JP2015162605A - Substrate for device fabrication, manufacturing method thereof, and near infrared light-emitting device - Google Patents

Substrate for device fabrication, manufacturing method thereof, and near infrared light-emitting device Download PDF

Info

Publication number
JP2015162605A
JP2015162605A JP2014037437A JP2014037437A JP2015162605A JP 2015162605 A JP2015162605 A JP 2015162605A JP 2014037437 A JP2014037437 A JP 2014037437A JP 2014037437 A JP2014037437 A JP 2014037437A JP 2015162605 A JP2015162605 A JP 2015162605A
Authority
JP
Japan
Prior art keywords
substrate
gaas
device fabrication
thin film
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014037437A
Other languages
Japanese (ja)
Other versions
JP6241939B2 (en
Inventor
高明 間野
Takaaki Mano
高明 間野
和貴 三石
Kazuki Mitsuishi
和貴 三石
野田 武司
Takeshi Noda
武司 野田
晃浩 大竹
Akihiro Otake
晃浩 大竹
ヌル ハ
Neul Ha
ヌル ハ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2014037437A priority Critical patent/JP6241939B2/en
Publication of JP2015162605A publication Critical patent/JP2015162605A/en
Application granted granted Critical
Publication of JP6241939B2 publication Critical patent/JP6241939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a substrate for device fabrication which has no lattice strain and a flat surface; a simple and convenient manufacturing method of such a substrate; and a near infrared light-emitting device with the structure as described above.SOLUTION: A substrate 31 for device fabrication has a lattice relaxation layer 13 and a lattice-relaxed layer 14 which are stacked in this order on (111)A plane 12a of a GaAs substrate or GaAs buffer layer 12 formed on the GaAs substrate 11. The lattice relaxation layer 13 is an InAs thin film having a thickness of 0.7-1.8 nm. The lattice-relaxed layer 14 is an InMAs thin film (where Mrepresents a metal atom of Group III). Using the substrate 31 for device fabrication, the above objects can be achieved.

Description

本発明は、デバイス作製用基板、その製造方法及び近赤外線発光デバイスに関する。特に、格子歪みがなく、平坦な一面を有するデバイス作製用基板、その製造方法及び近赤外線発光デバイスに関する。   The present invention relates to a device manufacturing substrate, a manufacturing method thereof, and a near-infrared light emitting device. In particular, the present invention relates to a device manufacturing substrate having no flat lattice distortion and a flat surface, a manufacturing method thereof, and a near infrared light emitting device.

格子歪みがなく、平坦な一面を有するInGaAs(砒化インジウムガリウム)薄膜は、その上に、バンドギャップ及び格子定数を広い範囲で自由に制御可能なデバイスを構築できる基板として検討されている。特に、高移動度電子半導体デバイスや近赤外発光デバイス等への応用が期待されている。   An InGaAs (indium gallium arsenide) thin film having a flat surface without lattice distortion has been studied as a substrate on which a device capable of freely controlling a band gap and a lattice constant in a wide range can be constructed. In particular, application to high mobility electronic semiconductor devices, near-infrared light emitting devices, and the like is expected.

通常、前記InGaAs薄膜は、市販されているGaAs(砒化ガリウム)半導体基板上にエピタキシャル成長させて作製される。
しかし、エピタキシャル成長の際、前記InGaAs薄膜の格子定数とGaAs基板の格子定数の相違により、InGaAs薄膜にGaAs基板との格子不整合に起因する歪みが生じ、更に、貫通転位などの欠陥が伝搬するという問題があった。
Usually, the InGaAs thin film is produced by epitaxial growth on a commercially available GaAs (gallium arsenide) semiconductor substrate.
However, during epitaxial growth, due to the difference between the lattice constant of the InGaAs thin film and the lattice constant of the GaAs substrate, distortion is caused in the InGaAs thin film due to lattice mismatch with the GaAs substrate, and defects such as threading dislocations propagate. There was a problem.

この問題を解決するために様々な対策が取られてきた。
例えば、特許文献1では、欠損型化合物層である(GaSe)を界面に導入する事により歪みを緩和し、転位の発生伝搬を抑制している。しかし、Seを含む化合物の導入は、蒸気圧が高いためにGaAsの品質を大幅に低下させた。
Various measures have been taken to solve this problem.
For example, in Patent Document 1, distortion is mitigated by introducing (Ga 2 Se 3 ), which is a defect type compound layer, into the interface, and dislocation propagation is suppressed. However, the introduction of a compound containing Se significantly reduced the quality of GaAs due to the high vapor pressure.

特許文献2では、多孔質化したGaAsを界面に導入する事により、転位の抑制を試みている。しかし、多孔質化したGaAs形成では、複雑なプロセスの導入が必要となり、歩留まりが悪化し、コストを高めた。   In Patent Document 2, an attempt is made to suppress dislocation by introducing porous GaAs into the interface. However, the formation of porous GaAs requires the introduction of a complicated process, which deteriorates the yield and increases the cost.

非特許文献1では、有機気相成長(MOCVD)法を用い、GaAs(100)基板上に1ミクロン以上の格子緩和層と呼ばれるInGaAs中間層を導入して、歪みに起因する転位がIn0.3Ga0.7As疑似基板に伝搬するのを防いでいる。しかし、500nm以上という非常に厚い格子緩和層を導入する事により、製造コストを増大させるという問題を発生させた。 In Non-Patent Document 1, an organic vapor phase epitaxy (MOCVD) method is used to introduce an InGaAs intermediate layer called a lattice relaxation layer of 1 micron or more on a GaAs (100) substrate . thereby preventing 3 Ga 0.7 propagating to As pseudo substrate. However, the introduction of a very thick lattice relaxation layer of 500 nm or more has caused a problem of increasing the manufacturing cost.

非特許文献2には、分子線エピタキシー(MBE)法を用い、GaAs(100)基板上に組成の異なるInGaAsを3層積層することにより、同様に転位がIn0.23Ga0.77As疑似基板に伝搬するのを防いでいる。しかし、3層導入により、製造コストを増大させるという問題を発生させた。また、実用の際には結晶成長に必要なコストと作製の手間を大幅に悪化させた。 Non-Patent Document 2, using a molecular beam epitaxy (MBE) method, GaAs (100) by three-layer different InGaAs compositions on the substrate, similarly dislocations In 0.23 Ga 0.77 As pseudo Propagation to the substrate is prevented. However, the introduction of three layers caused a problem of increasing manufacturing costs. In practical use, the cost required for crystal growth and the time and effort of production were greatly deteriorated.

特開平7−66366号公報JP-A-7-66366 特開2003−86607号公報JP 2003-86607 A

H.-Q.Nguyen et al.,Applied Physics Express 5,(2012)055503.H. -Q. Nguyen et al. , Applied Physics Express 5, (2012) 0555503. Z.Mi et al.,Journal of Vacuum Science & Technology B26,(2008)1153.Z. Mi et al. , Journal of Vacuum Science & Technology B26, (2008) 1153. A.Ohtake et al.,Physical Review Letters 84,(2000)4665.A. Ohtake et al. , Physical Review Letters 84, (2000) 4665.

本発明は、格子歪みがなく、平坦な一面を有するデバイス作製用基板、その簡便な製造方法、上記構造を用いた近赤外線発光デバイスを提供することを課題とする。   It is an object of the present invention to provide a device manufacturing substrate having no flat lattice distortion and having a flat surface, a simple manufacturing method thereof, and a near infrared light emitting device using the above structure.

本発明者は、上記事情を鑑みて、分子線エピタキシー(MBE)法を用いてGaAs(111)A基板上に高品質の単結晶InAs薄膜を結晶成長により形成する研究を行ってきた(非特許文献3)。この研究では、分子線エピタキシー法をもちいて、GaAs(111)A基板表面上にInAsを成長させた場合、成長初期に転位が導入されて急峻に歪みが緩和することにより、高品質で平坦なInAs層を成長可能であることを報告した。そしてその成長の初期において、InAs表面の面内の格子定数がGaAsからInAsへと変化することを報告した。これらの知見に基づいて、試行錯誤を行った結果、GaAsの(111)A面上に、0.7nm以上1.8nm未満の厚さのInAs薄膜(格子緩和層)を導入するだけで、格子歪みがなく、平坦な一面を有するInGa1−xAs薄膜(0.23≦x≦0.75)(被格子緩和層)を形成することができ、本研究を完成した。また、被格子緩和層の上に量子井戸構造を形成することにより、近赤外域で発光するデバイスを作製できた。
本発明は、以下の構成を有する。
In view of the above circumstances, the present inventor has conducted research to form a high-quality single-crystal InAs thin film on a GaAs (111) A substrate by crystal growth using a molecular beam epitaxy (MBE) method (non-patented). Reference 3). In this study, when InAs is grown on the surface of a GaAs (111) A substrate by using molecular beam epitaxy, dislocations are introduced at the initial stage of growth and the strain is relieved sharply, so that high quality and flatness is achieved. It has been reported that an InAs layer can be grown. It was reported that the in-plane lattice constant of the InAs surface changed from GaAs to InAs at the beginning of the growth. As a result of trial and error based on these findings, it is possible to obtain a lattice by simply introducing an InAs thin film (lattice relaxation layer) having a thickness of 0.7 nm to less than 1.8 nm on the (111) A surface of GaAs. An In x Ga 1-x As thin film (0.23 ≦ x ≦ 0.75) (lattice relaxation layer) having no strain and having a flat surface can be formed, and this study was completed. In addition, by forming a quantum well structure on the lattice relaxation layer, a device that emits light in the near-infrared region could be fabricated.
The present invention has the following configuration.

(1) GaAs基板又はGaAs基板に形成したGaAsバッファ層の(111)A面に格子緩和層と被格子緩和層をこの順序で積層したデバイス作製用基板であって、前記格子緩和層が膜厚0.7nm以上1.8nm以下のInAs薄膜であり、前記被格子緩和層がInM(III)As薄膜(ここで、M(III)がIII族の金属原子である。)であることを特徴とするデバイス作製用基板。 (1) A device manufacturing substrate in which a lattice relaxation layer and a lattice relaxation layer are laminated in this order on a (111) A surface of a GaAs substrate or a GaAs buffer layer formed on a GaAs substrate, and the lattice relaxation layer has a film thickness It is an InAs thin film of 0.7 nm or more and 1.8 nm or less, and the lattice relaxation layer is an InM (III) As thin film (where M (III) is a group III metal atom). A device manufacturing substrate.

(2) 前記M(III)がGa又はAlであることを特徴とするデバイス作製用基板。
(3) 前記M(III)がGaであり、前記被格子緩和層がInGa1−xAs膜(0.23≦x≦0.75)であることを特徴とするデバイス作製用基板。
(4) 前記InGa1−xAs膜(0.23≦x≦0.75)の膜厚が50nm以上150nm以下であることを特徴とするデバイス作製用基板。
(2) The device fabrication substrate, wherein M (III) is Ga or Al.
(3) The device manufacturing substrate, wherein the M (III) is Ga, and the lattice relaxation layer is an In x Ga 1-x As film (0.23 ≦ x ≦ 0.75).
(4) The device manufacturing substrate, wherein the In x Ga 1-x As film (0.23 ≦ x ≦ 0.75) has a thickness of 50 nm to 150 nm.

(5) GaAs基板又はGaAs基板に形成したGaAsバッファ層の(111)A面上に、膜厚0.7nm以上1.8nm以下のInAs薄膜からなる格子緩和層を形成する工程と、前記格子緩和層上にInM(III)As薄膜(ここで、M(III)がIII族の金属原子である。)からなる被格子緩和層を形成する工程と、を有することを特徴とするデバイス作製用基板の製造方法。 (5) A step of forming a lattice relaxation layer made of an InAs thin film having a film thickness of 0.7 nm or more and 1.8 nm or less on a (111) A surface of a GaAs substrate or a GaAs buffer layer formed on the GaAs substrate, and the lattice relaxation Forming a lattice relaxation layer made of an InM (III) As thin film (wherein M (III) is a group III metal atom) on the layer. Manufacturing method.

(6) (1)〜(4)のいずれかに記載のデバイス作製用基板のInGaAs薄膜のデバイス作製面上に、薄膜を積層して、量子井戸構造を形成したことを特徴とする近赤外線発光デバイス。 (6) Near infrared emission characterized in that a quantum well structure is formed by laminating a thin film on the device fabrication surface of the InGaAs thin film of the device fabrication substrate according to any one of (1) to (4). device.

本発明のデバイス作製用基板は、GaAs基板又はGaAs基板に形成したGaAsバッファ層の(111)A面に格子緩和層と被格子緩和層をこの順序で積層したデバイス作製用基板であって、前記格子緩和層が膜厚0.7nm以上1.8nm以下のInAs薄膜であり、前記被格子緩和層がInM(III)As薄膜(ここで、M(III)がIII族の金属原子である。)である構成なので、格子緩和層が被格子緩和層の格子定数の歪みを無くし、被格子緩和層の露出面を二乗平均粗さ0.65nm以下で、格子定数の歪みの無い面とすることができ、膜厚を精密に限定して積層膜を形成することができ、所望の量子井戸構造を形成できる。これにより、優れた近赤外線発光デバイスを構築できる。 The device fabrication substrate of the present invention is a device fabrication substrate in which a lattice relaxation layer and a lattice relaxation layer are laminated in this order on the (111) A surface of a GaAs substrate or a GaAs buffer layer formed on the GaAs substrate, The lattice relaxation layer is an InAs thin film having a thickness of 0.7 nm to 1.8 nm, and the lattice relaxation layer is an InM (III) As thin film (where M (III) is a group III metal atom). Therefore, the lattice relaxation layer can eliminate the lattice constant distortion of the lattice relaxation layer, and the exposed surface of the lattice relaxation layer can be a surface having a root mean square roughness of 0.65 nm or less and no lattice constant distortion. In addition, a laminated film can be formed by precisely limiting the film thickness, and a desired quantum well structure can be formed. Thereby, an excellent near-infrared light emitting device can be constructed.

本発明のデバイス作製用基板の製造方法は、GaAs基板又はGaAs基板に形成したGaAsバッファ層の(111)A面上に、膜厚0.7nm以上1.8nm以下のInAs薄膜からなる格子緩和層を形成する工程と、前記格子緩和層上にInM(III)As薄膜(ここで、M(III)がIII族の金属原子である。)からなる被格子緩和層を形成する工程と、を有する構成なので、二乗平均粗さ0.65nm以下で、格子定数の歪みの無い面を有する被格子緩和層を、非常に薄い格子緩和層を導入するだけで簡単に形成でき、二乗平均粗さ0.65nm以下で、格子定数の歪みの無い面を有するデバイス作製用基板を簡便に製造できる。 The method for manufacturing a device manufacturing substrate according to the present invention includes a lattice relaxation layer comprising an InAs thin film having a thickness of 0.7 nm to 1.8 nm on a (111) A surface of a GaAs substrate or a GaAs buffer layer formed on the GaAs substrate. And a step of forming a lattice relaxation layer made of an InM (III) As thin film (wherein M (III) is a Group III metal atom) on the lattice relaxation layer. Because of this configuration, a lattice relaxation layer having a surface having a square average roughness of 0.65 nm or less and having no lattice constant distortion can be easily formed by simply introducing a very thin lattice relaxation layer. A device fabrication substrate having a surface with a lattice constant of 65 nm or less and no distortion can be easily produced.

本発明の近赤外線発光デバイスは、先に記載のデバイス作製用基板のInGaAs薄膜のデバイス作製面上に、薄膜を積層して、量子井戸構造を形成した構成なので、発光波長を近赤外に限定した発光デバイスとすることができる。   The near-infrared light-emitting device of the present invention has a structure in which a quantum well structure is formed by laminating a thin film on the device fabrication surface of the InGaAs thin film of the device fabrication substrate described above, so the emission wavelength is limited to the near infrared Light emitting device.

本発明の実施形態であるデバイス作製用基板の一例を示す側面図である。It is a side view showing an example of a device fabrication substrate which is an embodiment of the present invention. 本発明の実施形態であるデバイス作製用基板の製造方法の一例を示すフローチャート図である。It is a flowchart figure which shows an example of the manufacturing method of the board | substrate for device preparation which is embodiment of this invention. 本発明の実施形態である近赤外線発光デバイスの一例を示す側面図である。It is a side view which shows an example of the near-infrared light-emitting device which is embodiment of this invention. GaAs(111)A基板をインジウムハンダでモリブデン製基板ホルダに貼り付けてから加熱する様子を説明する図である。It is a figure explaining a mode that it heats, after affixing a GaAs (111) A board | substrate to a molybdenum substrate holder with an indium solder. 実施例1のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。2 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Example 1. FIG. 実施例2のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。4 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Example 2. FIG. 実施例2のデバイス作製用基板のデバイス作製用基板のX線回折(115)入射逆格子マッピングの結果である。It is a result of the X-ray diffraction (115) incident reciprocal lattice mapping of the device manufacturing substrate of the device manufacturing substrate of Example 2. 実施例2のデバイス作製用基板を用いて作製した近赤外線発光デバイスの擬略側面図である。It is a quasi-schematic side view of the near-infrared light-emitting device produced using the device production board | substrate of Example 2. FIG. 実施例2のデバイス作製用基板を用いて作製した近赤外線発光デバイスの発光スペクトルである。2 is an emission spectrum of a near infrared light emitting device manufactured using the device manufacturing substrate of Example 2. 実施例3のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。4 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Example 3. FIG. 比較例1のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。4 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Comparative Example 1. FIG. 比較例1のデバイス作製用基板のデバイス作製用基板のX線回折(115)入射逆格子マッピングの結果である。It is a result of the X-ray diffraction (115) incident reciprocal lattice mapping of the device manufacturing substrate of the device manufacturing substrate of Comparative Example 1. 比較例2のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。4 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region on the In 0.23 Ga 0.77 As surface of a device fabrication substrate of Comparative Example 2. FIG. 比較例1、2の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the comparative examples 1 and 2. FIG. 比較例3のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。4 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of a device fabrication substrate of Comparative Example 3. 比較例4のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。6 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of a device fabrication substrate of Comparative Example 4. 比較例3、4の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the comparative examples 3 and 4. FIG. 比較例5のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。6 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of a device fabrication substrate of Comparative Example 5. FIG. 比較例5のデバイス作製用基板のデバイス作製用基板のX線回折(115)入射逆格子マッピングの結果である。It is a result of the X-ray diffraction (115) incident reciprocal lattice mapping of the device manufacturing substrate of the device manufacturing substrate of Comparative Example 5. 実施例4のデバイス作製用基板のIn0.51Ga0.49As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。4 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.51 Ga 0.49 As surface of the device fabrication substrate of Example 4. 実施例4のデバイス作製用基板のデバイス作製用基板のX線回折(115)入射逆格子マッピングの結果である。It is a result of the X-ray diffraction (115) incident reciprocal lattice mapping of the device manufacturing substrate of the device manufacturing substrate of Example 4. 実施例5のデバイス作製用基板のIn0.75Ga0.25As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。6 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.75 Ga 0.25 As surface of the device fabrication substrate of Example 5. FIG. 実施例5のデバイス作製用基板のデバイス作製用基板のX線回折(115)入射逆格子マッピングの結果である。It is a result of X-ray diffraction (115) incidence reciprocal lattice mapping of the device manufacturing substrate of the device manufacturing substrate of Example 5. 実施例6のデバイス作製用基板のIn0.52Al0.48As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。7 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.52 Al 0.48 As surface of the device fabrication substrate of Example 6. 実施例6のデバイス作製用基板のデバイス作製用基板のX線回折(115)入射逆格子マッピングの結果である。It is a result of the X-ray diffraction (115) incident reciprocal lattice mapping of the device manufacturing substrate of the device manufacturing substrate of Example 6. 実施例6のデバイス作製用基板を用いて作製した別の近赤外線発光デバイスの擬略側面図である。It is a quasi-schematic side view of another near-infrared light-emitting device produced using the device production substrate of Example 6. 実施例6のデバイス作製用基板を用いて作製した別の近赤外線発光デバイスの発光スペクトルである。7 is an emission spectrum of another near-infrared light emitting device manufactured using the device manufacturing substrate of Example 6. 実施例7のデバイス作製用基板の(a)はIn0.23Ga0.77Asを50nm、(b)はIn0.23Ga0.77Asを100nm、(c)はIn0.23Ga0.77Asを150nm成長した表面のRHEEDパターンを示す図である。(A) of the device fabrication substrate of Example 7 is 50 nm of In 0.23 Ga 0.77 As, (b) is 100 nm of In 0.23 Ga 0.77 As, and (c) is In 0.23 Ga. It is a figure which shows the RHEED pattern of the surface which grew 0.77As 150nm. 実施例8のデバイス作製用基板の(a)はIn0.52Al0.48Asを50nm、(b)はIn0.52Al0.48Asを100nm、(c)はIn0.52Al0.48Asを150nm成長した表面のRHEEDパターンを示す図である。(A) of the device manufacturing substrate of Example 8 is 50 nm of In 0.52 Al 0.48 As, (b) is 100 nm of In 0.52 Al 0.48 As, and (c) is In 0.52 Al. It is a figure which shows the RHEED pattern of the surface which grew 0.48 As 150 nm.

(本発明の実施形態)
<デバイス作製用基板>
まず、本発明の実施形態であるデバイス作製用基板について説明する。
図1は、本発明の実施形態であるデバイス作製用基板の一例を示す側面図である。
図1に示すように、本発明の実施形態であるデバイス作製用基板31は、GaAs基板11と、GaAsバッファ層12と、InAs薄膜13と、InM(III)As膜14とをこの順序で積層してなる。
(Embodiment of the present invention)
<Device fabrication substrate>
First, a device manufacturing substrate according to an embodiment of the present invention will be described.
FIG. 1 is a side view showing an example of a device fabrication substrate according to an embodiment of the present invention.
As shown in FIG. 1, a device manufacturing substrate 31 according to an embodiment of the present invention includes a GaAs substrate 11, a GaAs buffer layer 12, an InAs thin film 13, and an InM (III) As film 14 stacked in this order. Do it.

InAs薄膜13の膜厚は0.7nm以上1.8nm以下とされている。InAs薄膜13を導入することにより、InAs薄膜13がその上に積層されるInM(III)As膜14を格子緩和して、格子歪みがなく、平坦な一面を有するInM(III)As膜14を形成できる。
0.7nm未満では、InAsを格子緩和できず、その上に形成するInM(III)As膜14も格子緩和できない。そのため、格子歪みがなく、平坦な一面を有するInM(III)As膜14を形成できない。例えば、InGa1−xAs は、一定の値まで格子緩和せず(GaAsの格子定数に合わせたまま)に成長し、その後、格子不整合転位が形成されることにより、表面が著しく荒れる。
The thickness of the InAs thin film 13 is 0.7 nm or more and 1.8 nm or less. By introducing the InAs thin film 13, the InM (III) As film 14 on which the InAs thin film 13 is laminated is lattice-relaxed, and the InM (III) As film 14 having no flat lattice distortion and having a flat surface is obtained. Can be formed.
If the thickness is less than 0.7 nm, InAs cannot be lattice-relaxed, and the InM (III) As film 14 formed thereon cannot be lattice-relaxed. Therefore, the InM (III) As film 14 having no lattice distortion and having a flat surface cannot be formed. For example, In x Ga 1-x As grows without lattice relaxation to a certain value (while maintaining the lattice constant of GaAs), and then a lattice mismatch dislocation is formed, so that the surface becomes extremely rough. .

また、1.8nm超でも、InAs薄膜がInAs本来の特性を持ち始め、InAsとInGa1−xAsの間の格子不整合により、InGa1−xAs層の平坦性を悪化させる。格子歪みがなく、平坦な一面を有するInM(III)As膜14を形成できない。 In addition, even if it exceeds 1.8 nm, the InAs thin film starts to have InAs inherent characteristics, and the flatness of the In x Ga 1-x As layer is deteriorated due to lattice mismatch between InAs and In x Ga 1-x As. . There is no lattice distortion and the InM (III) As film 14 having a flat surface cannot be formed.

InM(III)As薄膜14は、In(III)1−xAs薄膜(0.23≦x≦0.75)であることが好ましい。これにより、InAs薄膜の平坦化が実現できる。0.23未満では格子定数がGaAsと近すぎるために、表面平坦性を悪化させる可能性があり、0.75超では、格子定数及びバンドギャップがInAsバルクと近くなりすぎるため、近赤外域デバイ作製用の基板として適さない。Gaの代わりにAlを用いた場合においても、同様の効果が期待できる。M(III)はIII族の金属原子であり、例えば、Ga、Alである。 The InM (III) As thin film 14 is preferably an In x M (III) 1-x As thin film (0.23 ≦ x ≦ 0.75). Thereby, planarization of the InAs thin film can be realized. If it is less than 0.23, the lattice constant is too close to GaAs, which may deteriorate the surface flatness. If it exceeds 0.75, the lattice constant and the band gap are too close to the InAs bulk. It is not suitable as a substrate for manufacturing. A similar effect can be expected when Al is used instead of Ga. M (III) is a Group III metal atom, for example, Ga or Al.

GaAs基板の(111)A面上にInAs薄膜13を形成してもよいが、GaAs基板の(111)A面上に成膜されたGaAsバッファ層の(111)A面上にInAs薄膜13を形成することが好ましい。GaAs基板上にInAs薄膜13を成膜する場合に比べて、より清浄化された面にInAs薄膜13を成膜でき、不純物欠陥等を少なくできるためである。   Although the InAs thin film 13 may be formed on the (111) A surface of the GaAs substrate, the InAs thin film 13 is formed on the (111) A surface of the GaAs buffer layer formed on the (111) A surface of the GaAs substrate. It is preferable to form. This is because the InAs thin film 13 can be formed on a cleaner surface and the impurity defects and the like can be reduced as compared with the case where the InAs thin film 13 is formed on the GaAs substrate.

<デバイス作製用基板の製造方法>
次に、本発明の実施形態であるデバイス作製用基板の製造方法について説明する。
図2は、本発明の実施形態であるデバイス作製用基板の製造方法の一例を示すフローチャート図である。
図2に示すように、本発明の実施形態であるデバイス作製用基板の製造方法は、InAs薄膜形成工程S1と、InGaAs薄膜成膜工程S2と、を有する。
<Method for manufacturing substrate for device fabrication>
Next, a method for manufacturing a device manufacturing substrate according to an embodiment of the present invention will be described.
FIG. 2 is a flowchart showing an example of a method for manufacturing a device manufacturing substrate according to an embodiment of the present invention.
As shown in FIG. 2, the device manufacturing substrate manufacturing method according to the embodiment of the present invention includes an InAs thin film forming step S1 and an InGaAs thin film forming step S2.

(InAs薄膜形成工程S1)
まず、GaAs基板の(111)A面を清浄化する。
次に、分子線エピタキシー(MBE)法で、GaAs基板の(111)A面上に、InAs薄膜を膜厚0.7nm以上1.8nm以下で形成する。
(InAs thin film forming step S1)
First, the (111) A surface of the GaAs substrate is cleaned.
Next, an InAs thin film having a film thickness of 0.7 nm to 1.8 nm is formed on the (111) A surface of the GaAs substrate by molecular beam epitaxy (MBE).

(InGaAs薄膜成膜工程S2)
分子線エピタキシー(MBE)法で、InAs薄膜上にInGaAs薄膜を成膜する。
(InGaAs thin film forming step S2)
An InGaAs thin film is formed on the InAs thin film by molecular beam epitaxy (MBE).

なお、InAs薄膜形成工程S1の前工程として、GaAs基板の(111)A面を熱処理により酸化膜除去を行う事により清浄化してから、GaAs基板の(111)A面上にGaAsバッファ層を成膜するGaAsバッファ層成膜工程を設けてもよい。   As a pre-process of the InAs thin film forming step S1, the (111) A surface of the GaAs substrate is cleaned by removing the oxide film by heat treatment, and then a GaAs buffer layer is formed on the (111) A surface of the GaAs substrate. A step of forming a GaAs buffer layer may be provided.

<近赤外線発光デバイス>
次に、本発明の実施形態である近赤外線発光デバイスについて説明する。
図3は、本発明の実施形態である近赤外線発光デバイスの一例を示す側面図である。
図3に示すように、本発明の実施形態である近赤外線発光デバイス61は、デバイス作製用基板31のInM(III)As膜14の一面14a上に、薄膜41〜50を積層して、量子井戸構造51を形成してなる。
<Near infrared light emitting device>
Next, a near infrared light emitting device according to an embodiment of the present invention will be described.
FIG. 3 is a side view showing an example of a near infrared light emitting device according to an embodiment of the present invention.
As shown in FIG. 3, the near-infrared light emitting device 61 according to the embodiment of the present invention includes a thin film 41 to 50 stacked on one surface 14 a of the InM (III) As film 14 of the device manufacturing substrate 31. A well structure 51 is formed.

量子井戸構造51としては、例えば、InGa1−xAs量子井戸/InAl1−xAs構造や、InAs量子ドット/InAlGaAs構造を挙げることができる。
所定の波長の発光が可能な材料を選択し、量子井戸での閉じ込め効果を勘案することにより、所望の近赤外域領域で発光させることができる。
Examples of the quantum well structure 51 include an In x Ga 1-x As quantum well / In x Al 1-x As structure and an InAs quantum dot / InAlGaAs structure.
By selecting a material that can emit light of a predetermined wavelength and considering the confinement effect in the quantum well, light can be emitted in a desired near-infrared region.

本発明の実施形態であるデバイス作製用基板は、GaAs基板又はGaAs基板に形成したGaAsバッファ層の(111)A面に格子緩和層と被格子緩和層をこの順序で積層したデバイス作製用基板であって、前記格子緩和層が膜厚0.7nm以上1.8nm以下のInAs薄膜であり、前記被格子緩和層がInM(III)As薄膜(ここで、M(III)がIII族の金属原子である。)である構成なので、格子緩和層が被格子緩和層の格子定数の歪みを無くし、被格子緩和層の露出面を二乗平均粗さ0.65nm以下で、格子定数の歪みの無い面とすることができ、膜厚を精密に限定して積層膜を形成することができ、所望の量子井戸構造を形成できる。これにより、優れた近赤外線発光デバイスを構築できる。 A device fabrication substrate according to an embodiment of the present invention is a device fabrication substrate in which a lattice relaxation layer and a lattice relaxation layer are laminated in this order on the (111) A surface of a GaAs substrate or a GaAs buffer layer formed on the GaAs substrate. The lattice relaxation layer is an InAs thin film having a thickness of 0.7 nm to 1.8 nm, and the lattice relaxation layer is an InM (III) As thin film (where M (III) is a group III metal atom. Therefore, the lattice relaxation layer eliminates the lattice constant distortion of the lattice relaxation layer, the exposed surface of the lattice relaxation layer has a root mean square roughness of 0.65 nm or less, and has no lattice constant distortion. The film thickness can be precisely limited to form a laminated film, and a desired quantum well structure can be formed. Thereby, an excellent near-infrared light emitting device can be constructed.

本発明の実施形態であるデバイス作製用基板は、前記M(III)がGa又はAlである構成なので、GaとAlの比率を変える事により禁制帯幅を制御できる。 Since the device manufacturing substrate according to the embodiment of the present invention has a configuration in which the M (III) is Ga or Al, the forbidden bandwidth can be controlled by changing the ratio of Ga and Al.

本発明の実施形態であるデバイス作製用基板は、前記M(III)がGaであり、前記被格子緩和層がInGa1−xAs膜(0.23≦x≦0.75)である構成なので、平坦な面であって、格子定数の歪みの無い面を形成することができる。 In the device fabrication substrate according to an embodiment of the present invention, the M (III) is Ga, and the lattice relaxation layer is an In x Ga 1-x As film (0.23 ≦ x ≦ 0.75). Since the structure is used, a flat surface having no lattice constant distortion can be formed.

本発明の実施形態であるデバイス作製用基板は、前記InGa1−xAs膜(0.23≦x≦0.75)の膜厚が50nm以上150nm以下である構成なので、平坦な面であって、格子定数の歪みの無い面を形成することができる。 The device fabrication substrate according to an embodiment of the present invention has a flat surface because the In x Ga 1-x As film (0.23 ≦ x ≦ 0.75) has a thickness of 50 nm to 150 nm. Thus, it is possible to form a surface free from lattice constant distortion.

本発明のデバイス作製用基板の製造方法は、GaAs基板又はGaAs基板上に形成したGaAsバッファ層の(111)A面上に、膜厚0.7nm以上1.8nm以下のInAs薄膜からなる格子緩和層を形成する工程S1と、前記格子緩和層上にInM(III)As薄膜(ここで、M(III)がIII族の金属原子である。)からなる被格子緩和層を形成する工程S2と、を有する構成なので、二乗平均粗さ0.65nm以下で、格子定数の歪みの無い面を有する被格子緩和層を、非常に薄い格子緩和層を導入するだけで簡単に形成でき、二乗平均粗さ0.65nm以下で、格子定数の歪みの無い面を有するデバイス作製用基板を簡便に製造できる。 The method for manufacturing a device manufacturing substrate according to the present invention includes a lattice relaxation comprising an InAs thin film having a thickness of 0.7 nm or more and 1.8 nm or less on a (111) A surface of a GaAs substrate or a GaAs buffer layer formed on the GaAs substrate. Step S1 for forming a layer, Step S2 for forming a lattice relaxation layer made of an InM (III) As thin film (wherein M (III) is a group III metal atom) on the lattice relaxation layer, and Therefore, it is possible to easily form a lattice relaxation layer having a square mean roughness of 0.65 nm or less and having a lattice constant distortion-free surface by simply introducing a very thin lattice relaxation layer. A device fabrication substrate having a thickness of 0.65 nm or less and having no lattice constant distortion can be easily produced.

本発明の近赤外線発光デバイスは、先に記載のデバイス作製用基板のInGaAs薄膜のデバイス作製面上に、薄膜を積層して、量子井戸構造を形成した構成なので、発光波長を近赤外に限定した発光デバイスとすることができる。   The near-infrared light-emitting device of the present invention has a structure in which a quantum well structure is formed by laminating a thin film on the device fabrication surface of the InGaAs thin film of the device fabrication substrate described above, so the emission wavelength is limited to the near infrared Light emitting device.

本発明の実施形態であるデバイス作製用基板、その製造方法及び近赤外線発光デバイスは、上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内で、種々変更して実施することができる。本実施形態の具体例を以下の実施例で示す。しかし、本発明はこれらの実施例に限定されるものではない。   The device manufacturing substrate, the manufacturing method thereof, and the near-infrared light emitting device which are the embodiments of the present invention are not limited to the above-described embodiments, and various modifications are made within the scope of the technical idea of the present invention. be able to. Specific examples of this embodiment are shown in the following examples. However, the present invention is not limited to these examples.

(実施例1)
図4は、GaAs(111)A基板をインジウムハンダでモリブデン製基板ホルダに貼り付けてから加熱する様子を説明する図である。
まず、図4に示すようにGaAsの(111)A面基板(市販)をインジウムハンダにより、モリブデン製基板ホルダに貼り付けた。
次に、結晶成長装置の超高真空チャンバー内にこれを配置した。
次に、砒素雰囲気下、裏面のヒーターによりGaAs基板を約600℃に加熱して、自然酸化膜を蒸発させた。
次に、砒素雰囲気下、裏面のヒーターによりGaAs基板を500℃に加熱して、ガリウムを供給して、(111)A面上にGaAsをホモエピタキシャル成長させて、GaAsバッファ層を形成した。これによりGaAs(111)Aの清浄表面を得た。
Example 1
FIG. 4 is a diagram for explaining a state in which a GaAs (111) A substrate is heated after being attached to a molybdenum substrate holder with indium solder.
First, as shown in FIG. 4, a GaAs (111) A-plane substrate (commercially available) was attached to a molybdenum substrate holder by indium solder.
Next, this was placed in an ultra-high vacuum chamber of a crystal growth apparatus.
Next, in a arsenic atmosphere, the GaAs substrate was heated to about 600 ° C. by the heater on the back surface, and the natural oxide film was evaporated.
Next, the GaAs substrate was heated to 500 ° C. with a backside heater in an arsenic atmosphere, gallium was supplied, and GaAs was homoepitaxially grown on the (111) A plane to form a GaAs buffer layer. This gave a clean surface of GaAs (111) A.

次に、分子線エピタキシー(MBE)法により、砒素雰囲気下でインジウムを照射して、厚さが0.7nmのInAs層を形成した。
成長条件としては、基板温度400〜500℃、砒素分子線強度1〜10×10−5Torr程度、In成長速度はInAsに換算して0.06nm/sec程度とした。
Next, indium was irradiated in an arsenic atmosphere by molecular beam epitaxy (MBE) method to form an InAs layer having a thickness of 0.7 nm.
As growth conditions, the substrate temperature was 400 to 500 ° C., the arsenic molecular beam intensity was about 1 to 10 × 10 −5 Torr, and the In growth rate was about 0.06 nm / sec in terms of InAs.

次に、分子線エピタキシー(MBE)法により、表面の平坦性に優れ、且つ、低欠陥密度であるIn0.23Ga0.77Asエピタキシャル薄膜を150nmの厚さで形成した。
以上により、実施例1のデバイス作製用基板「In0.23Ga0.77As/InAs(0.64nm)/GaAs(111)A」を作製した。
図5は、実施例1のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。
Next, an In 0.23 Ga 0.77 As epitaxial thin film having excellent surface flatness and low defect density was formed to a thickness of 150 nm by molecular beam epitaxy (MBE).
In this manner, the device fabrication substrate “In 0.23 Ga 0.77 As / InAs (0.64 nm) / GaAs (111) A” of Example 1 was fabricated.
FIG. 5 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Example 1.

(実施例2)
InAs層の膜厚を1nmとした他は実施例1と同様にして、実施例2のデバイス作製用基板「In0.23Ga0.77As(150nm)/InAs(1.0nm)/GaAs(111)A」を作製した。
図6は、実施例2のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。
図7は、実施例2のデバイス作製用基板のX線回折(115)入射逆格子マッピングの結果である。In0.23Ga0.77Asに起因する単峰ピークがx=−5.6441、y=7.0292に観察される。この2つの数値から面内(11-2)と成長方向(111)の格子定数の比(d111/d11−2)が、1.405163と求まる。無歪みのIn0.23Ga0.77Asではこの値は、1.414であることから、99%以上の格子緩和が実現されている。
(Example 2)
The device fabrication substrate “In 0.23 Ga 0.77 As (150 nm) / InAs (1.0 nm) / GaAs (Example 2) was obtained in the same manner as in Example 1 except that the thickness of the InAs layer was changed to 1 nm. 111) A "was produced.
6 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Example 2. FIG.
FIG. 7 shows the result of X-ray diffraction (115) incident reciprocal mapping of the device fabrication substrate of Example 2. A single peak due to In 0.23 Ga 0.77 As is observed at x = −5.6441 and y = 7.0292. From these two numerical values, the ratio (d 111 / d 11-2 ) of the lattice constant between the in-plane (11-2) and the growth direction (111) is obtained as 1.405163. In the unstrained In 0.23 Ga 0.77 As, this value is 1.414, and hence 99% or more of lattice relaxation is realized.

次に、実施例2のデバイス作製用基板のInGaAs薄膜の一面上に、薄膜を積層して、量子井戸構造を形成して、近赤外線発光デバイスを作製した。
図8は、実施例2のデバイス作製用基板を用いて作製した近赤外線発光デバイスの擬略側面図である。
図9は、実施例2のデバイス作製用基板を用いて作製した近赤外線発光デバイスの発光スペクトルである。
Next, a near-infrared light-emitting device was fabricated by stacking a thin film on one surface of an InGaAs thin film of the device fabrication substrate of Example 2 to form a quantum well structure.
FIG. 8 is a quasi-schematic side view of a near-infrared light emitting device manufactured using the device manufacturing substrate of Example 2.
FIG. 9 is an emission spectrum of a near-infrared light emitting device manufactured using the device manufacturing substrate of Example 2.

(実施例3)
InAs層の膜厚を1.8nmとした他は実施例1と同様にして、実施例3のデバイス作製用基板「In0.23Ga0.77As(150nm)/InAs(1.8nm)/GaAs(111)A」を作製した。
図10は、実施例3のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。
(Example 3)
The device fabrication substrate “In 0.23 Ga 0.77 As (150 nm) / InAs (1.8 nm) / of Example 3 was used in the same manner as in Example 1 except that the thickness of the InAs layer was 1.8 nm. GaAs (111) A ”was produced.
FIG. 10 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Example 3.

(比較例1)
InAs層を形成しなかった他は実施例1と同様にして、比較例1のデバイス作製用基板「In0.23Ga0.77As(150nm)/GaAs(111)A」を作製した。
図11は、比較例1のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。
図12は、比較例1のデバイスス作製用基板のX線回折(115)入射逆格子マッピングの結果である。In0.23Ga0.77Asに起因するピークがx=―5.7213、y=7.0046にピークが観察される。また、ピークが面内の格子定数がGaAsと一致する方向にも広がっている。このことから、初めに格子緩和していない層が成長した後に一部格子緩和した層が成長されている事が分かる。
(Comparative Example 1)
A device fabrication substrate “In 0.23 Ga 0.77 As (150 nm) / GaAs (111) A” of Comparative Example 1 was fabricated in the same manner as in Example 1 except that the InAs layer was not formed.
11 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Comparative Example 1. FIG.
12 shows the result of X-ray diffraction (115) incident reciprocal mapping of the device fabrication substrate of Comparative Example 1. FIG. Peaks attributable to In 0.23 Ga 0.77 As are observed at x = −5.7213 and y = 7.70046. The peak also extends in the direction in which the in-plane lattice constant coincides with GaAs. From this, it can be seen that a layer partially relaxed in lattice is grown after a layer not initially lattice-relaxed grows.

(比較例2)
InAs層の膜厚を0.38nmとした他は実施例1と同様にして、比較例2のデバイス作製用基板「In0.23Ga0.77As/InAs(0.4nm)/GaAs(111)A」を作製した。
図13は、比較例2のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。
図14は、比較例1、2の一例を示す断面模式図である。
(Comparative Example 2)
The device fabrication substrate “In 0.23 Ga 0.77 As / InAs (0.4 nm) / GaAs (111) of Comparative Example 2 was obtained in the same manner as in Example 1 except that the thickness of the InAs layer was set to 0.38 nm. ) A ".
FIG. 13 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Comparative Example 2.
FIG. 14 is a schematic cross-sectional view showing an example of Comparative Examples 1 and 2.

(比較例3)
InAs層の膜厚を3.5nmとした他は実施例1と同様にして、比較例3のデバイス作製用基板「In0.23Ga0.77As/InAs(3.5nm)/GaAs(111)A」を作製した。
図15は、比較例3のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。
(Comparative Example 3)
The device fabrication substrate “In 0.23 Ga 0.77 As / InAs (3.5 nm) / GaAs (111) of Comparative Example 3 was used in the same manner as in Example 1 except that the thickness of the InAs layer was 3.5 nm. ) A ".
FIG. 15 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Comparative Example 3.

(比較例4)
InAs層の膜厚を20.8nmとした他は実施例1と同様にして、比較例4のデバイス作製用基板「In0.23Ga0.77As/InAs(20.8nm)/GaAs(111)A」を作製した。
図16は、比較例4のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。
図17は、比較例3、4の一例を示す断面模式図である。
(Comparative Example 4)
The device fabrication substrate “In 0.23 Ga 0.77 As / InAs (20.8 nm) / GaAs (111) of Comparative Example 4 was used in the same manner as in Example 1 except that the thickness of the InAs layer was 20.8 nm. ) A ".
FIG. 16 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Comparative Example 4.
FIG. 17 is a schematic cross-sectional view showing an example of Comparative Examples 3 and 4. As shown in FIG.

(比較例5)
In0.23Ga0.77As層の膜厚を80nmとした他は比較例2と同様にして、比較例5のデバイス作製用基板「In0.23Ga0.77As(80nm)/GaAs(111)A」を作製した。
図18は、比較例5のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。
図19は、比較例5のデバイス作製用基板のX線回折(115)入射逆格子マッピングの結果である。In0.23Ga0.77As(80nm)に起因するピークが観測されるが。面内の格子定数はGaAs基板と一致しており、全く格子緩和していない層が成長している事が分かる。
(Comparative Example 5)
The device fabrication substrate “In 0.23 Ga 0.77 As (80 nm) / GaAs in Comparative Example 5 was used in the same manner as in Comparative Example 2 except that the thickness of the In 0.23 Ga 0.77 As layer was 80 nm. (111) A ”was prepared.
FIG. 18 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Comparative Example 5.
FIG. 19 shows the result of X-ray diffraction (115) incident reciprocal lattice mapping of the device fabrication substrate of Comparative Example 5. A peak due to In 0.23 Ga 0.77 As (80 nm) is observed. The in-plane lattice constant coincides with that of the GaAs substrate, and it can be seen that a layer having no lattice relaxation has grown.

(実施例4)
InGaAs層のIn組成をIn0.51Ga0.49Asとした他は実施例2と同様にして、実施例4のデバイス作製用基板「In0.51Ga0.49As(150nm)/InAs(1.0nm)/GaAs(111)A」を作製した。
図20は、実施例4のデバイス作製用基板のIn0.23Ga0.77As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。
図21は、実施例4のデバイス作製用基板のX線回折(115)入射逆格子マッピングの結果である。In0.51Ga0.49Asに起因する単峰ピークがx=―5.5609、y=6.8796に観察される。この2つの数値から成長方向と面内方向の格子定数の比(d111/d11−2)が、1.414555と求まる。無歪みのIn0.51Ga0.49Asではこの値は、1.414であることから、99%以上の格子緩和が実現されている。
Example 4
Except that the In composition of the InGaAs layer was In 0.51 Ga 0.49 As in the same manner as in Example 2, a device substrate for manufacturing "In 0.51 Ga 0.49 As (150nm) Example 4 / InAs (1.0 nm) / GaAs (111) A ”was produced.
FIG. 20 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.23 Ga 0.77 As surface of the device fabrication substrate of Example 4.
FIG. 21 shows the result of X-ray diffraction (115) incident reciprocal mapping of the device fabrication substrate of Example 4. A single peak due to In 0.51 Ga 0.49 As is observed at x = −5.5609 and y = 6.8796. From these two values, the ratio (d 111 / d 11-2 ) of the lattice constant between the growth direction and the in-plane direction is found to be 1.414555. In unstrained In 0.51 Ga 0.49 As, this value is 1.414, so that 99% or more of lattice relaxation is realized.

(実施例5)
InGaAs層のIn組成をIn0.75Ga0.25Asとした他は実施例2と同様にして、実施例4のデバイス作製用基板「In0.75Ga0.25As(150nm)/InAs(1.0nm)/GaAs(111)A」を作製した。
図22は、実施例5のデバイス作製用基板のIn0.75Ga0.25As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。
図23は、実施例5のデバイス作製用基板のX線回折(115)入射逆格子マッピングの結果である。In0.75Ga0.25Asに起因する単峰ピークがx=―5.488、y=6.7714に観察される。この2つの数値から成長方向と面内方向の格子定数の比(d111/d11−2)が、1.418318と求まる。無歪みのIn0.75Ga0.25Asではこの値は、1.414であることから、99%以上の格子緩和が実現されている。
(Example 5)
Except that the In composition of the InGaAs layer was In 0.75 Ga 0.25 As in the same manner as in Example 2, Example 4 of a device substrate for manufacturing "In 0.75 Ga 0.25 As (150nm) / InAs (1.0 nm) / GaAs (111) A ”was produced.
FIG. 22 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region of the In 0.75 Ga 0.25 As surface of the device fabrication substrate of Example 5.
FIG. 23 shows the result of X-ray diffraction (115) incident reciprocal mapping of the device fabrication substrate of Example 5. A single peak due to In 0.75 Ga 0.25 As is observed at x = −5.488 and y = 6.7714. From these two values, the ratio (d 111 / d 11-2 ) of the lattice constant between the growth direction and the in-plane direction is obtained as 1.418318. In unstrained In 0.75 Ga 0.25 As, this value is 1.414, so that 99% or more of lattice relaxation is realized.

(実施例6)
被格子緩和層をIn0.52Al0.48Asとした他は、実施例2と同様にして、実施例6のデバイス作製用基板「In0.52Al0.48As(150nm)/InAs(1.0nm)/GaAs(111)A」を作製した。
図24は、実施例6のデバイス作製用基板のIn0.52Al0.48As表面の5μm×5μmの領域の原子間力顕微鏡(AFM)像である。
図25は、実施例6のデバイス作製用基板のX線回折(115)入射逆格子マッピングの結果である。In0.52Al0.48Asに起因する単峰ピークがx=―5.5417、y=6.8994に観察される。この2つの数値から成長方向と面内方向の格子定数の比(d111/d11−2)が、1.405626と求まる。無歪みのIn0.52Al0.48Asではこの値は、1.414であることから、99%以上の格子緩和が実現されている。
(Example 6)
The device fabrication substrate “In 0.52 Al 0.48 As (150 nm) / InAs of Example 6 was used in the same manner as in Example 2 except that the lattice relaxation layer was In 0.52 Al 0.48 As. (1.0 nm) / GaAs (111) A ”was produced.
FIG. 24 is an atomic force microscope (AFM) image of a 5 μm × 5 μm region on the In 0.52 Al 0.48 As surface of the device fabrication substrate of Example 6.
FIG. 25 shows the result of X-ray diffraction (115) incident reciprocal mapping of the device fabrication substrate of Example 6. A single peak due to In 0.52 Al 0.48 As is observed at x = −5.5417, y = 6.8994. From these two values, the ratio (d 111 / d 11-2 ) of the lattice constant between the growth direction and the in-plane direction is obtained as 1.405626. In unstrained In 0.52 Al 0.48 As, this value is 1.414, so that 99% or more of lattice relaxation is realized.

次に、実施例6のデバイス作製用基板のInAlAs薄膜の一面上に、薄膜を積層して、量子井戸構造を形成して、近赤外線発光デバイスを作製した。
図26は、実施例6のデバイス作製用基板を用いて作製した近赤外線発光デバイスの擬略側面図である。
図27は、実施例6のデバイス作製用基板を用いて作製した近赤外線発光デバイスの発光スペクトルである。
Next, a thin film was laminated on one surface of the InAlAs thin film of the device fabrication substrate of Example 6 to form a quantum well structure, and a near infrared light emitting device was fabricated.
FIG. 26 is a quasi-schematic side view of a near-infrared light-emitting device manufactured using the device manufacturing substrate of Example 6.
FIG. 27 is an emission spectrum of a near-infrared light emitting device manufactured using the device manufacturing substrate of Example 6.

(実施例7)
被格子緩和層であるIn0.23Ga0.77Asの厚さ以外は実施例2と同様にして、実施例7のデバイス作製用基板「In0.23Ga0.77As(50nmまたは100nmまたは150nm)/InAs(1.0nm)/GaAs(111)A」を作製した。図28は、実施例7のデバイス作製用基板の表面のRHEEDパターンを示す図である。50nm、100nm、150nmいずれの場合の於いても表面が平坦であることを表すストリークパターンが観察されている。また、図7に示すようにIn0.23Ga0.77As(150nm)/InAs(1.0nm)/GaAs(111)AにおいてすべてのIn0.23Ga0.77As(150nm)は格子緩和していることから、In0.23Ga0.77As(50nmまたは100nm)/InAs(1.0nm)/GaAs(111)Aも格子緩和している事がわかる。
(Example 7)
The device fabrication substrate “In 0.23 Ga 0.77 As (50 nm or 100 nm) of Example 7 was obtained in the same manner as in Example 2 except for the thickness of In 0.23 Ga 0.77 As, which is a lattice relaxation layer. Or 150 nm) / InAs (1.0 nm) / GaAs (111) A ”. FIG. 28 is a diagram showing an RHEED pattern of the surface of the device fabrication substrate of Example 7. In any case of 50 nm, 100 nm, and 150 nm, a streak pattern indicating that the surface is flat is observed. Further, as shown in FIG. 7, in In 0.23 Ga 0.77 As (150 nm) / InAs (1.0 nm) / GaAs (111) A, all In 0.23 Ga 0.77 As (150 nm) are lattices. From the relaxation, it can be seen that In 0.23 Ga 0.77 As (50 nm or 100 nm) / InAs (1.0 nm) / GaAs (111) A also has a lattice relaxation.

(実施例8)
被格子緩和層であるIn0.52Al0.48Asの厚さ以外は、実施例6と同様にして、実施例8のデバイス作製用基板「In0.52Al0.48As(50nmまたは100nmまたは100nm)/InAs(1.0nm)/GaAs(111)A」を作製した。図29は、実施例8のデバイス作製用基板の表面のRHEEDパターンを示す図である。50nm、100nm、150nmいずれの場合の於いても、表面が平坦であることを表すストリークパターンが観察されている。また、図25に示すようにIn0.52Al0.48As(150nm)/InAs(1.0nm)/GaAs(111)AにおいてすべてのIn0.52Al0.48As(150nm)は格子緩和していることから、In0.52Al0.48As(50nmまたは100nm)/InAs(1.0nm)/GaAs(111)Aも格子緩和している事がわかる。
表1に、各実験条件及び結果をまとめた。
(Example 8)
Except for the thickness of In 0.52 Al 0.48 As, which is a lattice relaxation layer, the device fabrication substrate “In 0.52 Al 0.48 As (50 nm or 50 nm or 50 nm or 100 nm or 100 nm) / InAs (1.0 nm) / GaAs (111) A ”. FIG. 29 is a diagram showing an RHEED pattern of the surface of the device fabrication substrate of Example 8. In any case of 50 nm, 100 nm, and 150 nm, a streak pattern indicating that the surface is flat is observed. Further, as shown in FIG. 25, in In 0.52 Al 0.48 As (150 nm) / InAs (1.0 nm) / GaAs (111) A, all In 0.52 Al 0.48 As (150 nm) are lattices. From the relaxation, it can be seen that In 0.52 Al 0.48 As (50 nm or 100 nm) / InAs (1.0 nm) / GaAs (111) A also has a lattice relaxation.
Table 1 summarizes the experimental conditions and results.


本発明は、デバイス作製用基板、その製造方法及び光ファイバー通信に適合した波長帯の発光を有する近赤外線発光デバイスに関するものであり、情報通信産業、半導体産業等において利用可能性がある。   The present invention relates to a device manufacturing substrate, a manufacturing method thereof, and a near-infrared light emitting device having light emission in a wavelength band suitable for optical fiber communication, and can be used in the information communication industry, the semiconductor industry, and the like.

11…GaAs基板、11a…(111)A面、12…GaAsバッファ層、12a…(111)A清浄化面、13…格子緩和層(InAs薄膜)、14…被格子緩和層(InM(III)As膜)、14a…デバイス作製面、31…デバイス作製用基板、41、42、43、44、45、46、47、48、49、50…薄膜、51…量子井戸構造、61…近赤外線発光デバイス。
DESCRIPTION OF SYMBOLS 11 ... GaAs substrate, 11a ... (111) A surface, 12 ... GaAs buffer layer, 12a ... (111) A cleaning surface, 13 ... Lattice relaxation layer (InAs thin film), 14 ... Lattice relaxation layer (InM (III) As film), 14a ... device fabrication surface, 31 ... device fabrication substrate, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 ... thin film, 51 ... quantum well structure, 61 ... near infrared emission device.

Claims (6)

GaAs基板又はGaAs基板に形成したGaAsバッファ層の(111)A面に格子緩和層と被格子緩和層をこの順序で積層したデバイス作製用基板であって、
前記格子緩和層が膜厚0.7nm以上1.8nm以下のInAs薄膜であり、
前記被格子緩和層がInM(III)As薄膜(ここで、M(III)がIII族の金属原子である。)であることを特徴とするデバイス作製用基板。
A device fabrication substrate in which a lattice relaxation layer and a lattice relaxation layer are laminated in this order on the (111) A surface of a GaAs substrate or a GaAs buffer layer formed on a GaAs substrate,
The lattice relaxation layer is an InAs thin film having a thickness of 0.7 nm to 1.8 nm,
The device fabrication substrate, wherein the lattice relaxation layer is an InM (III) As thin film (wherein M (III) is a group III metal atom).
前記M(III)がGa又はAlであることを特徴とするデバイス作製用基板。 The device fabrication substrate, wherein M (III) is Ga or Al. 前記M(III)がGaであり、前記被格子緩和層がInGa1−xAs膜(0.23≦x≦0.75)であることを特徴とするデバイス作製用基板。 The device fabrication substrate, wherein M (III) is Ga, and the lattice relaxation layer is an In x Ga 1-x As film (0.23 ≦ x ≦ 0.75). 前記InGa1−xAs膜(0.23≦x≦0.75)の膜厚が50nm以上150nm以下であることを特徴とするデバイス作製用基板。 A device fabrication substrate, wherein the In x Ga 1-x As film (0.23 ≦ x ≦ 0.75) has a thickness of 50 nm to 150 nm. GaAs基板又はGaAs基板に形成したGaAsバッファ層の(111)A面上に、膜厚0.7nm以上1.8nm以下のInAs薄膜からなる格子緩和層を形成する工程と、
前記格子緩和層上にInM(III)As薄膜(ここで、M(III)がIII族の金属原子である。)からなる被格子緩和層を形成する工程と、を有することを特徴とするデバイス作製用基板の製造方法。
Forming a lattice relaxation layer made of an InAs thin film having a thickness of 0.7 nm or more and 1.8 nm or less on a (111) A surface of a GaAs substrate or a GaAs buffer layer formed on the GaAs substrate;
Forming a lattice relaxation layer made of an InM (III) As thin film (wherein M (III) is a group III metal atom) on the lattice relaxation layer. A method for manufacturing a manufacturing substrate.
請求項1〜4のいずれか1項に記載のデバイス作製用基板のInGaAs薄膜のデバイス作製面上に、薄膜を積層して、量子井戸構造を形成したことを特徴とする近赤外線発光デバイス。

A near-infrared light-emitting device, wherein a quantum well structure is formed by laminating a thin film on the device fabrication surface of an InGaAs thin film of the device fabrication substrate according to claim 1.

JP2014037437A 2014-02-27 2014-02-27 Device manufacturing substrate, manufacturing method thereof, and near infrared light emitting device Active JP6241939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014037437A JP6241939B2 (en) 2014-02-27 2014-02-27 Device manufacturing substrate, manufacturing method thereof, and near infrared light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014037437A JP6241939B2 (en) 2014-02-27 2014-02-27 Device manufacturing substrate, manufacturing method thereof, and near infrared light emitting device

Publications (2)

Publication Number Publication Date
JP2015162605A true JP2015162605A (en) 2015-09-07
JP6241939B2 JP6241939B2 (en) 2017-12-06

Family

ID=54185496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037437A Active JP6241939B2 (en) 2014-02-27 2014-02-27 Device manufacturing substrate, manufacturing method thereof, and near infrared light emitting device

Country Status (1)

Country Link
JP (1) JP6241939B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274600A (en) * 1988-08-03 1990-03-14 Internatl Business Mach Corp <Ibm> Method for forming single crystal hetero- structure and strain free semiconductor layer
JPH0445519A (en) * 1990-06-13 1992-02-14 Nec Corp Growing method for semiconductor crystal
JPH07326582A (en) * 1994-05-30 1995-12-12 Fujitsu Ltd Manufacture of compound semiconductor crystal device
JPH0845844A (en) * 1994-07-29 1996-02-16 Nippon Telegr & Teleph Corp <Ntt> Production of compound semiconductor film
JPH10107045A (en) * 1996-09-26 1998-04-24 Nec Corp Ii-vi compound semiconductor and its manufacturing method
US5877519A (en) * 1997-03-26 1999-03-02 Picolight Incoporated Extended wavelength opto-electronic devices
JP2006278850A (en) * 2005-03-30 2006-10-12 Advanced Telecommunication Research Institute International Semiconductor light-emitting element, manufacturing method thereof, and semiconductor laser gyro using the same
JP2008108856A (en) * 2006-10-25 2008-05-08 Sharp Corp Compound semiconductor element, and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274600A (en) * 1988-08-03 1990-03-14 Internatl Business Mach Corp <Ibm> Method for forming single crystal hetero- structure and strain free semiconductor layer
JPH0445519A (en) * 1990-06-13 1992-02-14 Nec Corp Growing method for semiconductor crystal
JPH07326582A (en) * 1994-05-30 1995-12-12 Fujitsu Ltd Manufacture of compound semiconductor crystal device
JPH0845844A (en) * 1994-07-29 1996-02-16 Nippon Telegr & Teleph Corp <Ntt> Production of compound semiconductor film
JPH10107045A (en) * 1996-09-26 1998-04-24 Nec Corp Ii-vi compound semiconductor and its manufacturing method
US6072202A (en) * 1996-09-26 2000-06-06 Nec Corporation II-VI compound semiconductor device with III-V buffer layer
US5877519A (en) * 1997-03-26 1999-03-02 Picolight Incoporated Extended wavelength opto-electronic devices
JP2006278850A (en) * 2005-03-30 2006-10-12 Advanced Telecommunication Research Institute International Semiconductor light-emitting element, manufacturing method thereof, and semiconductor laser gyro using the same
JP2008108856A (en) * 2006-10-25 2008-05-08 Sharp Corp Compound semiconductor element, and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. MUNEKATA: "Lattice Relaxation Of InAs Heteroepitaxy on GaAs", JOURNAL OF CRYSTAL GROWTH, vol. 81, JPN6017037015, 1987, pages 237-242 *

Also Published As

Publication number Publication date
JP6241939B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP5274785B2 (en) Method for forming AlGaN crystal layer
JP2005303246A (en) METHOD OF GROWING HIGH QUALITY ZnSe EPITAXIAL LAYER ONTO NEW Si SUBSTRATE
JP2013070072A (en) Method of growing zinc oxide film on epitaxial lateral overgrowth gallium nitride template
JP2010225870A (en) Semiconductor element
JP6788301B2 (en) AlInN film and two-dimensional photonic crystal resonator, their manufacturing method, and semiconductor light emitting device
JP5931737B2 (en) Optical element manufacturing method
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
WO2009119159A1 (en) Substrate for optical device and method for manufacturing the substrate
JP4041877B2 (en) Semiconductor device
JP6241939B2 (en) Device manufacturing substrate, manufacturing method thereof, and near infrared light emitting device
TWI589017B (en) Composite substrate and functional components
US20190103273A1 (en) Method for Producing Group III Nitride Laminate
JP6153224B2 (en) GaSb / InAs / Si (111) structure excellent in surface flatness and crystal structure perfectness, method for forming the same, and MOS device and infrared detection device using the structure
JP2011006304A (en) Nitride semiconductor substrate and production method of the same
JP6088281B2 (en) Compound semiconductor laminate and manufacturing method thereof
JP2020038968A (en) Method for manufacturing semiconductor stacked structure and semiconductor stacked structure
JPWO2019035274A1 (en) Template substrate, electronic device, light emitting device, template substrate manufacturing method and electronic device manufacturing method
JP4733729B2 (en) ZnTe compound semiconductor surface treatment method and semiconductor device manufacturing method
JP2016174071A (en) Method for crystal growth
WO2022185906A1 (en) Method for manufacturing epitaxial wafer for ultraviolet light-emitting element, method for manufacturing substrate for ultraviolet light-emitting element, epitaxial wafer for ultraviolet light-emitting element, and substrate for ultraviolet light-emitting element
JP5504468B2 (en) Semiconductor quantum dot and formation method thereof
JP6635462B2 (en) Method for manufacturing semiconductor quantum dot device
Dang et al. InAs/GaAs Quantum-Dot Lasers Monolithically Grown on on-axis Silicon (001)
JP6050595B2 (en) Compound semiconductor substrate and manufacturing method thereof
JP5551671B2 (en) Optical waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171102

R150 Certificate of patent or registration of utility model

Ref document number: 6241939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250