JP2015164978A - パターン基材およびその製造方法ならびにパターン形成用基材 - Google Patents
パターン基材およびその製造方法ならびにパターン形成用基材 Download PDFInfo
- Publication number
- JP2015164978A JP2015164978A JP2014039966A JP2014039966A JP2015164978A JP 2015164978 A JP2015164978 A JP 2015164978A JP 2014039966 A JP2014039966 A JP 2014039966A JP 2014039966 A JP2014039966 A JP 2014039966A JP 2015164978 A JP2015164978 A JP 2015164978A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- group
- functional group
- region
- volume change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treatments Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
(i)粒子として金ナノ粒子等を用いた場合:ホログラム等の表示素子のカラー化,記録材料
(ii)粒子として金属粒子や、合金粒子、磁気粒子等を用いた場合:記録材料
(iii)粒子として金属粒子や合金粒子等の導電性粒子を用い、その導電性粒子のパーコレーション転移を利用した場合:微細配線素子
したがって、このパターン基材の製造方法は、光応答性高分子を利用した新たな微細パターン形成技術につき実用化に向けた応用展開を図ることができる。
(i)粒子として金ナノ粒子等を用いた場合:ホログラム等の表示素子のカラー化,記録材料
(ii)粒子として金属粒子や、合金粒子、磁気粒子等を用いた場合:記録材料
(iii)粒子として金属粒子や合金粒子等を用い、その粒子のパーコレーション転移を利用した場合:微細配線素子
したがって、このパターン基材は、光応答性高分子を利用した新たな微細パターン形成技術につき実用化に向けた応用展開を図ることができる。
本発明の第1実施形態に係る粒子密度パターン樹脂基材100は、図1に示されるように、架橋領域Rc0および未架橋領域Rn0によるパターンPn0を有する。このような粒子密度パターン樹脂基材100は、例えば、以下に説明する光架橋性高分子および粒子等から形成される基材に対して、パターンPn0に対応するフォトマスクを介して光を照射することにより、または、レーザー光線を直接、照射することにより作製される。以下、この光架橋性高分子およびその製造方法、粒子、ならびに粒子密度パターン樹脂基材100の製造方法について詳述する。
光架橋性高分子は、光の照射を受けて架橋構造を形成する光架橋性官能基を含む高分子である。光架橋性官能基は、光の光線量に応じた量の架橋構造を形成する。そして、この光架橋性高分子においてそのような架橋構造が形成されると、光架橋性高分子は、その架橋構造形成量に応じて体積が減少する。なお、このような体積の減少は光の照射方向に沿って生じる。また、本実施の形態において、光の光線量は、照射面積当たりのエネルギー(mJ/cm2またはmW・s/cm2)で表される。また、光架橋性官能基特有の光吸収ピークでの吸光度が照射時間0分における初期吸光度aに対して1/2になるまでの時間は、180分以下であることが好ましく、60分以下であることがより好ましい。この時間が短ければ短いほど加工時間を短縮することできる。すなわち、この時間は0分に近いことが好ましい。このような架橋構造を生じさせる光は、光架橋性官能基の種類に依存するが、例えば、紫外線(UV光)、可視光線、X線等である。なお、紫外線の波長領域は10nm以上400nm以下であり、可視光線の波長領域は400nm超830nm以下であり、X線の波長領域は1pm以上10nm以下である。
光架橋性高分子の高分子主鎖は、ホモポリマーであってもよいし、ランダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体、グラフト共重合等の共重合体であってもよい。また、この高分子主鎖は、合成高分子であってもよいし、天然高分子であってもよいし、半合成高分子(改質天然高分子)であってもよい。この高分子主鎖は柔軟性を有することが好ましい。柔軟性を有する高分子主鎖としては、例えば、ポリジメチルシロキサン系ポリマー、ポリエチレングリコール系ポリマー、スチレン‐ブタジエン共重合ポリマー、ポリブタジエン、ポリイソプレン、アクリロニトリル−ブタジエン共重合ポリマー、イソプレン−イソブチレン共重合ポリマー、エチレン−プロピレン−ジエン共重合ポリマー、ハロゲン化ブチルポリマー等のガラス転移温度が低いゴム系高分子、エラストマー系高分子が例示される。なお、このようなポリマーの好ましいガラス転移温度は−140℃以上40℃以下の範囲内である。
光架橋性官能基としては、例えば、アジド基、クロロメチル基、光開始ラジカル発生基、光多量化官能基等を挙げることができる。光多量化官能基としては、例えば、光二量化官能基が挙げられる。光二量化官能基としては、例えば、シンナモイル基、クマリン基、チミン基、キノン基、マレイミド基、カルコン基、ウラシル基、アントラセン基等が挙げられる。このような光二量化官能基は、π電子共役構造を含んでおり、[A+A](Aは2、4などの整数)光環化付加反応によって二量化される。なお、ここにいう「光環化付加反応」とは、π電子系の骨格を形成する反応をいう。また、上記光二量化官能基のうちクマリン基、チミン基、アントラセン基には、二量化−単量化の可逆性がある。具体的には、クマリン基は、310nm以上の長波長紫外線が照射されると二量化し、250〜260nm程度の短波長紫外線が照射されると単量化する。チミン基は、280nm前後の長波長紫外線が照射されると二量化し、240nm前後の短波長紫外線が照射されると単量化する。アントラセン基は、長波長紫外線が照射されると二量化し、加熱されたり300nm以下の短波長紫外線が照射されたりすると単量化する。光架橋性官能基は、光架橋性高分子に少なくとも1種類含まれていればよく、複数種類含まれていてもよい。特に、光二量化官能基は、光の照射時間に応じて光架橋性高分子の体積を減少させ易く好ましい。また、光二量化官能基が1種類である場合、同種の光二量化官能基のみが存在するため架橋構造の形成を制御し易い。一方、光二量化官能基が複数種類含まれている場合、異種の光二量化官能基は架橋構造の形成光波長が異なる。かかる場合、異なる波長の光を用いて光架橋性高分子の体積を減少させることができる。なお、光二量化官能基がシンナモイル基である場合の二量化形成モデルは以下の化学式に示される通りである。
本発明の第1実施形態に係る光架橋性高分子は、(a)光架橋性官能基を有するモノマー(マクロモノマーを含む)、オリゴマー等を重合する方法(以下「重合法」という)、(b)高分子に光架橋性官能基を導入する方法(以下「官能基導入法」という)等により製造することができる。以下、上述の2種類の製造方法について詳述する。
重合法では、上述の通り、光架橋性官能基を有するモノマー、オリゴマー等(以下「光架橋性官能基含有モノマー等」という)が重合される。なお、この重合法では、光架橋性官能基含有モノマー等に、光架橋性官能基を有さない他のモノマー、オリゴマー等(以下「光架橋性官能基非含有モノマー等」という)が共重合されてもよい。光架橋性官能基非含有モノマー等としては、例えば、<光架橋性高分子>の欄に記載されている高分子主鎖を構成するモノマー、オリゴマー等が例示される。
官能基導入法では、上述の通り、高分子に光架橋性官能基が導入される。高分子は、合成高分子であってもよいし、天然高分子であってもよいし、半合成高分子(改質天然高分子)であってもよい。なお、合成高分子を形成するためのモノマーとしては、ビニルモノマー、プロピレンモノマー、ブテンモノマー、塩化ビニルモノマー、テレフタル酸モノマー、1,3−プロパンジオール、ε‐カプロラクタムモノマー、ウンデカンラクタムモノマー、ラウリルラクタムモノマー、ビスフェノールモノマー、アクリル酸モノマー、ジメチルシロキサンモノマー、エチレングリコールモノマー、スチレンモノマー、ブタジエンモノマー、イソプレンモノマー、イソブチレンモノマー等が挙げられる。なお、これらのモノマーに代えてオリゴマーを用いることもできる。また、当然のことながらこれらのモノマー、オリゴマーは、光架橋性官能基を有さない。また、天然高分子としては、澱粉、セルロース、キチン、キトサン、タンパク質等が挙げられる。当然のことながらこれらの天然高分子は、光架橋性官能基を有さない。
粒子は、例えば、金ナノ粒子等の金属微粒子、合金微粒子、金属や合金をシェルとするコア−シェル型粒子、磁気粒子等である。粒子の形状は、球形、棒状、針状、角状など、任意の形状であってよい。また、粒子は、応用分野にも依存するところもあるため特に限定されないが、粒子含有高分子材料の20体積%以上80体積%以下を占めるのが好ましく、30体積%以上70体積%以下を占めるのがより好ましく、40体積%以上60体積%以下を占めるのがさらに好ましい。
粒子密度パターン樹脂基材100(図1参照)は、フィルム成形工程および露光工程を経て製造される。以下、これらの工程について詳述する。
第1実施形態に係る粒子密度パターン樹脂基材100は、以下のような応用展開を図ることができる。
(i)粒子として金ナノ粒子等を用いた場合:ホログラム等の表示素子のカラー化,記録材料
(ii)粒子として金属粒子や、合金粒子、磁気粒子等を用いた場合:記録材料
(iii)粒子として金属粒子や合金粒子等を用い、その粒子のパーコレーション転移を利用した場合:微細配線素子
したがって、この粒子密度パターン樹脂基材100は、光応答性高分子を利用した新たな微細パターン形成技術につき実用化に向けた応用展開を図ることができる。
(A)
先の実施の形態では特に言及しなかったが、粒子密度パターン樹脂基材の製造方法の露光工程において、パターンPn0の形成後、(i)パターンPn0に対応するフォトマスクの配置方法を変えたり、(ii)そのフォトマスクの上に別のフォトマスクを重ねたり、(iii)そのフォトマスクを別のフォトマスクに置き換えたりした後に、さらに露光を行うことによってパターンPn0を加工してもよい。かかる場合、例えば、(i)パターンPn0形成後の未架橋領域Rn0に対して先とは異なる量の光を照射して先の架橋領域Rc0の架橋度とは異なる架橋度を有する新たな架橋領域を形成してもよいし、(ii)パターンPn0形成後の架橋領域Rc0に対して部分的に光を照射して先の架橋領域Rc0の架橋度とは異なる架橋度を有する新たな架橋領域を形成してもよいし、(iii)前2つの新たな架橋領域を同時に形成してもよい。なお、かかる場合、新たな架橋領域の窪み度合いは先の架橋領域Rc0の窪み度合いと異なり、その結果、複雑な凹凸構造が形成されることになる。このようにしてパターンPn0を加工すれば、未架橋領域Rn0および複数種類の架橋領域を利用した3種以上のパターン形成を行うことができる。
先の実施の形態では特に言及しなかったが、未架橋領域Rn0を、架橋領域Rc0の架橋度と異なる架橋度を有するように光架橋させてもよい。かかる場合であっても、先の実施の形態に係る粒子密度パターン樹脂基材と同様の効果を奏することができる。
先の実施の形態では特に言及しなかったが、光架橋性高分子が、上述のクマリン基、チミン基、アントラセン基等の二量化−単量化の可逆性光架橋性官能基を有する場合、パターンPn0の形成後、(i)パターンPn0に対応するフォトマスクの配置方法を変えたり、(ii)そのフォトマスクの上に別のフォトマスクを重ねたり、(iii)そのフォトマスクを別のフォトマスクに置き換えたりした後に、単量化波長の光をそのパターンPn0の一部を含むように照射して更に複雑な形状のパターン形成を行ってもよい。
本発明の第2実施形態に係る粒子密度パターン樹脂基材の製造方法では、フィルム形成後にパターン形成が実行されたが、フィルム形成後に全架橋処理を経てパターン形成が行われてもよい。ただし、本製造方法を実現させるためには、光架橋性高分子が、上述のクマリン基、チミン基、アントラセン基等の二量化−単量化の可逆性光架橋性官能基を有することが必須である。以下、第2実施形態に係る粒子密度パターン樹脂基材の製造方法について詳述する。
先の実施の形態では特に言及しなかったが、パターンPn0の形成後、(i)パターンPn0に対応するフォトマスクの配置方法を変えたり、(ii)そのフォトマスクの上に別のフォトマスクを重ねたり、(iii)そのフォトマスクを別のフォトマスクに置き換えたりした後に、二量化波長の光をそのパターンPn0の一部を含むように照射して更に複雑な形状のパターン形成を行ってもよい。
以下、実施例を示して本発明の実施の形態をより詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
テトラクロロ金(III)酸三水和物393mgとオレイルアミン4.6mLを50mLのトルエンに溶解させた後、その反応溶液を窒素雰囲気下で3時間還流して、金ナノ粒子を析出させた。次に、反応溶液5mLに対してメタノール3mLを添加し、その混合液を6000rpmで3分間遠心分離して金ナノ粒子を沈殿させた。次いで、その遠心分離処理液からデカンテーションにより上澄みを除去した後、残った金ナノ粒子に再びトルエンを加えてトルエン中に金ナノ粒子を分散させた。そして、この操作をさらに2回繰り返して金ナノ粒子を精製・濃縮した。得られた金ナノ粒子の透過型電子顕微鏡像および紫外可視スペクトルを図6および図7にそれぞれ示した。図7に示される紫外可視スペクトルにおいて、520nm付近に、金ナノ粒子に特徴的な表面プラズモン共鳴に由来するピークが見られたことから、金ナノ粒子が合成されたことが明らかとなった。また、図6の透過型電子顕微鏡像より、得られた金ナノ粒子は、ほぼ均一な粒径を有しており、その粒径が15μmであることが明らかとなった。
シンナモイル基を含むモノマーであるケイ皮酸ビニル(VCi)と、ポリジメチルシロキサン(PDMS)を含むマクロモノマー(PDMS macromonomer)とを共重合して光架橋性高分子であるグラフト共重合体(PVCi-g-PDMS)を合成した。
1mg/mL、10mg/mL、30mg/mL、50mg/mL、100mg/mLおよび200mg/mLの金ナノ粒子分散液それぞれにPVCi-g-PDMSが10質量%になるようにPVCi-g-PDMSを溶解させた後、そのPVCi-g-PDMS溶液それぞれを2000rpmの回転速度で10分間、シリコンウエハ上にスピンキャストすることによって金ナノ粒子分散PVCi-g-PDMSフィルムを調製した。なお、得られた金ナノ粒子分散PVCi-g-PDMSフィルム中の金ナノ粒子含有量は、それぞれ1.0重量%、9.3重量%、23.4重量%、34.0重量%、50.7重量%および67.3重量%であった。図8には、調製された各金ナノ粒子分散PVCi-g-PDMSフィルムの写真が示されている。図8から明らかなように、金ナノ粒子含有量が高い程、金ナノ粒子分散PVCi-g-PDMSフィルムの色調が濃くなった。また、図8から、いずれの金ナノ粒子分散PVCi-g-PDMSフィルムにおいても金ナノ粒子は凝集することなく均一に分散していることが明らかとなった。また、図9には、金ナノ粒子含有量が34.0重量%、50.7重量%および67.3重量%である金ナノ粒子分散PVCi-g-PDMSフィルムの紫外可視スペクトルが示されている。図9から明らかなように、いずれの金ナノ粒子分散PVCi-g-PDMSフィルムにおいても、550nm付近に、金ナノ粒子の表面プラズモン共鳴に由来するピークが現れた。また、これらの金ナノ粒子の表面プラズモン共鳴に由来するピークは、金ナノ粒子含有量が高い程、長波長側の領域の吸収が増大し、ブロード化した。一般的に、金ナノ粒子の表面プラズモン共鳴によるピークは、金ナノ粒子の凝集によりブロード化すると共に長波長側にシフトすることが知られている。したがって、金ナノ粒子分散PVCi-g-PDMSフィルム中の金ナノ粒子含有量の増加に伴うピークのブロード化および長波長領域の吸収の増大は、金ナノ粒子分散PVCi-g-PDMSフィルムの金ナノ粒子含有量の増加に伴う金ナノ粒子同士の近接に伴って引き起こされたものであると考えられる。
次に、金ナノ粒子分散PVCi-g-PDMSフィルムに広域波長の光を2時間照射した際の金ナノ粒子分散PVCi-g-PDMSフィルムの色調および吸光度変化について検討した。図10には、光照射前後の金ナノ粒子分散PVCi-g-PDMSフィルムの写真が示されている。図10から明らかなように、光照射に伴って金ナノ粒子分散PVCi-g-PDMSフィルムがワインレッドから薄紫色に変化した。図11には、金ナノ粒子分散PVCi-g-PDMSフィルムの光照射前後の紫外可視スペクトルが示されている。図11から明らかなように、いずれの金ナノ粒子分散PVCi-g-PDMSフィルムにも、光照射によって表面プラズモン共鳴によるピークのブロード化および極大吸収波長の長波長シフトが確認された。これらの結果から、光照射による金ナノ粒子分散PVCi-g-PDMSフィルムの膜厚減少に伴って金ナノ粒子間の距離が短くなったために金ナノ粒子分散PVCi-g-PDMSフィルムの色調が変化したものと考えられる。
ここでは、フォトマスクを利用した金ナノ粒子分散PVCi-g-PDMSフィルムのパターニング形成について検討した。図12に示されるように、金ナノ粒子分散PVCi-g-PDMSフィルムにフォトマスクを介して広域波長の光を30分間照射した。その結果、光照射部分のみで金ナノ粒子分散PVCi-g-PDMSフィルムの色調が変化した(図13参照)。これは、光照射部分のみでシンナモイル基の光二量化反応が進行して金ナノ粒子分散PVCi-g-PDMSフィルムの膜厚が減少し、金ナノ粒子分散PVCi-g-PDMSフィルム中の金ナノ粒子の密度が高まったために、金ナノ粒子間の距離が短くなったためであると考えられる。
Pn0 パターン
Rc0 架橋領域
Rn0 未架橋領域
Claims (14)
- 光照射により体積変化する高分子材料と、前記高分子材料に分散される粒子とを含有する粒子含有高分子材料から形成される基材を準備する準備工程と、
前記基材に対して光を照射して(a)第1体積変化領域、(b)前記第1体積変化領域における体積変化度と異なる体積変化度を有する第2体積変化領域および(c)未体積変化領域のうちの少なくとも2種の領域のパターンを形成する光照射工程と
を備える、パターン基材の製造方法。 - 前記体積変化は、収縮である
請求項1に記載のパターン基材の製造方法。 - 前記高分子材料は、光照射により多量化する官能基(以下「光多量化官能基」という)を有する高分子を主成分とする
請求項2に記載のパターン基材の製造方法。 - 前記未体積変化領域は、前記光多量化官能基を有する高分子を主成分とする高分子材料から形成されており、
前記体積変化領域は、前記光多量化官能基が多量化した架橋構造を含む高分子を主成分とする高分子材料から形成されている
請求項3に記載のパターン基材の製造方法。 - 前記光多量化官能基は、シンナモイル基、クマリン基、チミン基、キノン基、マレイミド基、カルコン基およびウラシル基より成る群から選択される少なくとも一種の官能基を含む
請求項3または4に記載のパターン基材の製造方法。 - 前記光多量化官能基は、可逆性を有する
請求項3から5のいずれかに記載のパターン基材の製造方法。 - 前記体積変化は、膨張である
請求項1に記載のパターン基材の製造方法。 - 前記高分子材料は、光照射により多量化する官能基(以下「光多量化官能基」という)が多量化した架橋構造を含む高分子を主成分とする
請求項7に記載のパターン基材の製造方法。 - 前記未体積変化領域は、前記光多量化官能基が多量化した架橋構造を含む高分子を主成分とする高分子材料から形成されており、
前記体積変化領域は、前記光多量化官能基を有する高分子を主成分とする高分子材料から形成されている
請求項8に記載のパターン基材の製造方法。 - 前記光多量化官能基は、クマリン基およびチミン基より成る群から選択される少なくとも一種の官能基を含む
請求項8または9に記載のパターン基材の製造方法。 - 前記粒子は、互いの近接距離によって色相が変化する粒子である
請求項1から10のいずれかに記載のパターン基材の製造方法。 - 第1密度で粒子を含有する第1領域と、前記第1密度とは異なる第2密度で前記粒子を含有する第2領域とを含むパターン基材。
- 前記第1領域の体積は、前記第2領域の体積と異なる
請求項12に記載のパターン基材。 - 光照射により体積変化する高分子材料と、
前記高分子材料に分散される粒子と
を含有する粒子含有高分子材料から形成されるパターン形成用基材。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014039966A JP6404578B2 (ja) | 2014-02-28 | 2014-02-28 | パターン基材およびその製造方法ならびにパターン形成用基材 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014039966A JP6404578B2 (ja) | 2014-02-28 | 2014-02-28 | パターン基材およびその製造方法ならびにパターン形成用基材 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015164978A true JP2015164978A (ja) | 2015-09-17 |
JP6404578B2 JP6404578B2 (ja) | 2018-10-10 |
Family
ID=54187583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014039966A Active JP6404578B2 (ja) | 2014-02-28 | 2014-02-28 | パターン基材およびその製造方法ならびにパターン形成用基材 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6404578B2 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60155493A (ja) * | 1983-11-16 | 1985-08-15 | Somar Corp | マ−キング用材料及びマ−キング方法 |
JP2006343650A (ja) * | 2005-06-10 | 2006-12-21 | Fuji Xerox Co Ltd | 調光組成物、光学素子、及びその調光方法。 |
US20070054065A1 (en) * | 2003-09-12 | 2007-03-08 | Nitto Denko Corporation | Method for producing anisotropic film |
JP2012144610A (ja) * | 2011-01-11 | 2012-08-02 | Kansai Univ | 光応答性高分子、当該光応答性高分子が形成されてなる成形物およびその利用 |
WO2013054784A1 (ja) * | 2011-10-11 | 2013-04-18 | 日産化学工業株式会社 | 硬化膜形成組成物、配向材および位相差材 |
-
2014
- 2014-02-28 JP JP2014039966A patent/JP6404578B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60155493A (ja) * | 1983-11-16 | 1985-08-15 | Somar Corp | マ−キング用材料及びマ−キング方法 |
US20070054065A1 (en) * | 2003-09-12 | 2007-03-08 | Nitto Denko Corporation | Method for producing anisotropic film |
JP2006343650A (ja) * | 2005-06-10 | 2006-12-21 | Fuji Xerox Co Ltd | 調光組成物、光学素子、及びその調光方法。 |
JP2012144610A (ja) * | 2011-01-11 | 2012-08-02 | Kansai Univ | 光応答性高分子、当該光応答性高分子が形成されてなる成形物およびその利用 |
WO2013054784A1 (ja) * | 2011-10-11 | 2013-04-18 | 日産化学工業株式会社 | 硬化膜形成組成物、配向材および位相差材 |
Also Published As
Publication number | Publication date |
---|---|
JP6404578B2 (ja) | 2018-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Purohit et al. | Polymer Grafting and its chemical reactions | |
Yeow et al. | Polymerization-induced self-assembly using visible light mediated photoinduced electron transfer–reversible addition–fragmentation chain transfer polymerization | |
Bang et al. | Defect-free nanoporous thin films from ABC triblock copolymers | |
TWI557173B (zh) | 嵌段共聚物 | |
KR101238827B1 (ko) | 열안전성이 우수한 코어쉘 구조의 나노 입자 블록공중합체 복합체의 제조 방법 및 이에 의하여 제조된 열안전성이 우수한 코어쉘 구조의 나노 입자 블록공중합체 복합체 | |
TW200409793A (en) | A polymer solution for nanoimprint lithography to reduce imprint temperature and pressure | |
JP5067691B2 (ja) | ポリマー薄膜の製造方法およびポリマー薄膜 | |
JP5765729B2 (ja) | 光応答性高分子が形成されてなる成形物およびその利用 | |
Menon et al. | Photocleavable glycopolymer aggregates | |
JP2008504411A (ja) | (アルキル)アクリル酸部分を含有する単分散性ポリマー、前駆体およびその作製方法ならびにその適用 | |
Arslan et al. | Stimuli‐R esponsive Spherical Brushes Based on d‐G alactopyranose and 2‐(D imethylamino) ethyl Methacrylate | |
Mu et al. | Well-defined dendritic-graft copolymer grafted silica nanoparticle by consecutive surface-initiated atom transfer radical polymerizations | |
Paderes et al. | Photo‐Controlled [4+ 4] Cycloaddition of Anthryl‐Polymer Systems: A Versatile Approach to Fabricate Functional Materials | |
Menon et al. | Photoresponsive glycopolymer aggregates as controlled release systems | |
Menon et al. | Photoresponsive self‐assembling structures from a pyrene‐based triblock copolymer | |
JP4215455B2 (ja) | リビング開始種を有するポリマー粒子及びその製造方法 | |
Yang et al. | Photo‐responsive block copolymer containing azobenzene group: Synthesis by reversible addition‐fragmentation chain transfer polymerization and characterization | |
US9097979B2 (en) | Block copolymer-based mask structures for the growth of nanopatterned polymer brushes | |
JP6070106B2 (ja) | 生体材料パターニング用樹脂基材およびその製造方法ならびに生体材料パターニング材およびその製造方法 | |
Jhaveri et al. | Synthesis of polymeric core–shell particles using surface‐initiated living free‐radical polymerization | |
JP6404578B2 (ja) | パターン基材およびその製造方法ならびにパターン形成用基材 | |
Jaisankar et al. | Single-electron transfer living radical copolymerization of SWCNT-g-PMMA via graft from approach | |
TWI696653B (zh) | 轉移壓印法 | |
Zhang et al. | Facile fabrication of hybrid nanoparticles surface grafted with multi‐responsive polymer brushes via block copolymer micellization and self‐catalyzed core gelation | |
JP7488653B2 (ja) | エマルジョン、エマルジョンの製造方法、及びエマルジョンを用いたコーティング膜の形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180913 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6404578 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |