしては、PVD法のうちの真空蒸着法もしくはスパッタリング法、もしくはCVD法のいずれか一種が適用される。   The thin film 2 is formed of any one of Ni metal, Sn metal, Au metal, or an alloy thereof. As a dry process, a vacuum evaporation method or a sputtering method of a PVD method, or a CVD method is used. Either kind is applied.

また、薄膜2の厚みtは可及的に薄いのがよく、後述するように、はんだ層と基板1の界面において、薄層を形成する金属と基板1を形成する金属等の間で金属間化合物が形成されない、もしくは形成され難い厚みとして、200nm程度かそれ以下、より好ましくは100nm以下、さらにスパッタリング等で形成できる限界として5nm程度の厚みが設定される。   Further, the thickness t of the thin film 2 should be as thin as possible. As will be described later, at the interface between the solder layer and the substrate 1, the metal between the metal forming the thin layer and the metal forming the substrate 1, etc. The thickness at which the compound is not formed or is difficult to form is set to about 200 nm or less, more preferably 100 nm or less, and the thickness that can be formed by sputtering or the like is set to about 5 nm.

基板1のはんだ層側の表面1aにドライプロセスにて薄膜2が形成されたら、図1bで示すようにこの薄膜2の表面にPbフリーのSn系はんだのはんだペースト3’(はんだの金属粒子をフラックスで練ったクリームはんだなど)を塗工し、その上に半導体素子5を載置する。なお、この半導体素子5のはんだ層側の表面5aにも、基板1のはんだ層側の表面1aと同様にNi金属等の薄膜4がドライプロセスで形成されており、Ni金属の薄膜のさらに表面にAu金属の薄膜が形成されたものであってもよい。   When the thin film 2 is formed on the surface 1a on the solder layer side of the substrate 1 by the dry process, as shown in FIG. 1b, the Pb-free Sn-based solder paste 3 ′ (solder metal particles are applied on the surface of the thin film 2). (Cream solder kneaded with flux) is applied, and the semiconductor element 5 is placed thereon. A thin film 4 made of Ni metal or the like is formed on the surface 5a on the solder layer side of the semiconductor element 5 in the same manner as the surface 1a on the solder layer side of the substrate 1 by a dry process. In addition, a thin film of Au metal may be formed.

半導体素子5には、ICチップ(シリコンチップ)やトランジスタ、ダイオードなどのいずれか一種が適用できる。   As the semiconductor element 5, any one of an IC chip (silicon chip), a transistor, a diode, and the like can be applied.

図1bで示す積層体が形成されたら、これを不図示のリフロー炉内に載置し、高温雰囲気下ではんだペースト3’を加熱し、これが溶融硬化してはんだ層3が形成されることでこのはんだ層3を介して半導体素子5と基板1が接合され、図2で示すような半導体装置10が製造される。   When the laminated body shown in FIG. 1b is formed, it is placed in a reflow furnace (not shown), the solder paste 3 'is heated in a high temperature atmosphere, and this is melt-cured to form the solder layer 3. The semiconductor element 5 and the substrate 1 are joined through the solder layer 3 to manufacture the semiconductor device 10 as shown in FIG.

このリフロー炉内における高温雰囲気下において、たとえばNi金属からなる薄層2を形成するNi金属は、はんだ層3を形成するSn金属や基板1を形成するAl金属とSn−Ni系もしくはAl−Ni系の金属間化合物を形成することなく、はんだ層3や基板1内に拡散されて薄層2は解消される。これは、薄層2がたとえば200nm程度かそれ以下の薄厚であるために、金属間化合物を生成するに十分なNi金属が存在しないからである。そして、このように薄いNi金属からなる薄層2を形成するには、メッキ処理等のウェットプロセスでは不可能であり、スパッタリング等のドライプロセスが必須となるのである。   In a high-temperature atmosphere in this reflow furnace, for example, Ni metal forming the thin layer 2 made of Ni metal is Sn metal forming the solder layer 3, Al metal forming the substrate 1 and Sn—Ni-based or Al—Ni. The thin layer 2 is eliminated by diffusing into the solder layer 3 and the substrate 1 without forming an intermetallic compound. This is because there is not enough Ni metal to form an intermetallic compound because the thin layer 2 is, for example, as thin as about 200 nm or less. In order to form the thin layer 2 made of such a thin Ni metal, a wet process such as plating is not possible, and a dry process such as sputtering is essential.

Sn−Ni系の金属間化合物が形成される代わりに、はんだ層3と基板1の界面6では、はんだ層3を形成するSn金属と基板1を形成するたとえばAl金属の金属結合が促進されており、双方の素材の組み合わせによってははんだ層3のSn母材強度よりも界面強度が高くなる形態もある。   Instead of forming an Sn—Ni-based intermetallic compound, at the interface 6 between the solder layer 3 and the substrate 1, metal bonding of the Sn metal forming the solder layer 3 and the substrate 1, for example, Al metal is promoted. Depending on the combination of both materials, the interface strength may be higher than the Sn base material strength of the solder layer 3.

すなわち、薄層2によってはんだ接合時の濡れ性を良好に担保しながら、はんだ層3が形成された際にはこのはんだ層3と基板1の間に脆弱で繰り返しの冷熱サイクルによって界面剥離の起点となり得る薄層2が存在しないため、はんだ層3と基板1の界面6の接合強度は極めて高いものとなり、半導体装置10の耐久性は極めて高いものとなる。   That is, when the solder layer 3 is formed while the wettability at the time of soldering is favorably secured by the thin layer 2, the starting point of the interfacial delamination between the solder layer 3 and the substrate 1 by the brittle and repeated cooling cycle. Since there is no thin layer 2 that can be formed, the bonding strength at the interface 6 between the solder layer 3 and the substrate 1 is extremely high, and the durability of the semiconductor device 10 is extremely high.

また、半導体素子5とはんだ層3の界面7も、当初の薄層4がリフロー炉内の高温雰囲気下で消失し、界面6の場合と同様に、はんだ接合時の濡れ性を良好に担保しながらその界面強度が極めて高いものとなっている。   In addition, the interface 7 between the semiconductor element 5 and the solder layer 3 also disappears in a high-temperature atmosphere in the reflow furnace, and the wettability at the time of solder joining is ensured as in the case of the interface 6. However, the interfacial strength is extremely high.

[本発明の製造方法による半導体装置(実施例)と従来の製造方法による半導体装置(比較例)に対する液相冷熱サイクル試験とその結果]
本発明者等は、本発明の製造方法によって製造された図2で示す半導体装置(実施例)と、Ni金属が基板および半導体素子の表面にメッキ処理され、これらがはんだ層にて接合される従来の方法で製造された半導体装置(比較例)の2種類の試験体を試作した。なお、はんだ層にはPbフリーのSn系はんだを使用している。
[Liquid Phase Cooling and Cycle Test and Results for Semiconductor Device (Example) According to the Manufacturing Method of the Present Invention and Semiconductor Device (Comparative Example) According to Conventional Manufacturing Method]
The inventors of the present invention manufactured the semiconductor device shown in FIG. 2 by the manufacturing method of the present invention (Example), Ni metal is plated on the surface of the substrate and the semiconductor element, and these are joined by a solder layer. Two types of test specimens of a semiconductor device (comparative example) manufactured by a conventional method were prototyped. Note that Pb-free Sn-based solder is used for the solder layer.

実施例および比較例の試験体を不凍液(ガルデン)に浸漬し、−40℃で5分、次いで105℃で5分載置するという冷熱サイクルを3000サイクル実施する液相冷熱サイクル試験を実施した。   A liquid phase thermal cycle test was performed in which 3000 cycles of the thermal cycle in which the specimens of the examples and comparative examples were immersed in antifreeze solution (Galden) and placed at −40 ° C. for 5 minutes and then at 105 ° C. for 5 minutes were performed.

3000サイクル後のはんだ層と基板の界面の状態をX線検査装置にて画像解析し、界面〜はんだ層内に生じているクラック領域面積(ボイド領域面積)の全界面の面積に対する比率を求め、双方のボイド率の比較をおこなった。その結果を図3に示している。   The state of the interface between the solder layer and the substrate after 3000 cycles is image-analyzed with an X-ray inspection apparatus, and the ratio of the crack region area (void region area) generated in the interface to the solder layer to the total interface area is determined. The void ratios of both were compared. The result is shown in FIG.

同図より、比較例の20%に対して実施例は15%と5%もクラック領域が低減していることが実証されている。より詳細には、実施例の場合には、X線解析によって平面的には15%のクラック発生領域が確認されているが、このすべてが界面に生じているわけではなく、その一部ははんだ層の母材内部に生じているものであり、比較例のクラック発生領域の全てが界面で生じていることから、界面でのクラック率(ボイド率)の相違は実際には5%よりも大きくなっている。   From the figure, it is proved that the crack region is reduced by 15% and 5% in the example with respect to 20% in the comparative example. More specifically, in the case of the embodiment, a 15% crack generation region is confirmed in a plane by X-ray analysis, but not all of this is generated at the interface, and a part of it is soldered. The difference in crack rate (void ratio) at the interface is actually larger than 5% because all of the crack generation regions of the comparative example are generated at the interface. It has become.

また、実施例と比較例で、半導体素子、はんだ層および基板の断面を切り出してその断面写真を撮像した。図4aは実施例のものであり、これは、上記液相冷熱サイクル試験を実施した後の断面を示したものであり、図4bは比較例のものであって、液相冷熱サイクル試験をおこなっていない断面を示したものである。   Moreover, the cross section of the semiconductor element, the solder layer, and the substrate was cut out in Examples and Comparative Examples, and the cross-sectional photographs were taken. FIG. 4a shows an example, which shows a cross-section after the liquid-phase cooling cycle test was performed, and FIG. 4b shows a comparative example in which the liquid-phase cooling cycle test was performed. The cross section is not shown.

図4aより、はんだ層と基板の界面には金属間化合物の層は形成されておらず、はんだ層のSn金属と基板のAl金属が金属結合していることが確認できる。なお、この写真図で示す実施例は液相冷熱サイクル試験後のものであることから、冷熱サイクル試験によって生じたクラックを示す黒色の領域が確認できるが、冷熱サイクル試験前の状態においてはこのようなクラックは当然に生じていない。   From FIG. 4a, it can be confirmed that no intermetallic compound layer is formed at the interface between the solder layer and the substrate, and that the Sn metal of the solder layer and the Al metal of the substrate are metal-bonded. In addition, since the Example shown by this photograph figure is a thing after a liquid phase thermal cycle test, although the black area | region which shows the crack produced by the thermal cycle test can be confirmed, in the state before a thermal cycle test, it is like this. Naturally, no cracks have occurred.

一方、図4bより、基板とはんだ層の間には6μmほどの厚みのNiメッキ層が形成され、さらにその表面にSn−Ni系の金属間化合物の層が形成されており、この金属間化合物の層が冷熱サイクル過程でのクラック起点となり易く、界面強度を低下させる大きな要因となっている。   On the other hand, as shown in FIG. 4b, a Ni plating layer having a thickness of about 6 μm is formed between the substrate and the solder layer, and a Sn—Ni intermetallic compound layer is further formed on the surface. This layer is likely to become a starting point of cracks in the cooling and heating cycle process, which is a major factor for lowering the interface strength.

このように、本発明の製造方法を適用することで、基板とはんだ層の界面に金属間化合物を生成させない、もしくはその生成量を極めて少なくすることができ、双方の素材金属の金属結合を促進させることによって界面の接合強度が極めて高く、高耐久な半導体装置を得ることができる。   In this way, by applying the manufacturing method of the present invention, an intermetallic compound is not generated at the interface between the substrate and the solder layer, or the amount of the generated compound can be extremely reduced, and the metal bonding between the two metal materials is promoted. By doing so, it is possible to obtain a highly durable semiconductor device having extremely high bonding strength at the interface.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…基板、1a…はんだ層側の表面、2…薄膜、3…はんだ層、3’…はんだペースト、4…薄膜、5…半導体素子、6…基板とはんだ層の界面、7…半導体素子とはんだ層の界面、10…半導体装置 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 1a ... Solder layer side surface, 2 ... Thin film, 3 ... Solder layer, 3 '... Solder paste, 4 ... Thin film, 5 ... Semiconductor element, 6 ... Interface of board | substrate and solder layer, 7 ... Semiconductor element Interface of solder layer, 10 ... semiconductor device

Claims (4)

基板と半導体素子がはんだ層を介して接合されてなる半導体装置の製造方法であって、
少なくとも基板のはんだ層側となる表面にドライプロセスにてNi金属、Sn金属、Au金属もしくはそれらの合金のいずれか一種からなる薄膜を形成するステップ、
基板の表面に形成された前記薄層の上にはんだペーストを塗工し、はんだペーストの上に半導体素子を載置して加熱炉内の高温雰囲気下ではんだ層を形成し、はんだ層を介して基板と半導体素子を接合して半導体装置を製造するステップからなる半導体装置の製造方法。
A method of manufacturing a semiconductor device in which a substrate and a semiconductor element are bonded via a solder layer,
Forming a thin film made of any one of Ni metal, Sn metal, Au metal, or an alloy thereof by a dry process on at least a surface of the substrate on the solder layer side;
A solder paste is applied on the thin layer formed on the surface of the substrate, a semiconductor element is placed on the solder paste, and a solder layer is formed in a high-temperature atmosphere in a heating furnace. A method for manufacturing a semiconductor device comprising the steps of manufacturing a semiconductor device by bonding a substrate and a semiconductor element.
前記ドライプロセスが、PVD法のうちの真空蒸着法もしくはスパッタリング法、もしくはCVD法のうちのいずれか一種である請求項1に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the dry process is one of a vacuum vapor deposition method, a sputtering method, and a CVD method among PVD methods. 前記Ni金属からなる薄層が200nm以下の層厚である請求項1または2に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein the thin layer made of Ni metal has a layer thickness of 200 nm or less. 前記Ni金属からなる薄層が100nm以下の層厚である請求項1または2に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein the thin layer made of Ni metal has a layer thickness of 100 nm or less.
JP2010291915A 2010-12-28 2010-12-28 Semiconductor device manufacturing method Withdrawn JP2012142320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010291915A JP2012142320A (en) 2010-12-28 2010-12-28 Semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010291915A JP2012142320A (en) 2010-12-28 2010-12-28 Semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
JP2012142320A true JP2012142320A (en) 2012-07-26

Family

ID=46678332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010291915A Withdrawn JP2012142320A (en) 2010-12-28 2010-12-28 Semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP2012142320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150135285A (en) * 2013-03-29 2015-12-02 미쓰비시 마테리알 가부시키가이샤 Substrate for power modules, substrate with heat sink for power modules, and power module
US9676047B2 (en) 2013-03-15 2017-06-13 Samsung Electronics Co., Ltd. Method of forming metal bonding layer and method of manufacturing semiconductor light emitting device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676047B2 (en) 2013-03-15 2017-06-13 Samsung Electronics Co., Ltd. Method of forming metal bonding layer and method of manufacturing semiconductor light emitting device using the same
KR20150135285A (en) * 2013-03-29 2015-12-02 미쓰비시 마테리알 가부시키가이샤 Substrate for power modules, substrate with heat sink for power modules, and power module
KR102170623B1 (en) 2013-03-29 2020-10-27 미쓰비시 마테리알 가부시키가이샤 Substrate for power modules, substrate with heat sink for power modules, and power module

Similar Documents

Publication Publication Date Title
KR102459745B1 (en) Copper/ceramic bonded body, insulated circuit board, and copper/ceramic bonded body manufacturing method, insulated circuit board manufacturing method
TWI641300B (en) Jointed body and power module substrate
JP6797797B2 (en) Ceramic metal circuit board and semiconductor device using it
TWI284375B (en) Semiconductor device and manufacturing method for semiconductor device
JP5403129B2 (en) Power module substrate, power module substrate with heat sink, power module, and method for manufacturing power module substrate
TWI523724B (en) A bonding material, a method for producing the same, and a method of manufacturing the bonding structure
JP5672324B2 (en) Manufacturing method of joined body and manufacturing method of power module substrate
TWI623065B (en) Method of producing a jointed body and method of producing power module substrate
JP5725060B2 (en) Bonded body, power module substrate, and power module substrate with heat sink
KR20110033117A (en) Substrate for power module, power module, and method for producing substrate for power module
JP5523680B2 (en) Bonded body, semiconductor device, and manufacturing method of bonded body
CN109755208B (en) Bonding material, semiconductor device and manufacturing method thereof
JP6256176B2 (en) Manufacturing method of joined body, manufacturing method of power module substrate
JP5725061B2 (en) Power module substrate and power module substrate with heat sink
JP2011243752A (en) Semiconductor device manufacturing method, internal semiconductor connection member, and internal semiconductor connection member group
JP6432208B2 (en) Method for manufacturing power module substrate, and method for manufacturing power module substrate with heat sink
JP5828352B2 (en) Copper / ceramic bonding body and power module substrate
JP6819299B2 (en) Joined body, substrate for power module, manufacturing method of joined body and manufacturing method of substrate for power module
JP2019085327A (en) Bonded body and dielectric circuit board
JP6645368B2 (en) Joint body, power module substrate, method of manufacturing joined body, and method of manufacturing power module substrate
JP6031784B2 (en) Power module substrate and manufacturing method thereof
JP2012142320A (en) Semiconductor device manufacturing method
JP5904257B2 (en) Power module substrate manufacturing method
TWI708754B (en) Bonded body, power module substrate, power mosule, method of producing bonded body and method of producing power module substrate
JP6928297B2 (en) Copper / ceramic joints and insulated circuit boards

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140304