JP2015167946A - Micro-nano bubble generating device - Google Patents

Micro-nano bubble generating device Download PDF

Info

Publication number
JP2015167946A
JP2015167946A JP2014062631A JP2014062631A JP2015167946A JP 2015167946 A JP2015167946 A JP 2015167946A JP 2014062631 A JP2014062631 A JP 2014062631A JP 2014062631 A JP2014062631 A JP 2014062631A JP 2015167946 A JP2015167946 A JP 2015167946A
Authority
JP
Japan
Prior art keywords
liquid
gas
micro
tank
nano bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014062631A
Other languages
Japanese (ja)
Other versions
JP5802878B2 (en
Inventor
哲男 平賀
Tetsuo Hiraga
哲男 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRIBIOX LAB KK
TRIBIOX LABORATORIES KK
Original Assignee
TRIBIOX LAB KK
TRIBIOX LABORATORIES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRIBIOX LAB KK, TRIBIOX LABORATORIES KK filed Critical TRIBIOX LAB KK
Priority to JP2014062631A priority Critical patent/JP5802878B2/en
Publication of JP2015167946A publication Critical patent/JP2015167946A/en
Application granted granted Critical
Publication of JP5802878B2 publication Critical patent/JP5802878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a micro-nano bubble generating device that can efficiently generate micro-nano bubbles.SOLUTION: A micro-nano bubble generating device 10 includes: a gas-liquid generation tank 12 having multiple liquid injection holes 11 with cylindrical inner surfaces and for injecting liquid into an inner circumference tangential direction, having a short-circuiting wall 15 in one end side, and a gas-liquid outlet 16 on the other end side; an outer shell tank 13 at least partially covering the gas-liquid generation tank 12, and injecting the liquid supplied from a liquid feed port 21 from the liquid injection holes 11 to the gas-liquid generation tank 12; and gas supply means 14 for supplying gas to the gas-liquid generation tank 12. The micro-nano bubble generating device generates a swirl flow of the liquid turning along the cylindrical inner surface in the gas-liquid generation tank 12 by the liquid injected from the outer shell tank 13, and discharges it from the gas-liquid outlet 16. A gap 20 formed by a sidewall 18 forming a circumferential direction outer surface of the gas-liquid generation tank 12 and an inner surface 19 of the outer shell tank is assumed as a liquid flow path. The gap 20 is constituted to become narrow according to the reduction of a liquid flow rate supplied from the liquid feed port 21.

Description

本発明は、液体中でマイクロナノバブルを発生させるマイクロナノバブル発生装置に関する。  The present invention relates to a micro / nano bubble generating apparatus that generates micro / nano bubbles in a liquid.

近年、様々な技術分野において、液体中に微細気泡を発生させる技術が利用されており、例えば、水中にマイクロオーダー或いはナノオーダーの微細気泡を含有するマイクロナノバブル含有水を用いて、水生生物の育成や、汚染水の水質浄化、殺菌等を行なう技術が知られている。このようなマイクロナノバブルを発生させるための装置が種々提案されている。  In recent years, technologies for generating fine bubbles in liquids have been used in various technical fields. For example, aquatic organisms are bred using water containing micro-nano bubbles containing micro- or nano-order fine bubbles in water. There are also known techniques for purifying and sterilizing contaminated water. Various devices for generating such micro-nano bubbles have been proposed.

このようなマイクロナノバブルを発生させる装置として、図4に示すように、流体導入路(液体供給口)97から送り込まれた加圧液体は間隙S1から液体注入孔91aへ、間隙S2から液体注入孔91bへ、間隙S3から液体注入孔91cへ、間隙S4から液体注入孔91dへ順次通過し、各液体注入孔で気液発生槽92に送り込まれなかった液体は再び間隙S1で流体導入路97から送り込まれた加圧液体と一緒になる。  As an apparatus for generating such micro-nano bubbles, as shown in FIG. 4, the pressurized liquid fed from the fluid introduction path (liquid supply port) 97 is transferred from the gap S1 to the liquid injection hole 91a, and from the gap S2 to the liquid injection hole. The liquid that has sequentially passed from the gap S3 to the liquid injection hole 91c, from the gap S4 to the liquid injection hole 91d, and has not been sent to the gas-liquid generation tank 92 through the liquid injection hole 97 again from the fluid introduction path 97 through the gap S1. Together with the pressurized liquid that was sent.

各液体注入孔から送り込まれた液体は気液発生槽92で旋回流となり、その旋回流の旋回軸に発生する負圧部分に対して気体を気体導入口(気体供給口)94から導入することにより、導出される液体中にマイクロナノバブルを発生させる装置が開示されている(特許文献1参照)。  The liquid sent from each liquid injection hole becomes a swirl flow in the gas-liquid generating tank 92, and a gas is introduced from a gas introduction port (gas supply port) 94 to a negative pressure portion generated on the swirl axis of the swirl flow. Discloses an apparatus for generating micro-nano bubbles in a liquid to be derived (see Patent Document 1).

特開2008−290011号公報JP 2008-290011 A

しかしながら、上述のマイクロナノバブル発生装置では、間隙S1を移動する加圧液体の一部を液体注入孔91aに送り込むと、間隙S2に残る液体の流量は減少するので液体圧が下がり、間隙S2から液体注入孔91bに送り込める液体の流量は液体注入孔91aに比べて減少する。同様に液体注入孔91c、液体注入孔91dと更に送り込める液体の流量は減少してしまい、効率良くマイクロナノバブルを発生できないという問題があった。  However, in the above-described micro / nano bubble generating device, when a part of the pressurized liquid moving through the gap S1 is sent to the liquid injection hole 91a, the flow rate of the liquid remaining in the gap S2 is reduced, so that the liquid pressure is lowered and the liquid is discharged from the gap S2. The flow rate of the liquid fed into the injection hole 91b is smaller than that of the liquid injection hole 91a. Similarly, the flow rate of the liquid that can be further fed to the liquid injection hole 91c and the liquid injection hole 91d is reduced, and there is a problem that micro-nano bubbles cannot be generated efficiently.

本発明は、この様な従来の問題点を解決するものであり、液体供給口から液体の流れに沿って順次各液体注入孔に流れ込む液体の流量が減少することなく、どの液体注入孔からも概ね均一の流量で液体を気液発生槽に注入でき、効率よくマイクロナノバブルを発生できるマイクロナノバブル発生装置を提供することを目的とする。  The present invention solves such a conventional problem, and the flow rate of the liquid flowing into each liquid injection hole sequentially from the liquid supply port along the liquid flow does not decrease, and any liquid injection hole can be used. It is an object of the present invention to provide a micro / nano bubble generator capable of injecting a liquid into a gas / liquid generating tank at a substantially uniform flow rate and generating micro / nano bubbles efficiently.

本発明のマイクロナノバブル発生装置は、内面が円筒形状で、前記内面の円周接線方向に液体を注入する複数の液体注入孔を有し、一端側に短絡壁を有し、他端側に気液排出口を有する気液発生槽と、気液発生槽を少なくとも部分的に覆い、液体供給口から供給される液体を気液発生槽に対して液体注入孔から注入する外殻槽と、気液発生槽に対して気体を供給する気体供給手段とを有する。  The micro / nano bubble generating device of the present invention has a cylindrical inner surface, a plurality of liquid injection holes for injecting liquid in the circumferential tangential direction of the inner surface, a short-circuit wall on one end side, and a gas on the other end side. A gas-liquid generating tank having a liquid discharge port, an outer shell tank that at least partially covers the gas-liquid generating tank, and injects liquid supplied from the liquid supply port into the gas-liquid generating tank through the liquid injection hole; Gas supply means for supplying gas to the liquid generation tank.

外殻槽から注入した液体により気液発生槽の中に円筒の内面に沿って液体が旋回する旋回流を発生させ、気体供給手段によって供給した気体を前記旋回流の剪断力によりマイクロナノバブル化して、マイクロナノバブル化した気体と供給した液体とが混合した気液を生成して気液排出口より排出するマイクロナノバブル発生装置である。  The liquid injected from the outer shell tank generates a swirling flow in which the liquid swirls along the inner surface of the cylinder in the gas-liquid generating tank, and the gas supplied by the gas supply means is converted into micro-nano bubbles by the shearing force of the swirling flow. This is a micro / nano bubble generating device that generates a gas / liquid in which a micro-nano bubbled gas and a supplied liquid are mixed and discharges the gas / liquid through a gas / liquid discharge port.

気液発生槽の周方向外面を形成する側壁と外殻槽の内面とで形成される間隙を液体の流路とし、前記間隙は、液体供給口から供給される液体の流量の減少に応じて狭くなる様に構成されている。  A gap formed between the side wall forming the outer circumferential surface of the gas-liquid generating tank and the inner surface of the outer shell tank is used as a liquid flow path, and the gap is in accordance with a decrease in the flow rate of the liquid supplied from the liquid supply port. It is configured to be narrow.

本発明によれば、液体供給口から供給される液体を外殻槽で無駄に回流させることなく、複数の液体注入孔から概ね均一の流量で気液発生槽に注入されるので、効率よくマイクロナノバブルを発生させることができる。  According to the present invention, the liquid supplied from the liquid supply port is injected into the gas-liquid generation tank at a substantially uniform flow rate from the plurality of liquid injection holes without wastefully circulating the liquid in the outer shell tank. Nano bubbles can be generated.

本発明の第1の実施の形態に係るマイクロナノバブル発生装置の構成を説明する為の図The figure for demonstrating the structure of the micro nano bubble generator which concerns on the 1st Embodiment of this invention 本発明の第2の実施の形態に係るマイクロナノバブル発生装置の構成を説明する為の図The figure for demonstrating the structure of the micro nano bubble generator which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係るマイクロナノバブル発生装置の構成を説明する為の図The figure for demonstrating the structure of the micro nano bubble generator which concerns on the 3rd Embodiment of this invention. 従来のマイクロナノバブル発生装置の構成を示す図The figure which shows the structure of the conventional micro nano bubble generator

(第1の実施の形態)
以下、本発明の第1の実施の形態について図面を参照して詳細に説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.

図1(a)は、本発明の第1の実施の形態に係るマイクロナノバブル発生装置の斜視図であり、図1(b)は液体注入孔11a,11bが形成された位置で気液発生槽12を軸方向と直交する方向に沿って切断した断面図であり、図1(c)は気液発生槽を軸方向に沿って切断した断面図である。
マイクロナノバブル発生装置10は、気液発生槽12と、外殻槽13と、気体供給部14とを備える。
FIG. 1A is a perspective view of the micro / nano bubble generating apparatus according to the first embodiment of the present invention, and FIG. 1B is a gas-liquid generating tank at a position where the liquid injection holes 11a and 11b are formed. 12 is a cross-sectional view taken along a direction orthogonal to the axial direction, and FIG. 1C is a cross-sectional view taken along a gas-liquid generating tank along the axial direction.
The micro / nano bubble generating apparatus 10 includes a gas / liquid generating tank 12, an outer shell tank 13, and a gas supply unit 14.

液体である水を予め加圧して液体供給部21から供給し、その水に対して、気体である空気を予め加圧して気体供給部14から供給して、空気泡混じりの水を液体供給口17に供給する様に構成している。  Water that is liquid is pre-pressurized and supplied from the liquid supply unit 21, and air that is gas is pre-pressurized and supplied from the gas supply unit 14 to the water to supply water mixed with air bubbles to the liquid supply port 17 is configured so as to be supplied to 17.

気液発生槽12は、内面が円筒形状で、内面の円周接線方向に水を注入する2本の液体注入孔11a,11bを有し、一端側に短絡壁15を有し、他端側に気液排出口16を有する。外殻槽13は、気液発生槽12を部分的に覆い、液体供給口17から供給される気泡混じりの水を気液発生槽12に対して、液体注入孔11a,11bから注入する。  The gas-liquid generating tank 12 has a cylindrical inner surface, has two liquid injection holes 11a and 11b for injecting water in the circumferential tangential direction of the inner surface, has a short-circuit wall 15 on one end side, and has the other end side. Has a gas-liquid discharge port 16. The outer shell tank 13 partially covers the gas-liquid generation tank 12 and injects water mixed with bubbles supplied from the liquid supply port 17 into the gas-liquid generation tank 12 through the liquid injection holes 11a and 11b.

気液発生槽12の周方向外面を形成する側壁18と外殻槽13の内面19とで形成される間隙20を水の流路とし、気液発生槽12の円筒軸芯を外殻槽13の円筒軸芯からずらせて、間隙20を、液体供給口17から供給される水の流量の減少に応じて狭くなる様にしている。  A gap 20 formed between the side wall 18 forming the circumferential outer surface of the gas-liquid generating tank 12 and the inner surface 19 of the outer shell tank 13 is used as a water flow path, and the cylindrical axis of the gas-liquid generating tank 12 is used as the outer shell tank 13. The clearance 20 is shifted from the cylindrical shaft core so as to narrow as the flow rate of water supplied from the liquid supply port 17 decreases.

外殻槽13から注入した空気泡混じりの水は液体注入孔11a,11bから概ね均等な流量で気液発生槽12の中に円筒の内面に沿って空気泡混じりの水が旋回する旋回流を発生させ、水に含まれた空気泡を旋回流の剪断力によりマイクロナノバブル化して、マイクロナノバブル化した空気と水とが混合した気液を生成して気液排出口16より水槽中(図示せず)に排出する。  The air-bubble mixed water injected from the outer shell tank 13 has a swirl flow in which the air-bubble mixed water swirls along the inner surface of the cylinder into the gas-liquid generating tank 12 at a substantially uniform flow rate from the liquid injection holes 11a and 11b. The air bubbles contained in the water are made into micro / nano bubbles by the shearing force of the swirling flow to generate gas / liquid in which the micro / nano bubbled air and water are mixed, and from the gas / liquid discharge port 16 into the water tank (not shown). )).

以上説明した様に、本実施の形態によれば、気液発生槽12の円筒軸芯を外殻槽13の円筒軸芯からずらせて、間隙20を、液体供給口17から供給される水の流量の減少に応じて狭くなる様にしているので、液体供給口17から供給される水を外殻槽で無駄に回流させることなく、液体注入孔11a,11bから均一の流量で気液発生槽12に注入されるので、効率よくマイクロナノバブルを発生させることができる。
以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されることはない。
As described above, according to the present embodiment, the cylindrical axis of the gas-liquid generating tank 12 is shifted from the cylindrical axis of the outer shell tank 13 so that the gap 20 is supplied with water supplied from the liquid supply port 17. Since the flow rate is reduced in accordance with the decrease in the flow rate, the gas / liquid generating tank is supplied at a uniform flow rate from the liquid injection holes 11a and 11b without wastefully circulating the water supplied from the liquid supply port 17 in the outer shell tank. Therefore, micro-nano bubbles can be generated efficiently.
The above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this.

例えば、液体は水に限定されない。塩酸・硫酸・硝酸・炭酸・リン酸等の無機酸、乳酸・酢酸・ギ酸・クエン酸・シュウ酸等の有機酸、水酸化ナトリウム・水酸化カリウム・水酸化カルシウム・水酸化バリウム・アンモニア等の塩基、塩化ナトリウム等の塩類や、上記が混ざったものとして海水等の水溶液、マヨネーズ等のエマルジョン、血液等の懸濁液、塗料や乳等のコロイド、メタノール・エタノール・プロパノール・イソプロパノール等のアルコール類、アセトン・ヘキサン・トルエン・テトラクロロエチレン・酢酸メチル・酢酸エチル等の有機溶媒や石油等の鉱油でもよい。  For example, the liquid is not limited to water. Inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, phosphoric acid, organic acids such as lactic acid, acetic acid, formic acid, citric acid, oxalic acid, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, ammonia, etc. Salts such as bases and sodium chloride, aqueous solutions such as seawater, emulsions such as mayonnaise, suspensions such as blood, colloids such as paint and milk, alcohols such as methanol, ethanol, propanol, and isopropanol Organic solvents such as acetone, hexane, toluene, tetrachloroethylene, methyl acetate, and ethyl acetate, and mineral oils such as petroleum may be used.

さらに、気体は空気に限定されない。水素・重水素・酸素・オゾン・窒素・二酸化炭素・塩素・二酸化窒素・一酸化窒素・二酸化硫黄・一酸化硫黄・硫化水素やヘリウム・アルゴン・ネオン等の希ガスでもよい。さらに、空気泡混じりの水の供給方法は、水と空気を別々に加圧してから混ぜる方法に限定されない。加圧前の水と空気を混合してからポンプ等で加圧しても良い。この方法によれば、ポンプの旋回流により空気泡を予め微細にでき、マイクロナノバブルの生成効率や品質を向上できる。  Furthermore, the gas is not limited to air. Rare gases such as hydrogen, deuterium, oxygen, ozone, nitrogen, carbon dioxide, chlorine, nitrogen dioxide, nitrogen monoxide, sulfur dioxide, sulfur monoxide, hydrogen sulfide, helium, argon, and neon may be used. Furthermore, the method of supplying water mixed with air bubbles is not limited to the method of mixing after pressurizing water and air separately. You may pressurize with a pump etc. after mixing the water and air before pressurization. According to this method, the air bubbles can be made fine in advance by the swirling flow of the pump, and the generation efficiency and quality of the micro / nano bubbles can be improved.

さらに、液体注入孔の数は2個に限定されず、2個以上であれば良い。また、液体注入孔の配置は気液発生槽12を軸方向と直交する1面に限定されず、複数面に配置しても良い。  Furthermore, the number of liquid injection holes is not limited to two, and may be two or more. Further, the arrangement of the liquid injection holes is not limited to one surface orthogonal to the axial direction of the gas-liquid generating tank 12, but may be disposed on a plurality of surfaces.

さらに、気体供給手段は気体供給部14限定されない。第2の実施の形態及び第3の実施の形態で後述する短絡壁に設けた気体供給口でもよい。さらに、液体注入孔11a,11bの径はストレート状に限定されない。第3の実施の形態で後述する気液発生槽12の壁の内面側が外面側より狭くしても良い。  Further, the gas supply means is not limited to the gas supply unit 14. The gas supply port provided in the short circuit wall mentioned later by 2nd Embodiment and 3rd Embodiment may be sufficient. Furthermore, the diameter of the liquid injection holes 11a and 11b is not limited to a straight shape. The inner surface side of the wall of the gas-liquid generating tank 12 described later in the third embodiment may be narrower than the outer surface side.

さらに、後述する第2の実施の形態の様に、気液排出口16の近傍に、先端を気液排出口16に向けて、円錐体,多角錐体,底面開口で内部が空洞の円錐体か多角錐体のキャップ若しくは先端が開口の円錐体か多角錐体のキャップを支持体で気液発生槽12等に固定設置してもよい。これにより、水槽中へのマイクロナノバブルの拡散を促進し、マイクロナノバブルの合一を低減できる。
(第2の実施の形態)
以下、本発明の第2の実施の形態について図面を参照して詳細に説明する。
Further, as in the second embodiment to be described later, in the vicinity of the gas-liquid discharge port 16, the tip is directed to the gas-liquid discharge port 16, and a cone, a polygonal pyramid, and a bottom opening with a hollow inside. Alternatively, a polygonal pyramid cap or a cone with an open end or a polygonal pyramid cap may be fixedly installed on the gas-liquid generating tank 12 or the like with a support. Thereby, spreading | diffusion of the micro nano bubble into a water tank is accelerated | stimulated, and coalescence of a micro nano bubble can be reduced.
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described in detail with reference to the drawings.

図2(a)は、本発明の第2の実施の形態に係るマイクロナノバブル発生装置の液体注入孔31a,31b,31c,31dが形成された位置で気液発生槽32を軸方向と直交する方向に沿って切断した断面図であり、図2(b)は気液発生槽32を軸方向に沿って切断した断面図である。
マイクロナノバブル発生装置30は、気液発生槽32と、外殻槽33と、気体供給口34とを備える。
FIG. 2 (a) shows the gas-liquid generating tank 32 orthogonal to the axial direction at the position where the liquid injection holes 31a, 31b, 31c, 31d of the micro / nano bubble generating apparatus according to the second embodiment of the present invention are formed. It is sectional drawing cut | disconnected along the direction, FIG.2 (b) is sectional drawing which cut | disconnected the gas-liquid generating tank 32 along the axial direction.
The micro / nano bubble generating device 30 includes a gas / liquid generating tank 32, an outer shell tank 33, and a gas supply port 34.

気液発生槽32は、内面が円筒形状で、内面の円周接線方向に水を注入する4本の液体注入孔31a,31b,31c,31dを有し、一端側に短絡壁35を有し、他端側に気液排出口36を有する。外殻槽33は、気液発生槽32を部分的に覆い、液体供給口37から供給される水を気液発生槽32に対して、液体注入孔31a,31b,31c,31dから注入する。  The gas-liquid generating tank 32 has a cylindrical inner surface, has four liquid injection holes 31a, 31b, 31c, 31d for injecting water in the circumferential tangential direction of the inner surface, and has a short-circuit wall 35 on one end side. The other end side has a gas-liquid discharge port 36. The outer shell tank 33 partially covers the gas-liquid generation tank 32 and injects water supplied from the liquid supply port 37 into the gas-liquid generation tank 32 from the liquid injection holes 31a, 31b, 31c, 31d.

気体供給口34は、短絡壁35に設けられている。気液発生槽32の周方向外面を形成する側壁38と外殻槽33の内面39とで形成される間隙40を水の流路とし、外殻槽33の円筒内面39の形状を円筒から変形させて、間隙40を、液体供給口37から供給される水の流量の減少に応じて狭くなる様にしている。  The gas supply port 34 is provided in the short-circuit wall 35. The gap 40 formed by the side wall 38 forming the outer circumferential surface of the gas-liquid generating tank 32 and the inner surface 39 of the outer shell tank 33 is used as a water flow path, and the shape of the cylindrical inner surface 39 of the outer shell tank 33 is deformed from the cylinder. Thus, the gap 40 is made narrower as the flow rate of water supplied from the liquid supply port 37 decreases.

外殻槽33から注入した水は液体注入孔31a,31b,31c,31dから概ね均等な流量で気液発生槽32の中に円筒の内面に沿って水が旋回する旋回流を発生させ、気体供給口34から供給された空気を旋回流の剪断力によりマイクロナノバブル化して、マイクロナノバブル化した空気と水とが混合した気液を生成して気液排出口36より水槽中(図示せず)に排出する。  The water injected from the outer shell tank 33 generates a swirling flow in which water swirls along the inner surface of the cylinder in the gas-liquid generating tank 32 at a substantially uniform flow rate from the liquid injection holes 31a, 31b, 31c, 31d. The air supplied from the supply port 34 is made into micro / nano bubbles by the shearing force of the swirling flow to generate gas / liquid in which the micro-nano bubble-formed air and water are mixed, and the gas / liquid discharge port 36 in the water tank (not shown). To discharge.

気液排出口36の近傍に、先端を気液排出口36に向けて、先端が開口の円錐体のキャップ45を支持体46で気液発生槽32に固定設置してある。これにより、水槽中へのマイクロナノバブルの拡散を促進し、マイクロナノバブルの合一を低減できる。  In the vicinity of the gas-liquid discharge port 36, a conical cap 45 having an opening at the tip is fixed to the gas-liquid generation tank 32 by a support 46 with the tip directed toward the gas-liquid discharge port 36. Thereby, spreading | diffusion of the micro nano bubble into a water tank is accelerated | stimulated, and coalescence of a micro nano bubble can be reduced.

以上説明した様に、本実施の形態によれば、外殻槽33の円筒内面39の形状を円筒から変形させて、間隙40を、液体供給口37から供給される水の流量の減少に応じて狭くなる様にしているので、液体供給口37から供給される水を外殻槽で無駄に回流させることなく、液体注入孔31a,31b,31c,31dから概ね均一の流量で気液発生槽32に注入されるので、効率よくマイクロナノバブルを発生させることができる。
以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されることはない。
As described above, according to the present embodiment, the shape of the cylindrical inner surface 39 of the outer shell tank 33 is deformed from the cylinder, and the gap 40 is made to correspond to a decrease in the flow rate of water supplied from the liquid supply port 37. Therefore, the water supplied from the liquid supply port 37 is not circulated unnecessarily in the outer shell tank, and the gas-liquid generating tank is supplied at a substantially uniform flow rate from the liquid injection holes 31a, 31b, 31c, 31d. Therefore, micro-nano bubbles can be generated efficiently.
The above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this.

例えば、液体は第1の実施の形態同様に水に限定されない。さらに、気体は第1の実施の形態同様に空気に限定されない。さらに、液体注入孔の数は4個に限定されず、2個以上であれば良い。また、液体注入孔の配置は第1の実施の形態同様に気液発生槽12を軸方向と直交する1面に限定されない。  For example, the liquid is not limited to water as in the first embodiment. Further, the gas is not limited to air as in the first embodiment. Furthermore, the number of liquid injection holes is not limited to four, and may be two or more. Further, the arrangement of the liquid injection holes is not limited to one surface perpendicular to the axial direction of the gas-liquid generation tank 12 as in the first embodiment.

さらに、気体供給手段は短絡壁に設けた気体供給口に限定されない。第1の実施の形態同様の構成でもよい。さらに、液体注入孔31a,31b,31c,31dの径はストレート状に限定されない。第3の実施の形態で後述する気液発生槽32の壁の内面側が外面側より狭くしても良い。  Further, the gas supply means is not limited to the gas supply port provided in the short-circuit wall. A configuration similar to that of the first embodiment may be used. Furthermore, the diameters of the liquid injection holes 31a, 31b, 31c, and 31d are not limited to a straight shape. The inner surface side of the wall of the gas-liquid generating tank 32 described later in the third embodiment may be narrower than the outer surface side.

さらに、キャップ45は先端が開口の円錐体に限定されず多角錐体でも良く、また、先端が開口してなくても良く、底面開口で内部が空洞のキャップでなく円錐体や他角錐体でも良い。
さらに、外殻槽33の円筒内面39の形状に応じて円筒肉厚を例えば均一となる様に円筒外面の形状も変形させても良い。
(第3の実施の形態)
以下、本発明の第3の実施の形態について図面を参照して詳細に説明する。
Further, the cap 45 is not limited to a cone having an opening at the tip, and may be a polygonal cone, or may not have an opening at the tip, and may be a cone or other pyramid, not a cap with a hollow inside at the bottom. good.
Furthermore, the shape of the cylindrical outer surface may be changed so that the cylindrical wall thickness becomes uniform, for example, according to the shape of the cylindrical inner surface 39 of the outer shell tank 33.
(Third embodiment)
Hereinafter, a third embodiment of the present invention will be described in detail with reference to the drawings.

図3(a)は、本発明の第3の実施の形態に係るマイクロナノバブル発生装置の液体注入孔51a,51b,51c,51dが形成された位置で気液発生槽52を軸方向と直交する方向に沿って切断した断面図であり、図3(b)は気液発生槽52を軸方向に沿って切断した断面図である。
マイクロナノバブル発生装置50は、気液発生槽52と、外殻槽53と、気体供給口54とを備える。
FIG. 3 (a) shows the gas-liquid generating tank 52 orthogonal to the axial direction at the position where the liquid injection holes 51a, 51b, 51c, 51d of the micro / nano bubble generating apparatus according to the third embodiment of the present invention are formed. It is sectional drawing cut | disconnected along the direction, FIG.3 (b) is sectional drawing which cut | disconnected the gas-liquid generating tank 52 along the axial direction.
The micro / nano bubble generating device 50 includes a gas / liquid generating tank 52, an outer shell tank 53, and a gas supply port 54.

気液発生槽52は、内面が円筒形状で、内面の円周接線方向に水を注入する4本の液体注入孔51a,51b,51c,51dを有し、一端側に短絡壁55を有し、他端側に気液排出口56を有する。液体注入孔51a,51b,51c,51dの径は、気液発生槽52の壁の内面側が外面側より狭くなっている。外殻槽53は、気液発生槽52を部分的に覆い、液体供給口57から供給される水を気液発生槽52に対して、液体注入孔51a,51b,51c,51dから注入する。  The gas-liquid generation tank 52 has a cylindrical inner surface, has four liquid injection holes 51a, 51b, 51c, 51d for injecting water in the circumferential tangential direction of the inner surface, and has a short-circuit wall 55 on one end side. The gas-liquid discharge port 56 is provided on the other end side. The diameters of the liquid injection holes 51a, 51b, 51c, 51d are narrower on the inner surface side of the wall of the gas-liquid generating tank 52 than on the outer surface side. The outer shell tank 53 partially covers the gas-liquid generating tank 52 and injects water supplied from the liquid supply port 57 into the gas-liquid generating tank 52 from the liquid injection holes 51a, 51b, 51c, 51d.

気体供給口54は、短絡壁55に設けられている。気液発生槽52の周方向外面を形成する側壁58と外殻槽53の内面59とで形成される間隙60を水の流路とし、気液発生槽52の円筒外面58の形状を円筒から変形させて、間隙60を、液体供給口57から供給される水の流量の減少に応じて狭くなる様にしている。  The gas supply port 54 is provided in the short-circuit wall 55. A gap 60 formed by the side wall 58 forming the outer circumferential surface of the gas-liquid generating tank 52 and the inner surface 59 of the outer shell tank 53 is used as a water flow path, and the shape of the cylindrical outer surface 58 of the gas-liquid generating tank 52 is changed from the cylinder. By deforming, the gap 60 is narrowed in accordance with a decrease in the flow rate of water supplied from the liquid supply port 57.

外殻槽53から注入した水は概ね均等な流量で液体注入孔51a,51b,51c,51dに送り込まれ、更に各液体注入孔の径は気液発生槽の壁の内面側が外面側より狭いので気液発生槽52に注入される水の流速は増し、気液発生槽52の中に円筒の内面に沿って水が旋回する旋回流を発生させ、気体供給口54から供給された空気を旋回流の剪断力によりマイクロナノバブル化して、マイクロナノバブル化した空気と水とが混合した気液を生成して気液排出口56より水槽中(図示せず)に排出する。  Water injected from the outer shell tank 53 is fed into the liquid injection holes 51a, 51b, 51c, 51d at a substantially uniform flow rate, and the diameter of each liquid injection hole is narrower on the inner surface side of the gas-liquid generation tank wall than on the outer surface side. The flow rate of water injected into the gas-liquid generating tank 52 is increased, and a swirling flow in which water swirls along the inner surface of the cylinder is generated in the gas-liquid generating tank 52, and the air supplied from the gas supply port 54 is swirled. Micro-nano bubbles are generated by the shearing force of the flow, and a gas-liquid mixture of the micro-nano-bubbled air and water is generated and discharged from the gas-liquid discharge port 56 into a water tank (not shown).

以上説明した様に、本実施の形態によれば、気液発生槽52の円筒外面58の形状を円筒から変形させて、間隙60を、液体供給口57から供給される水の流量の減少に応じて狭くなる様にしているので、液体供給口57から供給される水を外殻槽で無駄に回流させることなく、液体注入孔51a,51b,51c,51dから概ね均一の流量で気液発生槽52に注入されるので、効率よくマイクロナノバブルを発生させることができる。
以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されることはない。
As described above, according to the present embodiment, the shape of the cylindrical outer surface 58 of the gas-liquid generating tank 52 is deformed from the cylinder, so that the gap 60 is reduced in the flow rate of water supplied from the liquid supply port 57. Therefore, the liquid supplied from the liquid supply port 57 is generated in a substantially uniform flow rate from the liquid injection holes 51a, 51b, 51c, 51d without wastefully circulating the water supplied from the liquid supply port 57 in the outer shell tank. Since it is injected into the tank 52, micro-nano bubbles can be generated efficiently.
The above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this.

例えば、液体は第1の実施の形態及び第2の実施の形態同様に水に限定されない。さらに、気体は第1の実施の形態及び第2の実施の形態同様に空気に限定されない。さらに、液体注入孔の数は4個に限定されず、2個以上であれば良い。また、液体注入孔の配置は第1の実施の形態及び第2の実施の形態同様に気液発生槽12を軸方向と直交する1面に限定されない。  For example, the liquid is not limited to water as in the first embodiment and the second embodiment. Further, the gas is not limited to air as in the first embodiment and the second embodiment. Furthermore, the number of liquid injection holes is not limited to four, and may be two or more. Further, the arrangement of the liquid injection holes is not limited to one surface perpendicular to the axial direction of the gas-liquid generating tank 12 as in the first and second embodiments.

さらに、気体供給手段は短絡壁に設けた気体供給口に限定されない。第1の実施の形態同様の構成でもよい。さらに、液体注入孔51a,51b,51c,51dの径は気液発生槽52の壁の内面側が外面側より狭く形状に限定されない。第1の実施の形態及び第2の実施の形態同様にストレート状でも良い。  Further, the gas supply means is not limited to the gas supply port provided in the short-circuit wall. A configuration similar to that of the first embodiment may be used. Furthermore, the diameter of the liquid injection holes 51a, 51b, 51c, 51d is not limited to a shape in which the inner surface side of the wall of the gas-liquid generating tank 52 is narrower than the outer surface side. Like the first embodiment and the second embodiment, a straight shape may be used.

さらに、第2の実施の形態の様に、気液排出口56の近傍に、先端を気液排出口56に向けて、円錐体,多角錐体,底面開口で内部が空洞の円錐体か多角錐体のキャップ若しくは先端が開口の円錐体か多角錐体のキャップを支持体で気液発生槽52等に固定設置してもよい。  Further, as in the second embodiment, a conical body, a polygonal pyramid, a bottom surface opening and a conical body with a hollow inside may be formed in the vicinity of the gas-liquid discharge port 56 with the tip directed toward the gas-liquid discharge port 56. A pyramid cap or a cone cone with an open end or a polygonal cone cap may be fixedly installed in the gas-liquid generating tank 52 or the like with a support.

さらに、外殻槽53の円筒内面59の形状を円筒から変形させ、且つ、気液発生槽52の円筒外面58の形状も円筒から変形させて、間隙60を、液体供給口57から供給される水の流量の減少に応じて狭くなる様にしても良い。  Further, the shape of the cylindrical inner surface 59 of the outer shell tank 53 is deformed from the cylinder, and the shape of the cylindrical outer surface 58 of the gas-liquid generating tank 52 is also deformed from the cylinder, so that the gap 60 is supplied from the liquid supply port 57. You may make it narrow according to the reduction | decrease in the flow volume of water.

産業上の利用の可能性Industrial applicability

本発明に係るマイクロナノバブル発生装置は、水生生物の育成や、汚染水の水質浄化、殺菌等を行なうマイクロナノバブルを発生させるための装置として好適である。  The micro / nano bubble generating apparatus according to the present invention is suitable as an apparatus for generating micro / nano bubbles for growing aquatic organisms, purifying contaminated water, sterilizing, and the like.

10,30,50 マイクロナノバブル発生装置
11a,11b,31a,31b,31c,31d,51a,51b,51c,51d 液体注入孔
12,32,52 気液発生槽
13,33,53 外殻槽
14 気体供給部
15,35,55 短絡壁
16,36,56 気液排出口
17,37,57 液体供給口
18,38,58 気液発生槽の側壁
19,39,59 外殻槽の内面
20,40,60 間隙
21 液体供給部21
34,54 気体供給口
45 キャップ
46 支持体
10, 30, 50 Micro-nano bubble generator 11a, 11b, 31a, 31b, 31c, 31d, 51a, 51b, 51c, 51d Liquid injection hole 12, 32, 52 Gas-liquid generation tank 13, 33, 53 Outer shell tank 14 Gas Supply portion 15, 35, 55 Short-circuit wall 16, 36, 56 Gas-liquid discharge port 17, 37, 57 Liquid supply port 18, 38, 58 Side wall of gas-liquid generation tank 19, 39, 59 Inner surface 20, 40 of outer shell tank , 60 Gap 21 Liquid supply unit 21
34, 54 Gas supply port 45 Cap 46 Support

Claims (10)

内面が円筒形状で、前記内面の円周接線方向に液体を注入する複数の液体注入孔を有し、一端側に短絡壁を有し、他端側に気液排出口を有する気液発生槽と、
前記気液発生槽を少なくとも部分的に覆い、液体供給口から供給される液体を前記気液発生槽に対して前記液体注入孔から注入する外殻槽と、
前記気液発生槽に対して気体を供給する気体供給手段とを有し、
前記外殻槽から注入した液体により前記気液発生槽の中に円筒の内面に沿って液体が旋回する旋回流を発生させ、前記気体供給手段によって供給した気体を前記旋回流の剪断力によりマイクロナノバブル化して前記マイクロナノバブル化した気体と前記供給した液体とが混合した気液を生成して前記気液排出口より排出するマイクロナノバブル発生装置であって、
前記気液発生槽の周方向外面を形成する側壁と前記外殻槽の内面とで形成される間隙を前記液体の流路とし、前記間隙は、前記液体供給口から供給される液体の流量の減少に応じて狭くなる様に構成されていることを特徴とするマイクロナノバブル発生装置。
A gas-liquid generating tank having a cylindrical inner surface, a plurality of liquid injection holes for injecting liquid in the circumferential tangential direction of the inner surface, a short-circuit wall on one end side, and a gas-liquid discharge port on the other end side When,
An outer shell tank that at least partially covers the gas-liquid generation tank and injects liquid supplied from a liquid supply port into the gas-liquid generation tank from the liquid injection hole;
Gas supply means for supplying gas to the gas-liquid generation tank,
The liquid injected from the outer shell tank generates a swirling flow in which the liquid swirls along the inner surface of the cylinder in the gas-liquid generating tank, and the gas supplied by the gas supply means is microscopically generated by the shearing force of the swirling flow. A micro-nano bubble generating device that generates a gas-liquid mixed with the supplied liquid and the gas that has been converted into nano-bubbles into the micro-nano-bubble, and discharges it from the gas-liquid discharge port,
The gap formed by the side wall forming the outer circumferential surface of the gas-liquid generating tank and the inner surface of the outer shell tank is used as the liquid flow path, and the gap is the flow rate of the liquid supplied from the liquid supply port. A micro-nano bubble generating device configured to be narrowed in accordance with a decrease.
前記液体注入孔の径は、前記気液発生槽の壁の内面側が外面側より狭いことを特徴とする請求項1記載のマイクロナノバブル発生装置。2. The micro / nano bubble generating device according to claim 1, wherein the diameter of the liquid injection hole is narrower on an inner surface side of the wall of the gas-liquid generating tank than on an outer surface side. 前記気体供給手段は、前記短絡壁に設けられていることを特徴とする請求項1又は2記載のマイクロナノバブル発生装置。The micro / nano bubble generating device according to claim 1, wherein the gas supply means is provided on the short-circuit wall. 前記液体供給口より供給する液体にあらかじめ前記気体を含ませることにより、前記液体注入孔が前記気体供給手段も兼用することを特徴とする請求項1又は2記載のマイクロナノバブル発生装置。3. The micro / nano bubble generating device according to claim 1, wherein the liquid is supplied to the liquid supply port in advance so that the liquid injection hole also serves as the gas supply unit. 前記気液発生槽の円筒軸芯を前記外殻槽の円筒軸芯からずらせることで前記間隙を狭くしていることを特徴とする請求項1乃至4のいずれか1項記載のマイクロナノバブル発生装置。The micro-nano bubble generation according to any one of claims 1 to 4, wherein the gap is narrowed by shifting a cylindrical axis of the gas-liquid generating tank from a cylindrical axis of the outer shell tank. apparatus. 前記外殻槽の円筒内面形状を円筒から変形させることにより前記間隙を狭くしていることを特徴とする請求項1乃至4のいずれか1項記載のマイクロナノバブル発生装置。The micro-nano bubble generating device according to any one of claims 1 to 4, wherein the gap is narrowed by deforming a cylindrical inner surface shape of the outer shell tank from the cylinder. 前記気液発生槽の円筒外面形状を円筒から変化させることにより前記間隙を狭くしていることを特徴とする請求項1乃至4のいずれか1項記載のマイクロナノバブル発生装置。The micro-nano bubble generating device according to any one of claims 1 to 4, wherein the gap is narrowed by changing a cylindrical outer surface shape of the gas-liquid generating tank from a cylinder. 前記気液排出口の近傍に、先端を前記気液排出口に向けて円錐体若しくは多角錐体を設置することを特徴とする請求項1乃至7のいずれか1項記載のマイクロナノバブル発生装置。The micro-nano bubble generating device according to any one of claims 1 to 7, wherein a cone or a polygonal cone is installed in the vicinity of the gas-liquid discharge port so that a tip thereof faces the gas-liquid discharge port. 前記円錐体若しくは多角錐体は、底面開口で内部が空洞のキャップであることを特徴とする請求項8記載のマイクロナノバブル発生装置。9. The micro-nano bubble generating device according to claim 8, wherein the cone or the polygonal cone is a cap having a bottom opening and a hollow inside. 前記キャップの先端に穴が開いていることを特徴とする請求項9記載のマイクロナノバブル発生装置。The micro-nano bubble generating device according to claim 9, wherein a hole is opened at a tip of the cap.
JP2014062631A 2014-03-06 2014-03-06 Micro-nano bubble generator Active JP5802878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062631A JP5802878B2 (en) 2014-03-06 2014-03-06 Micro-nano bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062631A JP5802878B2 (en) 2014-03-06 2014-03-06 Micro-nano bubble generator

Publications (2)

Publication Number Publication Date
JP2015167946A true JP2015167946A (en) 2015-09-28
JP5802878B2 JP5802878B2 (en) 2015-11-04

Family

ID=54201206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062631A Active JP5802878B2 (en) 2014-03-06 2014-03-06 Micro-nano bubble generator

Country Status (1)

Country Link
JP (1) JP5802878B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108939970A (en) * 2018-08-15 2018-12-07 乔登卫浴(江门)有限公司 A kind of microbubble acquisition device
CN114733459A (en) * 2022-04-01 2022-07-12 北京化工大学 Heterogeneous nano dispersion enhanced reaction device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543154B1 (en) * 1969-04-04 1979-02-19
JPS61114720A (en) * 1984-11-10 1986-06-02 Nippon Soda Co Ltd Molded disinfectant dissolving device
JP2006015312A (en) * 2004-07-05 2006-01-19 Karuto Kk Fine bubble generation device and method therefor
JP2008290011A (en) * 2007-05-25 2008-12-04 Nakata Coating Co Ltd Fine bubble generator
JP2011088979A (en) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd Cleaning liquid, cleaning method, and cleaning liquid production device
WO2012005018A1 (en) * 2010-07-07 2012-01-12 大巧技研有限会社 Microbubble-generating device
EP2687697A2 (en) * 2012-07-20 2014-01-22 MAN Truck & Bus AG Mixing device for the aftertreatment of exhaust gases

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543154B1 (en) * 1969-04-04 1979-02-19
JPS61114720A (en) * 1984-11-10 1986-06-02 Nippon Soda Co Ltd Molded disinfectant dissolving device
JP2006015312A (en) * 2004-07-05 2006-01-19 Karuto Kk Fine bubble generation device and method therefor
JP2008290011A (en) * 2007-05-25 2008-12-04 Nakata Coating Co Ltd Fine bubble generator
JP2011088979A (en) * 2009-10-21 2011-05-06 Panasonic Electric Works Co Ltd Cleaning liquid, cleaning method, and cleaning liquid production device
WO2012005018A1 (en) * 2010-07-07 2012-01-12 大巧技研有限会社 Microbubble-generating device
EP2687697A2 (en) * 2012-07-20 2014-01-22 MAN Truck & Bus AG Mixing device for the aftertreatment of exhaust gases

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108939970A (en) * 2018-08-15 2018-12-07 乔登卫浴(江门)有限公司 A kind of microbubble acquisition device
CN108939970B (en) * 2018-08-15 2020-04-21 乔登卫浴(江门)有限公司 Microbubble obtaining device
US11400424B2 (en) 2018-08-15 2022-08-02 Joden Inc. Micro-bubble acquisition apparatus
CN114733459A (en) * 2022-04-01 2022-07-12 北京化工大学 Heterogeneous nano dispersion enhanced reaction device and method
CN114733459B (en) * 2022-04-01 2023-08-08 北京化工大学 Heterogeneous nano dispersion strengthening reaction device and method

Also Published As

Publication number Publication date
JP5802878B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP3890076B1 (en) Bubble generator
JP4652478B1 (en) Micro bubble generator
JP2012139646A (en) Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus
KR101483412B1 (en) Micro bubble nozzle
EP3124109A1 (en) Nanobubble-producing device
JP2007021343A (en) Microbubble generator
KR20140034301A (en) System and method for generating nanobubbles
JP5802878B2 (en) Micro-nano bubble generator
JP2008006397A (en) Microbubble generation apparatus
JP2008023435A (en) Microbubble generator
JP2007268390A (en) Bubble generating device
JP6338518B2 (en) Micro bubble generator
JP2005028305A (en) Gas-liquid mixture production device, sewage purifying device and fuel injection equipment
JP2014217803A (en) Device for and method of generating fine bubble
JP5431573B2 (en) Mixer device and gas-liquid supply device
JP4545564B2 (en) Microbubble generator
KR101864789B1 (en) Manufacturing apparatus for high-efficiency hybrid fuel with nano gas bubble and manufacturing method using thereof
KR20190139984A (en) Bubble generator
JP2017225948A (en) Fluid mixer
JP2013123701A (en) System and method for production of gas-dissolved solution
KR101524403B1 (en) Apparatus for generating micro bubbles
JP2010115586A (en) Microbubble generator
JP5050196B2 (en) Microbubble generator
JP2012166173A (en) Device for producing ultrafine bubble-containing water
JP2013081880A (en) Gas dissolving apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150626

R150 Certificate of patent or registration of utility model

Ref document number: 5802878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250