JP2015165048A - Article and method for forming article - Google Patents

Article and method for forming article Download PDF

Info

Publication number
JP2015165048A
JP2015165048A JP2015034640A JP2015034640A JP2015165048A JP 2015165048 A JP2015165048 A JP 2015165048A JP 2015034640 A JP2015034640 A JP 2015034640A JP 2015034640 A JP2015034640 A JP 2015034640A JP 2015165048 A JP2015165048 A JP 2015165048A
Authority
JP
Japan
Prior art keywords
article
composition
less
rhenium
tantalum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015034640A
Other languages
Japanese (ja)
Other versions
JP6699989B2 (en
Inventor
ガンジャン・フェン
Ganjiang Feng
マイケル・ダグラス・アーネット
Michael Douglas Arnett
シャン・リウ
Shan Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52544405&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015165048(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2015165048A publication Critical patent/JP2015165048A/en
Application granted granted Critical
Publication of JP6699989B2 publication Critical patent/JP6699989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an article including an equiaxed crystal structure and a composition, and a method for forming the article.SOLUTION: An article and a method for forming the article are disclosed. The article includes an equiaxed crystal structure and a composition. The composition includes, by weight percent, about 6.0% to about 9.0% aluminum, up to about 0.5% titanium, about 2.5% to about 4.5% tantalum, about 10.0% to about 12.5% chromium, about 5.0% to about 10.0% cobalt, about 0.30% to about 0.80% molybdenum, about 2.0% to about 5.0% tungsten, up to about 1.0% silicon, about 0.35% to about 0.60% hafnium, about 0.005% to about 0.010% boron, about 0.06% to about 0.10% carbon, up to about 0.02% zirconium, up to about 0.1% lanthanum, up to about 0.03% yttrium, and balance nickel and incidental impurities. Rhenium, if present, is a trace element. The method for forming the article includes preparing the composition having up to about 0.01% rhenium, and forming the article.

Description

本発明は、物品及び物品の製造方法に関する。より具体的に、本発明は、等軸晶構造及び組成物を含む物品及び物品の製造方法に関する。   The present invention relates to an article and a method for manufacturing the article. More specifically, the present invention relates to an article comprising an equiaxed crystal structure and a composition and a method for producing the article.

ガスタービン及び航空機エンジンの高温ガス通路部品、特に、タービンのブレード、ベーン、ノズル、シール及び固定シュラウドは、しばしば2000°Fを超す、高温で動作する。高温ガス通路部品を形成するために使用される超合金組成物は、部品が第1段において晒される高温及び他の動作条件のために、しばしば多量のレニウム(Re)を配合した単結晶組成物である。そのような超合金組成物は、典型的に、1〜3重量%のレニウム(Re)を含有し、一部は、6重量%以下のレニウム(Re)を配合し得る。   Gas turbine and aircraft engine hot gas path components, particularly turbine blades, vanes, nozzles, seals and stationary shrouds, operate at high temperatures, often in excess of 2000 ° F. The superalloy composition used to form the hot gas path component is a single crystal composition often blended with a large amount of rhenium (Re) due to the high temperatures and other operating conditions to which the component is exposed in the first stage. It is. Such superalloy compositions typically contain 1-3% by weight rhenium (Re), and some may incorporate up to 6% by weight rhenium (Re).

そのような単結晶のレニウム(Re)含有超合金組成物の一つは、本明細書では「N2Re」という。N2Reは、重量%で、アルミニウム(Al)6.0%〜9.0%、チタン(Ti)0.5%以下、タンタル(Ta)4.0%〜6.0%、クロム(Cr)12.5%〜15.0%、コバルト(Co)3.0%〜10.0%、モリブデン(Mo)0.25%以下、タングステン(W)2.0%〜5.0%、ケイ素(Si)1.0%以下、ハフニウム(Hf)0.2%以下、レニウム(Re)1.0%〜3.0%と、残部のニッケル(Ni)及び不可避不純物を含む。N2Reは、ホウ素(B)0.01%以下、炭素(C)0.07%以下、ジルコニウム(Zr)0.03%以下及びランタン(La)0.1%以下も含み得る。N2Reの範中に属する組成物の一例は、「Rene N2」の商標名で市販されていない合金(General Electric社から入手可能)を含み得る。   One such single crystal rhenium (Re) containing superalloy composition is referred to herein as “N 2 Re”. N 2 Re is, by weight, aluminum (Al) 6.0% to 9.0%, titanium (Ti) 0.5% or less, tantalum (Ta) 4.0% to 6.0%, chromium (Cr) 12 0.5% to 15.0%, Cobalt (Co) 3.0% to 10.0%, Molybdenum (Mo) 0.25% or less, Tungsten (W) 2.0% to 5.0%, Silicon (Si ) 1.0% or less, hafnium (Hf) 0.2% or less, rhenium (Re) 1.0% to 3.0%, and the remaining nickel (Ni) and inevitable impurities. N 2 Re may also include boron (B) 0.01% or less, carbon (C) 0.07% or less, zirconium (Zr) 0.03% or less, and lanthanum (La) 0.1% or less. An example of a composition belonging to the category of N2Re may include an alloy not commercially available under the trademark “Rene N2” (available from General Electric).

単結晶でなくレニウム(Re)を含まない代替的な超合金組成物は、本明細書では「R108」という。R108は、重量%で、アルミニウム(Al)5.25%〜5.75%、チタン(Ti)0.6%〜0.9%、タンタル(Ta)2.8%〜3.3%、クロム(Cr)8.0%〜8.7%、コバルト(Co)9.0%〜10.0%、モリブデン(Mo)0.4%〜0.6%、タングステン(W)9.3%〜9.7%、ケイ素(Si)0.12%以下、ハフニウム(Hf)1.3%〜1.7%、ホウ素(B)0.01%〜0.02%、炭素(C)0.1%以下、ジルコニウム(Zr)0.005%〜0.02%、鉄(Fe)0.2%以下、マンガン(Mn)0.1%以下、銅(Cu)0.1%以下、リン(P)0.01%以下、硫黄(S)0.004%以下、ニオブ(Nb)0.1%以下並びにニッケル(Ni)及び不可避不純物を含む。R108の範中に属する組成物の一例は、商標名「Rene 108」の商標名で市販されていない合金を含み得る。バーナリグにおける2000°Fの試験条件下で、R108から形成された物品は、低いクロム含量のために表面に不安定な酸化物スケールを形成する。   An alternative superalloy composition that is not single crystal and does not contain rhenium (Re) is referred to herein as “R108”. R108 is, by weight, aluminum (Al) 5.25% to 5.75%, titanium (Ti) 0.6% to 0.9%, tantalum (Ta) 2.8% to 3.3%, chromium (Cr) 8.0% to 8.7%, Cobalt (Co) 9.0% to 10.0%, Molybdenum (Mo) 0.4% to 0.6%, Tungsten (W) 9.3% to 9.7%, silicon (Si) 0.12% or less, hafnium (Hf) 1.3% to 1.7%, boron (B) 0.01% to 0.02%, carbon (C) 0.1 % Or less, zirconium (Zr) 0.005% to 0.02%, iron (Fe) 0.2% or less, manganese (Mn) 0.1% or less, copper (Cu) 0.1% or less, phosphorus (P ) 0.01% or less, sulfur (S) 0.004% or less, niobium (Nb) 0.1% or less, and nickel (Ni) and inevitable impurities. An example of a composition within the scope of R108 may include an alloy not commercially available under the trade name “Rene 108”. Under test conditions of 2000 ° F. in a burner rig, the article formed from R108 forms an unstable oxide scale on the surface due to the low chromium content.

R108及びN2Reは、同等の高温機械特性を有するが、R108は、N2Reと比べて著しく劣る高温腐食耐性及び耐酸化性を有する。結果として、R108は、重厚なガスタービン又は航空機エンジンの第1段の高温ガス通路部品を作るには適さない。   R108 and N2Re have comparable high temperature mechanical properties, but R108 has high temperature corrosion resistance and oxidation resistance that are significantly inferior to N2Re. As a result, R108 is not suitable for making heavy gas turbine or aircraft engine first stage hot gas path components.

Rene N5、Rene N6及びRene N2等の、レニウム(Re)を配合した単結晶超合金は、ガスタービン又は航空機エンジンの動作条件下で、良好な強度、延性、クリープ寿命、低サイクル疲労寿命、耐酸化性及び高温腐食耐性を含む、ガスタービン又は航空機エンジンの用途に非常に望ましい特性を提供し得る。しかし、レニウム(Re)は、最も高価な金属の一つであり、単結晶部材の加工は、典型的に時間がかかりコスト高であるので、レニウム(Re)含有単結晶超合金を経済的に望ましくないものとする。   Single crystal superalloys containing rhenium (Re), such as Rene N5, Rene N6 and Rene N2, have good strength, ductility, creep life, low cycle fatigue life, acid resistance under the operating conditions of gas turbines or aircraft engines It can provide highly desirable properties for gas turbine or aircraft engine applications, including oxidizability and hot corrosion resistance. However, rhenium (Re) is one of the most expensive metals, and the processing of single crystal members is typically time consuming and expensive, so rhenium (Re) containing single crystal superalloys are economically Undesirable.

米国特許第8431073号明細書U.S. Pat. No. 8431073

当分野において、形成される部品のプロセス及び/又は特性を改良した物品及び方法が望まれている。   There is a need in the art for articles and methods that improve the process and / or properties of the parts that are formed.

一実施形態では、物品は、等軸晶構造及び組成物を含み、組成物は、重量%で、アルミニウム(Al)約6.0%〜約9.0%、チタン(Ti)約0.5%以下、タンタル(Ta)約2.5%〜約4.5%、クロム(Cr)約10.0%〜約12.5%、コバルト(Co)約5.0%〜約10.0%、モリブデン(Mo)約0.30%〜約0.80%、タングステン(W)約2.0%〜約5.0%、ケイ素(Si)約1.0%以下、ハフニウム(Hf)約0.35%〜約0.60%、ホウ素(B)約0.005%〜約0.010%、炭素(C)約0.06%〜約0.10%、ジルコニウム(Zr)約0.02%以下、ランタン(La)約0.1%以下、イットリウム(Y)約0.03%以下並びに残部のニッケル(Ni)及び不可避不純物を含み、レニウム(Re)が存在していたとしても痕跡元素である。   In one embodiment, the article comprises an equiaxed crystal structure and composition, wherein the composition is about 6.0% to about 9.0% aluminum (Al) and about 0.5% titanium (Ti) by weight. % Or less, tantalum (Ta) about 2.5% to about 4.5%, chromium (Cr) about 10.0% to about 12.5%, cobalt (Co) about 5.0% to about 10.0% Molybdenum (Mo) about 0.30% to about 0.80%, tungsten (W) about 2.0% to about 5.0%, silicon (Si) about 1.0% or less, hafnium (Hf) about 0 .35% to about 0.60%, boron (B) about 0.005% to about 0.010%, carbon (C) about 0.06% to about 0.10%, zirconium (Zr) about 0.02 % Or less, lanthanum (La) about 0.1% or less, yttrium (Y) about 0.03% or less and the remaining nickel (Ni) and inevitable impurities. Look, but also trace elements as rhenium (Re) was present.

別の実施形態では、物品の製造方法は、組成物を準備する工程と、物品を形成する工程とを含む。組成物は、重量%で、アルミニウム(Al)約6.0%〜約9.0%、チタン(Ti)約0.5%以下、タンタル(Ta)約2.5%〜約4.5%、クロム(Cr)約10.0%〜約12.5%、コバルト(Co)約5.0%〜約10.0%、モリブデン(Mo)約0.30%〜約0.80%、タングステン(W)約2.0%〜約5.0%、ケイ素(Si)約1.0%以下、ハフニウム(Hf)約0.35%〜約0.60%、ホウ素(B)約0.005%〜約0.010%、炭素(C)約0.06%〜約0.10%、ジルコニウム(Zr)約0.02%以下、ランタン(La)約0.1%以下、イットリウム(Y)約0.03%以下、レニウム(Re)約0.01%以下並びに残部のニッケル(Ni)及び不可避不純物を含む。物品は、等軸晶構造を含む。   In another embodiment, a method for manufacturing an article includes the steps of providing a composition and forming the article. The composition comprises, by weight, aluminum (Al) about 6.0% to about 9.0%, titanium (Ti) about 0.5% or less, tantalum (Ta) about 2.5% to about 4.5%. Chromium (Cr) about 10.0% to about 12.5%, cobalt (Co) about 5.0% to about 10.0%, molybdenum (Mo) about 0.30% to about 0.80%, tungsten (W) about 2.0% to about 5.0%, silicon (Si) about 1.0% or less, hafnium (Hf) about 0.35% to about 0.60%, boron (B) about 0.005 % To about 0.010%, carbon (C) about 0.06% to about 0.10%, zirconium (Zr) about 0.02% or less, lanthanum (La) about 0.1% or less, yttrium (Y) It contains about 0.03% or less, rhenium (Re) about 0.01% or less, and the balance nickel (Ni) and inevitable impurities. The article includes an equiaxed crystal structure.

本発明の他の特徴及び利点は、本発明の原理を例として図示する添付図面と併せて、以下の更に詳細な説明から理解されるであろう。   Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.

複雑な幾何形状の微細な窪みを含む、本開示の実施形態によるRNXから鋳造された物品である。3 is an article cast from RNX according to an embodiment of the present disclosure, including a fine recess of complex geometry. N2Re、R108及びRNXから形成された物品の低サイクル疲労寿命を比較している。The low cycle fatigue life of articles formed from N2Re, R108 and RNX are compared. N2Re、R108及びRNXから形成された物品のクリープ寿命を比較している。The creep life of articles formed from N2Re, R108 and RNX are compared. R108及びRNXから作られた物品の酸化層深さを比較している。The oxide layer depth of articles made from R108 and RNX are compared. バーナリグ試験を経た、本開示の実施形態によるRNXから形成された物品の顕微鏡断面写真である。2 is a microscopic cross-sectional photograph of an article formed from RNX according to an embodiment of the present disclosure that has undergone a burner rig test. バーナリグ試験を経た、R108から形成された対応する物品の顕微鏡断面写真である。It is a microscope cross-sectional photograph of the corresponding | compatible article formed from R108 which passed the burner rig test.

できるだけ、同一の部材を表すために図面を通して同一の参照番号が使用される。   Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.

物品及び物品の製造方法が提供される。本開示の実施形態は、本明細書では開示する1つ以上の特徴を使用しない方法及び物品と比べて、耐食性を高め、耐酸化性を高め、低サイクル疲労寿命を延ばし、クリープ寿命を高め、鋳造性を向上させ、高温下での相安定性を高め、コストを下げ、又はそれらの組合せをもたらす。本開示の実施形態は、高温でレニウム(Re)含有ニッケル基超合金と少なくとも同等の有利な特性を有するとともに等軸晶構造を有する、レニウム(Re)を含まないニッケル基超合金によって、ガスタービン及び航空機エンジンの高温ガス通路部品を製造することができる。   Articles and methods of manufacturing the articles are provided. Embodiments of the present disclosure provide increased corrosion resistance, increased oxidation resistance, increased low cycle fatigue life, increased creep life, and methods and articles that do not use one or more features disclosed herein. Improves castability, increases phase stability at high temperatures, lowers costs, or provides a combination thereof. Embodiments of the present disclosure provide a gas turbine with a rhenium (Re) -free nickel-base superalloy having an equiaxed crystal structure and at least as advantageous properties as a rhenium (Re) -containing nickel-base superalloy And aircraft engine hot gas path components.

一実施形態では、物品は、等軸晶構造及び組成物を含む。組成物は、重量%で、アルミニウム(Al)約6.0%〜約9.0%、チタン(Ti)約0.5%以下、タンタル(Ta)約2.5%〜約4.5%、クロム(Cr)約10.0%〜約12.5%、コバルト(Co)約5.0%〜約10.0%、モリブデン(Mo)約0.30%〜約0.80%、タングステン(W)約2.0%〜約5.0%、ケイ素(Si)約1.0%以下、ハフニウム(Hf)約0.35%〜約0.60%、ホウ素(B)約0.005%〜約0.010%、炭素(C)約0.06%〜約0.10%、ジルコニウム(Zr)約0.02%以下、ランタン(La)約0.1%以下、イットリウム(Y)約0.03%以下並びに残部のニッケル(Ni)及び不可避不純物を含む。組成物は、レニウム(Re)を全く或いは痕跡元素としてしか含まない。別の実施形態では、レニウム(Re)は、組成物の0.01重量%未満の量でしか存在しない。   In one embodiment, the article comprises an equiaxed crystal structure and a composition. The composition comprises, by weight, aluminum (Al) about 6.0% to about 9.0%, titanium (Ti) about 0.5% or less, tantalum (Ta) about 2.5% to about 4.5%. Chromium (Cr) about 10.0% to about 12.5%, cobalt (Co) about 5.0% to about 10.0%, molybdenum (Mo) about 0.30% to about 0.80%, tungsten (W) about 2.0% to about 5.0%, silicon (Si) about 1.0% or less, hafnium (Hf) about 0.35% to about 0.60%, boron (B) about 0.005 % To about 0.010%, carbon (C) about 0.06% to about 0.10%, zirconium (Zr) about 0.02% or less, lanthanum (La) about 0.1% or less, yttrium (Y) About 0.03% or less and the balance of nickel (Ni) and inevitable impurities are included. The composition contains rhenium (Re) at all or only as a trace element. In another embodiment, rhenium (Re) is present only in an amount less than 0.01% by weight of the composition.

一実施形態では、組成物中のタンタル(Ta)約2.5%〜約4.5%は、1:1のモル基準でニオブ(Nb)で完全又は部分的に置換される。この置換は、物品の鋳造性又はサービス性に重大な影響を及ぼさないが、組成物のコストを下げる。   In one embodiment, about 2.5% to about 4.5% of tantalum (Ta) in the composition is completely or partially replaced with niobium (Nb) on a 1: 1 molar basis. This replacement does not have a significant effect on the castability or serviceability of the article, but reduces the cost of the composition.

別の実施形態では、組成物は、重量%で、アルミニウム(Al)約6.2%〜約6.5%、チタン(Ti)約0.04%以下、タンタル(Ta)約3.9%〜約4.3%、クロム(Cr)約12.0%〜約12.5%、コバルト(Co)約7.0%〜約8.0%、モリブデン(Mo)約0.40%〜約0.75%、タングステン(W)約4.7%〜約5.1%、ケイ素(Si)約0.08%〜約0.12%、ハフニウム(Hf)約0.47%〜約0.53%、ホウ素(B)約0.005%〜約0.010%、炭素(C)約0.06%〜約0.10%、ジルコニウム(Zr)約0.02%以下、ランタン(La)約0.1%以下、イットリウム(Y)約0.03%以下、レニウム(Re)約0.01%以下並びに残部のニッケル(Ni)及び不可避不純物を含む。   In another embodiment, the composition comprises, by weight, about 6.2% to about 6.5% aluminum (Al), up to about 0.04% titanium (Ti), and about 3.9% tantalum (Ta). To about 4.3%, chromium (Cr) from about 12.0% to about 12.5%, cobalt (Co) from about 7.0% to about 8.0%, molybdenum (Mo) from about 0.40% to about 0.75%, tungsten (W) about 4.7% to about 5.1%, silicon (Si) about 0.08% to about 0.12%, hafnium (Hf) about 0.47% to about 0.00. 53%, boron (B) about 0.005% to about 0.010%, carbon (C) about 0.06% to about 0.10%, zirconium (Zr) about 0.02% or less, lanthanum (La) About 0.1% or less, yttrium (Y) about 0.03% or less, rhenium (Re) about 0.01% or less, and the remaining nickel (Ni) Including the avoid impurities.

一実施形態では、物品は、ガスタービン又は航空機エンジンの高温ガス通路部品であり、高温ガス通路部品は、少なくとも約2000°Fの温度に晒される。別の実施形態では、高温ガス通路部品は、ブレード、ベーン、ノズル、シール及び固定シュラウドから成る群から選択される。   In one embodiment, the article is a gas turbine or aircraft engine hot gas path component, and the hot gas path component is exposed to a temperature of at least about 2000 degrees Fahrenheit. In another embodiment, the hot gas path component is selected from the group consisting of blades, vanes, nozzles, seals, and stationary shrouds.

一実施形態では、物品の製造方法は、組成物を準備する工程と、組成物から物品を形成する工程とを含む。別の実施形態では、組成物から物品を形成する工程は、非限定的に、鋳造、粉末治金及び三次元付加加工を含む、任意の適した技術を含む。別の実施形態では、鋳造は、可変圧力制御による精密インベストメント鋳造を含む。   In one embodiment, a method of manufacturing an article includes the steps of providing a composition and forming an article from the composition. In another embodiment, forming the article from the composition includes any suitable technique, including but not limited to casting, powder metallurgy, and three-dimensional additive processing. In another embodiment, the casting includes precision investment casting with variable pressure control.

本明細書では、「可変圧力制御による精密インベストメント鋳造」は、以下に記述する鋳造プロセスを意味する。インゴットは、溶解チャンバ内の誘導コイルによって表面再溶解圧下で表面再溶解まで加熱される。不活性ガスは、鋳造圧に達するまで溶解チャンバ内に導入される。温度は、溶解温度に達するまで調節される。インゴットが完全に溶融物に転化されるときに、溶融物は、不活性ガス下で型穴に鋳造圧で注入される。不活性ガスは、物品が凝固物に鋳造されるまで鋳造圧に維持される。典型的な工業鋳造プロセスにおける、パターン作成、型準備及び注入後凝固等の他の工程は、可変圧力制御による精密インベストメント鋳造においても不変である。   As used herein, “precision investment casting with variable pressure control” means the casting process described below. The ingot is heated to surface remelting under surface remelting pressure by an induction coil in the melting chamber. Inert gas is introduced into the dissolution chamber until the casting pressure is reached. The temperature is adjusted until the dissolution temperature is reached. When the ingot is completely converted to a melt, the melt is injected at casting pressure into the mold cavity under an inert gas. The inert gas is maintained at casting pressure until the article is cast into a solid. Other steps in the typical industrial casting process, such as pattern creation, mold preparation and post-injection solidification, are unchanged in precision investment casting with variable pressure control.

一実施形態では、インゴットが組成物から成る場合、可変圧力制御による精密インベストメント鋳造は、10-3気圧の表面再溶解圧及び10-2気圧〜10-1気圧の不活性ガス鋳造圧を含む。別の実施形態では、不活性ガスは、アルゴン(Ar)である。 In one embodiment, when the ingot is composed of a composition, the precision investment casting with variable pressure control includes a surface remelting pressure of 10 −3 atmospheres and an inert gas casting pressure of 10 −2 atmospheres to 10 −1 atmospheres. In another embodiment, the inert gas is argon (Ar).

一実施形態では、可変圧力制御による精密インベストメント鋳造は、溶解中及び鋳造中のクロム(Cr)の喪失を最小化する。少なくとも約2000°Fの温度下のガスタービン又は航空機エンジンの高温ガス通路部品の動作は、高温腐食耐性及び耐酸化性を維持するために、典型的に重量で少なくとも約12.0%のクロム(Cr)含量を要求する。   In one embodiment, precision investment casting with variable pressure control minimizes chromium (Cr) loss during melting and casting. Operation of a hot gas path component of a gas turbine or aircraft engine under a temperature of at least about 2000 ° F. is typically at least about 12.0% chromium (by weight) to maintain high temperature corrosion resistance and oxidation resistance. Cr) content is required.

一実施形態では、組成物は、鋳造性が高い。本明細書では、「鋳造性が高い」は、物品への組成物の鋳造中に表面増強窪み又は細リブ等の微細構造特徴の供給が不足しないこと、凝固収縮が許容範囲内であること、並びに物品が型/金属又はコア/金属の反応を本質的に含まないことを示している。別の実施形態では、組成物は、少なくとも約2000°Fの温度に晒される、ガスタービン又は航空機エンジンの高温ガス通路部品に、熱間等方加圧の使用を要求せずに鋳造され得るような、十分高い内部健全性を提供する。熱間等方加圧は、鋳造物品の内側の凝固収縮空隙を閉じるために、並びに、少なくとも約2000°Fの温度に晒される、ガスタービン又は航空機エンジンの高温ガス通路部品の要求を満たすように機械特性を向上するために、広範に使用されている。鋳造物品を熱間等方加圧に晒す加工工程を排除することによって、鋳造物品の製造コストが下がる。   In one embodiment, the composition is highly castable. As used herein, “high castability” means that there is not a short supply of microstructure features such as surface-enhanced depressions or fine ribs during casting of the composition into the article, coagulation shrinkage is within an acceptable range, As well as indicating that the article is essentially free of mold / metal or core / metal reactions. In another embodiment, the composition may be cast without requiring the use of hot isostatic pressing on a hot gas path component of a gas turbine or aircraft engine that is exposed to a temperature of at least about 2000 degrees Fahrenheit. Provide sufficiently high internal health. Hot isostatic pressing is to close the solidification shrinkage voids inside the cast article and to meet the requirements of hot gas path components of gas turbines or aircraft engines that are exposed to temperatures of at least about 2000 ° F. Widely used to improve mechanical properties. By eliminating the processing step that exposes the cast article to hot isostatic pressing, the manufacturing cost of the cast article is reduced.

一実施形態では、本開示による組成物から形成された物品の表面は、ガスタービン又は航空機エンジンの高温ガス通路の動作条件下で、安定したアルミニウム酸化物リッチのスケールホットを形成する。別の実施形態では、安定したアルミニウム酸化物リッチのスケールは、酸化雰囲気における反応性種の拡散を遅らせ、本開示による組成物の酸化及び高温腐食の性能を向上させる。   In one embodiment, the surface of an article formed from a composition according to the present disclosure forms a stable aluminum oxide rich scale hot under the operating conditions of a gas turbine or aircraft engine hot gas path. In another embodiment, a stable aluminum oxide-rich scale retards the diffusion of reactive species in an oxidizing atmosphere and improves the oxidation and hot corrosion performance of the composition according to the present disclosure.

一実施形態では(本明細書では、「RNX」と称する。)、本開示による組成物は、重量%で、アルミニウム(Al)6.25%、タンタル(Ta)4.0%、クロム(Cr)12.5%、コバルト(Co)7.5%、モリブデン(Mo)0.5%、タングステン(W)5.0%、ハフニウム(Hf)0.5%、ホウ素(B)0.0075%、炭素(C)0.08%並びにニッケル(Ni)及び随伴性不純物の残部を含む。   In one embodiment (referred to herein as “RNX”), the composition according to the present disclosure comprises, by weight, 6.25% aluminum (Al), 4.0% tantalum (Ta), chromium (Cr ) 12.5%, cobalt (Co) 7.5%, molybdenum (Mo) 0.5%, tungsten (W) 5.0%, hafnium (Hf) 0.5%, boron (B) 0.0075% , Carbon (C) 0.08% and nickel (Ni) and the balance of incidental impurities.

一実施形態では、R108に対する組成物の高い鋳造性は、本開示によるRNXから形成された物品が、R108から形成された対応する物品が経験するよりも50%低い凝固収縮を鋳造中に経験する比較によって例示される。   In one embodiment, the high castability of the composition to R108 means that an article formed from RNX according to the present disclosure experiences 50% lower solidification shrinkage during casting than a corresponding article formed from R108. Illustrated by comparison.

図1を参照すると、一実施形態では、可変圧力制御による精密インベストメント鋳造法により本開示によるRNXから形成された物品によって、組成物の高い鋳造性が証明されており、物品は、ガスタービンの高温ガス通路部品、具体的には48ポンドノズルである。ノズルは、複雑な幾何形状を有する非常に小さい複数の窪みを含み、ノズルは、湾曲した内部表面に平方インチ当り約400超の窪みを含む。窪みは、動作条件下での使用に適した高い精度で形成される。   Referring to FIG. 1, in one embodiment, an article formed from an RNX according to the present disclosure by a precision investment casting process with variable pressure control has demonstrated high castability of the composition, the article being a high temperature gas turbine Gas passage parts, specifically a 48 pound nozzle. The nozzle includes a plurality of very small depressions having a complex geometry, and the nozzle includes more than about 400 depressions per square inch on a curved inner surface. The depression is formed with high accuracy suitable for use under operating conditions.

一実施形態では、本開示によるRNXから形成された物品の、降伏強度、終局強度及び延性を含む、引張特性は、N2Reから形成された対応する物品の引張特性と少なくとも同等である。   In one embodiment, the tensile properties of an article formed from RNX according to the present disclosure, including yield strength, ultimate strength and ductility, are at least equivalent to the tensile properties of the corresponding article formed from N2Re.

図2を参照すると、一実施形態では、本開示によるRNXから形成された物品は、1800°F及び2分の保留時間で0.6%の歪みの試験条件下で、N2Reから形成された対応する物品が呈する対応する低サイクル疲労寿命よりも、約20%長い、或いは約18%〜約22%長い低サイクル疲労寿命、並びにR108から形成された対応する物品が呈する対応する低サイクル疲労寿命よりも約54%長い、或いは約50%〜約58%長い低サイクル疲労寿命を有する。   Referring to FIG. 2, in one embodiment, an article formed from RNX according to the present disclosure is a counterpart formed from N2Re under a test condition of 0.6% strain at 1800 ° F. and a holding time of 2 minutes. About 20% longer, or about 18% to about 22% longer than the corresponding low cycle fatigue life exhibited by the article, and the corresponding low cycle fatigue life exhibited by the corresponding article formed from R108. Also have a low cycle fatigue life that is about 54% longer, or about 50% to about 58% longer.

図3を参照すると、一実施形態では、本開示によるRNXから形成された物品は、1800°F及び20ksiの試験条件下で、N2Reから形成された対応する物品が呈する対応するクリープ寿命よりも、約2.3倍長い、或いは約2.0倍〜約2.6倍長いクリープ寿命、並びにR108から形成された対応する物品が呈する対応するクリープ寿命よりも約28%長い、或いは約25%〜約31%長いクリープ寿命を有する。   Referring to FIG. 3, in one embodiment, an article formed from RNX according to the present disclosure is more than the corresponding creep life exhibited by the corresponding article formed from N 2 Re under the test conditions of 1800 ° F. and 20 ksi. About 2.3 times longer, or about 2.0 times to about 2.6 times longer creep life, and about 28% longer than the corresponding creep life exhibited by a corresponding article formed from R108, or about 25% It has a creep life that is about 31% longer.

一実施形態では、本開示によるRNXから形成された物品は、N2Reから形成された対応する物品が呈する対応する耐酸化性と略同一の耐酸化性、並びにR108から形成された対応する物品が呈する対応する耐酸化性よりも約3倍高い、或いは約2.7倍〜約3.3倍高い耐酸化性を有する。   In one embodiment, an article formed from RNX according to the present disclosure exhibits an oxidation resistance substantially the same as the corresponding oxidation resistance exhibited by the corresponding article formed from N2Re, as well as the corresponding article formed from R108. It has an oxidation resistance that is about 3 times higher than the corresponding oxidation resistance, or about 2.7 times to about 3.3 times higher.

一実施形態では、本開示によるRNXから形成された物品は、N2Reから形成された対応する物品が呈する対応する高温腐食耐性と略同一の高温腐食耐性、並びにR108から形成された対応する物品が呈する対応する高温腐食耐性よりも約2倍高い、或いは約1.8倍〜約3.2倍高い高温腐食耐性を有する。   In one embodiment, an article formed from RNX according to the present disclosure exhibits a hot corrosion resistance that is substantially the same as the corresponding hot corrosion resistance exhibited by the corresponding article formed from N2Re, as well as the corresponding article formed from R108. It has a high temperature corrosion resistance that is about 2 times higher than the corresponding high temperature corrosion resistance, or about 1.8 times to about 3.2 times higher.

図4を参照すると、バーナリグ中の最大4000時間に及ぶ2000°Fの試験条件下で、本開示によるRNXから形成された物品と、R108から形成された対応する物品との酸化層深さの比較が示されている。   Referring to FIG. 4, a comparison of oxide depth between an article formed from RNX according to the present disclosure and a corresponding article formed from R108 under test conditions of 2000 ° F. up to 4000 hours in a burner rig. It is shown.

図5及び図6を参照すると、一実施形態では、バーナリグにおける4000時間に及ぶ2000°Fの試験を経た、本開示によるRNXから形成された物品(図5)は、組成物劣化深さ502を含み、等軸晶構造を有するR108から形成された対応する物品(図6)は、R108劣化深さ602を含む。RNXから形成された物品は、R108から形成された対応する物品の約2分の1或いは約4分の1〜約4分の3の比率で表面劣化を経験する。本明細書では、「劣化」は、凝集性の強化相ガンマプライム(γ’)の消失を意味する。   Referring to FIGS. 5 and 6, in one embodiment, an article formed from RNX according to the present disclosure (FIG. 5) that has undergone a 2000 ° F. test over 4000 hours in a burner rig has a composition degradation depth 502. A corresponding article (FIG. 6) formed from R108 that includes and has an equiaxed crystal structure includes an R108 degradation depth 602. Articles formed from RNX experience surface degradation at a rate of about one half or about one quarter to about three quarters of the corresponding article formed from R108. As used herein, “degradation” means the disappearance of the cohesive reinforcing phase gamma prime (γ ′).

別の実施形態では、γ’の化学式は、Ni3(AlTiTa)である。理論に束縛されないが、Al及びTiの酸化は、γ’を破壊し、劣化領域を形成させると信じられている。劣化領域において、RNXは、脆弱化したマトリクスを含み、荷重支持能力を著しく低下させる。荷重支持能力の著しい低下は、物品が動作条件に晒されるときに、早期の故障を招き得る。したがって、本開示によるRNXから形成された物品の狭い劣化領域は、物品がガスタービン又は航空機エンジンの高温ガス通路部品であるときに、R108から形成された対応する物品と比べた大幅な改良を表している。 In another embodiment, the chemical formula of γ ′ is Ni 3 (AlTiTa). Without being bound by theory, it is believed that the oxidation of Al and Ti destroys γ ′ and forms a degraded region. In the degraded region, the RNX contains a weakened matrix and significantly reduces load bearing capacity. A significant decrease in load bearing capacity can lead to premature failure when the article is exposed to operating conditions. Accordingly, the narrow degradation area of an article formed from RNX according to the present disclosure represents a significant improvement over the corresponding article formed from R108 when the article is a gas turbine or aircraft engine hot gas path component. ing.

RNXから形成された物品において、R108から形成された対応する物品と比べて、酸化層深さと腐食深さの両方が小さくなる。理論に束縛されないが、ハフニウム(Hf)は、酸素との反応性が非常に高く、RNXと比べたR108中のハフニウム(Hf)の高い濃度(凡そ3倍高い)は、鋳造プロセスにおける物品の凝固中にハフニウム(Hf)の分離を促し、RNXと比べてハフニウム(Hf)の濃度が高い合金(R108等)から形成された物品を酷く腐食させる。   In articles formed from RNX, both the oxide layer depth and the corrosion depth are reduced compared to the corresponding articles formed from R108. Without being bound by theory, hafnium (Hf) is very reactive with oxygen and the high concentration of hafnium (Hf) in R108 compared to RNX (approximately three times higher) is the solidification of the article in the casting process. It promotes the separation of hafnium (Hf) therein, and severely corrodes articles formed from alloys (such as R108) that have a higher hafnium (Hf) concentration than RNX.

1つ以上の実施形態を参照して本発明が記述されているが、当業者は、本発明の範囲から逸脱せずに、各種の変更が成され得、本発明の要素が等価物によって置換られ得ることを理解するであろう。加えて、本発明の本質的な範囲から逸脱せずに特定の状況又は材料を本発明の教示に適用するように、多くの修正が成され得る。したがって、本発明は、この発明を実施するために考えられベストモードとして開示された特定の実施形態に限定されず、添付の請求項の範囲に属する全ての実施形態を含むことが意図されている。   Although the invention has been described with reference to one or more embodiments, various modifications can be made without departing from the scope of the invention, and elements of the invention may be replaced by equivalents. You will understand that it can be done. In addition, many modifications may be made to apply a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Accordingly, the present invention is not intended to be limited to the specific embodiments that are contemplated to practice the invention and disclosed as the best mode, but are intended to include all embodiments that fall within the scope of the appended claims. .

502 組成物劣化深さ
602 R108劣化深さ
502 Degradation depth of composition 602 Degradation depth of R108

Claims (10)

等軸晶構造及び組成物を含む物品であって、組成物が、重量%で、
アルミニウム(Al)約6.0%〜約9.0%、
チタン(Ti)約0.5%以下、
タンタル(Ta)約2.5%〜約4.5%、
クロム(Cr)約10.0%〜約12.5%、
コバルト(Co)約5.0%〜約10.0%、
モリブデン(Mo)約0.30%〜約0.80%、
タングステン(W)約2.0%〜約5.0%、
ケイ素(Si)約1.0%以下、
ハフニウム(Hf)約0.35%〜約0.60%、
ホウ素(B)約0.005%〜約0.010%、
炭素(C)約0.06%〜約0.10%、
ジルコニウム(Zr)約0.02%以下、
ランタン(La)約0.1%以下、
イットリウム(Y)約0.03%以下、
残部のニッケル(Ni)及び不可避不純物を含んでおり、
レニウム(Re)は存在していたとしても痕跡元素である、物品。
An article comprising an equiaxed crystal structure and a composition, wherein the composition is in weight percent,
About 6.0% to about 9.0% aluminum (Al),
Titanium (Ti) about 0.5% or less,
Tantalum (Ta) about 2.5% to about 4.5%,
About 10.0% to about 12.5% chromium (Cr),
About 5.0% to about 10.0% cobalt (Co),
Molybdenum (Mo) about 0.30% to about 0.80%,
Tungsten (W) about 2.0% to about 5.0%,
Silicon (Si) about 1.0% or less,
Hafnium (Hf) about 0.35% to about 0.60%,
About 0.005% to about 0.010% of boron (B),
About 0.06% to about 0.10% carbon (C),
Zirconium (Zr) about 0.02% or less,
Lanthanum (La) about 0.1% or less,
Yttrium (Y) about 0.03% or less,
Contains the remaining nickel (Ni) and inevitable impurities,
Articles where rhenium (Re) is a trace element, if present.
タンタル(Ta)約2.5%〜約4.5%が、1:1のモル基準でニオブ(Nb)で完全又は部分的に置換される、請求項1記載の物品。   The article of claim 1, wherein about 2.5% to about 4.5% of tantalum (Ta) is completely or partially replaced with niobium (Nb) on a 1: 1 molar basis. 組成物の鋳造性が高い、請求項1記載の物品。   The article of claim 1, wherein the composition is highly castable. 物品の組成物が耐酸化性を有し、耐酸化性が、R108の対応する組成物が呈する対応する耐酸化性よりも約2倍〜約4倍高い、請求項1記載の物品。   The article of claim 1, wherein the composition of the article has oxidation resistance and the oxidation resistance is about 2 to about 4 times higher than the corresponding oxidation resistance exhibited by the corresponding composition of R108. 物品の組成物が低サイクル疲労寿命を有し、低サイクル疲労寿命が、N2Reの対応する組成物が呈する対応する低サイクル疲労寿命よりも約18%〜約22%長い、請求項1記載の物品。   The article of claim 1, wherein the composition of the article has a low cycle fatigue life, wherein the low cycle fatigue life is about 18% to about 22% longer than the corresponding low cycle fatigue life exhibited by the corresponding composition of N2Re. . 物品の組成物がクリープ寿命を有し、クリープ寿命が、N2Reの対応する組成物が呈する対応するクリープ寿命よりも約2.0倍〜約2.5倍長い、請求項1記載の物品。   The article of claim 1, wherein the composition of the article has a creep life, and the creep life is about 2.0 to about 2.5 times longer than the corresponding creep life exhibited by the corresponding composition of N2Re. 物品の組成物が高温腐食耐性を有し、高温腐食耐性が、R108の対応する組成物が呈する対応する高温腐食耐性よりも約1.5倍〜約2.5倍長い、請求項1記載の物品。   2. The article of claim 1, wherein the composition of the article has high temperature corrosion resistance, and the high temperature corrosion resistance is about 1.5 to about 2.5 times longer than the corresponding high temperature corrosion resistance exhibited by the corresponding composition of R108. Goods. 物品の製造方法であって、
重量%で、
アルミニウム(Al)約6.0%〜約9.0%、
チタン(Ti)約0.5%以下、
タンタル(Ta)約2.5%〜約4.5%、
クロム(Cr)約10.0%〜約12.5%、
コバルト(Co)約5.0%〜約10.0%、
モリブデン(Mo)約0.30%〜約0.80%、
タングステン(W)約2.0%〜約5.0%、
ケイ素(Si)約1.0%以下、
ハフニウム(Hf)約0.35%〜約0.60%、
ホウ素(B)約0.005%〜約0.010%、
炭素(C)約0.06%〜約0.10%、
ジルコニウム(Zr)約0.02%以下、
ランタン(La)約0.1%以下、
イットリウム(Y)約0.03%以下、
レニウム(Re)約0.01%以下、
残部のニッケル(Ni)及び不可避不純物を含む組成物を準備する工程と、
等軸晶構造を含む物品を形成する工程と、
を含む、方法。
A method for manufacturing an article, comprising:
% By weight
About 6.0% to about 9.0% aluminum (Al),
Titanium (Ti) about 0.5% or less,
Tantalum (Ta) about 2.5% to about 4.5%,
About 10.0% to about 12.5% chromium (Cr),
About 5.0% to about 10.0% cobalt (Co),
Molybdenum (Mo) about 0.30% to about 0.80%,
Tungsten (W) about 2.0% to about 5.0%,
Silicon (Si) about 1.0% or less,
Hafnium (Hf) about 0.35% to about 0.60%,
About 0.005% to about 0.010% of boron (B),
About 0.06% to about 0.10% carbon (C),
Zirconium (Zr) about 0.02% or less,
Lanthanum (La) about 0.1% or less,
Yttrium (Y) about 0.03% or less,
Rhenium (Re) about 0.01% or less,
Preparing a composition comprising the remaining nickel (Ni) and inevitable impurities;
Forming an article comprising an equiaxed crystal structure;
Including a method.
鋳造が、可変圧力制御による精密インベストメント鋳造を含む、請求項8記載の方法。   The method of claim 8, wherein the casting comprises precision investment casting with variable pressure control. 可変圧力制御による精密インベストメント鋳造が、
10-3気圧の表面再溶解圧、及び、
10-2気圧〜10-1気圧の不活性ガス鋳造圧
を含む、請求項9記載の方法。
Precision investment casting with variable pressure control
A surface remelting pressure of 10 −3 atm, and
The method according to claim 9, comprising an inert gas casting pressure of 10 −2 atmospheres to 10 −1 atmospheres.
JP2015034640A 2014-02-28 2015-02-25 Articles and method of manufacturing articles Active JP6699989B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/193,198 2014-02-28
US14/193,198 US20150247220A1 (en) 2014-02-28 2014-02-28 Article and method for forming article

Publications (2)

Publication Number Publication Date
JP2015165048A true JP2015165048A (en) 2015-09-17
JP6699989B2 JP6699989B2 (en) 2020-05-27

Family

ID=52544405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034640A Active JP6699989B2 (en) 2014-02-28 2015-02-25 Articles and method of manufacturing articles

Country Status (5)

Country Link
US (1) US20150247220A1 (en)
EP (1) EP2913417B1 (en)
JP (1) JP6699989B2 (en)
HU (1) HUE032320T2 (en)
PL (1) PL2913417T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11739398B2 (en) * 2021-02-11 2023-08-29 General Electric Company Nickel-based superalloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074493A (en) * 2009-09-30 2011-04-14 General Electric Co <Ge> Nickel-based superalloy and article

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635791A (en) * 1969-08-04 1972-01-18 Gen Motors Corp Pressure pouring in a vacuum environment
CA967403A (en) * 1971-02-23 1975-05-13 International Nickel Company Of Canada Nickel alloy with good stress rupture strength
US3677747A (en) * 1971-06-28 1972-07-18 Martin Marietta Corp High temperature castable alloys and castings
US4152488A (en) * 1977-05-03 1979-05-01 United Technologies Corporation Gas turbine blade tip alloy and composite
US5043138A (en) * 1983-12-27 1991-08-27 General Electric Company Yttrium and yttrium-silicon bearing nickel-base superalloys especially useful as compatible coatings for advanced superalloys
US4915907A (en) * 1986-04-03 1990-04-10 United Technologies Corporation Single crystal articles having reduced anisotropy
US5489346A (en) * 1994-05-03 1996-02-06 Sps Technologies, Inc. Hot corrosion resistant single crystal nickel-based superalloys
EP0683239B1 (en) 1994-05-20 1999-01-20 United Technologies Corporation Oxidation resistant nickel based super alloy
US5523170A (en) 1994-12-28 1996-06-04 General Electric Company Repaired article and material and method for making
US6640877B2 (en) 1998-05-14 2003-11-04 Howmet Research Corporation Investment casting with improved melt filling
US6311760B1 (en) 1999-08-13 2001-11-06 Asea Brown Boveri Ag Method and apparatus for casting directionally solidified article
JP2002167636A (en) 2000-10-30 2002-06-11 United Technol Corp <Utc> Low density oxidation resistant superalloy material capable of thermal barrier coating retention without bond coat
US6905559B2 (en) * 2002-12-06 2005-06-14 General Electric Company Nickel-base superalloy composition and its use in single-crystal articles
US20100254822A1 (en) 2009-03-24 2010-10-07 Brian Thomas Hazel Super oxidation and cyclic damage resistant nickel-base superalloy and articles formed therefrom

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074493A (en) * 2009-09-30 2011-04-14 General Electric Co <Ge> Nickel-based superalloy and article

Also Published As

Publication number Publication date
PL2913417T3 (en) 2017-07-31
HUE032320T2 (en) 2017-09-28
JP6699989B2 (en) 2020-05-27
EP2913417B1 (en) 2017-01-11
EP2913417A1 (en) 2015-09-02
US20150247220A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
US11566313B2 (en) Method for manufacturing Ni-based alloy member
JP6931545B2 (en) Heat treatment method for Ni-based alloy laminated model, manufacturing method for Ni-based alloy laminated model, Ni-based alloy powder for laminated model, and Ni-based alloy laminated model
JP6514441B2 (en) Cast nickel base superalloy containing iron
JP5869034B2 (en) Nickel superalloys and parts made from nickel superalloys
JP2011231403A (en) Cobalt-nickel superalloy, and related article
KR20170012080A (en) High temperature nickel-base superalloy for use in powder based manufacturing process
JP2011052323A (en) Nickel-based superalloy and article
JP2007277721A (en) Nickel-based alloy
JP2011074493A (en) Nickel-based superalloy and article
EP2420584B1 (en) Nickel-based single crystal superalloy and turbine blade incorporating this superalloy
JP2013129880A (en) Ni-BASED FORGED ALLOY AND GAS TURBINE USING THE SAME
JP2011074492A (en) Nickel-based superalloy and article
KR102274865B1 (en) Titanium-free superalloys, powders, methods and components
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
KR20210024119A (en) Ni-based alloy softening powder and manufacturing method of the softening powder
EP2319948A1 (en) Nickel-containing alloys, method of manufacture thereof and articles derived therefrom
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP5395516B2 (en) Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP6721289B2 (en) Articles and method of manufacturing articles
JP6699989B2 (en) Articles and method of manufacturing articles
TWI540211B (en) Equiaxed grain nickel-base casting alloy for high stress application
JP2018058111A (en) Melting processing wire and manufacturing method thereof
JP4607490B2 (en) Nickel-base superalloy and single crystal casting
JP2005139548A (en) Nickel base superalloy and single crystal casting
TWI663263B (en) High creep-resistant equiaxed grain nickel-based superalloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200430

R150 Certificate of patent or registration of utility model

Ref document number: 6699989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250