JP2015165783A - Method for producing cell mass consisting of pluripotent stem cells - Google Patents

Method for producing cell mass consisting of pluripotent stem cells Download PDF

Info

Publication number
JP2015165783A
JP2015165783A JP2014041389A JP2014041389A JP2015165783A JP 2015165783 A JP2015165783 A JP 2015165783A JP 2014041389 A JP2014041389 A JP 2014041389A JP 2014041389 A JP2014041389 A JP 2014041389A JP 2015165783 A JP2015165783 A JP 2015165783A
Authority
JP
Japan
Prior art keywords
culture
stem cells
pluripotent stem
cell mass
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014041389A
Other languages
Japanese (ja)
Other versions
JP6422221B2 (en
Inventor
潮 岩元
Ushio Iwamoto
潮 岩元
佳奈子 小西
Kanako Konishi
佳奈子 小西
勝久 松浦
Katsuhisa Matsuura
勝久 松浦
清水 達也
Tatsuya Shimizu
達也 清水
岡野 光夫
Mitsuo Okano
光夫 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2014041389A priority Critical patent/JP6422221B2/en
Publication of JP2015165783A publication Critical patent/JP2015165783A/en
Application granted granted Critical
Publication of JP6422221B2 publication Critical patent/JP6422221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing cell mass consisting of human pluripotent stem cells.SOLUTION: The method for producing cell mass consisting of pluripotent stem cells is characterized by culturing pluripotent stem cells. The method comprises at least a process of adjusting constituents of culture fluid via semipermeable membrane, in a culture fluid constituent adjustment process where closed system is substantially maintained in the presence of culture fluid containing a Rho-associated kinase (ROCK) inhibitor.

Description

本発明は、多能性幹細胞、特にヒト多能性幹細胞からなる細胞塊の製造方法に関する。   The present invention relates to a method for producing a cell cluster composed of pluripotent stem cells, particularly human pluripotent stem cells.

ES細胞、iPS細胞等のヒト多能性幹細胞は再生医療実現の重要な細胞ソースと期待されている。しかし、移植可能な臓器・組織を人工的に構築するには第一に大量の細胞を準備することが必要である。心臓の左心室を例に挙げるならば109個オーダーの細胞数が必要であると試算される。このような大量の培養細胞を準備するには、現在の技術手段では大変な手間とコストが必要である。 Human pluripotent stem cells such as ES cells and iPS cells are expected to be an important cell source for realizing regenerative medicine. However, in order to artificially construct a transplantable organ / tissue, it is first necessary to prepare a large number of cells. If the left ventricle of the heart is taken as an example, it is estimated that a cell number of the order of 10 9 is required. In order to prepare such a large amount of cultured cells, the current technical means requires a lot of labor and cost.

よって、再生医療の本格的な実現のための課題の一つとして大量のヒト多能性幹細胞を効率的に培養する手段の開発が挙げられる。   Therefore, one of the challenges for full-scale realization of regenerative medicine is the development of means for efficiently culturing a large amount of human pluripotent stem cells.

ヒト多能性幹細胞を大量に得るための培養方法には、プラスチック製の皿に支持細胞と呼ばれる細胞を培養したうえまたは多能性幹細胞が接着しやすいようにタンパク質等をコートした皿の上で単層培養する方法と、多能性幹細胞の細胞塊を形成させこれを浮遊培養する手法が一般に用いられている。   Culture methods for obtaining large amounts of human pluripotent stem cells include culturing cells called feeder cells in plastic dishes or on dishes coated with proteins so that pluripotent stem cells can easily adhere. A method of monolayer culture and a method of forming a cell mass of pluripotent stem cells and suspension culture thereof are generally used.

これらを比較すると、一般的に培養できる細胞数と培養液量との比率が浮遊培養の方が効率が良いこと、支持細胞やコートタンパク質といった高価な物質が不要であるといった点から浮遊培養が好ましいと考えられる。しかし、ヒト多能性幹細胞は浮遊培養するために酵素処理等で細胞をひとつひとつばらばらの状態にするとすぐに細胞死を引き起こすこと、浮遊培養時のシェアストレスに弱い等の理由から一般的に実施されるようにはなっていない。   When these are compared, suspension culture is preferred because the ratio of the number of cells that can be cultured and the amount of the culture solution is generally more efficient in suspension culture, and expensive substances such as support cells and coat proteins are unnecessary. it is conceivable that. However, human pluripotent stem cells are commonly used for suspension culture because they cause cell death as soon as they are separated into pieces by enzyme treatment, etc., and are susceptible to shear stress during suspension culture. It is not supposed to be.

細胞死を引き起きしやすいという性質を克服するために近年ROCK(Rho-associated coiled-coil forming kinase/Rho結合キナーゼ)阻害剤を浮遊培養開始時に培養液に添加する方法が開発され、これを用いたヒト多能性幹細胞の浮遊培養の報告がある(例えば、非特許文献1、非特許文献2)。しかし、これらの技術を用いても細胞の増殖率は5日から1週間で最大5倍程度であり、さらなる効率的な培養方法が求められていた。   In order to overcome the property of easily causing cell death, a method of adding a ROCK (Rho-associated coiled-coil forming kinase) inhibitor to the culture medium at the start of suspension culture has recently been developed. There are reports of suspension culture of human pluripotent stem cells (for example, Non-Patent Document 1 and Non-Patent Document 2). However, even if these techniques are used, the cell growth rate is about 5 times at maximum from 5 days to 1 week, and a more efficient culture method has been demanded.

また、必要な細胞数が得られた後も臓器・組織を構築するには細胞を3次元構造に並べることが必要である。   In addition, it is necessary to arrange cells in a three-dimensional structure in order to build organs and tissues even after the required number of cells is obtained.

3次元構造の構築のために、所望の形の足場を多孔質体等で形成し、そこに細胞を播種するという手法があるが、立体的な形状の内側から外側にわたって均一に細胞を播種することが困難であることは明らかである。   In order to construct a three-dimensional structure, there is a method of forming a scaffold of a desired shape with a porous body and seeding cells there, but seeding cells uniformly from the inside to the outside of a three-dimensional shape Obviously it is difficult.

これに対し、直径数百μmの細胞塊は肉眼でも容易に確認でき、溶液中でも短時間で沈降するため取扱いも容易であり、ばらばらの細胞よりも人工的に所望の3次元構造を構築しやすいという利点がある。   On the other hand, cell clusters with a diameter of several hundreds of μm can be easily confirmed with the naked eye, settled in a short time even in solution, are easy to handle, and are easier to construct a desired three-dimensional structure artificially than separate cells. There is an advantage.

また最近では細胞塊を串刺しにしながら3次元構造を構築するバイオ3Dプリンター装置「レジェノバ」(株式会社サイフューズ社)の開発等も進められている。今後このような技術の進展により、多能性幹細胞の細胞塊は組織・臓器構築の基本構造単位となる可能性もある。   Recently, the development of “Regenova” (Cyfuse Co., Ltd.), a bio 3D printer device that builds a three-dimensional structure while skewering cell clumps, has been promoted. With the advancement of such technology in the future, the cell mass of pluripotent stem cells may become the basic structural unit for tissue and organ construction.

しかし、ヒト多能性幹細胞の細胞塊は大きくなると形が崩れやすく、細胞塊は大きくなるほどその中心領域には酸素・栄養分が浸透しにくいため、これを大量に作製することが困難であった。   However, as the cell mass of human pluripotent stem cells grows larger, the shape tends to collapse, and as the cell mass grows, oxygen and nutrients are less likely to penetrate into its central region, making it difficult to produce a large amount thereof.

多能性幹細胞の細胞塊を作製する技術としては、凹曲面状の底部を有する複数のウェルを持ったプレートに細胞を播種し1ウェルに1個の細胞塊を形成させる技術(特許文献1)がすでに開示されているが、このような技術では製造できる細胞塊数はウェル数で規定されてしまい、また大量の細胞塊を製造するにはその数のウェルに細胞を個別に播種するという多大なる労力が必要であることから、少量の細胞塊を製造するには有効であるが、大量の細胞塊を一度に製造するには適さない。   As a technique for producing a cell cluster of pluripotent stem cells, a cell is seeded on a plate having a plurality of wells having a concave curved bottom, and one cell cluster is formed in one well (Patent Document 1). However, the number of cell masses that can be produced by such a technique is defined by the number of wells, and in order to produce a large amount of cell masses, cells are seeded individually in that number of wells. However, it is effective for producing a small amount of cell mass, but is not suitable for producing a large amount of cell mass at a time.

また、細胞塊の平均直径が約200-約300μmとなるまで浮遊培養する工程と、得られた細胞塊を平均直径が約80-約120μmである均一な細胞塊に分割する工程を繰り返す工程とを繰り返す技術が開示されている(特許文献2)。しかしこの方法では短期間に培養と細胞塊分割を繰り返す必要があり、工程が煩雑になるという課題があった。   A step of suspension culture until the average diameter of the cell mass is about 200 to about 300 μm, and a step of repeating the step of dividing the obtained cell mass into a uniform cell mass having an average diameter of about 80 to about 120 μm; Is disclosed (Patent Document 2). However, in this method, it is necessary to repeat culture and cell mass division in a short time, and there is a problem that the process becomes complicated.

以上のように、多能性幹細胞を大量に培養すると同時に同細胞の均質な細胞塊を多量に効率的に製造できる技術が求められていた。   As described above, there has been a demand for a technique capable of culturing a large amount of pluripotent stem cells and at the same time efficiently producing a homogeneous cell mass of the same cells in large amounts.

WO2013/183777号公報WO2013 / 183777 Publication WO2013/077423号公報WO2013 / 077423 Publication

Tissue Engineering Part C Methods (2012) 18, 772-784Tissue Engineering Part C Methods (2012) 18, 772-784 Stem Cell Research (2013) 11, 1103-1116Stem Cell Research (2013) 11, 1103-1116

本発明は以上に述べた課題を解決するためのヒト多能性幹細胞からなる細胞塊製造方法を提供する。すなわち、ヒト多能性幹細胞を大量に培養すると同時に同細胞の均質な細胞塊を多量に効率的に製造できる技術を提供することを課題とする。   The present invention provides a method for producing a cell mass composed of human pluripotent stem cells for solving the problems described above. That is, it is an object of the present invention to provide a technique capable of culturing a large amount of human pluripotent stem cells in a large amount and simultaneously efficiently producing a homogeneous cell mass of the same cells in large amounts.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、ROCK阻害剤が培養液に有効濃度維持された状態を維持し、閉鎖培養系にて培養液の有効成分濃度をコントロールすることで、ヒト多能性幹細胞を大量に培養可能であると同時に同細胞の均質な細胞塊を多量に効率的に製造できることを見出した。   As a result of intensive studies to solve the above problems, the present inventors maintain a state where the ROCK inhibitor is maintained at an effective concentration in the culture solution, and control the concentration of the active ingredient in the culture solution in a closed culture system. Thus, it has been found that a large amount of human pluripotent stem cells can be cultured and at the same time a homogeneous cell mass of the same cells can be efficiently produced in large amounts.

さらにROCK阻害剤添加が浮遊培養初期のアポトーシス阻害のみではなく、驚くべきことに細胞塊の形態維持および未分化状態の維持にも有効であることを見出し、本発明を完成するに至った。   Furthermore, it has been found that the addition of a ROCK inhibitor is effective not only for inhibiting apoptosis at the initial stage of suspension culture but also surprisingly maintaining the cell mass morphology and the undifferentiated state, and has completed the present invention.

また上記の方法で得られた細胞塊を構成する細胞は未分化性を維持しており、かつ多分化能を有していることも確認できた。   Moreover, it has also confirmed that the cell which comprises the cell mass obtained by said method has maintained undifferentiation, and has pluripotency.

すなわち、本発明は以下の通りのものである。
(1) 多能性幹細胞からなる細胞塊製造方法であって、
Rho結合キナーゼ(ROCK)阻害剤を含む培養液の存在下、
実質的に閉鎖系が維持された状態にて
培養液の構成成分の調整を行う培養工程を含むことを特徴とする
多能性幹細胞からなる細胞塊の製造方法。
(2) 前記培養工程は、半透膜を介して培養液の構成成分の調整を行う工程を少なくとも含むことを特徴とする(1)記載の多能性幹細胞からなる細胞塊の製造方法。
(3) 前記培養液を含む培養槽と、
該培養槽とは独立しかつ閉鎖系回路で接続された半透膜と、前記ROCK阻害剤を含む調整液の貯留手段とを有する調整手段1と、
該培養槽及び調整手段1とは独立しかつ閉鎖系回路で接続された調整手段2とを備える培養装置において、
調整手段1と調整液により培養液成分のうち半透膜を通過する物質の濃度を調整し、
さらに、調整手段2により少なくとも線維芽細胞成長因子(FGF)濃度を調整し、
培養する工程を少なくとも含むことを特徴とする、(1)または(2)に記載の多能性幹細胞からなる細胞塊の製造方法。
(4) 前記調整液は少なくともインスリンを含み、調整手段1の半透膜がインスリンを透過させることが可能な孔径を有することを特徴とする、(2)または(3)に記載の多能性幹細胞からなる細胞塊の製造方法。
(5) 調整手段1の半透膜がFGFは透過しない孔径を有することを特徴とする、(4)に記載の多能性幹細胞からなる細胞塊の製造方法。
(6) 調整手段2は前記FGFと硫酸基を有する化合物との混合物を含む貯留手段を有しており、該混合物は培養槽に添加されることで濃度が調整されることを特徴とする(3)~(5)のいずれかに記載の多能性幹細胞からなる細胞塊の製造方法。
(7) 培養期間中閉鎖系を維持して培養することを特徴とする(1)〜(6)のいずれかに記載の多能性幹細胞からなる細胞塊の製造方法。
(8) 培養槽の培養液量を実質的に一定に保持可能であることを特徴とする(1)〜(7)のいずれかに記載の多能性幹細胞からなる細胞塊の製造方法。
That is, the present invention is as follows.
(1) A cell mass production method comprising pluripotent stem cells,
In the presence of a culture medium containing a Rho-binding kinase (ROCK) inhibitor,
A method for producing a cell mass composed of pluripotent stem cells, comprising a culturing step of adjusting the components of a culture solution in a state where a closed system is substantially maintained.
(2) The method for producing a cell mass composed of pluripotent stem cells according to (1), wherein the culturing step includes at least a step of adjusting the components of the culture solution via a semipermeable membrane.
(3) a culture tank containing the culture solution;
An adjustment means 1 having a semipermeable membrane independent of the culture tank and connected in a closed circuit, and a storage means for adjusting liquid containing the ROCK inhibitor;
In a culture apparatus comprising the adjusting means 2 independent of the culture tank and the adjusting means 1 and connected by a closed circuit,
The concentration of the substance that passes through the semipermeable membrane among the components of the culture solution is adjusted by the adjusting means 1 and the adjusting solution,
Furthermore, the adjusting means 2 adjusts at least the fibroblast growth factor (FGF) concentration,
The method for producing a cell mass composed of pluripotent stem cells according to (1) or (2), comprising at least a culturing step.
(4) The pluripotency according to (2) or (3), wherein the adjustment liquid contains at least insulin, and the semipermeable membrane of the adjustment means 1 has a pore diameter capable of transmitting insulin. A method for producing a cell mass composed of stem cells.
(5) The method for producing a cell mass composed of pluripotent stem cells according to (4), wherein the semipermeable membrane of the adjusting means 1 has a pore size that does not allow FGF to permeate.
(6) The adjusting means 2 has a storage means containing a mixture of the FGF and a compound having a sulfate group, and the concentration of the mixture is adjusted by adding the mixture to a culture tank ( 3) A method for producing a cell mass comprising the pluripotent stem cells according to any one of (5) to (5).
(7) The method for producing a cell mass composed of pluripotent stem cells according to any one of (1) to (6), wherein the culture is performed while maintaining a closed system during the culture period.
(8) The method for producing a cell mass composed of pluripotent stem cells according to any one of (1) to (7), wherein the amount of the culture solution in the culture tank can be maintained substantially constant.

本発明の方法によれば未分化状態を維持したヒト多能性幹細胞の細胞塊を多量に高密度で製造可能とする。   According to the method of the present invention, a mass of human pluripotent stem cells maintained in an undifferentiated state can be produced in a large amount at a high density.

図1は、実施例1、2、比較例3の製造方法で用いた培養装置の模式図である。FIG. 1 is a schematic diagram of a culture apparatus used in the production methods of Examples 1 and 2 and Comparative Example 3. 図2は、比較例1、2、4で用いた製造方法で用いた培養装置の模式図である。FIG. 2 is a schematic diagram of the culture apparatus used in the production method used in Comparative Examples 1, 2, and 4. 図3は、実施例1の方法により得られたヒト多能性幹細胞からなる細胞塊の顕微鏡写真である。FIG. 3 is a photomicrograph of a cell mass composed of human pluripotent stem cells obtained by the method of Example 1. 図4は、実施例2における方法により得られたヒト多能性幹細胞の顕微鏡写真である。FIG. 4 is a photomicrograph of human pluripotent stem cells obtained by the method in Example 2. 図5は、比較例1の方法により得られたヒト多能性幹細胞からなる細胞塊の顕微鏡写真である。FIG. 5 is a photomicrograph of a cell mass composed of human pluripotent stem cells obtained by the method of Comparative Example 1. 図6は、比較例2の方法により得られたヒト多能性幹細胞からなる細胞塊の顕微鏡写真である。6 is a photomicrograph of a cell mass composed of human pluripotent stem cells obtained by the method of Comparative Example 2. FIG. 図7は、比較例3の方法により得られたヒト多能性幹細胞からなる細胞塊の顕微鏡写真である。FIG. 7 is a photomicrograph of a cell cluster composed of human pluripotent stem cells obtained by the method of Comparative Example 3. 図8は、比較例4の方法により得られたヒト多能性幹細胞からなる細胞塊の顕微鏡写真である。FIG. 8 is a photomicrograph of a cell mass composed of human pluripotent stem cells obtained by the method of Comparative Example 4. 図9は、実施例1で得られたヒト多能性幹細胞の細胞塊を構成する細胞が多分化能を有することを確認するため、分化培養した後に得られた細胞の顕微鏡写真である。FIG. 9 is a photomicrograph of cells obtained after differentiation culture in order to confirm that the cells constituting the cell cluster of human pluripotent stem cells obtained in Example 1 have pluripotency.

以下に本発明の実施の形態(以下、「本実施形態」という。)を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

本実施形態の方法が適用可能な多能性幹細胞は、自己複製能をもつ多能性細胞であり外胚葉(神経細胞など)、中胚葉(筋肉細胞など)、内胚葉(腸管上皮など)の細胞に分化可能な細胞である。胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)、刺激惹起性多能性獲得(STAP)細胞等が例示できる。   The pluripotent stem cells to which the method of the present embodiment can be applied are pluripotent cells having self-replicating ability, and are ectoderm (such as nerve cells), mesoderm (such as muscle cells), and endoderm (such as intestinal epithelium). It is a cell that can differentiate into cells. Examples thereof include embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), stimulation-induced pluripotency acquisition (STAP) cells, and the like.

細胞塊とは、多能性幹細胞が複数個会合した状態で一塊になった状態をいう。細胞間の会合は細胞同士が直接会合している状態でも、細胞外マトリックス等のタンパク質、ペプチド、抗体、合成ポリマー等を介して細胞同士が会合している状態でもよく、さらに細胞のみで塊を形成しても、核を構成するする細胞以外の物質がありその周辺に細胞が会合した状態も本発明では細胞塊という。   The cell mass refers to a state in which a plurality of pluripotent stem cells are aggregated together. The cell-to-cell association may be in a state in which the cells are directly associated with each other or in a state in which the cells are associated with each other via proteins such as extracellular matrix, peptides, antibodies, synthetic polymers, etc. Even if formed, there is a substance other than the cells constituting the nucleus, and the state in which the cells are associated with each other is also referred to as a cell mass in the present invention.

培養液は、多能性幹細胞を未分化状態を維持した状態で培養可能な成分を有する培養液が用いられる。多能性幹細胞を培養する目的の培養液はすでに市販されているものも多く、Essential-8(ライフテクノロジーズ社)、StemPro hESC SFM(ライフテクノロジーズ社)、mTeSR1(ベリタス社)、mTeSR2(ベリタス社)等が例示できる。本実施形態の方法を適用するにはFGFとインスリンを含んだ培養液であることが望ましい。   As the culture solution, a culture solution having components capable of culturing pluripotent stem cells in an undifferentiated state is used. Many of the culture solutions for culturing pluripotent stem cells are already available on the market. Essential-8 (Life Technologies), StemPro hESC SFM (Life Technologies), mTeSR1 (Veritas), mTeSR2 (Veritas) Etc. can be illustrated. In order to apply the method of the present embodiment, a culture solution containing FGF and insulin is desirable.

調整液は、細胞培養期間中に培養液中から失われていく成分のうち調整手段1に使用される半透膜を透過する分子量の成分を含んでいることが望ましい。また成分としてインスリンを含むものが望ましい。さらには以上の成分の濃度が培養期間中に枯渇しないように濃度設定されることが望ましい。   The adjustment solution preferably contains a component having a molecular weight that permeates the semipermeable membrane used in the adjustment means 1 among the components that are lost from the culture solution during the cell culture period. Moreover, what contains insulin as a component is desirable. Furthermore, it is desirable to set the concentration so that the concentration of the above components is not depleted during the culture period.

培養期間は、必要とする細胞塊の大きさ、使用する培養液や調整液の容量にもよるが3日以上20日以内、より好ましくは5日以上15日以内が好ましい。これよりも培養期間が短いと細胞塊を形成する時間としては短すぎることや細胞増殖の期間としても短すぎることから十分な細胞数を得ることが困難になる。またこれより培養期間が長くなると、培養液内の栄養成分が枯渇しやすいことや細胞から産生された代謝成分が培養系に蓄積されpH等の培養環境が悪くなる。   The culturing period is preferably 3 days or more and 20 days or less, more preferably 5 days or more and 15 days or less, although it depends on the size of the cell mass required and the volume of the culture solution or adjustment solution used. If the culture period is shorter than this, it is difficult to obtain a sufficient number of cells because the time for forming a cell mass is too short and the period for cell growth is too short. Further, if the culture period is longer than this, nutrient components in the culture solution are easily depleted, and metabolic components produced from the cells are accumulated in the culture system, resulting in a poor culture environment such as pH.

また、調整液の量は細胞代謝物の蓄積防止という観点からなるべく多く設定することが望ましい。望ましくは、培養液の5倍以上、より望ましくは10倍以上に設定される。しかし、調整液の量は培養コストに影響するため、培養期間と必要細胞数により決定されてもよい。また、調整液は培養液と同様に生理的なpHを維持しやすいように緩衝能を有するように設計されることや、pHの変化を色で判別しやすいようにpH指示色素を混合することなども可能である。   Moreover, it is desirable to set the amount of the adjustment liquid as much as possible from the viewpoint of preventing accumulation of cell metabolites. Desirably, it is set to 5 times or more of the culture solution, more desirably 10 times or more. However, since the amount of the adjustment liquid affects the culture cost, it may be determined depending on the culture period and the number of necessary cells. In addition, the adjustment solution is designed to have a buffering capacity so that it is easy to maintain a physiological pH like the culture solution, and a pH indicator dye is mixed so that changes in pH can be easily distinguished by color. Etc. are also possible.

ROCK阻害剤は、血管拡張剤などとして循環器・脳外科領域での臨床で利用されている薬剤であり、Y-27632、塩酸ファスジル等が例示される。   ROCK inhibitors are drugs that are used clinically in the cardiovascular / brain surgery field as vasodilators, and examples thereof include Y-27632 and fasudil hydrochloride.

FGF
線維芽細胞成長因子(FGF)は、線維芽細胞や内皮細胞の増殖を促進する分子量16,000〜20,000のタンパク質である。FGFには、塩基性線維芽細胞成長因子(bFGF)、酸性線維芽細胞成長因子(aFGF)、角質細胞成長因子(KGF)などが含まれ、ヒトおよびマウスにおいてはそれぞれ20種以上のFGFが知られている。このうち、多能性幹細胞の市販培養液には一般にbFGFが添加されている。
FGF
Fibroblast growth factor (FGF) is a protein having a molecular weight of 16,000 to 20,000 that promotes proliferation of fibroblasts and endothelial cells. FGF includes basic fibroblast growth factor (bFGF), acidic fibroblast growth factor (aFGF), keratinocyte growth factor (KGF), and more than 20 types of FGF are known in humans and mice. It has been. Of these, bFGF is generally added to commercial cultures of pluripotent stem cells.

またFGFはその分解、変性、失活等を保護する目的で作用することで知られる硫酸化多糖類などの硫酸基を含む化合物と混合して用いることも可能である。硫酸基を含む化合物にはヘパリン、デキストラン硫酸、カラギナン等の硫酸化多糖類が例示できる。これらの化合物とFGFを混合で本発明の使用形態に用いることで冷蔵設備等の追加手段を用いることなくFGFを培養期間中維持することができる。   FGF can also be used by mixing with a compound containing a sulfate group such as sulfated polysaccharide known to act for the purpose of protecting its degradation, denaturation, inactivation and the like. Examples of the compound containing a sulfate group include sulfated polysaccharides such as heparin, dextran sulfate, and carrageenan. By mixing these compounds and FGF in the use form of the present invention, FGF can be maintained during the culture period without using additional means such as refrigeration equipment.

実質的に閉鎖系が維持された状態とは、系内に細菌等が実質的に入り込めない状態が維持されていることをいう。例えば、孔径0.2μm程度の実質的に最近を通過させないエアフィルターを通じて外部と連通されている状態、系内から外部に一方通行でガスや液が排出される状態は実質的に閉鎖系が維持された状態という。しかし、クリーンベンチ等の清浄な環境が維持された環境の中であっても、外部から実質的に細菌等が入り込める状態になったときは実質的に閉鎖系が維持された状態とはいわない。   The state in which the closed system is substantially maintained means that a state in which bacteria or the like cannot substantially enter the system is maintained. For example, a closed system is maintained substantially in a state in which the air is communicated with the outside through an air filter having a pore diameter of about 0.2 μm that does not allow the most recent passage, and a state in which gas or liquid is exhausted in one way from the inside of the system to the outside. That state. However, even in an environment where a clean environment such as a clean bench is maintained, it is not said that the closed system is substantially maintained when bacteria or the like can substantially enter from the outside. .

培養液成分の調整を行うとは、培養開始時に設定した培養液中の各成分の初期濃度を維持または初期濃度により近くなるように調整することをいう。培養期間中は培養液中の栄養成分や未分化状態を維持するための成分は徐々にその濃度が低下していくし、反対に細胞が産生する成分は徐々にその濃度が高くなっていく。   The adjustment of the culture solution component means that the initial concentration of each component in the culture solution set at the start of the culture is maintained or adjusted to be closer to the initial concentration. During the culture period, the nutrient components in the culture solution and the components for maintaining the undifferentiated state gradually decrease in concentration, while the components produced by the cells gradually increase in concentration.

このため、例えば調整手段2では培養槽内で低下する成分をあらかじめ培養槽とは独立した空間内で保持しておき、これを適時加えることで初期濃度またはそれにより近くなるように調整することができる。   For this reason, for example, the adjusting means 2 can hold the components that decrease in the culture tank in advance in a space independent of the culture tank, and adjust the initial concentration or close to it by adding it in a timely manner. it can.

また調整手段1では、培養液と調整液とを半透膜を介して接触させることで、調整液中の栄養成分または未分化状態を維持するための成分で濃度が低下した成分のうち半透膜を透過する分子量の成分については膜を介して調整液から培養液への補充が行わるし、濃度が高くなった成分は培養液から調整液への拡散がおきて、それぞれ初期濃度に近くなるように調整される。   Moreover, in the adjustment means 1, the culture solution and the adjustment solution are brought into contact with each other through a semipermeable membrane, so that the nutrient component in the adjustment solution or the component for maintaining the undifferentiated state is semi-permeable. The components of molecular weight that permeate the membrane are replenished from the adjustment solution to the culture solution through the membrane, and the components with higher concentrations diffuse from the culture solution to the adjustment solution, each close to the initial concentration. It is adjusted to become.

半透膜とは、培養液成分の膜透過性がその分子量に依存する半透性の膜をいう。調整液は半透膜を介して培養液と接する。半透膜の孔径は培養槽に保持したい成分の分子量により設計される。すなわち、培養槽内に保持したい成分のうち最小分子量物質が膜を透過しないように選択される。本発明の目的では、半透膜の孔径はインスリンを透過させ得る大きさを有することが望ましい。より好ましくはインスリン(分子量:5807)は透過させるが、FGF(分子量:16,000〜20,000)は透過させない孔径が良い。インスリンは培養期間中に濃度が低下しやすいため、調整液にインスリンを含有させ、かつインスリンを透過させる半透膜を使用することにより培養期間を通じて調整液中のインスリンが培養槽に補充される。またFGFも培養期間中に濃度が低下しやすいため、FGFは透過させない孔径を選択することで、培養液中のFGFが調整液に拡散することを阻止できる。   A semipermeable membrane refers to a semipermeable membrane in which the membrane permeability of a culture solution component depends on its molecular weight. The adjustment solution contacts the culture solution through the semipermeable membrane. The pore size of the semipermeable membrane is designed according to the molecular weight of the component to be retained in the culture tank. That is, it is selected so that the minimum molecular weight substance does not permeate the membrane among the components to be retained in the culture tank. For the purposes of the present invention, it is desirable that the pore size of the semipermeable membrane has a size that allows insulin to permeate. More preferably, insulin (molecular weight: 5807) permeates but FGF (molecular weight: 16,000-20,000) does not permeate. Since the concentration of insulin is likely to decrease during the culture period, the culture tank is replenished with the insulin in the adjustment liquid throughout the culture period by using a semipermeable membrane that contains insulin in the adjustment liquid and permeates the insulin. In addition, since the concentration of FGF tends to decrease during the culture period, it is possible to prevent FGF in the culture medium from diffusing into the adjustment solution by selecting a pore size that does not allow FGF to permeate.

培養液成分調整手段1の半透膜の形状は、平膜形状、中空糸形状が用いられうるが、培養液や調整液を灌流する目的では中空糸形状が好ましい。   A flat membrane shape or a hollow fiber shape can be used as the shape of the semipermeable membrane of the culture solution component adjusting means 1, but the hollow fiber shape is preferable for the purpose of perfusing the culture solution or the adjustment solution.

半透膜の材質は、特に限定されないが、培養槽内に保持したい成分が吸着、分解等されない材質が好ましく用いられる。また、材質がそれらを吸着しやすい性質を有している場合には、それらを別の材料でコートしたり、表面改質剤を用いたりすることで吸着を抑制することも可能である。   The material of the semipermeable membrane is not particularly limited, but a material that does not adsorb, decompose, etc. the components that are desired to be retained in the culture tank is preferably used. Further, when the material has a property of easily adsorbing them, it is possible to suppress the adsorption by coating them with another material or using a surface modifier.

本実施形態に係る送液回路とは、培養槽、調整手段1の間に設置され培養液又は調整液を無菌的に灌流することが可能な管腔構造を有するチューブをいう。材質としては、シリコン、ウレタン、フッ素樹脂、ポリ塩化ビニル等が用いられる。   The liquid feeding circuit according to the present embodiment refers to a tube having a lumen structure that is installed between the culture tank and the adjusting means 1 and can aseptically perfuse the culture liquid or the adjusting liquid. As the material, silicon, urethane, fluororesin, polyvinyl chloride or the like is used.

本実施形態に係る培養液及び/又は調整液を灌流する手段とは、上記送液回路に接するように設置され、動力を用いて連続的に回路内の液を送液可能な手段をいう。一般的なポンプであれば使用可能であり、ペリスタポンプ、ダイヤフラムポンプ等が例示できる。   The means for perfusing the culture solution and / or the adjustment solution according to the present embodiment refers to a means that is installed so as to be in contact with the liquid feeding circuit and can continuously feed the liquid in the circuit using power. Any general pump can be used, and examples include a peristaltic pump and a diaphragm pump.

以下、実施例によって本実施形態をさらに詳細に説明するが、本実施形態はこれらに限定されるものではない。   Hereinafter, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited thereto.

(細胞培養システム)
培養装置としては、8連動動物培養装置BioJr.8(BJR−25NA1S−8C、エイブル株式会社)を使用した。本装置は、1台のコントローラーで8台の100mL容量の培養槽を制御可能で、測定/制御項目は攪拌速度、温度、pH、及び溶存酸素濃度(DO)で各培養槽は独立に制御できる。
(Cell culture system)
As the culture apparatus, an 8-linked animal culture apparatus BioJr. 8 (BJR-25NA1S-8C, Able Corporation) was used. This device can control eight 100mL culture tanks with one controller, and each culture tank can be controlled independently with stirring / speed, temperature, pH, and dissolved oxygen concentration (DO) as measurement / control items. .

(ヒトiPS細胞の準備)
培養細胞としてはヒトiPS細胞(253G1)を選択した。細胞はマトリゲル(日本ベクトン・ディッキンソン株式会社)をコートした培養ディッシュ(コーニング社)に播種し、培養液としてEssential-8を用いて培養した。培養液の交換は毎日実施し、3~4日に一度の頻度で継代を実施した。
(Preparation of human iPS cells)
Human iPS cells (253G1) were selected as cultured cells. The cells were seeded in a culture dish (Corning) coated with Matrigel (Nippon Becton Dickinson Co., Ltd.) and cultured using Essential-8 as a culture solution. The culture medium was changed every day, and subculture was performed once every 3 to 4 days.

(細胞塊の製造)
培養槽としてガラス製の専用槽(エイブル株式会社)使用し、培養液を100mLとした。
(Manufacture of cell mass)
A dedicated glass tank (Able Co., Ltd.) was used as the culture tank, and the culture solution was 100 mL.

ヒトiPS細胞を密度2x105 個/mLとし、培養を開始した。この時点を培養0日目とした。 The culture was started with human iPS cells at a density of 2 × 10 5 cells / mL. This time point was regarded as the 0th culture day.

培養液としては、Essential-8培地(ライフテクノロジーズ社)に以下の成分を添加して使用した。   As a culture solution, the following components were added to Essential-8 medium (Life Technologies) and used.

すなわち、ROCK阻害剤としてY-27632(和光純薬工業株式会社)を10μM、ヘパリン(シグマアルドリッチ社)を750ng/mLの濃度にて添加した。   That is, Y-27632 (Wako Pure Chemical Industries, Ltd.) was added as a ROCK inhibitor at a concentration of 10 μM and heparin (Sigma Aldrich) at a concentration of 750 ng / mL.

培養槽には攪拌回転翼を設置し、回転数は60rpmとした。   The culture tank was equipped with a stirring rotor, and the rotation speed was 60 rpm.

培養槽には、温度、pH、溶存酸素濃度をそれぞれ計測可能なセンサー(エイブル株式会社)を設置した。   A sensor (Able Co., Ltd.) capable of measuring temperature, pH, and dissolved oxygen concentration was installed in the culture tank.

また、溶存酸素濃度は40%に制御される設定とし、そのために酸素、窒素、空気の混合ガスが培養槽内の培養液に対して上面通気となるようにガス導入ラインを設置した。さらにガスを槽から排出する導出ラインを設置した。温度は37℃に設定した。   Further, the dissolved oxygen concentration was set to be controlled to 40%, and for this purpose, a gas introduction line was installed so that a mixed gas of oxygen, nitrogen, and air could be vented to the culture medium in the culture tank. In addition, a lead-out line for discharging gas from the tank was installed. The temperature was set at 37 ° C.

実施例1においては、図1に示したような細胞培養システムを作製した。すなわち、培養槽は上記の培養槽の蓋部分に培養液の取り出しと返却が可能な口を設置した。   In Example 1, a cell culture system as shown in FIG. 1 was produced. That is, the culture tank was provided with a mouth capable of taking out and returning the culture solution at the lid portion of the culture tank.

さらに、培養槽内で形成された細胞隗が培養液とともに培養槽の外側に導出しまうことを防止するための手段としてポリエチレンの焼結体からなる直径8mm、長さ37mm、平均孔径30μmの円筒型膜を設置した。   Furthermore, as a means for preventing the cell sputum formed in the culture tank from being led to the outside of the culture tank together with the culture solution, a cylindrical shape made of a polyethylene sintered body having a diameter of 8 mm, a length of 37 mm, and an average pore diameter of 30 μm. A membrane was installed.

調整液槽は容量1Lのガラス製滅菌ビンを使用した。   A glass sterilization bottle having a capacity of 1 L was used as the adjustment liquid tank.

槽の蓋の部分に通気ライン、培養液の入口、出口ラインを設置した。   An aeration line, a culture solution inlet, and an outlet line were installed in the tank lid.

調整手段内には、旭ポリスルホンダイアライザーAPS(旭化成メディカル株式会社)の中空糸を400本束ねて有効長20cmとなるように中空糸両端部の管腔構造が解放されるようにウレタン接着剤にて固定したものを設置した。   In the adjusting means, urethane adhesive is used so that the hollow structure of both ends of the hollow fiber is released so that the effective length is 20 cm by bundling 400 hollow fibers of Asahi Polysulfone Dialyzer APS (Asahi Kasei Medical Co., Ltd.). A fixed one was installed.

中空糸束は、調整液貯留手段の内部に配置し、中空糸束の両端部と培養液の入口、出口ラインを回路にて接続した。   The hollow fiber bundle was disposed inside the adjustment liquid storage means, and both ends of the hollow fiber bundle were connected to the culture solution inlet and outlet lines by a circuit.

調整液としては、Essential-8の成分のうちbFGFとTGF-βを含まないEssential-6(ライフテクノロジーズ社)を1L使用した。Essential-6にはインスリンがEssential-8と同濃度含まれる。   As the adjustment solution, 1 L of Essential-6 (Life Technologies) containing no bFGF and TGF-β was used among the components of Essential-8. Essential-6 contains the same concentration of insulin as Essential-8.

送液回路としては、シリコン製チューブ(内径1mmφ、外径4mmφ)を用いた。   A silicon tube (inner diameter 1 mmφ, outer diameter 4 mmφ) was used as the liquid feeding circuit.

培養液の送液手段としては、ペリスタポンプRP-23(エイブル株式会社)を2台使用した。2台のポンプはそれぞれ培養槽と調整手段1を接続する送液回路に接し送液可能な状態に設置した。   Two Perista Pumps RP-23 (Able Co., Ltd.) were used as the culture solution feeding means. Each of the two pumps was placed in contact with a liquid supply circuit connecting the culture tank and the adjusting means 1 so that the liquid could be supplied.

閉鎖系回路内に培養槽、調整手段1とは独立して10mLシリンジ(テルモ株式会社)にbFGF(ライフテクノロジーズ社)を10μg/mL、ヘパリン(シグマアルドリッチ社)を250μg/mLの濃度で培養液DMEM/F12(ライフテクノロジーズ社)に溶解し2mL設置した。   Culture tank in closed circuit, independent of adjustment means 1, 10 mL syringe (Terumo Corporation), bFGF (Life Technologies) 10 μg / mL, heparin (Sigma Aldrich) 250 μg / mL culture solution 2 mL was dissolved in DMEM / F12 (Life Technologies).

以上説明した方法により、図1に示したような細胞培養システムを作製した。本システムを用いて以下の方法でiPS細胞からなる細胞塊を製造した。   A cell culture system as shown in FIG. 1 was produced by the method described above. Using this system, a cell mass composed of iPS cells was produced by the following method.

培養液の循環速度は、1日目から4日目は100mL/日、4日目から5日目までは400mL/日、5日目から10日目までは800mL/日とした。   The circulation rate of the culture solution was 100 mL / day from the first day to the fourth day, 400 mL / day from the fourth day to the fifth day, and 800 mL / day from the fifth day to the tenth day.

培養槽の液容量が実質的に同じレベルを維持できるようにしながら2台のポンプ流速を微調整し、7日目まで連続的に培養液を灌流しながら培養を実施した。   The flow rate of the two pumps was finely adjusted so that the liquid volume in the culture tank could be maintained at substantially the same level, and the culture was carried out while continuously perfusing the culture liquid up to the seventh day.

bFGFとヘパリンの混合液は、培養2日目と4日目に1mL投与した。   The mixed solution of bFGF and heparin was administered at 1 mL on the 2nd and 4th days of culture.

7日目に細胞培養を終了し、細胞数の測定をおこなった。   On the seventh day, the cell culture was terminated and the number of cells was measured.

(細胞数の測定)
培養7日目に細胞塊を培養槽から回収し、0.25%トリプシン/EDTA(インビトロジェン社)にて処理し単細胞の状態とした後、トリパンブルー法にて死細胞を染色し、生細胞のみを計算盤を用いてカウントした。
(Measurement of cell number)
On the 7th day of culture, the cell mass was collected from the culture tank, treated with 0.25% trypsin / EDTA (Invitrogen) to form a single cell, and dead cells were stained by the trypan blue method. Were counted using a calculator.

(細胞塊数と円相当径測定)
細胞塊数は光学顕微鏡ECLIPSE Ti−U(株式会社ニコン)を用いて観察しながら数を測定した。細胞塊の円相当直径は光学顕微鏡ECLIPSE Ti−U(株式会社ニコン)を用いて細胞塊の画像を撮影したのち、ソフトウェア(Nikon ElementsD、株式会社ニコン)を用いて細胞塊の外周長を測定し、その値から真円の場合の円相当直径算出した。各サンプルから100個の細胞塊の円相当直径を測定した。
(Measure cell number and equivalent circle diameter)
The number of cell masses was measured while observing using an optical microscope ECLIPSE Ti-U (Nikon Corporation). The circle-equivalent diameter of the cell mass was obtained by taking an image of the cell mass using an optical microscope ECLIPSE Ti-U (Nikon Corporation) and then measuring the outer circumference of the cell mass using software (Nikon Elements D, Nikon Corporation). The equivalent circle diameter in the case of a perfect circle was calculated from the value. The equivalent circle diameter of 100 cell clusters from each sample was measured.

(未分化率測定)
ヒトiPS細胞が未分化状態を維持していることを確認するために、未分化マーカーであるTra1-60の陽性率をフローサイトメトリー法にて測定した。抗体としては抗Tra1-60抗体560380(日本ベクトン・ディッキンソン株式会社)を用い、測定装置としてはCell Lab QuantaSC(ベックマン・コールター株式会社)を用いた。Tra-1-60の陽性率を未分化率とした。
(Undifferentiation rate measurement)
In order to confirm that human iPS cells were maintained in an undifferentiated state, the positive rate of Tra1-60, an undifferentiated marker, was measured by flow cytometry. Anti-Tra1-60 antibody 560380 (Nippon Becton Dickinson Co., Ltd.) was used as the antibody, and Cell Lab QuantaSC (Beckman Coulter Co., Ltd.) was used as the measurement apparatus. The positive rate of Tra-1-60 was defined as the undifferentiated rate.

(三胚葉細胞への分化培養)
本実施形態の方法により得られた細胞が多分化能を有していることを検証するために、以下の方法にて三胚葉への分化培養を行った。
(Differentiation culture into three germ layer cells)
In order to verify that the cells obtained by the method of this embodiment have pluripotency, differentiation culture into three germ layers was performed by the following method.

培養液としては、 IMDM(Life Technologies社)にMEM(非必須アミノ酸)(Life Technologies社)を1%、2-Mercaptoethanol(Life Technologies社)を0.1mM、L-glutamine(Life Technologies社)を1mM、および牛胎児血清(FBS)(ニチレイバイオサイエンス)を20%となるように添加したものを用いた。   As a culture solution, IMDM (Life Technologies) has 1% MEM (Non-essential amino acid) (Life Technologies), 2-Mercaptoethanol (Life Technologies) 0.1 mM, L-glutamine (Life Technologies) 1 mM, And fetal bovine serum (FBS) (Nichirei Bioscience) added to 20% was used.

実施例1にて得られた細胞を、24日間培養液にて培養した。培地交換頻度は、3日に1回とした。   The cells obtained in Example 1 were cultured in a culture solution for 24 days. The medium exchange frequency was once every 3 days.

(免疫染色)
培養後外胚葉のマーカーとしてβ3 Tubulin、中胚葉マーカーとしてcTnT(Troponin T Cardiac Isoform)、内胚葉マーカーとしAFP(αfeto protein)を免疫染色法にて染色した。それぞれ抗体としては、抗β3 Tubulin抗体(メルクミリポア社、05-559)、抗cTnT抗体(thermo scientific社、MA5-12960)、抗AFP抗体(R&D Systems社、MAB1368)を用いた。2次抗体としては、抗マウスIgG抗体(Life Technologies社、A11031)を用いた。
(Immunostaining)
After culture, β3 Tubulin was used as an ectoderm marker, cTnT (Troponin T Cardiac Isoform) was used as a mesoderm marker, and AFP (αfeto protein) was used as an endoderm marker by immunostaining. As the antibodies, anti-β3 Tubulin antibody (Merck Millipore, 05-559), anti-cTnT antibody (thermo scientific, MA5-12960), and anti-AFP antibody (R & D Systems, MAB1368) were used. As a secondary antibody, an anti-mouse IgG antibody (Life Technologies, A11031) was used.

染色した細胞は、共焦点顕微鏡(対物レンズ40倍)にてFLUOVIEW FV1200(オリンパス株式会社)にて写真を撮影した。ソフトウェアとしてFV10-ASW(オリンパス株式会社)を用いた。   The stained cells were photographed with FLUOVIEW FV1200 (Olympus Corporation) with a confocal microscope (40x objective lens). FV10-ASW (Olympus Corporation) was used as software.

図9に実施例1で得られた細胞を分化培養後染色した写真を示す。三胚葉何れにも分化する多分化能が確認された。   FIG. 9 shows a photograph of the cells obtained in Example 1 stained after differentiation culture. Multipotency to differentiate into all three germ layers was confirmed.

調整手段2にbFGFとヘパリンを4mL予め添加し、これを1日1mLずつ3、4、5、6日目に添加する以外は実施例1と同じ方法で7日間培養を行った。
[比較例1]
Cultivation was carried out for 7 days in the same manner as in Example 1 except that 4 mL of bFGF and heparin were added in advance to the adjusting means 2 and added on the 3rd, 4th, 5th, and 6th days 1 mL per day.
[Comparative Example 1]

比較例1においては、図2に示したような細胞培養システムを作製した。培養槽には実施例1と同じものを用いた。調整手段1には培養液Essential-8培地を貯留(冷蔵状態で4℃を維持)し、送液手段にて送液回路を通じて100mL/日の速度で培養槽に添加すると同時に、別の送液手段にて同速度で培養液を抜き取り、送液回路を通じて別の貯留手段に廃棄する方法で7日間培養を行った。培養槽内および調整手段1の培養液には実施例1と同じ濃度のY-27632を添加した。その他の点については実施例1と同様の条件で培養を行った。
[比較例2]
In Comparative Example 1, a cell culture system as shown in FIG. 2 was produced. The same culture tank as in Example 1 was used. The adjustment means 1 retains the culture medium Essential-8 medium (maintains 4 ° C in a refrigerated state), and is added to the culture tank at a rate of 100 mL / day through the liquid supply circuit by the liquid supply means. The culture solution was withdrawn at the same speed by the means, and cultured for 7 days by a method of discarding it in another storage means through the liquid feeding circuit. Y-27632 having the same concentration as in Example 1 was added to the culture solution in the culture tank and the adjusting means 1. The other points were cultured under the same conditions as in Example 1.
[Comparative Example 2]

図2のシステムを用い、培養液Essential-8培地を100mL/日の速度で培養槽に添加すると同時に、同速度で培養液を抜き取り、7日間培養を行った。培養液には実施例1と同じ濃度のY-27632とヘパリンを添加した。その他の点については実施例1と同様の条件で培養を行った。
[比較例3]
Using the system shown in FIG. 2, the culture solution Essential-8 medium was added to the culture tank at a rate of 100 mL / day, and at the same time, the culture solution was withdrawn at the same rate and cultured for 7 days. Y-27632 and heparin at the same concentration as in Example 1 were added to the culture solution. The other points were cultured under the same conditions as in Example 1.
[Comparative Example 3]

調整液にY-27632を添加しないこと以外は実施例1と同様に7日間の培養を行った。
[比較例4]
The culture was carried out for 7 days in the same manner as in Example 1 except that Y-27632 was not added to the adjustment solution.
[Comparative Example 4]

培養液にY-27632を添加しないこと以外は比較例1と同様に7日間の培養を行った。   The culture was performed for 7 days in the same manner as in Comparative Example 1 except that Y-27632 was not added to the culture solution.

上記実施例及び比較例を以下の表に要約する。
The above examples and comparative examples are summarized in the following table.

結果より、本実施形態の方法がヒト多能性幹細胞の細胞塊の製造方法として有効であることが示された。   From the results, it was shown that the method of this embodiment is effective as a method for producing a cell cluster of human pluripotent stem cells.

本実施の形態に係る細胞培養方法は、均一なヒト多能性幹細胞塊を低コストで、手間が少なく、高密度で培養可能な方法を提供できることから、再生医療や薬剤スクリーニングおよび安全性評価等で多能性幹細胞を大量に利用する分野に利用可能である。   The cell culture method according to the present embodiment can provide a method capable of culturing uniform human pluripotent stem cell mass at low cost, with less labor, and at high density, such as regenerative medicine, drug screening, safety evaluation, etc. Therefore, it can be used in a field where pluripotent stem cells are used in large quantities.

1 培養槽
2 培養液
3 撹拌翼
4 回転軸
5 フィルター
6 通気フィルター
7 調整手段1
8 調整液貯留槽
9 調整液
10 半透膜
11 撹拌回転子
12 送液手段
13 送液回路
14 液面検知手段
15 情報伝達回路
16 送液手段調整器
17 溶存酸素検知手段
18 調整手段2
19 FGF溶液
DESCRIPTION OF SYMBOLS 1 Culture tank 2 Culture solution 3 Stirring blade 4 Rotating shaft 5 Filter 6 Ventilation filter 7 Adjustment means 1
8 Adjustment liquid storage tank 9 Adjustment liquid 10 Semipermeable membrane 11 Stirring rotor 12 Liquid supply means 13 Liquid supply circuit 14 Liquid level detection means 15 Information transmission circuit 16 Liquid supply means adjuster 17 Dissolved oxygen detection means 18 Adjustment means 2
19 FGF solution

Claims (8)

多能性幹細胞からなる細胞塊製造方法であって、
Rho結合キナーゼ(ROCK)阻害剤を含む培養液の存在下、
実質的に閉鎖系が維持された状態にて
培養液の構成成分の調整を行う培養工程を含むことを特徴とする
多能性幹細胞からなる細胞塊の製造方法。
A cell mass production method comprising pluripotent stem cells,
In the presence of a culture medium containing a Rho-binding kinase (ROCK) inhibitor,
A method for producing a cell mass composed of pluripotent stem cells, comprising a culturing step of adjusting the components of a culture solution in a state where a closed system is substantially maintained.
前記培養工程は、半透膜を介して培養液の構成成分の調整を行う工程を少なくとも含むことを特徴とする請求項1記載の多能性幹細胞からなる細胞塊の製造方法。   The method for producing a cell mass composed of pluripotent stem cells according to claim 1, wherein the culturing step includes at least a step of adjusting a component of the culture solution via a semipermeable membrane. 前記培養液を含む培養槽と、
該培養槽とは独立しかつ閉鎖系回路で接続された半透膜と、前記ROCK阻害剤を含む調整液の貯留手段とを有する調整手段1と、
該培養槽及び調整手段1とは独立しかつ閉鎖系回路で接続された調整手段2とを備える培養装置において、
調整手段1と調整液により培養液成分のうち半透膜を通過する物質の濃度を調整し、
さらに、調整手段2により少なくとも線維芽細胞成長因子(FGF)濃度を調整し、
培養する工程を少なくとも含むことを特徴とする、請求項1または2に記載の多能性幹細胞からなる細胞塊の製造方法。
A culture vessel containing the culture solution;
An adjustment means 1 having a semipermeable membrane independent of the culture tank and connected in a closed circuit, and a storage means for adjusting liquid containing the ROCK inhibitor;
In a culture apparatus comprising the adjusting means 2 independent of the culture tank and the adjusting means 1 and connected by a closed circuit,
The concentration of the substance that passes through the semipermeable membrane among the components of the culture solution is adjusted by the adjusting means 1 and the adjusting solution,
Furthermore, the adjusting means 2 adjusts at least the fibroblast growth factor (FGF) concentration,
The method for producing a cell mass composed of pluripotent stem cells according to claim 1, comprising at least a culturing step.
前記調整液は少なくともインスリンを含み、調整手段1の半透膜がインスリンを透過させることが可能な孔径を有することを特徴とする、請求項2または3に記載の多能性幹細胞からなる細胞塊の製造方法。   The cell mass composed of pluripotent stem cells according to claim 2 or 3, wherein the adjustment liquid contains at least insulin, and the semipermeable membrane of the adjustment means 1 has a pore diameter capable of permeating insulin. Manufacturing method. 調整手段1の半透膜がFGFは透過しない孔径を有することを特徴とする、請求項4に記載の多能性幹細胞からなる細胞塊の製造方法。   The method for producing a cell mass composed of pluripotent stem cells according to claim 4, wherein the semipermeable membrane of the adjusting means 1 has a pore size that does not allow FGF to permeate. 調整手段2は前記FGFと硫酸基を有する化合物との混合物を含む貯留手段を有しており、該混合物は培養槽に添加されることで濃度が調整されることを特徴とする請求項3~5のいずれか1項に記載の多能性幹細胞からなる細胞塊の製造方法。   The adjusting means 2 has a storage means containing a mixture of the FGF and a compound having a sulfate group, and the concentration of the mixture is adjusted by adding the mixture to a culture tank. 6. A method for producing a cell cluster comprising the pluripotent stem cells according to any one of 5 above. 培養期間中閉鎖系を維持して培養することを特徴とする請求項1〜6のいずれか1項に記載の多能性幹細胞からなる細胞塊の製造方法。   The method for producing a cell mass composed of pluripotent stem cells according to any one of claims 1 to 6, wherein the culture is performed while maintaining a closed system during the culture period. 培養槽の培養液量を実質的に一定に保持可能であることを特徴とする請求項1〜7のいずれか1項に記載の多能性幹細胞からなる細胞塊の製造方法。   The method for producing a cell mass composed of pluripotent stem cells according to any one of claims 1 to 7, wherein the amount of the culture solution in the culture tank can be maintained substantially constant.
JP2014041389A 2014-03-04 2014-03-04 Cell mass production method comprising pluripotent stem cells Active JP6422221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014041389A JP6422221B2 (en) 2014-03-04 2014-03-04 Cell mass production method comprising pluripotent stem cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014041389A JP6422221B2 (en) 2014-03-04 2014-03-04 Cell mass production method comprising pluripotent stem cells

Publications (2)

Publication Number Publication Date
JP2015165783A true JP2015165783A (en) 2015-09-24
JP6422221B2 JP6422221B2 (en) 2018-11-14

Family

ID=54257034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014041389A Active JP6422221B2 (en) 2014-03-04 2014-03-04 Cell mass production method comprising pluripotent stem cells

Country Status (1)

Country Link
JP (1) JP6422221B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018155607A1 (en) * 2017-02-24 2019-12-12 剛士 田邊 Cell processing apparatus, suspension culture device, and stem cell induction method
WO2020004571A1 (en) * 2018-06-27 2020-01-02 味の素株式会社 Additive for culturing stem cells, culturing medium, and culturing method
JP7241225B1 (en) 2022-07-29 2023-03-16 日機装株式会社 Culture system
JP7299436B1 (en) * 2022-08-08 2023-06-27 日機装株式会社 Culture system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504090A (en) * 2006-09-22 2010-02-12 独立行政法人理化学研究所 Stem cell culture medium and culture method
JP2010537663A (en) * 2007-11-09 2010-12-09 アールエヌエル バイオ カンパニー リミテッド Method for isolating and culturing adult stem cells derived from human amnion epithelium
JP2013532492A (en) * 2010-08-05 2013-08-19 ウイスコンシン アラムニ リサーチ ファンデーション Simple basic medium for human pluripotent cell culture
WO2013161885A1 (en) * 2012-04-27 2013-10-31 旭化成株式会社 Cell culture system and cell culture method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504090A (en) * 2006-09-22 2010-02-12 独立行政法人理化学研究所 Stem cell culture medium and culture method
JP2010537663A (en) * 2007-11-09 2010-12-09 アールエヌエル バイオ カンパニー リミテッド Method for isolating and culturing adult stem cells derived from human amnion epithelium
JP2013532492A (en) * 2010-08-05 2013-08-19 ウイスコンシン アラムニ リサーチ ファンデーション Simple basic medium for human pluripotent cell culture
WO2013161885A1 (en) * 2012-04-27 2013-10-31 旭化成株式会社 Cell culture system and cell culture method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018155607A1 (en) * 2017-02-24 2019-12-12 剛士 田邊 Cell processing apparatus, suspension culture device, and stem cell induction method
JP6998018B2 (en) 2017-02-24 2022-01-18 剛士 田邊 Cell processing device, suspension incubator, and method for inducing stem cells
WO2020004571A1 (en) * 2018-06-27 2020-01-02 味の素株式会社 Additive for culturing stem cells, culturing medium, and culturing method
CN112313329A (en) * 2018-06-27 2021-02-02 味之素株式会社 Additive for stem cell culture, culture medium for stem cell culture, and culture method
JP7456381B2 (en) 2018-06-27 2024-03-27 味の素株式会社 Additive and medium for culturing stem cells, and culture method
JP7241225B1 (en) 2022-07-29 2023-03-16 日機装株式会社 Culture system
JP2024018808A (en) * 2022-07-29 2024-02-08 日機装株式会社 Culture system
JP7299436B1 (en) * 2022-08-08 2023-06-27 日機装株式会社 Culture system
JP7299437B1 (en) * 2022-08-08 2023-06-27 日機装株式会社 Culture system
JP7358664B1 (en) * 2022-08-08 2023-10-10 日機装株式会社 Culture system

Also Published As

Publication number Publication date
JP6422221B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
KR101750148B1 (en) Cell culture system and cell culture method
US20220298473A1 (en) Low oxygen tension enhances endothelial fate of human pluripotent stem cells
CA2736533C (en) Polymer membrane irradiated in oxygen for cell culture
Wung et al. Hollow fibre membrane bioreactors for tissue engineering applications
US20210062147A1 (en) Method of manufacturing or differentiating mammalian pluripotent stem cellsor progenitor cells using a hollow fiber bioreactor
JP6422221B2 (en) Cell mass production method comprising pluripotent stem cells
WO2012069841A1 (en) Bioreactor
CN107075443B (en) Three-dimensional cell culture system and cell culture method using the same
JP2014060991A (en) Method of culturing stem cells using inner lumen of porous hollow fiber
JP6323702B2 (en) Hollow fiber membrane and hollow fiber module for cell culture
JP2012044908A (en) Hollow fiber module for cell culture and method for cell culture
Qiang et al. Comparative evaluation of different membranes for the construction of an artificial liver support system
WO2017104558A1 (en) Hollow-fiber membrane and hollow-fiber module for cell culture
JP2015223111A (en) Methods and apparatuses for long term perfusion of high density cell culture
CN109153963B (en) Method for changing cell culture in adhesion state
JP2017176043A (en) Cell cultivation using hollow fiber module
EP4183867A1 (en) Method for producing cardiomyocyte cell mass
WO2021065984A1 (en) Method for forming sheet of cardiomyocytes
CN104928231A (en) Cell culture medium, and preparation method and application thereof
US20120094372A1 (en) Ex Vivo Cell Culture: Enabling Process and Devices
JP2018014947A (en) Cell culture method using hollow fiber membrane module
JP2019154277A (en) Cell culture vessel
WO2018070441A1 (en) Method for producing culture cell structure
JP2020018235A (en) Method and apparatus for culturing megakaryocyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181016

R150 Certificate of patent or registration of utility model

Ref document number: 6422221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150