ところで、アウタチューブ102の内周の上下にガイドブッシュ104,105を嵌着する固定嵌合型の正立型フロントフォーク101においては、図7に示すように、上下のガイドブッシュ104,105とアウタチューブ102及びインナチューブ103によって画成される環状隙間Sδにエアが不可避的に残留するが、従来の正立型フロントフォーク101においては、環状隙間Sδは密閉され、その内部に残留するエアが環状隙間Sδに閉じ込められるために次のような問題が発生していた。
By the way, in the fixed fitting type upright front fork 101 in which the guide bushes 104 and 105 are fitted on the upper and lower sides of the inner periphery of the outer tube 102, as shown in FIG. Although air inevitably remains in the annular gap Sδ defined by the tube 102 and the inner tube 103, in the conventional upright front fork 101, the annular gap Sδ is sealed, and the air remaining therein is annular. the following problems have occurred in order to be confined in the gap between Esuderuta.
本発明の実施の形態1に係る正立型フロントフォークの半歳断面図である。It is a half-year-old sectional view of an upright front fork according to Embodiment 1 of the present invention.
図1のX部拡大詳細図である。It is the X section enlarged detail drawing of FIG.
(a)〜(c)は本発明の実施の形態1に係る正立型フロントフォーク内のエアの体積変化を示す図である。(A)-(c) is a figure which shows the volume change of the air in the erecting front fork which concerns on Embodiment 1 of this invention.
本発明の実施の形態2に係る正立型フロントフォーク要部の半裁断面図である。It is a half-cut sectional view of an erecting front fork main part according to Embodiment 2 of the present invention.
本発明の実施の形態1に係る車輪懸架装置を構成する一対のフロントフォークの一方(正立型オイル摺動フロントフォーク)の半裁断面図である。FIG. 4 is a half-cut sectional view of one of the pair of front forks (upright oil sliding front fork) constituting the wheel suspension device according to the first embodiment of the present invention.
本発明の実施の形態2に係る車輪懸架装置を構成する一対のフロントフォークの一方(正立型グリス摺動フロントフォーク)の半裁断面図である。It is a half-cut sectional view of one (upright type grease sliding front fork) of a pair of front forks constituting the wheel suspension device according to the second embodiment of the present invention.
従来の正立型フロントフォークの半裁断面図である。It is a half cut sectional view of the conventional upright front fork.
(a)〜(d)は従来の正立型フロントフォーク内のエアの体積変化を示す図である。(A)-(d) is a figure which shows the volume change of the air in the conventional upright front fork.
本発明と従来の正立型フロントフォークにおけるストロークに対するエア反力の特性を対比して示す図である。It is a figure which compares and shows the characteristic of the air reaction force with respect to the stroke in this invention and the conventional upright front fork.
ところで、この圧縮行程においては、エア室Sa内のエアは、インナチューブ3の油室S2への進入体積(インナチューブ3の断面積(外径に囲まれる面積)×ストローク)分だけ圧縮され、その体積は、図3(b)に示すように、図3(a)に示す中立状態時のそれよりも小さくなる。そして、本実施の形態においては、インナチューブ3の側壁に形成された横孔21によって環状隙間Sδと油室S1とが連通しているため、油室S1の油圧が横孔21を介して環状隙間Sδへと直ちに伝播し、環状隙間Sδに残留するエアが時間遅れなく直ちに圧縮される。このため、環状隙間Sδの残留エアの体積が図3(a)に示す中立状態の体積よりも減少する。
Incidentally, in this compression stroke, the air in the air chamber Sa is compressed by entering volume (area surrounded by the cross-sectional area (outer diameter of the inner tube 3) × stroke) amount to the oil chamber S2 of the inner tube 3, As shown in FIG. 3B, the volume is smaller than that in the neutral state shown in FIG. In the present embodiment, since the annular gap Sδ and the oil chamber S1 communicate with each other through the lateral hole 21 formed in the side wall of the inner tube 3, the oil pressure in the oil chamber S 1 is annular through the lateral hole 21. Air immediately propagates to the gap Sδ, and the air remaining in the annular gap Sδ is immediately compressed without a time delay. For this reason, the volume of residual air in the annular gap Sδ is smaller than the volume in the neutral state shown in FIG.
以上のように、圧縮行程においては、油室S1の油圧が横孔21を介して環状隙間Sδに直ちに伝播するため、圧縮ストロークに対するエア反力の応答性が高められ、図8に実線カーブAにて示すように所望のエア反力特性が得られ、従来のように(図8の破線カーブa参照)ストローク中間域での圧縮反力が高くなることによって硬さを感じるという問題が解消される。又、環状隙間Sδに残留するエアは、インナチューブ3の側壁に形成された横孔21から環状隙間Sδ外へと排出されるため、その環状隙間Sδでの量が減少し、このこととも相俟って圧縮ストロークに対するエア反力の応答性が高められる。尚、本実施の形態では、横孔21を、アウタチューに2の内周の下側ガイドブッシュ5よりも上方の位置に形成し、減衰力発生機構の一部を構成するチェックバルブ16,17の位置には横孔21が開口したとしても、減衰圧力はガイドブッシュ5で閉塞されているため、横孔21が減衰力に与える影響が小さく抑えられる。
As described above, in the compression stroke, since the oil pressure in the oil chamber S 1 is immediately propagated to the annular gap Sδ through the transverse bore 21, the responsiveness of the air reaction force is increased to compression stroke, a solid line curve in FIG. 8 A desired air reaction force characteristic is obtained as shown by A, and the problem of feeling hardness due to an increase in the compression reaction force in the middle stroke area as in the past (see broken curve a in FIG. 8) is solved. Is done. Further, since the air remaining in the annular gap Sδ is discharged from the lateral hole 21 formed in the side wall of the inner tube 3 to the outside of the annular gap Sδ, the amount in the annular gap Sδ is reduced. As a result, the responsiveness of the air reaction force to the compression stroke is enhanced. In the present embodiment, the lateral hole 21 is formed in the outer chew at a position above the lower guide bush 5 of the inner circumference of the two, and the check valves 16 and 17 constituting a part of the damping force generating mechanism are provided. Even if the horizontal hole 21 is opened at the position, the damping pressure is blocked by the guide bush 5, so that the influence of the horizontal hole 21 on the damping force can be suppressed to a small value.