HUE032320T2 - Article and method for forming article - Google Patents
Article and method for forming article Download PDFInfo
- Publication number
- HUE032320T2 HUE032320T2 HUE15156338A HUE15156338A HUE032320T2 HU E032320 T2 HUE032320 T2 HU E032320T2 HU E15156338 A HUE15156338 A HU E15156338A HU E15156338 A HUE15156338 A HU E15156338A HU E032320 T2 HUE032320 T2 HU E032320T2
- Authority
- HU
- Hungary
- Prior art keywords
- article
- bis
- composition
- iti iti
- jusqu
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/04—Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/02—Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
- B22D21/025—Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D25/00—Special casting characterised by the nature of the product
- B22D25/02—Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/005—Selecting particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/282—Selecting composite materials, e.g. blades with reinforcing filaments
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
An article and a method for forming the article are disclosed. The article includes an equiaxed grain structure and a composition. The composition includes, by weight percent, about 6.0% to about 9.0% aluminum, up to about 0.5% titanium, about 2.5% to about 4.5% tantalum, about 10.0% to about 12.5% chromium, about 5.0% to about 10.0% cobalt, about 0.30% to about 0.80% molybdenum, about 2.0% to about 5.0% tungsten, up to about 1.0% silicon, about 0.35% to about 0.60% hafnium, about 0.005% to about 0.010% boron, about 0.06% to about 0.10% carbon, up to about 0.02% zirconium, up to about 0.1% lanthanum, up to about 0.03% yttrium, and balance nickel and incidental impurities. Rhenium, if present, is a trace element. The method for forming the article includes providing the composition having up to about 0.01% rhenium and forming the article.
Description
Description
FIELD OF THE INVENTION
[0001] The present invention is directed to an article and a method for forming an article. More specifically, the present invention is directed to an article and a method for forming an article including an equiaxed grain structure and a composition.
BACKGROUND OF THE INVENTION
[0002] Hot gas path components of gas turbines and aviation engines, particularly turbine blades, vanes, nozzles, seals and stationary shrouds, operate at elevated temperatures, often in excess of 2,000 °F. The superalloy compositions used to form hot gas path components are often single-crystal compositions incorporating significant amounts of rhenium (Re) due to the elevated temperatures and other operating conditions components are exposed to in the first stage. Such superalloy compositions typically contain one to three percent, by weight, rhenium (Re), and some may incorporate up to six percent, by weight, rhenium (Re).
[0003] One such single-crystal, rhenium (Re)-contain-ing superalloy composition is referred to herein as "N2Re." N2Re includes, by weight percent, 6.0% to 9.0% aluminum (AI), up to 0.5% titanium (Ti), 4.0% to 6.0% tantalum (Ta), 12.5% to 15.0% chromium (Cr), 3.0% to 10.0% cobalt (Co), up to 0.25% molybdenum (Mo), 2.0% to 5.0% tungsten (W), up to 1.0% silicon (Si), up to 0.2% hafnium (Hf), 1.0% to 3.0% rhenium (Re), and balance nickel (Ni) and incidental impurities. N2Re may also include up to 0.01 % boron (B), up to 0.07% carbon (C), up to 0.03% zirconium (Zr), and up to 0.1% lanthanum (La). One example of a composition that falls within the ranges of N2Re may include the alloy commercially unavailable under the trade name "René N2" (available from General Electric Company).
[0004] Document EP 0 684 321 A1 describes a hot corrosion resistant single crystal nickel-based superalloy comprising among others, by weight percent, 11.5% to 13.5% chromium (Cr), 3.4% -3.8% aluminium (AI), 4.0% to 4.4% titanium (Ti) and 4.5% to 5.8% tantalum (Ta), further comprising 0-0.25% rhenium (Re), and having a phasial stability number NV3B less than about 2.45.
[0005] An alternate superalloy composition which is not a single-crystal and does not include rhenium (Re) is referred to herein as "R108." R108 includes, by weight percent, 5.25% to 5.75% Aluminum (AI), 0.6% to 0.9% Titanium (Ti), 2.8% to 3.3% Tantalum (Ta), 8.0% to 8.7% Chromium (Cr), 9.0% to 10.0% Cobalt (Co), 0.4% to 0.6% Molybdenum (Mo), 9.3% to 9.7% Tungsten (W), up to 0.12% Silicon (Si), 1.3% to 1.7% Hafnium (Hf), 0.01% to 0.02% Boron (B), up to 0.1% Carbon (C), 0.005% to 0.02% Zirconium (Zr), up to 0.2% Iron (Fe), up to 0.1% Manganese (Mn), up to 0.1% Copper (Cu), up to 0.01% Phosphorous (P), up to 0.004% Sulfur (S), up to 0.1%
Niobium (Nb), and balance of nickel (Ni) and incidental impurities. One example of a composition that falls within the ranges of R108 may include the alloy commercially unavailable under the trade name "René 108." Under testing conditions of 2,000 °F in a burner rig, an article formed from R108 forms an unstable oxide scale on the surface due to the low content of chromium.
[0006] R108and N2Re have comparable high temperature mechanical properties, but R108 has significantly inferior hot corrosion resistance and oxidation resistance in comparison with N2Re. As a result, R108 is unsuitable for making first stage hot gas path components for either heavy duty gas turbine or aviation engines.
[0007] Single-crystal superalloys incorporating rhenium (Re), such as René N5, René N6 and René N2 may provide highly desirable properties forgás turbine or aviation engine applications, including good strength, ductility, creep lifetime, low-cycle fatigue lifetime, oxidation resistance and hot corrosion resistance under gas turbine or aviation engine operating conditions. However, rhenium (Re) is among the most expensive of metals and the processing of single-crystal parts is typically time-consuming and costly, making rhenium (Re)-containing single-crystal superalloys economically undesirable.
[0008] Articles and methods having improvements in the process and/or the properties of the components formed would be desirable in the art.
BRIEF DESCRIPTION OF THE INVENTION
[0009] The invention encompasses an article made of an alloy which includes an equiaxed grain structure and a composition, wherein the composition includes, by weight percent, 6.0% to 9.0% aluminum (AI), up to 0.5% titanium (Ti), 2.5% to 4.5% tantalum (Ta), 10.0% to 12.5% chromium (Cr), 5.0% to 10.0% cobalt (Co), 0.30% to 0.80% molybdenum (Mo), 2.0% to 5.0% tungsten (W), up to 1.0% silicon (Si), 0.35% to 0.60% hafnium (Hf), 0.005% to 0.010% boron (B), 0.06% to 0.10% carbon (C), up to 0.02% zirconium (Zr), up to 0.1% lanthanum (La), up to 0.03% yttrium (Y), and balance nickel (Ni) and incidental impurities, and wherein rhenium (Re), if present, is a trace element in an amount of less than 0.01%, by weight, of the composition. The terms "includes" and "comprising" encompass the more restrictive term "consisting of.
[0010] The invention further encompasses a method for forming an article which includes providing a composition and forming the article. The composition includes, by weight percent, 6.0% to about 9.0% aluminum (AI), up to 0.5% titanium (Ti), 2.5% to 4.5% tantalum (Ta), 10.0% to 12.5% chromium (Cr), 5.0% to 10.0% cobalt (Co), 0.30% to 0.80% molybdenum (Mo), 2.0% to 5.0% tungsten (W), up to 1.0% silicon (Si), 0.35% to 0.60% hafnium (Hf), 0.005% to 0.010% boron (B), 0.06% to 0.10% carbon (C), up to 0.02% zirconium (Zr), up to 0.1% lanthanum (La), up to 0.03% yttrium (Y), up to 0.01% rhenium (Re), and balance nickel (Ni) and incidental im- purities. The article includes an equiaxed grain structure.
[0011] Other features and advantages of the present invention will be apparent from the following more detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] FIG. 1 is an article cast from RNX including fine dimples of complex geometry, according to an embodiment of the disclosure. FIG. 2 compares the low-cycle fatigue lifetime of articles formed from N2Re, R108 and RNX. FIG. 3 compares the creep lifetime of articles formed from N2Re, R108 and RNX. FIG. 4 compares the oxidation layerdepth of articles made from R108 and RNX. FIG. 5 is a micrograph of a section from an article formed from RNX following burner rig testing, according to an embodiment of the disclosure. FIG. 6 is a micrograph of a section from a corresponding article formed from R108 following burner rig testing.
[0013] Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.
DETAILED DESCRIPTION OF THE INVENTION
[0014] Provided are an article and a method for forming an article. Embodiments of the present disclosure, in comparison to methods and articles not using one or more of the features disclosed herein, increase corrosion resistance, increase oxidation resistance, lengthen low-cycle fatigue lifetime, increase creep lifetime, improve castability, increase phase stability at elevated temperatures, decrease cost, or a combination thereof. Embodiments of the present disclosure enable the fabrication of hot gas path components of gas turbines and aviation engines with rhenium (Re)-free nicked-based superalloys having at least as advantageous properties at elevated temperatures as rhenium (Re)-containing nicked-based superalloys, as well as having an equiaxed grain structure.
[0015] The invention concerns an article made from an alloy which includes an equiaxed grain structure and a composition. The composition includes, by weight percent, 6.0% to 9.0% aluminum (AI), up to 0.5% titanium (Ti), 2.5% to 4.5% tantalum (Ta), 10.0% to 12.5% chromium (Cr), 5.0% to 10.0% cobalt (Co), 0.30% to 0.80% molybdenum (Mo), 2.0% to 5.0% tungsten (W), up to 1.0% silicon (Si), 0.35% to 0.60% hafnium (Hf), 0.005% to 0.010% boron (B), 0.06% to 0.10% carbon (C), up to 0.02% zirconium (Zr), up to 0.1% lanthanum (La), up to 0.03% yttrium (Y), and balance nickel (Ni) and incidental impurities. The composition is devoid of rhenium (Re) or includes rhenium (Re) as a trace element in an amount of less than 0.01%, by weight, of the composition.
[0016] In one embodiment the 2.5% to 4.5% tantalum (Ta) in the composition is completely or partially replaced by niobium (Nb) on a 1:1 molar basis. This substitution does not have any material effect on the castability or service properties of the article, but reduces the cost of the composition.
[0017] In a further embodiment, the composition includes, by weight percent: 6.2% to 6.5% aluminum (AI), up to 0.04% titanium (Ti), 3.9% to 4.3% tantalum (Ta), 12.0% to 12.5% chromium (Cr), 7.0% to8.0% cobalt(Co), 0.40% to 0.75% molybdenum (Mo), 4.7% to 5.0% tungsten (W), 0.08% to 0.12% silicon (Si), 0.47% to 0.53% hafnium (Hf), 0.005% to 0.010% boron (B), 0.06% to 0.10% carbon (C), up to 0.02% zirconium (Zr), up to 0.1% lanthanum (La), up to 0.03% yttrium (Y), up to 0.01% rhenium (Re), and balance nickel (Ni) and incidental impurities.
[0018] In one embodiment, the article is a hot gas path component of a gas turbine or an aviation engine. The hot gas path component is subjected to temperatures of at least about 2,000 °F. In a further embodiment, the hot gas path component is selected from the group consisting of a blade, a vane, a nozzle, a seal and a stationary shroud.
[0019] In one embodiment, the method for forming the article includes providing the composition and forming the article from the composition. In afurtherembodiment, forming the article from the composition includes any suitable technique, including, but not limited to, casting, powder metallurgy and three-dimensional additive machining. In another embodiment, casting includes precision investment casting with variable pressure control.
[0020] As used herein, "precision investment casting with variable pressure control" means a casting process described as follows. An ingot is heated by induction coils in a melting chamber to surface re-melting under a surface re-melting pressure. An inert gas is introduced into the melting chamber until a casting pressure is reached. The temperature is adjusted until a melt temperature is reached. When the ingot is fully converted into a melt, the melt is poured into a mold cavity under the inert gas at the casting pressure. The inert gas is maintained at the casting pressure until an article being cast solidifies. Other steps in a typical industrial casting process, such as pattern making, mold preparation and post-pour solidification, remain unchanged in precision investment casting with variable pressure control.
[0021] In one embodiment, wherein the ingot is formed of the composition, the precision investment casting with variable pressure control includes a surface re-melting pressure of 10'3 atmospheres and an inert gas casting pressure of about 10-2 atmospheres to about 10_1 atmospheres. In a further embodiment, the inert gas is argon (Ar).
[0022] In one embodiment, precision investment casting with variable pressure control minimizes the loss of chromium (Cr) during melting and casting. The operation of a hot gas path component of a gas turbine or an aviation engine at a temperature of at least about 2,000 °F typically requires a chromium (Cr) content, by weight, of at least about 12.0% in order to maintain hot corrosion resistance and oxidation resistance.
[0023] In one embodiment, the composition is highly castable. As used herein, "highly castable" indicates that during casting of the composition into the article there is no lack of feeding on any fine structural features, such as surface enhancement dimples or thin ribs, solidification shrinkage is within acceptable parameters, and the article is essentially free of mold/metal or core/metal reactions. In a further embodiment, the composition provides sufficiently high internal integrity such that the composition may be cast into a hot gas path component of a gas turbine or an aviation engine subjected to temperatures of at least about 2,000 °F without requiring the use of hot isostatic pressing. Hot isostatic pressing is widely used in order to close the solidification shrinkage porosities inside a cast article and to improve the mechanical properties to meet requirements of a hot gas path component of a gas turbine or an aviation engine subjected to temperatures of at least about 2,000 °F. Eliminating a processing step of subjecting a cast article to hot isostatic pressing reduces the cost of producing the cast article.
[0024] In one embodiment, the surface of an article formed from the composition according to the present disclosure forms a stable aluminum oxide-rich scale hot under operating conditions for the hot gas path of a gas turbine or an aviation engine. In a further embodiment, the stable aluminum oxide-rich scale retards the diffusion of reactive species in the oxidative environment and improves the oxidation and hot corrosion capabilities of the composition according to the present disclosure.
EXAMPLES
[0025] In one embodiment (referred to herein as "RNX"), the composition according to the present disclosure includes, by weight percent, 6.25% aluminum (AI), 4.0% tantalum (Ta), 12.5% chromium (Cr), 7.5% cobalt (Co), 0.5% molybdenum (Mo), 5.0% tungsten (W), 0.5% hafnium (Hf), 0.0075% Boron (B), 0.08% carbon (C), and balance nickel (Ni) and incidental impurities.
[0026] In one embodiment, the high castability of the composition relative to R108 is exemplified by the comparison that an article formed from RNX according to the present disclosure undergoes 50% less solidification shrinkage during casting than does a corresponding article formed from R108.
[0027] Referring to FIG. 1, in one embodiment, the high castability of the composition is demonstrated by an article formed from RNX according to the present disclosure by precision investment casting with variable pressure control, wherein the article is a hot gas path com ponent of a gas turbine, specifically a 48-pound nozzle. The nozzle includes a plurality of very small dimples having complicated geometry, wherein the nozzle includes more than about 400 dimples per square inch on a curved internal surface. The dimples are formed with a high degree of precision suitable for use under operating conditions.
[0028] In one embodiment, the tensile properties, including yield strength, ultimate strength and ductility, of an article formed from RNX according to the present disclosure are at least comparable to the tensile properties of a corresponding article formed from N2Re.
[0029] Referring to FIG. 2, in one embodiment, an article formed from RNX according to the present disclosure has a low-cycle fatigue lifetime 20% greater, alternatively 18% to 22% greater, than a corresponding low-cycle fatigue lifetime exhibited by a corresponding article formed from N2Re, and 54% greater, alternatively 50% to 58% greater, than a corresponding low-cycle fatigue lifetime exhibited by a corresponding article formed from R108, under testing conditions of 1,800 °F and 0.6% strain with two minutes of hold time.
[0030] Referring to FIG. 3, in one embodiment, an article formed from RNX according to the present disclosure has a creep lifetime about 2.3 times greater, alternatively 2.0 to 2.6 times greater, than a corresponding creep lifetime exhibited by a corresponding article formed from N2Re, and28% greater, alternatively 25% to 31% greater, than a corresponding creep lifetime exhibited by a corresponding article formed from R108, under testing conditions of 1,800 °F and 20 ksi.
[0031] Inoneembodiment.anarticleformedfrom RNX according to the present disclosure has an oxidation resistance about the same as a corresponding oxidation resistance exhibited by a corresponding article formed from N2Re, and 3 times greater, alternately 2.7 to 3.3 times greater, than a corresponding oxidation resistance exhibited by a corresponding article formed from R108.
[0032] Inoneembodiment.anarticleformedfrom RNX according to the present disclosure has a hot corrosion resistance about the same as a corresponding hot corrosion resistance exhibited by a corresponding article formed from N2Re, and 2 times greater, alternately 1.8 to 3.2 times greater, than a corresponding hot corrosion resistance exhibited by a corresponding article formed from R108.
[0033] Referring to FIG. 4, a comparison is shown of the oxidation layer depth for an article formed from RNX according to the present disclosure and a corresponding article formed from R108 under testing conditions of 2,000 °F for up to 4,000 hours in a burner rig.
[0034] Referring to FIGS. 5 and 6, in one embodiment, following testing in a burner rig at 2,000 °F for 4,000 hours, an article formed from RNX according to the present disclosure (FIG. 5) includes a composition depletion depth 502, and a corresponding article formed from R108 (FIG. 6) having an equiaxed grain structure includes an R108 depletion depth 602. The articleformed from RNX undergoes surface depletion at about one-half the rate, alternatively about one-quarter to about three-quarters, of the corresponding article formed from R108. As used herein, "depletion" means the disappearance of a coherent strengthening phase gamma prime (γ’).
[0035] In a further embodiment, the chemical formula fory’ is Ni3(AI,Ti,Ta). Without being bound by theory, it is believed that oxidation of AI and Ti destroys γ’ and causes the formation of a depletion zone. I n the depletion zone, the RNX includes a weakened matrix resulting in a significantly reduced load-bearing capability. The significantly reduced load-bearing capability may lead to premature failures when an article is subjected to operating conditions. Therefore, narrowed depletion zone for an article formed from RNX according to the present disclosure represents a remarkable improvement as compared to a corresponding articled formed from R108 when the article is a hot gas path component of a gas turbine or an aviation engine.
[0036] Both the oxidation layer depth and the pitting depth are reduced in the article formed from RNX as compared to the corresponding article formed from R108. Without being bound by theory, it is believed that hafnium (Hf) is highly reactive with oxygen, and the higher concentration of hafnium (Hf) in R108 as compared to RNX (approximately 3-fold higher) promotes hafnium (Hf) segregation during solidification of an article in a casting process, which results in more severe pitting in articles formed from alloys with higher concentrations of hafnium (Hf) (such as R108) as compared to RNX.
[0037] While the invention has been described with reference to one or more embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention as defined by the claims. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Claims 1. An article comprising an equiaxed grain structure and a composition, wherein the composition comprises, by weight percent: 6.0% to 9.0% aluminum (AI); up to 0.5% titanium (Ti); 2.5% to 4.5% tantalum (Ta), which is optionally replaced completely or partly by niobium (Nb) on a 1:1 molar basis; 10.0% to 12.5% chromium (Cr); 5.0% to 10.0% cobalt (Co); 0.30% to 0.80% molybdenum (Mo); 2.0% to 5.0% tungsten (W); up to 1.0% silicon (Si); 0.35% to 0.60% hafnium (Hf); 0.005% to 0.010% boron (B); 0.06% to 0.10% carbon (C); up to 0.02% zirconium (Zr); up to 0.1% lanthanum (La); up to 0.03% yttrium (Y); and balance nickel (Ni) and incidental impurities, and wherein rhenium (Re), if present, is a trace element in an amount of less than 0.01%, by weight, of the composition. 2. The article of claim 1, wherein the com position comprises, by weight percent: 6.2% to 6.5% aluminum (AI); up to 0.04% titanium (Ti); 3.9% to 4.3% tantalum (Ta), which is optionally replaced completely or partly by niobium (Nb) on a 1:1 molar basis; 12.0% to 12.5% chromium (Cr); 7.0% to 8.0% cobalt (Co); 0.40% to 0.75% molybdenum (Mo); 4.7% to 5.0% tungsten (W); 0.08% to 0.12% silicon (Si); 0.47% to 0.53% hafnium (Hf); 0.005% to 0.010% boron (B); 0.06% to 0.10% carbon (C); up to 0.02% zirconium (Zr); up to 0.1% lanthanum (La); up to 0.03% yttrium (Y); up to 0.01 % rhenium (Re); and balance nickel (Ni); and incidental impurities. 3. The article of any preceding claim, wherein the article is a hot gas path component of a gas turbine or an aviation engine. 4. The article of claim 3, wherein the hot gas path component is selected from the group consisting of a blade, a vane, a seal and a stationary shroud. 5. The article of any preceding claim, wherein the composition of the article has an oxidation resistance, the oxidation resistance being 2 to 4 times greater than a corresponding oxidation resistance exhibited by a corresponding composition of R108, wherein R108 includes, by weight percent, 5.25% to 5.75% Aluminum (AI), 0.6% to 0.9% Titanium (Ti), 2.8% to 3.3% Tantalum (Ta), 8.0% to 8.7% Chromium (Cr), 9.0% to 10.0% Cobalt (Co), 0.4% to 0.6% Molybdenum (Mo), 9.3% to 9.7% Tungsten (W), up to 0.12% Silicon (Si), 1.3% to 1.7% Hafnium (Hf), 0.01% to 0.02% Boron (B), up to 0.1 % Carbon (C), 0.005% to 0.02% Zirconium (Zr), up to 0.2% Iron (Fe), up to 0.1 % Manganese (Μη), up to 0.1 % Copper (Cu), up to 0.01 % Phosphorous (P), up to 0.004% Sulfur (S), up to 0.1% Niobium (Nb), and balance of nickel (Ni) and incidental impurities; and/or the composition of the article has a low-cycle fatigue lifetime, the low-cycle fatigue lifetime being 18% to 22% greater than a corresponding low-cycle fatigue lifetime exhibited by a corresponding composition of N2Re, wherein N2Re includes, by weight percent, 6.0% to 9.0% aluminum (AI), up to 0.5% titanium (Ti), 4.0% to 6.0% tantalum (Ta), 12.5% to 15.0% chromium (Cr), 3.0% to 10.0% cobalt (Co), up to 0.25% molybdenum (Mo), 2.0% to 5.0% tungsten (W), up to 1.0% silicon (Si), up to 0.2% hafnium (Hf), 1.0% to 3.0% rhenium (Re), up to 0.01% boron (B), up to 0.07% carbon (C), up to 0.03% zirconium (Zr), and up to 0.1% lanthanum (La) and balance nickel (Ni) and incidental impurities; and/or the composition of the article has a creep lifetime, the creep lifetime being 2.0 to 2.5 times greater than a corresponding creep lifetime exhibited by a corresponding composition of said N2Re; and/or the composition of the article has a hot corrosion resistance, the hot corrosion resistance being 1.5 to 2.5 times greaterthan a corresponding hot corrosion resistance exhibited by a corresponding composition of said R108. 6. A method for forming an article, comprising: providing a composition comprising, by weight percent: 6.0% to 9.0% aluminum (AI); up to 0.5% titanium (Ti); 2.5% to 4.5% tantalum (Ta), which is optionally replaced completely or partly by niobium (Nb) on a 1:1 molar basis; 10.0% to 12.5% chromium (Cr); 5.0% to 10.0% cobalt (Co); 0.30% to 0.80% molybdenum (Mo); 2.0% to 5.0% tungsten (W); up to 1.0% silicon (Si); 0.35% to 0.60% hafnium (Hf); 0.005% to 0.010% boron (B); 0.06% to 0.10% carbon (C); up to 0.02% zirconium (Zr); up to 0.1% lanthanum (La); up to 0.03% yttrium (Y); up to 0.01 % rhenium (Re); and balance nickel (Ni) and incidental impurities; and forming the article to an article that comprises an equiaxed grain structure. 7. The method of claim 6, wherein the composition comprises, by weight percent: 6.2% to 6.5% aluminum (AI); up to 0.04% titanium (Ti); 3.9% to 4.3% tantalum (Ta); 12.0% to 12.5% chromium (Cr); 7.0% to 8.0% cobalt (Co); 0.40% to 0.75% molybdenum (Mo); 4.7% to 5.0% tungsten (W); 0.08% to 0.12% silicon (Si); 0.47% to 0.53% hafnium (Hf); 0.005% to 0.010% boron (B); 0.06% to 0.10% carbon (C); up to 0.02% zirconium (Zr); up to 0.1% lanthanum (La); up to 0.03% yttrium (Y); up to 0.01 % rhenium (Re); and balance nickel (Ni); and incidental impurities. 8. The method of claim 6 or of claim 7, wherein the article is a hot gas path component of a gas turbine or an aviation engine. 9. The method of claim 8, wherein the hot gas path component is selected from the group consisting of a blade, a vane, a nozzle, a seal and a stationary shroud. 10. The method of any one of claims 6 to 9, wherein forming the article comprises casting, powder metallurgy or three-dimensional additive machining. 11. The method of claim 10, wherein casting comprises precision investment casting with variable pressure control. 12. The method of claim 11, wherein precision investment casting with variable pressure control comprises: a surface re-melting pressure of 10-3 atmospheres; and an inert gas casting pressure of about 10"2 atmospheres to about 10"1 atmospheres.
Patentansprüche 1. Artikel, umfassend eine gleichachsige Kornstruktur und eine Zusammensetzung, wobei die Zusammensetzung, in Gewichtsprozent, umfasst: 6,0% bis 9,0% Aluminium (AI) ; bis zu 0,5% Titan (Ti); 2,5% bis 4,5% Tantal (Ta), das wahlweise vollständig oder teilweise durch Niob (Nb) auf einer molaren Basis von 1:1 ersetzt wird; 10,0% bis 12,5% Chrom (Cr); 5,0% bis 10,0% Kobalt (Co); 0,30% bis 0,80% Molybdän (Mo); 2,0% bis 5,0% Wolfram (W); bis zu 1,0% Silicium (Si); 0,35% bis 0,60% Hafnium (Hf); 0,005% bis 0,010% Bor (B); 0,06% bis 0,10% Kohlenstoff (C); bis zu 0,02% Zirconium (Zr); bis zu 0,1% Lanthan (La); bis zu 0,03% Yttrium (Y); und
Rest Nickel (Ni) und zufällige Verunreinigungen, und wobei Rhenium (Re), falls vorhanden, ein Spurenelement in einer Menge von weniger als 0,01 Gew.-% der Zusammensetzung ist. 2. Artikel nach Anspruch 1, wobei die Zusammensetzung, in Gewichtsprozent, umfasst: 6,2% bis 6,5% Aluminium (AI) ; bis zu 0,04% Titan (Ti); 3,9% bis 4,3% Tantal (Ta), das wahlweise vollständig oder teilweise durch Niob (Nb) auf einer molaren Basis von 1:1 ersetzt wird; 12,0% bis 12,5% Chrom (Cr); 7,0% bis 8,0% Kobalt (Co); 0,40% bis 0,75% Molybdän (Mo); 4,7% bis 5,0% Wolfram (W); 0,08% bis 0,12% Silicium (Si); 0,47% bis 0,53% Hafnium (Hf); 0,005% bis 0,010% Bor (B); 0,06% bis 0,10% Kohlenstoff (C); bis zu 0,02% Zirconium (Zr); bis zu 0,1% Lanthan (La); bis zu 0,03% Yttrium (Y); bis zu 0,01% Rhenium (Re); und Rest Nickel (Ni); und zufällige Verunreinigungen. 3. Artikel nach einem der vorhergehenden Ansprüche, wobei der Artikel eine Heißgaskomponente einer Gasturbine oder eines Flugzeugmotors ist. 4. Artikel nach Anspruch 3, wobei die Heißgaskomponente ausgewählt ist aus der Gruppe, bestehend aus einer Schaufel, einer Leitschaufel, einer Dichtung und einer ortsfesten Ummantelung. 5. Artikel nach einem der vorhergehenden Ansprüche, wobei die Zusammensetzung des Artikels eine Oxidationsbeständigkeit aufweist, wobei die Oxidationsbeständigkeit das 2- bis 4-fache einer entsprechenden Oxidationsbeständigkeit beträgt, die von einer entsprechende R108-Zusammensetzung gezeigtwird, wobei R108, in Gewichtsprozent, Folgendes enthält: 5,25% bis 5,75% Aluminium (AI), 0,6% bis 0,9% Titan (Ti), 2,8% bis 3,3% Tantal (Ta), 8,0% bis 8,7% Chrom (Cr), 9,0% auf 10,0% Kobalt (Co), 0,4% bis 0,6% Molybdän (Mo), 9,3% bis 9,7% Wolfram (W), bis zu 0,12% Silicium (Si), 1,3% bis 1,7% Hafnium (Hf), 0,01% bis 0,02% Bor (B), bis zu 0,1%
Kohlenstoff (C), 0, 005% bis 0,02% Zirconium (Zr), bis zu 0,2% Eisen (Fe), bis zu 0,1% Mangan (Mn), bis zu 0,1% Kupfer(Cu) bis zu 0,01% Phosphor (P), bis zu 0,004% Schwefel (S), bis zu 0,1% Niob (Nb) und Rest Nickel (Ni) und zufällige Verunreinigungen; und/oder die Zusammensetzung des Artikels eine Niederzyk-lus-Ermüdungslebensdaueraufweist, wobei die Niederzyklus-Ermüdungslebensdauer 18% bis 22% größer als die entsprechende Niederzyklus-Ermüdungslebensdauer ist, die von einerentsprechenden N2Re-Zusammensetzung gezeigt wird, wobei N2Re, in Gewichtsprozent, Folgendes enthält: 6,0% bis 9,0% Aluminium (AI), bis zu 0,5% Titan (Ti), 4,0% bis 6,0% Tantal (Ta), 12,5% auf 15,0% Chrom (Cr), 3,0% bis 10,0% Kobalt (Co), bis zu 0,25% Molybdän (Mo), 2,0% auf 5,0% Wolfram (W), bis zu 1,0% Silicium (Si) bis zu 0,2% Hafnium (Hf), 1,0% bis 3,0% Rhenium (Re), bis zu 0,01% Bor (B), bis zu 0,07% Kohlenstoff (C), bis zu 0,03% Zirconium (Zr), und bis zu 0,1% Lanthan (La) und Rest Nickel (Ni) und zufällige Verunreinigungen; und/oder die Zusammensetzung des Artikels eine Kriechlebensdauer aufweist, wobei die Kriechlebensdauer das 2,0- bis 2,5-fache einer entsprechenden Kriechlebensdauer beträgt, die von einer zugehörigen N2Re-Zusammensetzung gezeigt wird; und/oder die Zusammensetzung des Artikels eine Wärmekorrosionsbeständigkeit aufweist, wobei die Wärmekorrosionsbeständigkeit das 1,5- bis 2,5-fache einer entsprechenden Wärmekorrosionsbeständigkeit beträgt, die von der zugehörigen R108-Zusammen-setzung gezeigt wird. 6. Verfahren zum Bilden eines Artikels, umfassend: Bereitstellen einer Zusammensetzung, umfassend, in Gewichtsprozent: 6,0% bis 9,0% Aluminium (AI) ; bis zu 0,5% Titan (Ti); 2,5% bis 4,5% Tantal (Ta), das wahlweise vollständig oder teilweise durch Niob (Nb) auf einer molaren Basis von 1:1 ersetzt wird; 10,0% bis 12,5% Chrom (Cr); 5,0% bis 10,0% Kobalt (Co); 0,30% bis 0,80% Molybdän (Mo); 2,0% bis 5,0% Wolfram (W); bis zu 1,0% Silicium (Si); 0,35% bis 0,60% Hafnium (W); 0,005% bis 0,010% Bor(B); 0,06% bis 0,10% Kohlenstoff (C); bis zu 0,02% Zirconium (Zr); bis zu 0,1% Lanthan (La); bis zu 0,03% Yttrium (Y); bis zu 0,01% Rhenium (Re); und
Rest Nickel (Ni) und zufällige Verunreinigungen, und
Bilden des Artikels an einem Artikel, der eine gleichachsige Kornstruktur umfasst. 7. Verfahren nach Anspruch 6, wobei die Zusammensetzung, in Gewichtsprozent, umfasst: 6,2% bis 6,5% Aluminium (AI) ; bis zu 0,04% Titan (Ti); 3,9% bis 4,3% Tantal (Ta); 12,0% bis 12,5% Chrom (Cr); 7,0% bis 8,0% Kobalt (Co); 0,40% bis 0,75% Molybdän (Mo); 4,7% bis 5,0% Wolfram (W); 0,08% bis 0,12% Silicium (Si); 0,47% bis 0,53% Hafnium (HF); 0,005% bis 0,010% Bor(B); 0,06% bis 0,10% Kohlenstoff (C); bis zu 0,02% Zirconium (Zr); bis zu 0,1% Lanthan (La); bis zu 0,03% Yttrium (Y); bis zu 0,01% Rhenium (Re); und Rest Nickel (Ni); und zufällige Verunreinigungen. 8. Verfahren nach Anspruch 6 oder Anspruch 7, wobei der Artikel eine Heißgaskomponente einer Gasturbine oder eines Flugzeugmotors ist. 9. Verfahren nach Anspruch 8, wobei die Heißgaskomponente ausgewählt ist aus der Gruppe, bestehend aus einer Schaufel, einer Leitschaufel, einer Düse, einer Dichtung und einer ortsfesten Ummantelung. 10. Verfahren nach einem der Ansprüche 6 bis 9, wobei das Bilden des Artikels Gießen, Pulvermetallurgie oder dreidimensionales Zusatzbearbeitung umfasst. 11. Verfahren nach Anspruch 10, wobei das Gießen Präzisions- und Investmentguss mit variabler Drucksteuerung umfasst. 12. Verfahren nach Anspruch 11, wobei der Präzisionsund Investmentguss mit variabler Drucksteuerung umfasst: einen Oberflächenumschmelzdruck von 10"3 atm; und einen Inertgas-Gießdruck von etwa 10-2 atm bis etwa 10_1 atm.
Revendications 1. Article comprenant une structure de grain équiaxe et une composition, la composition comprenant, en pourcent en poids : 6,0 % à 9,0 % d’aluminium (Al) ; jusqu’à 0,5 % de titane (Ti) ; 2,5 % à 4,5 % de tantale (Ta), qui en option est remplacé en totalité ou en partie par le niobium (Nb) sur une base 1:1 en moles ; 10.0 % à 12,5 % de chrome (Cr) ; 5.0 % à 10,0 % de cobalt (Co) ; 0,30 % à 0,80 % de molybdène (Mo) ; 2.0 % à 5,0 % de tungstène (W) ; jusqu’à 1,0 % de silicium (Si) ; 0,35 % à 0,60 % de hafnium (Hf) ; 0,005 % à 0,010 % de bore (B) ; 0,06 % à 0,10 % de carbone (C) ; jusqu’à 0,02 % de zirconium (Zr) ; jusqu’à 0,1 % de lanthane (La) ; jusqu’à 0,03 % d’yttrium (Y) ; et le reste étant constitué de nickel (Ni) et des impuretés inévitables, et dans lequel le rhénium (Re), s’il est présent, est un élément-trace en une quantité inférieure à 0,01 % en poids par rapport à la composition. 2. Article selon la revendication 1, dans lequel la composition comprend, en pourcent en poids : 6,2 % à 6,5 % d’aluminium (Al) ; jusqu’à 0,04 % de titane (Ti) ; 3,9 % à 4,3 % de tantale (Ta) qui en option est en totalité ou en partie remplacé par le niobium (Nb) sur une base 1:1 en moles ; 12.0 % à 12,5 % de chrome (Cr) ; 7.0 % à 8,0 % de cobalt (Co) ; 0,40 % à 0,75 % de molybdène (Mo) ; 4,7 % à 5,0 % de tungstène (W) ; 0,08 % à 0,12 % de silicium (Si) ; 0,47 % à 0,53 % de hafnium (Hf) ; 0,005 % à 0,010 % de bore (B) ; 0,06 % à 0,10 % de carbone (C) ; jusqu’à 0,02 % de zirconium (Zr) ; jusqu’à 0,1 % de lanthane (La) ; jusqu’à 0,03 % d’yttrium (Y) ; jusqu’à 0,01 % de rhénium (Re) ; et le reste étant constitué de nickel (Ni) et des impuretés inévitables. 3. Article selon l’une quelconque des revendications précédentes, l’article étant un composant pour la trajectoire des gaz chauds d’une turbine à gaz ou d’un moteur d’aviation. 4. Article selon la revendication 3, le composant pour la trajectoire des gaz chauds étant choisie dans le groupe consistant en une pale, une aube, un joint et un carénage fixe. 5. Article selon l’une quelconque des revendications précédentes, dans lequel la composition de l’article possède une résistance à l’oxydation, la résistance à l’oxydation étant 2 à 4 fois plus grande qu’une résistance à l’oxydation correspondante présentée par une composition correspondante de R108, R108 comprenant, en pourcent en poids, 5,25 % à 5,75 % d’aluminium (Al), 0,6 % à 0,9 % de titane (Ti), 2,8 % à 3,3 % de tantale (Ta), 8,0 % à 8,7 % de chrome (Cr), 9,0 % à 10,0 % de cobalt (Co), 0,4 % à 0,6 % de molybdène (Mo), 9,3 % à 9,7 % de tungstène (W), jusqu’à 0,12 % de silicium (Si), 1,3 % à 1,7 % de hafnium (Hf), 0,01 % à 0,02 % de bore (B), jusqu’à 0,1 % de carbone (C), 0,005 % à 0,02 % de zirconium (Zr), jusqu’à 0,2 % defer (Fe), jusqu’à 0,1 % de manganèse (Mn), jusqu’à 0,1 % de cuivre (Cu), jusqu’à 0,01 % de phosphore (P), jusqu’à 0,004 % de soufre (S), jusqu’à 0,1 % de niobium (Nb), et le reste étant constitué de nickel (Ni) et des impuretés inévitables ; et/ou la composition de l’article ayant une durée de vie en fatigue oligocyclique, la durée de vie en fatigue oligocyclique étant de 18 % à 22 % plus grande qu’une durée de vie en fatigue oligocyclique correspondante présentée par une composition correspondante de N2Re, N2Re comprenant, en pourcent en poids, 6.0 % à 9,0 % d’aluminium (Al), jusqu’à 0,5 % de titane (Ti), 4,0 % à 6,0 % de tantale (Ta), 12,5 % à 15.0 % de chrome (Cr), 3,0 % à 10,0 % de cobalt (Co), jusqu’à 0,25 % de molybdène (Mo), 2,0 % à 5.0 % de tungstène (W), jusqu’à 1,0 % de silicium (Si), jusqu’à 0,2 % de hafnium (Hf), 1,0 % à 3,0 % de rhénium (Re), jusqu’à 0,01 % de bore (B), jusqu’à 0,07 % de carbone (C), jusqu’à 0,03 % de zirconium (Zr), et jusqu’à 0,1 % de lanthane (La), et le reste étant constitué de nickel (Ni) et des impuretés inévitables ; et/ou la composition de l’article ayant une durée de vie en fluage, la durée de vie en fluage étant de 2,0 à 2,5 fois plus grande qu’une durée de vie en fluage correspondante présentée par une composition correspondante dudit N2Re ; et/ou la composition de l’article ayant une résistance à la corrosion à chaud, la résistance à la corrosion à chaud étant de 1,5 à 2,5 fois plus grande qu’une résistance à la corrosion à chaud correspondante présentée par une composition correspondante dudit R108. 6. Procédé de formation d’un article, comprenant : la fourniture d’une composition comprenant, en pourcent en poids 6.0 % à 9,0 % d’aluminium (Al) ; jusqu’à 0,5 % de titane (Ti) ; 2,5 % à 4,5 % de tantale (Ta), qui en option est remplacé en totalité ou en partie par le niobium (Nb) sur une base 1:1 en moles ; 10.0 % à 12,5 % de chrome (Cr) ; 5.0 % à 10,0 % de cobalt (Co) ; 0,30 % à 0,80 % de molybdène (Mo) ; 2.0 % à 5,0 % de tungstène (W) ; jusqu’à 1,0 % de silicium (Si) ; 0,35 % à 0,60 % de hafnium (Hf) ; 0,005 % à 0,010 % de bore (B) ; 0,06 % à 0,10 % de carbone (C) ; jusqu’à 0,02 % de zirconium (Zr) ; jusqu’à 0,1 % de lanthane (La) ; jusqu’à 0,03 % d’yttrium (Y) ; jusqu’à 0,01 % de rhénium (Re) ; et le reste étant constitué de nickel (Ni) et des impuretés inévitables ; et le façonnage de l’article pour obtenir un article qui comprend une structure de grain équiaxe. 7. Procédé selon la revendication 6, dans lequel la composition comprend, en pourcent en poids : 6,2 % à 6,5 % d’aluminium (Al) ; jusqu’à 0,04 % de titane (Ti) ; 3,9 % à 4,3 % de tantale (Ta); 12.0 % à 12,5 % de chrome (Cr) ; 7.0 % à 8,0 % de cobalt (Co) ; 0,40 % à 0,75 % de molybdène (Mo) ; 4,7 % à 5,0 % de tungstène (W) ; 0,08 % à 0,12 % de silicium (Si) ; 0,47 % à 0,53 % de hafnium (Hf) ; 0,005 % à 0,010 % de bore (B) ; 0,06 % à 0,10 % de carbone (C) ; jusqu’à 0,02 % de zirconium (Zr) ; jusqu’à 0,1 % de lanthane (La) ; jusqu’à 0,03 % d’yttrium (Y) ; jusqu’à 0,01 % de rhénium (Re) ; et le reste étant constitué de nickel (Ni) et des impuretés inévitables. 8. Procédé selon la revendication 6 ou la revendication 7, dans lequel l’article est un composant pour la trajectoire des gaz chauds d’une turbine à gaz ou d’un moteur d’aviation. 9. Procédé selon la revendication 8, dans lequel le composant pour la trajectoire des gaz chauds est choisi dans le groupe consistant en une pale, une aube, une buse, un joint et un carénage fixe. 10. Procédé selon l’une quelconque des revendications 6 à 9, dans lequel le façonnage de l’article comprend la coulée, la métallurgie des poudres et l’usinage additif tridimensionnel. 11. Procédé selon la revendication 10, dans lequel la coulée comprend une coulée de haute précision à régulation variable de la pression. 12. Procédé selon la revendication 11, dans lequel la coulée de haute précision avec régulation variable de la pression comprend : une pression de re-fusion en surface de 10-3 atmosphères ; et une pression de coulée sous gaz inerte d’environ *\0~2 atmosphères à environ 10_1 atmosphères.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • EP 0684321 A1 [0004]
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/193,198 US20150247220A1 (en) | 2014-02-28 | 2014-02-28 | Article and method for forming article |
Publications (1)
Publication Number | Publication Date |
---|---|
HUE032320T2 true HUE032320T2 (en) | 2017-09-28 |
Family
ID=52544405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HUE15156338A HUE032320T2 (en) | 2014-02-28 | 2015-02-24 | Article and method for forming article |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150247220A1 (en) |
EP (1) | EP2913417B1 (en) |
JP (1) | JP6699989B2 (en) |
HU (1) | HUE032320T2 (en) |
PL (1) | PL2913417T3 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11739398B2 (en) * | 2021-02-11 | 2023-08-29 | General Electric Company | Nickel-based superalloy |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3635791A (en) * | 1969-08-04 | 1972-01-18 | Gen Motors Corp | Pressure pouring in a vacuum environment |
CA967403A (en) * | 1971-02-23 | 1975-05-13 | International Nickel Company Of Canada | Nickel alloy with good stress rupture strength |
US3677747A (en) * | 1971-06-28 | 1972-07-18 | Martin Marietta Corp | High temperature castable alloys and castings |
US4152488A (en) * | 1977-05-03 | 1979-05-01 | United Technologies Corporation | Gas turbine blade tip alloy and composite |
US5043138A (en) * | 1983-12-27 | 1991-08-27 | General Electric Company | Yttrium and yttrium-silicon bearing nickel-base superalloys especially useful as compatible coatings for advanced superalloys |
US4915907A (en) * | 1986-04-03 | 1990-04-10 | United Technologies Corporation | Single crystal articles having reduced anisotropy |
US5489346A (en) * | 1994-05-03 | 1996-02-06 | Sps Technologies, Inc. | Hot corrosion resistant single crystal nickel-based superalloys |
EP0683239B1 (en) | 1994-05-20 | 1999-01-20 | United Technologies Corporation | Oxidation resistant nickel based super alloy |
US5523170A (en) | 1994-12-28 | 1996-06-04 | General Electric Company | Repaired article and material and method for making |
US6640877B2 (en) | 1998-05-14 | 2003-11-04 | Howmet Research Corporation | Investment casting with improved melt filling |
US6311760B1 (en) | 1999-08-13 | 2001-11-06 | Asea Brown Boveri Ag | Method and apparatus for casting directionally solidified article |
JP2002167636A (en) | 2000-10-30 | 2002-06-11 | United Technol Corp <Utc> | Low density oxidation resistant superalloy material capable of thermal barrier coating retention without bond coat |
US6905559B2 (en) * | 2002-12-06 | 2005-06-14 | General Electric Company | Nickel-base superalloy composition and its use in single-crystal articles |
US20100254822A1 (en) | 2009-03-24 | 2010-10-07 | Brian Thomas Hazel | Super oxidation and cyclic damage resistant nickel-base superalloy and articles formed therefrom |
US20110076181A1 (en) | 2009-09-30 | 2011-03-31 | General Electric Company | Nickel-Based Superalloys and Articles |
-
2014
- 2014-02-28 US US14/193,198 patent/US20150247220A1/en not_active Abandoned
-
2015
- 2015-02-24 EP EP15156338.4A patent/EP2913417B1/en active Active
- 2015-02-24 PL PL15156338T patent/PL2913417T3/en unknown
- 2015-02-24 HU HUE15156338A patent/HUE032320T2/en unknown
- 2015-02-25 JP JP2015034640A patent/JP6699989B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015165048A (en) | 2015-09-17 |
EP2913417A1 (en) | 2015-09-02 |
JP6699989B2 (en) | 2020-05-27 |
EP2913417B1 (en) | 2017-01-11 |
US20150247220A1 (en) | 2015-09-03 |
PL2913417T3 (en) | 2017-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1717326B1 (en) | Ni-based alloy member, method of producing the alloy member and turbine engine part | |
EP1842934B1 (en) | Heat-resistant superalloy | |
JP5869034B2 (en) | Nickel superalloys and parts made from nickel superalloys | |
JP5709402B2 (en) | Cobalt-nickel superalloy and related articles | |
EP2532761B1 (en) | Cobalt-nickel base alloy and method of making an article therefrom | |
EP2479302B1 (en) | Ni-based heat resistant alloy, gas turbine component and gas turbine | |
US20110268989A1 (en) | Cobalt-nickel superalloys, and related articles | |
EP2333121B1 (en) | Method for the production of a low sulfur nickel base substrate alloy and overlay coating system | |
EP2420584B1 (en) | Nickel-based single crystal superalloy and turbine blade incorporating this superalloy | |
JP2011052323A (en) | Nickel-based superalloy and article | |
TWI452149B (en) | High heat-resistant and high-strength rh group alloy and method for manufacturing the same | |
JP5047456B2 (en) | Precipitation strengthened nickel-iron-chromium alloy and method of processing the same | |
HUE032320T2 (en) | Article and method for forming article | |
EP4159360A1 (en) | Cobalt-based alloy product and method for producing cobalt-based alloy product | |
JP7324254B2 (en) | Co-Based Alloy Material, Co-Based Alloy Product, and Method for Making Same | |
JP7237222B1 (en) | Cobalt-based alloy shaped article and method for manufacturing cobalt-based alloy product | |
JP2024126617A (en) | Manufacturing method of Ni-based alloy forged products | |
Alam et al. | Aluminide coatings on titanium-based alloy IMI-834 for high temperature oxidation protection |