JP2015161209A - Compressor and refrigeration cycle device - Google Patents

Compressor and refrigeration cycle device Download PDF

Info

Publication number
JP2015161209A
JP2015161209A JP2014036132A JP2014036132A JP2015161209A JP 2015161209 A JP2015161209 A JP 2015161209A JP 2014036132 A JP2014036132 A JP 2014036132A JP 2014036132 A JP2014036132 A JP 2014036132A JP 2015161209 A JP2015161209 A JP 2015161209A
Authority
JP
Japan
Prior art keywords
crankshaft
compressor
oil supply
sliding bearing
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014036132A
Other languages
Japanese (ja)
Inventor
小山田 具永
Tomonaga Oyamada
具永 小山田
和行 松永
Kazuyuki Matsunaga
和行 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014036132A priority Critical patent/JP2015161209A/en
Publication of JP2015161209A publication Critical patent/JP2015161209A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a compressor capable of suppressing biting of foreign substances and abrasion particles and abrasion in a gap between a crank shaft and a sliding bearing by facilitating discharge of the foreign substances flowed into a slide surface of the sliding bearing and the abrasion particles occurring on the slide surface.SOLUTION: A compressor includes a crank shaft including an eccentric part and rotating, an oil supply hole for opening from the inside of the crank shaft to an outer periphery of the crank shaft and a sliding bearing for sliding with the crank shaft and supporting the rotation of the crank shaft, and the compressor lubricates between the crank shaft and the sliding bearing by a lubrication oil supplied from the oil supply hole. On the outer periphery of the crank shaft, the compressor includes an oil supply groove for communicating with the oil supply hole and extending in a crank shaft direction, a slide region which has no grooves and a discharge groove extending in the crank shaft direction without communicating with the oil supply hole, from a crank shaft rotation direction front side in this order.

Description

本発明は、回転運動する軸の外周に対して潤滑油を介して摺動するすべり軸受部を備える圧縮機及びこの圧縮機を備えた冷凍サイクル機器に関する。   The present invention relates to a compressor including a sliding bearing portion that slides on an outer periphery of a rotating shaft via a lubricating oil, and a refrigeration cycle device including the compressor.

スクロール圧縮機は、渦巻き状の歯型形状を有する2つのスクロール部材を相対的に旋回運動させることにより、冷媒等の気体を圧縮する回転機械である。スクロール圧縮機は、一般に、ネジ締結や溶接等で拘束された固定スクロールに対して、もう一方の可動な旋回スクロールが旋回運動するように構成される。   A scroll compressor is a rotating machine that compresses a gas such as a refrigerant by relatively rotating two scroll members having a spiral tooth shape. In general, the scroll compressor is configured such that the other movable orbiting scroll orbits with respect to the fixed scroll constrained by screw fastening or welding.

旋回スクロールには、クランク軸の偏心部と係合して摺動する旋回すべり軸受が設けられる。そして、クランク軸の偏心部と旋回すべり軸受とが潤滑油を介して摺動しながら、クランク軸の偏心部の振れ回り回転運動が旋回スクロールに伝達され、旋回スクロールを旋回運動させる。電動機のロータに接続されて回転運動するクランク軸は、スクロール圧縮機内に固定された主軸受及び副軸受と呼ばれるすべり軸受に対して潤滑油を介して摺動することにより支持される。   The orbiting scroll is provided with an orbiting slide bearing that engages and slides with the eccentric portion of the crankshaft. Then, while the eccentric portion of the crankshaft and the orbiting slide bearing slide through the lubricating oil, the swinging rotational motion of the eccentric portion of the crankshaft is transmitted to the orbiting scroll, and the orbiting scroll is caused to orbit. A crankshaft that is connected to the rotor of the electric motor and rotates is supported by sliding through a lubricating oil with respect to a plain bearing called a main bearing and a sub-bearing fixed in the scroll compressor.

潤滑油は圧縮機の内部空間に封入されている。潤滑油は、圧縮機構における吸入側と吐出側との圧力差又は給油ポンプ機構により各すべり軸受に供給され、すべり軸受とクランク軸との隙間を通過した後に、再び圧縮機の内部空間に戻って循環する。   Lubricating oil is sealed in the internal space of the compressor. Lubricating oil is supplied to each slide bearing by the pressure difference between the suction side and the discharge side in the compression mechanism or the oil supply pump mechanism, and after passing through the gap between the slide bearing and the crankshaft, returns to the internal space of the compressor again. Circulate.

潤滑油に異物や摩耗粒子が混入した場合、又は、クランク軸とすべり軸受との摺動により摩耗粒子が生じた場合、これらが排出されずにすべり軸受の摺動面に滞留すると、クランク軸とすべり軸受との摺動領域における隙間に噛み込んだり、摩耗を助長する可能性が生じる。従って、このような異物や摩耗粒子による軸受の損傷を抑制する必要がある。   When foreign matter or wear particles are mixed in the lubricant, or when wear particles are generated by sliding between the crankshaft and the slide bearing, if these particles stay on the sliding surface of the slide bearing without being discharged, There is a possibility that it will get caught in the gap in the sliding area with the slide bearing or promote wear. Therefore, it is necessary to suppress the bearing damage due to such foreign matters and wear particles.

潤滑油に混入した異物による軸受の損傷を抑制するための従来技術として、特開2007−239530号公報(特許文献1)に記載のものがある。この文献には、「軸受に支持されて圧縮部へ動力を伝達する主軸と、前記主軸の内部に設けられて給油路となる中空空間と、前記中空空間から前記主軸の外周へ貫通させて設けた給油連通口と、前記給油連通口と連通させて前記主軸の外周面に軸方向に形成した切り欠き状の給油溝と、前記軸受のエリア内に収まるように前記主軸外周面の前記給油連通口から軸方向へずれた位置に形成されて主軸軸線に対し傾斜する螺旋状の給油溝と、を有することを特徴とする圧縮機。」と記載されている。   Japanese Unexamined Patent Application Publication No. 2007-239530 (Patent Document 1) is known as a conventional technique for suppressing damage to the bearing due to foreign matters mixed in the lubricating oil. In this document, “a main shaft supported by a bearing and transmitting power to a compression portion, a hollow space provided inside the main shaft to serve as an oil supply path, and a hollow space penetrating from the hollow space to the outer periphery of the main shaft is provided. An oil supply communication port, a notch-shaped oil supply groove formed in the axial direction on the outer peripheral surface of the main shaft in communication with the oil supply communication port, and the oil supply communication on the outer peripheral surface of the main shaft so as to be within the area of the bearing. A compressor having a spiral oil supply groove formed at a position shifted in the axial direction from the opening and inclined with respect to the main axis.

特許文献1に記載の圧縮機では、給油路と連通する切り欠き状の給油溝と、この給油溝とは別の螺旋状の給油溝とを軸方向の異なる位置に設ける。このような構造により、給油路からの潤滑油に含まれる異物のうち、主軸と軸受との隙間と切り欠き状の給油溝の深さとの和を超えるサイズのものについて、螺旋状の給油溝への流入を制限し、異物の噛み込みによる損傷を抑制する。   In the compressor described in Patent Document 1, a notch-shaped oil supply groove communicating with the oil supply path and a spiral oil supply groove different from the oil supply groove are provided at different positions in the axial direction. With such a structure, among foreign matters contained in the lubricating oil from the oil supply passage, those having a size exceeding the sum of the gap between the main shaft and the bearing and the depth of the notched oil supply groove are transferred to the spiral oil supply groove. Restricts the inflow of foreign materials and suppresses damage caused by foreign objects.

他の従来技術としては、特開2005−233021号公報(特許文献2)に記載のものがある。特許文献2には、「それぞれの板状渦巻歯が相互間に圧縮室を形成するように噛み合わされた固定スクロールと揺動スクロールとを有し、主軸により前記揺動スクロールを駆動することにより、前記圧縮室の冷媒を圧縮する圧縮機構部と、電動機により前記主軸を回転する電動機部とを密閉容器内に具備し、また、前記主軸の内部に軸方向に形成した軸方向給油穴を設け、前記密閉容器内の吐出圧力と吸入圧力との圧力差を利用する差圧給油により、前記軸方向給油穴を経由して、軸受等の摺動部に前記密閉容器の底部の冷凍機油を供給し、また、前記軸受等の摺動部へ給油途中の前記軸方向給油穴と連通し、前記密閉容器内に開口する開口部を有する異物排出穴を前記主軸に形成し、該異物排出穴の冷凍機油の圧力に関して、前記主軸の定常運転時の回転による遠心力により形成される圧力ヘッドを、前記異物排出穴の前記主軸の下端からの距離により形成される圧力ヘッドより大きくし、前記開口部の冷凍機油の前記密閉容器内への排出圧力が前記密閉容器内の吐出圧力より大きくなるように前記異物排出穴を設けたことを特徴とするスクロール圧縮機。」と記載されている。   As another conventional technique, there is one described in JP-A-2005-233021 (Patent Document 2). In Patent Document 2, “each plate-like spiral tooth has a fixed scroll and an orbiting scroll meshed so as to form a compression chamber therebetween, and by driving the orbiting scroll by a main shaft, A compression mechanism that compresses the refrigerant in the compression chamber and an electric motor that rotates the main shaft by an electric motor are provided in a sealed container, and an axial oiling hole that is formed in the axial direction inside the main shaft is provided. Refrigeration oil at the bottom of the hermetic container is supplied to a sliding part such as a bearing through the axial oiling hole by differential pressure lubrication utilizing the pressure difference between the discharge pressure and the suction pressure in the hermetic container. In addition, a foreign matter discharge hole having an opening that opens into the sealed container is formed in the main shaft so as to communicate with the axial oil supply hole in the middle of oil supply to the sliding portion of the bearing or the like, and the foreign matter discharge hole is frozen. With respect to the machine oil pressure, The pressure head formed by the centrifugal force due to rotation during operation is made larger than the pressure head formed by the distance from the lower end of the main shaft of the foreign matter discharge hole, and the refrigerating machine oil in the opening is introduced into the sealed container. The scroll compressor is characterized in that the foreign matter discharge hole is provided so that the discharge pressure becomes larger than the discharge pressure in the sealed container. "

特許文献2に記載の圧縮機では、主軸に給油穴と密閉容器内の空間とに通じている異物排出穴を設け、主軸の回転にともなう遠心力により、異物排出穴に流れる潤滑油の圧力を高める。このような構造により、潤滑油に含まれる異物が異物排出穴を通じて密閉容器内の空間に排出されやすくなり、他の軸受部に流入する異物が低減される。   In the compressor described in Patent Document 2, a foreign matter discharge hole communicating with the oil supply hole and the space in the sealed container is provided in the main shaft, and the pressure of the lubricating oil flowing in the foreign matter discharge hole is reduced by the centrifugal force accompanying the rotation of the main shaft. Increase. With such a structure, foreign matters contained in the lubricating oil are easily discharged into the space in the sealed container through the foreign matter discharge holes, and foreign matters flowing into other bearing portions are reduced.

特開2007−239530号公報JP 2007-239530 A 特開2005−233021号公報JP 2005-233021 A

しかしながら、特許文献1においては、主軸と軸受との隙間と切り欠き状の給油溝の深さとの和を超えるサイズの大径異物が外部から軸受に流入するのを抑制するものの、軸受の摺動面に流入した小径異物や主軸と軸受との摺動により生じる摩耗粒子の滞留を、他の一般的な軸受と比較して、特に低減するものではない。   However, in Patent Document 1, although the large-diameter foreign material having a size exceeding the sum of the gap between the main shaft and the bearing and the depth of the notch-shaped oil supply groove is suppressed, the bearing slides. The retention of wear particles caused by the sliding of the small-diameter foreign matter flowing into the surface and the main shaft and the bearing is not particularly reduced as compared with other general bearings.

また、特許文献2においては、潤滑油が軸受に流入する前に遠心力を利用して異物を分離し、軸受の摺動面への異物の流入を低減することが可能となるものの、比重の小さい粒子や主軸と軸受との摺動により生じた摩耗粒子の滞留を、他の一般的な軸受と比較して、特に低減するものではない。   Further, in Patent Document 2, it is possible to separate foreign matter using centrifugal force before the lubricating oil flows into the bearing, and to reduce the inflow of foreign matter to the sliding surface of the bearing. The retention of wear particles generated by sliding between small particles or the main shaft and the bearing is not particularly reduced as compared with other general bearings.

本発明は、すべり軸受の摺動面に流入した異物や摺動面で生じた摩耗粒子の排出を促進することにより、クランク軸とすべり軸受との隙間における異物や摩耗粒子の噛み込みや摩耗を抑制することができる圧縮機を提供することを課題とする。   The present invention promotes the discharge of foreign matter that has flowed into the sliding surface of the slide bearing and the wear particles generated on the slide surface, thereby preventing the foreign matter and wear particles from being caught and worn in the gap between the crankshaft and the slide bearing. It is an object to provide a compressor that can be suppressed.

本発明の圧縮機は、偏心部を備えて回転するクランク軸と、クランク軸内からクランク軸の外周に開口する給油穴と、クランク軸と摺動してクランク軸の回転を支持するすべり軸受と、を備え、給油穴から供給された潤滑油によりクランク軸とすべり軸受との間を潤滑する圧縮機であって、クランク軸の外周に、クランク軸回転方向前側から順に、給油穴に連通してクランク軸方向に延伸する給油溝と、溝の存在しない摺動領域と、給油穴に連通せずクランク軸方向に延伸する排出溝と、を備える。   The compressor of the present invention includes a crankshaft that rotates with an eccentric portion, an oil supply hole that opens from the inside of the crankshaft to the outer periphery of the crankshaft, and a slide bearing that slides on the crankshaft and supports the rotation of the crankshaft. , And a lubricant that lubricates between the crankshaft and the slide bearing with the lubricating oil supplied from the oil supply hole, and communicates with the oil supply hole on the outer periphery of the crankshaft in order from the front side in the rotation direction of the crankshaft. An oil supply groove extending in the crankshaft direction, a sliding region where no groove exists, and a discharge groove extending in the crankshaft direction without communicating with the oil supply hole are provided.

本発明によれば、回転運動するクランク軸の外周とすべり軸受との隙間に異物が混入した場合、又は、クランク軸とすべり軸受との摺動により摩耗粒子が生じた場合でも、異物や摩耗粒子を早期にすべり軸受の摺動面から排出し、摺動面上での滞留を低減することにより、噛み込みや摩耗を防止し、軸受の信頼性を向上することができる。   According to the present invention, even when foreign matter is mixed in the clearance between the outer periphery of the crankshaft that rotates and the slide bearing, or when wear particles are generated by sliding between the crankshaft and the slide bearing, the foreign matter and wear particles Can be discharged from the sliding surface of the sliding bearing at an early stage, and the retention on the sliding surface can be reduced to prevent biting and wear and to improve the reliability of the bearing.

スクロール圧縮機を示す縦断面図Vertical section showing scroll compressor スクロール圧縮機における主軸受付近の拡大断面図Enlarged sectional view near the main bearing in a scroll compressor 図2A−A断面図2A-A sectional view クランク軸の外周における溝の開始位置と、相対油膜厚さとの関係を示すグラフA graph showing the relationship between the groove start position on the outer periphery of the crankshaft and the relative oil film thickness 第1変形例に係る主軸受付近の拡大断面図Expanded sectional view of the vicinity of the main bearing according to the first modification 第2変形例に係る主軸受付近の拡大断面図Enlarged sectional view near the main bearing according to the second modification 第3変形例に係る主軸受付近の拡大断面図Enlarged sectional view near the main bearing according to the third modification 第4変形例に係る主軸受付近の拡大断面図Enlarged sectional view near the main bearing according to the fourth modification

本発明の圧縮機は、偏心部を備えて回転するクランク軸と、クランク軸内からクランク軸の外周に開口する給油穴と、クランク軸と摺動してクランク軸の回転を支持するすべり軸受と、を備え、給油穴から供給された潤滑油によりクランク軸とすべり軸受との間を潤滑する圧縮機であって、クランク軸の外周に、クランク軸回転方向前側から順に、給油穴に連通してクランク軸方向に延伸する給油溝と、溝の存在しない摺動領域と、給油穴に連通せずクランク軸方向に延伸する排出溝と、を備える。摺動領域を挟んで、このような給油溝及び排出溝を備えるので、すべり軸受の摺動面に流入した異物や摺動により生じた摩耗粒子を早期に捕集及び排出し、高負荷運転時においても軸受としての信頼性を向上することができる。   The compressor of the present invention includes a crankshaft that rotates with an eccentric portion, an oil supply hole that opens from the inside of the crankshaft to the outer periphery of the crankshaft, and a slide bearing that slides on the crankshaft and supports the rotation of the crankshaft. , And a lubricant that lubricates between the crankshaft and the slide bearing with the lubricating oil supplied from the oil supply hole, and communicates with the oil supply hole on the outer periphery of the crankshaft in order from the front side in the rotation direction of the crankshaft. An oil supply groove extending in the crankshaft direction, a sliding region where no groove exists, and a discharge groove extending in the crankshaft direction without communicating with the oil supply hole are provided. The oil supply groove and the discharge groove are provided across the sliding area, so that foreign matter that has flowed into the sliding surface of the slide bearing and wear particles generated by the sliding are collected and discharged at an early stage. The reliability as a bearing can be improved.

本発明の実施形態について、図面を参照しながら説明する。図1は、本発明の実施形態に係るスクロール圧縮機100を示す縦断面図である。本実施形態では、スクロール圧縮機100を例にして説明する。スクロール圧縮機100は、エアコンなどの空調装置や冷凍装置などの冷凍空調用に使用される密閉形の圧縮機である。スクロール圧縮機100は、密閉容器102を有しており、密閉容器102内の上部には、固定スクロール103と、固定スクロール103と噛み合って旋回運動する旋回スクロール104とを備える。固定スクロール103及び旋回スクロール104は、それぞれ渦巻き状の歯型形状部を有する。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a scroll compressor 100 according to an embodiment of the present invention. In the present embodiment, the scroll compressor 100 will be described as an example. The scroll compressor 100 is a hermetic compressor used for refrigeration and air conditioning such as an air conditioner such as an air conditioner or a refrigeration apparatus. The scroll compressor 100 has a hermetic container 102, and includes a fixed scroll 103 and a revolving scroll 104 that meshes with the fixed scroll 103 and rotates. The fixed scroll 103 and the orbiting scroll 104 each have a spiral tooth shape portion.

また、密閉容器102内には、回転動力源としての電動機105が設けられる。電動機105のロータにはクランク軸(軸)106が接続される。電動機105に接続されて回転運動するクランク軸106は、密閉容器102内に固設されたフレーム107に設けられた主軸受(すべり軸受)108、及び、下フレーム109に設けられた副軸受110により、回転自在に支持される。   In the sealed container 102, an electric motor 105 as a rotational power source is provided. A crankshaft (shaft) 106 is connected to the rotor of the electric motor 105. A crankshaft 106 connected to the electric motor 105 and rotationally moves is constituted by a main bearing (slide bearing) 108 provided on a frame 107 fixed in the sealed container 102 and a sub-bearing 110 provided on a lower frame 109. , Supported rotatably.

クランク軸106の上部には、クランク軸106の主軸受108及び副軸受110により支持される部分の軸心に対して偏心した軸心を有する偏心部106aが設けられる。偏心部106aは、旋回スクロール104の端板104aの下面(背面)側に設けられた旋回軸受112と係合して摺動し、偏心部106aの振れ回り回転運動(偏心運動)が旋回スクロール104に伝達される。   An eccentric portion 106 a having an eccentricity with respect to the axial center of the portion supported by the main bearing 108 and the auxiliary bearing 110 of the crankshaft 106 is provided on the upper portion of the crankshaft 106. The eccentric portion 106a is engaged with and slides on the orbiting bearing 112 provided on the lower surface (rear surface) side of the end plate 104a of the orbiting scroll 104, and the whirling rotation motion (eccentric motion) of the eccentric portion 106a is the orbiting scroll 104. Is transmitted to.

旋回スクロール104は、オルダムリング113により自転が規制されており、固定スクロール103に対して旋回運動する。オルダムリング113は、旋回スクロール104の端板104aの下面(背面)側に形成された溝とフレーム107に形成された溝とに装着される。電動機105により回転駆動されるクランク軸106を介して旋回スクロール104が旋回運動すると、吸入口114から低圧の冷媒ガスが吸い込まれて、旋回スクロール104及び固定スクロール103により形成される圧縮室に導かれる。ここで冷媒ガスは、スクロール103、104の中心方向に移動するに従い容積を縮小して圧縮された後、密閉容器102内部及び吐出口115を介して圧縮機の外部へ吐出される。   The rotation of the orbiting scroll 104 is restricted by the Oldham ring 113 and revolves with respect to the fixed scroll 103. The Oldham ring 113 is attached to a groove formed on the lower surface (back surface) side of the end plate 104 a of the orbiting scroll 104 and a groove formed on the frame 107. When the orbiting scroll 104 orbits through the crankshaft 106 that is rotationally driven by the electric motor 105, low-pressure refrigerant gas is sucked from the suction port 114 and guided to the compression chamber formed by the orbiting scroll 104 and the fixed scroll 103. . Here, the refrigerant gas is compressed by reducing the volume as it moves in the center direction of the scrolls 103, 104, and then discharged to the outside of the compressor through the inside of the sealed container 102 and the discharge port 115.

クランク軸106の内部には、その軸方向に沿って下端から偏心部106aの端面(上端面)側まで貫通する給油孔116を有する。密閉容器102の下部に溜められた潤滑油117は、冷媒ガスの吐出圧力を利用した圧力差により、又は、クランク軸106の下端部に別途取り付けられたポンプ(図示せず)により、給油孔116内を押し上げられ、各軸受(主軸受108、副軸受110、旋回軸受112)の内周面とクランク軸106外周面との間の隙間に供給される。   The crankshaft 106 has an oil supply hole 116 penetrating from the lower end to the end surface (upper end surface) side of the eccentric portion 106a along the axial direction. The lubricating oil 117 stored in the lower portion of the hermetic container 102 is supplied to the oil supply hole 116 by a pressure difference using the discharge pressure of the refrigerant gas or by a pump (not shown) separately attached to the lower end portion of the crankshaft 106. The inside is pushed up and supplied to the gap between the inner peripheral surface of each bearing (main bearing 108, sub-bearing 110, slewing bearing 112) and the outer peripheral surface of the crankshaft 106.

本実施例の圧縮機では、密閉容器102内は吐出圧力となり、また、旋回スクロール104の端板104aの下面側に形成される中間室(背圧室)118は吐出圧力と吸込圧力との中間の圧力となる。このため、密閉容器102下部に溜められている潤滑油117は、吐出圧力と中間圧力との圧力差により給油孔116内を押し上げられ、各軸受などに供給される。   In the compressor of the present embodiment, the inside of the sealed container 102 has a discharge pressure, and an intermediate chamber (back pressure chamber) 118 formed on the lower surface side of the end plate 104a of the orbiting scroll 104 is an intermediate between the discharge pressure and the suction pressure. Pressure. For this reason, the lubricating oil 117 stored in the lower part of the sealed container 102 is pushed up in the oil supply hole 116 due to the pressure difference between the discharge pressure and the intermediate pressure, and is supplied to each bearing.

図2は、圧縮機100の主軸受108付近の拡大断面図である。図2に示すように、主軸受108は、例えば鋳鉄製のフレーム107が設けられた軸受ハウジング(ハウジング部)の内部に、2個の円筒状のすべり軸受ブッシュ120が中間通路121を介して軸方向に並んで配置される。クランク軸106は、内部の給油孔116に連通した給油口119が、軸方向における主軸受108の範囲内で、クランク軸106の外周に開口する。クランク軸106の外周には第1の溝(給油溝)122と第2の溝(排出溝)123が周方向の異なる位置に設けられる。   FIG. 2 is an enlarged cross-sectional view of the vicinity of the main bearing 108 of the compressor 100. As shown in FIG. 2, the main bearing 108 is configured such that two cylindrical slide bearing bushes 120 are connected via an intermediate passage 121 inside a bearing housing (housing portion) provided with a frame 107 made of cast iron, for example. Arranged side by side. The crankshaft 106 has an oil supply port 119 communicating with an internal oil supply hole 116 that opens to the outer periphery of the crankshaft 106 within the range of the main bearing 108 in the axial direction. On the outer periphery of the crankshaft 106, a first groove (oil supply groove) 122 and a second groove (discharge groove) 123 are provided at different positions in the circumferential direction.

給油溝122は給油口119から中間室側空間124(軸受を潤滑した潤滑油が排出される排出空間)に向けて軸方向に延伸し、給油口119及び中間室側空間124に開口する。中間室側空間124は、通路125を通じて、給油孔116よりも圧力が低い中間室118に連通する。また、主軸受108の電動機側端部は吐出圧力である密閉容器102に面しており、中間通路121の圧力は吐出圧又は給油孔116の圧力よりも小さく、かつ中間室118の圧力以上となる。このため、圧力差により給油孔116から給油口119に流入した潤滑油は、給油溝122を通じて中間室側空間124に流出するか、又は、一旦クランク軸106と軸受ブッシュ120との隙間に流入した後に中間室側空間124に流出し、一部が中間通路121に流出する。   The oil supply groove 122 extends in the axial direction from the oil supply port 119 toward the intermediate chamber side space 124 (the discharge space from which the lubricating oil that lubricated the bearing is discharged), and opens to the oil supply port 119 and the intermediate chamber side space 124. The intermediate chamber side space 124 communicates with the intermediate chamber 118 having a pressure lower than that of the oil supply hole 116 through the passage 125. The motor-side end of the main bearing 108 faces the sealed container 102, which is the discharge pressure, and the pressure of the intermediate passage 121 is smaller than the discharge pressure or the pressure of the oil supply hole 116 and more than the pressure of the intermediate chamber 118. Become. For this reason, the lubricating oil that has flowed into the oil supply port 119 from the oil supply hole 116 due to the pressure difference flows out into the intermediate chamber side space 124 through the oil supply groove 122, or once flows into the gap between the crankshaft 106 and the bearing bush 120. Later, it flows out into the intermediate chamber side space 124, and a part flows out into the intermediate passage 121.

一方、排出溝123は、一端が中間室側空間124に開口し、他端が中間通路121に開口するが、給油孔116にも給油口119にも直接開口しない。このため、潤滑油は給油口119から一旦クランク軸106と軸受ブッシュ120との隙間に流入した後に摺動領域106bを通過し、又は、中間通路121を経由して排出溝123に達し、最終的には、排出溝123又はさらに回転方向後方側のクランク軸106と軸受ブッシュ120との隙間を通じて、中間室側空間124に流出する。したがって、排出溝123を設けた場合でも給油口119から中間室側空間124に通ずる流路抵抗の減少幅は小さく、潤滑油の流量増加も小さい。   On the other hand, the discharge groove 123 has one end opened to the intermediate chamber side space 124 and the other end opened to the intermediate passage 121, but does not directly open to the oil supply hole 116 or the oil supply port 119. Therefore, the lubricating oil once flows into the gap between the crankshaft 106 and the bearing bush 120 from the oil supply port 119 and then passes through the sliding region 106b, or reaches the discharge groove 123 via the intermediate passage 121, and finally Then, the gas flows out into the intermediate chamber side space 124 through the discharge groove 123 or the clearance between the crankshaft 106 and the bearing bush 120 on the rear side in the rotation direction. Therefore, even when the discharge groove 123 is provided, the flow resistance decrease from the oil supply port 119 to the intermediate chamber side space 124 is small and the increase in the flow rate of the lubricating oil is also small.

主軸受108から中間室側空間124に流出した潤滑油は、通路125を通じて中間室118に流れる。中間室118に流入する潤滑油量が増加すると、中間室118内での撹拌等による損失が増加しやすくなる。したがって、圧縮機においては、損失の増加による効率低下及び消費電力増加を抑制するために、必要以上に潤滑油の流量を増加させず、適正流量に制御することが望ましい。   The lubricating oil that has flowed out of the main bearing 108 into the intermediate chamber side space 124 flows into the intermediate chamber 118 through the passage 125. When the amount of lubricating oil flowing into the intermediate chamber 118 increases, loss due to stirring in the intermediate chamber 118 tends to increase. Therefore, in the compressor, it is desirable to control the flow rate of the lubricating oil to an appropriate flow rate without increasing the flow rate of the lubricating oil more than necessary in order to suppress the reduction in efficiency and increase in power consumption due to the increase in loss.

図3は、スクロール圧縮機の運転中のある瞬間における図2のA−A断面図である。クランク軸106は軸受ブッシュ120内で回転方向126に振れ回り回転し、クランク軸106には荷重127が作用している。クランク軸106の外周における配置は、回転方向126の前側から給油溝122、溝の無い摺動領域106b、排出溝123の順である。   3 is a cross-sectional view taken along line AA of FIG. 2 at a certain moment during operation of the scroll compressor. The crankshaft 106 swings and rotates in the rotation direction 126 within the bearing bush 120, and a load 127 is applied to the crankshaft 106. The arrangement on the outer periphery of the crankshaft 106 is in order of the oil supply groove 122, the sliding area 106 b without the groove, and the discharge groove 123 from the front side in the rotation direction 126.

クランク軸106と軸受ブッシュ120との隙間において、溝のある部分は他と比較して溝の深さの分だけ隙間が大きい。給油溝122は給油口119と中間室側空間124に開口し、回転方向126の前側から摺動領域106bに潤滑油を供給する給油溝としての役割を果たす。また、給油溝122は給油口119から流入した異物を中間室側空間124に排出し、摺動領域106b及びその他の摺動面に流入する異物の量を低減する。   In the gap between the crankshaft 106 and the bearing bush 120, the grooved portion is larger by the depth of the groove than the others. The oil supply groove 122 opens to the oil supply port 119 and the intermediate chamber side space 124, and serves as an oil supply groove that supplies lubricating oil to the sliding region 106 b from the front side in the rotation direction 126. Also, the oil supply groove 122 discharges foreign matter flowing from the oil supply port 119 to the intermediate chamber side space 124, and reduces the amount of foreign matter flowing into the sliding region 106b and other sliding surfaces.

一般に、圧縮機の運転初期においては、クランク軸106と軸受ブッシュ120とが軽微な摩耗を伴い擦り合わせられるなじみを生じることが知られている。図3において、摺動領域106bでクランク軸106と軸受ブッシュ120との摺動により摩耗粒子が生じた場合、摩耗粒子はクランク軸106と軸受ブッシュ120とに挟まれた状態で、両者の摺動により周方向後方に運ばれる。   In general, it is known that in the initial operation of the compressor, the crankshaft 106 and the bearing bush 120 are adapted to be rubbed together with slight wear. In FIG. 3, when wear particles are generated by sliding between the crankshaft 106 and the bearing bush 120 in the sliding area 106 b, the wear particles are sandwiched between the crankshaft 106 and the bearing bush 120. Is carried rearward in the circumferential direction.

排出溝123は回転方向126に対して摺動領域106bの後方に設置されており、この部分においてクランク軸106と軸受ブッシュ120との隙間が排出溝123の深さの分だけ拡大する。このため、周方向後方に運ばれた摩耗粒子は、排出溝123に達したところで潤滑油中に遊離し、排出溝123に捕集される。排出溝123は中間室側空間124に開口しており、摩耗粒子は中間室側空間124に排出される。同様に、給油溝122で排出されずにクランク軸106と軸受ブッシュ120との隙間に流入した異物も、排出溝123に達したところで潤滑油中に遊離し、中間室側空間124に排出される。   The discharge groove 123 is installed behind the sliding region 106 b with respect to the rotation direction 126, and the gap between the crankshaft 106 and the bearing bush 120 is enlarged by the depth of the discharge groove 123 in this portion. For this reason, the wear particles carried rearward in the circumferential direction are released into the lubricating oil when they reach the discharge groove 123 and are collected in the discharge groove 123. The discharge groove 123 is open to the intermediate chamber side space 124, and the wear particles are discharged to the intermediate chamber side space 124. Similarly, foreign matter that has flown into the gap between the crankshaft 106 and the bearing bush 120 without being discharged through the oil supply groove 122 is released into the lubricating oil when it reaches the discharge groove 123, and is discharged into the intermediate chamber side space 124. .

このように、排出溝123は、摩耗粒子や異物を捕集して中間室側空間124に排出する機能を有し、軸受の摺動面における摩耗粒子や異物の滞留とそれに起因する摺動面の摩耗及び噛み込み等の拡大を防止する。特に、高負荷運転においてはなじみ現象が短期間に進行し、摩耗粒子の発生頻度が高いことが知られており、本実施例のように、摺動面からの摩耗粒子の排出性を高めることで、高負荷運転時においても軸受としての信頼性を向上することができる。   In this manner, the discharge groove 123 has a function of collecting wear particles and foreign matters and discharging them to the intermediate chamber side space 124, and the retention of wear particles and foreign matters on the sliding surface of the bearing and the sliding surfaces resulting therefrom. To prevent the wear and biting of the product. In particular, it is known that the familiar phenomenon progresses in a short time in high-load operation, and the frequency of generation of wear particles is high, and as in this embodiment, the exhaustability of wear particles from the sliding surface is improved. Thus, the reliability as a bearing can be improved even during high-load operation.

図4は、クランク軸の外周における溝の開始位置と、相対油膜厚さとの関係を示すグラフ(排出溝123の開始位置と相対最小油膜厚さとの関係を説明する線図)である。排出溝123の設置可能な位置を特定するため、クランク軸106の外周に位置を変えて排出溝123を設け、クランク軸106を円筒状のすべり軸受に対して潤滑油を介して摺動した際の最小油膜厚さを測定した。なお、この検証にあたっては、エアコン用のスクロール圧縮機で、偏心部の軸径が14〜25mmのものを想定している。   FIG. 4 is a graph showing the relationship between the starting position of the groove on the outer periphery of the crankshaft and the relative oil film thickness (a diagram for explaining the relationship between the starting position of the discharge groove 123 and the relative minimum oil film thickness). In order to specify the position where the discharge groove 123 can be installed, the position is changed on the outer periphery of the crankshaft 106 to provide the discharge groove 123, and the crankshaft 106 is slid with respect to the cylindrical slide bearing through the lubricating oil. The minimum oil film thickness was measured. In this verification, a scroll compressor for an air conditioner having an eccentric shaft diameter of 14 to 25 mm is assumed.

図4において、横軸は、クランク軸106の偏心部106a位置を0゜とした排出溝123の周方向開始位置を、縦軸は、排出溝123の無いクランク軸を使用した場合の最小油膜厚さを100%とし、これに対する相対最小油膜厚さを示す。図4に示すように、排出溝123の開始位置が150度未満では、排出溝123の開始位置が最小油膜厚さとなる角度付近になってしまうため、150度よりも小さな角度範囲に排出溝123を設けると、軸受挙動が不安定となり、最小油膜厚さが減少して軸と軸受との接触による摩耗が進行し易くなる、したがって、少なくとも150度以上に排出溝123の開始位置を決めることが好ましい。なお、摺動領域で生じた摩耗粒子を早期に捕集する観点で、排出溝123の周方向開始位置はできるだけ小さい方が望ましい。
(第1変形例)
図5は、本実施形態の第1変形例に係る主軸受108付近の拡大断面図である。図1〜図3に示した第1実施形態と同様の構成及び作用は、この第1変形例に取り込まれるものとして詳細な説明を省略し、相違する点について説明する(以降に説明するさらに別の変形例でも同様)。
In FIG. 4, the horizontal axis represents the circumferential start position of the discharge groove 123 when the position of the eccentric portion 106 a of the crankshaft 106 is 0 °, and the vertical axis represents the minimum oil film thickness when a crankshaft without the discharge groove 123 is used. The relative minimum oil film thickness with respect to 100% is shown. As shown in FIG. 4, when the start position of the discharge groove 123 is less than 150 degrees, the start position of the discharge groove 123 is near the angle at which the minimum oil film thickness is obtained. If the bearing is provided, the bearing behavior becomes unstable, the minimum oil film thickness decreases, and wear due to contact between the shaft and the bearing tends to proceed. Therefore, the start position of the discharge groove 123 can be determined at least 150 degrees or more. preferable. In addition, from the viewpoint of collecting the wear particles generated in the sliding region at an early stage, it is desirable that the circumferential start position of the discharge groove 123 be as small as possible.
(First modification)
FIG. 5 is an enlarged cross-sectional view of the vicinity of the main bearing 108 according to the first modification of the present embodiment. The configuration and operation similar to those of the first embodiment shown in FIGS. 1 to 3 will not be described in detail because they are incorporated in the first modification, and different points will be described (further described below). The same applies to the modified example).

図5に示すように、第1変形例は、排出溝123の図中下端が軸受ブッシュ120の範囲内にあり、中間通路121に達していない点で、第1実施形態と相違する。このような第1変形例によれば、中間通路121から排出溝123を通過して中間室側空間124に至る潤滑油の流路が、クランク軸106と軸受ブッシュ120との隙間を通過するため、第1実施形態と比較して流路抵抗が増加する。したがって、第1変形例では第1実施形態と同様の作用効果を奏することができることに加えて、主軸受108から中間室側空間124に流出する潤滑油量を低減することが可能となる。また、第1実施形態と比較し、排出溝123の幅や深さを拡大しても同等の潤滑油量に維持でき、より大きな異物や摩耗粒子の捕集にも対応可能となる。
(第2変形例)
図6は、本実施形態の第2変形例に係る主軸受108付近の拡大断面図である。図6に示すように、第2変形例は、排出溝123の端部が他の部分よりも軸方向と垂直方向の断面積(流路面積)の小さい絞り部123aである点で第1実施形態と相違する。このような第1実施形態の第2変形例によれば、中間通路121から排出溝123を通過して中間室側空間124に至る潤滑油の流路が、他の部分よりも断面積(流路面積)の小さい絞り部123aを通過する。これにより、第1変形例では第1実施形態と同様の作用効果を奏することができることに加えて、異物や摩耗粒子の捕集性向上を狙って排出溝123の軸方向断面積を拡大した場合でも、主軸受108から中間室側空間124に流出する潤滑油量の増加を抑制することが可能となる。
As shown in FIG. 5, the first modification is different from the first embodiment in that the lower end of the discharge groove 123 in the drawing is within the range of the bearing bush 120 and does not reach the intermediate passage 121. According to such a first modification, the lubricating oil flow path from the intermediate passage 121 through the discharge groove 123 to the intermediate chamber side space 124 passes through the gap between the crankshaft 106 and the bearing bush 120. As compared with the first embodiment, the channel resistance is increased. Therefore, in the first modified example, in addition to being able to achieve the same operational effects as in the first embodiment, it is possible to reduce the amount of lubricating oil flowing out from the main bearing 108 to the intermediate chamber side space 124. Further, compared to the first embodiment, even if the width and depth of the discharge groove 123 are increased, the amount of lubricating oil can be maintained at the same level, and it is possible to cope with the collection of larger foreign matters and wear particles.
(Second modification)
FIG. 6 is an enlarged cross-sectional view of the vicinity of the main bearing 108 according to the second modification of the present embodiment. As shown in FIG. 6, the second modification is the first implementation in that the end of the discharge groove 123 is a narrowed portion 123 a having a smaller cross-sectional area (channel area) in the direction perpendicular to the axial direction than the other portions. It differs from the form. According to such a second modification of the first embodiment, the flow path of the lubricating oil from the intermediate passage 121 through the discharge groove 123 to the intermediate chamber side space 124 has a cross-sectional area (flow It passes through the narrowed portion 123a having a small road area. Thereby, in addition to being able to have the same operational effects as in the first embodiment in the first modification, the axial cross-sectional area of the discharge groove 123 is enlarged with the aim of improving the collection of foreign matters and wear particles. However, it is possible to suppress an increase in the amount of lubricating oil flowing out from the main bearing 108 into the intermediate chamber side space 124.

図6では、絞り部123aを排出溝123の中間室側空間124側と中間通路121側の両方に設けているが、中間通路121から排出溝123を通過して中間室側空間124に至る潤滑油の流路を狭める観点で、絞り部123aをどちらか片側に設けても同様の効果が得られる。
(第3変形例)
図7は、本実施形態の第3変形例に係る主軸受108付近の拡大断面図である。図7に示すように、第3変形例は、排出溝123の中間室側空間124側が、排出溝123の中央通路121側よりも回転方向126の後方側に傾斜している点で第1実施形態及び他の変形例と相違する。このような第3変形例によれば、排出溝123内に捕集された異物や摩耗粒子が、クランク軸106の回転運動により中間室側空間124方向に移動しやすくなるため、排出性が向上する。
(第4変形例)
図8は、本実施形態の第4変形例に係る主軸受108付近の拡大断面図である。図8に示すように、第4変形例は、給油口119を中間通路121に形成し、かつ、中間通路121と連通する絞り部123aの軸方向と垂直方向の断面積(流路面積)を給油溝122の軸方向と垂直方向の断面積(流路面積)よりも小さくした点で第1実施形態及び他の変形例と相違する。このような第4変形例によれば、第1実施形態と同様の作用効果を奏することができることに加えて、給油口119から主軸受108に流入した異物の一部が中間通路121で捕集され、軸受ブッシュ120の摺動面に流入する量を低減することが可能となる。また、絞り部123aの軸方向と垂直方向の断面積(流路面積)を給油溝122の軸方向と垂直方向の断面積(流路面積)よりも小さくしたため、潤滑油は給油溝122に優先的に流れ、摺動領域106bへの潤滑油の供給は第1実施形態や他の変形例と同様になる。
(溝の断面形状)
第1実施形態及び変形例において、給油溝122と排出溝123は、クランク軸106の外周の一部を平面上にカットした切欠状の溝として形成するが、これ以外にも内周側に掘り込んだ掘り込み溝として形成しても良い。切欠溝は加工が容易な利点を有するが、径方向深さに対して周方向幅の拡大が大きく、溝の軸方向断面積が拡大しやすい。一方、掘り込み溝は深さと幅を自在に形成できるため、小さな軸方向断面積で径の大きな粒子の捕集と排出が可能となり、通過する潤滑油量を低減できる。
In FIG. 6, the narrowed portion 123 a is provided on both the intermediate chamber side space 124 side and the intermediate passage 121 side of the discharge groove 123, but lubrication from the intermediate passage 121 through the discharge groove 123 to the intermediate chamber side space 124 is performed. From the viewpoint of narrowing the oil flow path, the same effect can be obtained even if the throttle portion 123a is provided on one side.
(Third Modification)
FIG. 7 is an enlarged cross-sectional view of the vicinity of the main bearing 108 according to the third modification of the present embodiment. As shown in FIG. 7, the third modification is the first implementation in that the intermediate chamber side space 124 side of the discharge groove 123 is inclined rearward in the rotational direction 126 with respect to the central passage 121 side of the discharge groove 123. It differs from the form and other modifications. According to the third modified example, foreign matter and wear particles collected in the discharge groove 123 are easily moved in the direction of the intermediate chamber side space 124 by the rotational movement of the crankshaft 106, and thus the discharge performance is improved. To do.
(Fourth modification)
FIG. 8 is an enlarged cross-sectional view of the vicinity of the main bearing 108 according to the fourth modification of the present embodiment. As shown in FIG. 8, in the fourth modified example, the fuel filler 119 is formed in the intermediate passage 121, and the sectional area (flow passage area) in the direction perpendicular to the axial direction of the throttle portion 123 a communicating with the intermediate passage 121 is set. The difference from the first embodiment and other modified examples is that the oil supply groove 122 is smaller than the cross-sectional area (flow passage area) in the direction perpendicular to the axial direction. According to such a fourth modification, in addition to being able to achieve the same operational effects as the first embodiment, a part of the foreign matter that has flowed into the main bearing 108 from the fuel filler port 119 is collected by the intermediate passage 121. Thus, it is possible to reduce the amount flowing into the sliding surface of the bearing bush 120. Further, since the cross-sectional area (flow passage area) in the direction perpendicular to the axial direction of the throttle portion 123 a is made smaller than the cross-sectional area (flow passage area) in the direction perpendicular to the axial direction of the oil supply groove 122, the lubricating oil takes precedence over the oil supply groove 122. Therefore, the supply of the lubricating oil to the sliding region 106b is the same as in the first embodiment and other modified examples.
(Cross sectional shape)
In the first embodiment and the modification, the oil supply groove 122 and the discharge groove 123 are formed as notched grooves in which a part of the outer periphery of the crankshaft 106 is cut on a flat surface. It may be formed as a recessed digging groove. The notch groove has an advantage that it can be easily processed, but the circumferential width is greatly enlarged with respect to the radial depth, and the axial sectional area of the groove is easily enlarged. On the other hand, since the digging groove can be freely formed in depth and width, it is possible to collect and discharge particles having a large diameter with a small axial cross-sectional area, and to reduce the amount of lubricating oil passing therethrough.

以上、本発明について実施形態に基づいて説明したが、本発明はスクロール圧縮機に限定されるものではなく、類似の軸及び軸受構造を有する他の圧縮機も含まれる。他の圧縮機とは、例えばロータリ圧縮機、ローリングピストン型圧縮機、レシプロ圧縮機等である。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to a scroll compressor, The other compressor which has a similar shaft and bearing structure is also included. Examples of other compressors include a rotary compressor, a rolling piston compressor, and a reciprocating compressor.

また、スクロール圧縮機の主軸受を例について説明したが、必ずしも説明した全ての構成を備えるものに限定されるものではない。圧縮機内において、(振れ回り)回転する軸と、すべり軸受と、軸内部から軸受の摺動面への給油経路を備えた軸受機構であれば実施対象に含まれる。この場合、中間室側空間124を各軸受から潤滑油の流出する部位の呼称とすることにより、例えば、旋回軸受、副軸受等も実施対象に含まれる。また、本発明は回転軸の向きによらず、例えば、縦型の圧縮機も横型の圧縮機も実施対象に含まれる。   Moreover, although the example of the main bearing of the scroll compressor was demonstrated, it is not necessarily limited to what is provided with all the demonstrated structures. Any bearing mechanism provided with a rotating shaft (swinging) in the compressor, a plain bearing, and an oil supply path from the inside of the shaft to the sliding surface of the bearing is included in the implementation target. In this case, for example, a slewing bearing, a secondary bearing, and the like are included in the implementation object by using the intermediate chamber side space 124 as a name of a portion from which the lubricant flows out from each bearing. Further, the present invention includes, for example, a vertical compressor and a horizontal compressor regardless of the direction of the rotating shaft.

また、フレーム107の一部に設けられた軸受ハウジング部に軸受ブッシュ120を挿入したすべり軸受について説明したが、一般的なジャーナルすべり軸受であればこの構造に限定されるものではなく、例えばフレーム107に直接軸受部を形成したものも対象に含まれる。   Further, the slide bearing in which the bearing bush 120 is inserted into the bearing housing portion provided in a part of the frame 107 has been described. However, the structure is not limited to this structure as long as it is a general journal slide bearing. Also included are those in which the bearing portion is directly formed.

また、本発明は、本発明に係る圧縮機を冷凍又は空調用の冷媒圧縮機として備える冷凍サイクル機器として構成することができる。この冷凍サイクル機器は、本発明に係る圧縮機と、圧縮機で圧縮されて高温高圧になった冷媒ガスから熱を放熱する凝縮器と、凝縮器からの高圧冷媒を減圧する減圧装置と、減圧装置からの液冷媒を蒸発させる蒸発器とを備える。このような冷凍サイクル機器は、冷凍装置、空調装置、ヒートポンプ式給湯機等に使用される。   Moreover, this invention can be comprised as a refrigeration cycle apparatus provided with the compressor which concerns on this invention as a refrigerant | coolant compressor for refrigeration or an air conditioning. The refrigeration cycle apparatus includes a compressor according to the present invention, a condenser that radiates heat from a refrigerant gas that has been compressed by the compressor into high temperature and pressure, a decompression device that decompresses high-pressure refrigerant from the condenser, An evaporator for evaporating liquid refrigerant from the apparatus. Such a refrigeration cycle apparatus is used for a refrigeration apparatus, an air conditioner, a heat pump type hot water heater, and the like.

100…圧縮機(スクロール圧縮機)
102…密閉容器
103…固定スクロール
104…旋回スクロール
105…電動機
106…クランク軸(軸)
106a…偏心部
106b…摺動領域
107…フレーム
108…主軸受(すべり軸受)
109…下フレーム
110…副軸受
112…旋回軸受
113…オルダムリング
114…吸入口
115…吐出口
116…給油孔
117…潤滑油
118…中間室(背圧室)
119…給油口
120…軸受ブッシュ
121…中間通路
122…溝(給油溝)
123…溝(排出溝)
123a…絞り部
124…中間室側空間
125…通路
126…回転方向
127…荷重
100 ... Compressor (scroll compressor)
DESCRIPTION OF SYMBOLS 102 ... Sealed container 103 ... Fixed scroll 104 ... Orbiting scroll 105 ... Electric motor 106 ... Crankshaft (shaft)
106a ... eccentric part 106b ... sliding area 107 ... frame 108 ... main bearing (slide bearing)
109 ... Lower frame 110 ... Sub bearing 112 ... Slewing bearing 113 ... Oldham ring 114 ... Suction port 115 ... Discharge port 116 ... Oil supply hole 117 ... Lubricating oil 118 ... Intermediate chamber (back pressure chamber)
119: Oil supply port 120 ... Bearing bush 121 ... Intermediate passage 122 ... Groove (oil supply groove)
123 ... groove (discharge groove)
123a ... throttle part 124 ... intermediate chamber side space 125 ... passage 126 ... rotation direction 127 ... load

Claims (10)

偏心部を備えて回転するクランク軸と、
前記クランク軸内から前記クランク軸の外周に開口する給油穴と、
前記クランク軸と摺動して前記クランク軸の回転を支持するすべり軸受と、
を備え、
前記給油穴から供給された潤滑油により前記クランク軸と前記すべり軸受との間を潤滑する圧縮機であって、
前記クランク軸の外周に、前記クランク軸回転方向前側から順に、
前記給油穴に連通して前記クランク軸方向に延伸する給油溝と、
溝の存在しない摺動領域と、
前記給油穴に連通せず前記クランク軸方向に延伸する排出溝と、
を備える圧縮機。
A crankshaft rotating with an eccentric part;
An oiling hole that opens from the inside of the crankshaft to the outer periphery of the crankshaft;
A slide bearing that slides on the crankshaft to support rotation of the crankshaft;
With
A compressor that lubricates a space between the crankshaft and the slide bearing with lubricating oil supplied from the oil supply hole;
On the outer periphery of the crankshaft, in order from the front side of the crankshaft rotation direction,
An oil supply groove communicating with the oil supply hole and extending in the crankshaft direction;
A sliding area where no groove exists,
A discharge groove extending in the crankshaft direction without communicating with the oil supply hole;
A compressor comprising:
請求項1において、
前記給油溝の一端は、前記クランク軸と前記すべり軸受との間を潤滑した潤滑油が排出される排出空間と連通し、
前記排出溝の一端は、前記排出空間と連通する圧縮機。
In claim 1,
One end of the oil supply groove communicates with a discharge space from which lubricating oil lubricated between the crankshaft and the slide bearing is discharged,
One end of the discharge groove is a compressor communicating with the discharge space.
請求項1又は2において、
前記排出溝は、前記偏心部から前記クランク軸の反回転方向に150°以上の位置に設けられた圧縮機。
In claim 1 or 2,
The discharge groove is a compressor provided at a position of 150 ° or more in the counter-rotating direction of the crankshaft from the eccentric portion.
請求項1乃至3の何れかにおいて、
前記すべり軸受は、前記クランク軸方向の一端側に位置する第1すべり軸受ブッシュと、前記クランク軸方向の他端側に位置する第2すべり軸受ブッシュと、前記第1すべり軸受ブッシュ及び第2すべり軸受ブッシュの間に位置する中間通路を有し、
前記排出通路の他端が前記中間通路に連通する圧縮機。
In any one of Claims 1 thru | or 3,
The sliding bearing includes a first sliding bearing bush located on one end side in the crankshaft direction, a second sliding bearing bush located on the other end side in the crankshaft direction, the first sliding bearing bush and the second sliding bearing. An intermediate passage located between the bearing bushes,
A compressor in which the other end of the discharge passage communicates with the intermediate passage.
請求項1乃至3の何れかにおいて、
前記すべり軸受は、前記クランク軸方向の一端側に位置する第1すべり軸受ブッシュと、前記クランク軸方向の他端側に位置する第2すべり軸受ブッシュと、前記第1すべり軸受ブッシュ及び第2すべり軸受ブッシュの間に位置する中間通路を有し、
前記排出通路の他端が前記中間通路にしない圧縮機。
In any one of Claims 1 thru | or 3,
The sliding bearing includes a first sliding bearing bush located on one end side in the crankshaft direction, a second sliding bearing bush located on the other end side in the crankshaft direction, the first sliding bearing bush and the second sliding bearing. An intermediate passage located between the bearing bushes,
A compressor in which the other end of the discharge passage is not the intermediate passage.
請求項1乃至5の何れかにおいて、
前記排出溝の少なくとも一端又は他端は絞り部を有し、前記絞り部は前記排出溝の前記絞り部以外の部分よりも流路面積が小さい圧縮機。
In any of claims 1 to 5,
At least one end or the other end of the discharge groove has a throttle portion, and the throttle portion has a smaller flow path area than a portion of the discharge groove other than the throttle portion.
請求項1乃至6の何れかにおいて、
前記排出溝の一端は、前記クランク軸と前記すべり軸受との間を潤滑した潤滑油が排出される排出空間と連通し、
前記排出溝の前記一端側は前記排出溝の他端側よりも前記クランク軸の反回転方向側に傾斜する圧縮機。
In any one of Claims 1 thru | or 6,
One end of the discharge groove communicates with a discharge space from which lubricating oil lubricated between the crankshaft and the slide bearing is discharged,
The compressor in which the one end side of the discharge groove is inclined more to the counter-rotating direction side of the crankshaft than the other end side of the discharge groove.
請求項1乃至7の何れかにおいて、
前記すべり軸受は、前記クランク軸方向の一端側に位置する第1すべり軸受ブッシュと、前記クランク軸方向の他端側に位置する第2すべり軸受ブッシュと、前記第1すべり軸受ブッシュ及び第2すべり軸受ブッシュの間に位置する中間通路を有し、
前記給油穴は前記中間通路と連通し、
前記排出溝の他端は前記中間通路と連通し、
前記排出溝の前記他端は前記給油溝よりも流路面積が小さい圧縮機。
In any one of Claims 1 thru | or 7,
The sliding bearing includes a first sliding bearing bush located on one end side in the crankshaft direction, a second sliding bearing bush located on the other end side in the crankshaft direction, the first sliding bearing bush and the second sliding bearing. An intermediate passage located between the bearing bushes,
The oiling hole communicates with the intermediate passage;
The other end of the discharge groove communicates with the intermediate passage,
The other end of the discharge groove is a compressor having a flow path area smaller than that of the oil supply groove.
前記圧縮機はスクロール圧縮機である請求項1乃至8何れかに記載の圧縮機。   The compressor according to any one of claims 1 to 8, wherein the compressor is a scroll compressor. 請求項1乃至9の何れかに記載の圧縮機を備える冷凍サイクル機器。   A refrigeration cycle apparatus comprising the compressor according to any one of claims 1 to 9.
JP2014036132A 2014-02-27 2014-02-27 Compressor and refrigeration cycle device Pending JP2015161209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014036132A JP2015161209A (en) 2014-02-27 2014-02-27 Compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014036132A JP2015161209A (en) 2014-02-27 2014-02-27 Compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2015161209A true JP2015161209A (en) 2015-09-07

Family

ID=54184483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014036132A Pending JP2015161209A (en) 2014-02-27 2014-02-27 Compressor and refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2015161209A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6184648B1 (en) * 2016-03-01 2017-08-23 三菱電機株式会社 Bearing unit and compressor
WO2017149820A1 (en) * 2016-03-01 2017-09-08 三菱電機株式会社 Bearing unit and compressor
KR20190004620A (en) * 2017-07-04 2019-01-14 엘지전자 주식회사 Compressor having oil groove placed on bottom surface of eccentric part
WO2022054239A1 (en) * 2020-09-11 2022-03-17 三菱電機株式会社 Scroll compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6184648B1 (en) * 2016-03-01 2017-08-23 三菱電機株式会社 Bearing unit and compressor
WO2017149820A1 (en) * 2016-03-01 2017-09-08 三菱電機株式会社 Bearing unit and compressor
KR20190004620A (en) * 2017-07-04 2019-01-14 엘지전자 주식회사 Compressor having oil groove placed on bottom surface of eccentric part
KR101988719B1 (en) 2017-07-04 2019-06-12 엘지전자 주식회사 Compressor having oil groove placed on bottom surface of eccentric part
WO2022054239A1 (en) * 2020-09-11 2022-03-17 三菱電機株式会社 Scroll compressor

Similar Documents

Publication Publication Date Title
JP6300829B2 (en) Rotary compressor
CN111133197B (en) Scroll compressor having a scroll compressor with a suction chamber
JP6554926B2 (en) Scroll compressor
JP2008303844A (en) Scroll fluid machine
JP2015161209A (en) Compressor and refrigeration cycle device
US9115715B2 (en) Compressor with pressure reduction groove formed in eccentric part
JP2007085297A (en) Scroll compressor
JP6425744B2 (en) Compressor
JP6131769B2 (en) Rotary compressor
JP2013024086A (en) Compressor
US11668308B2 (en) Compressor having sliding portion provided with oil retainer
KR20090093460A (en) A scroll compressor having driving shaft of oil separating type
JP6758867B2 (en) Fluid machine
JP7263554B2 (en) scroll compressor
WO2013145018A1 (en) Scroll compressor
JP6104396B2 (en) Scroll compressor
JP6488893B2 (en) Scroll compressor
JP6611648B2 (en) Scroll compressor
JP4811200B2 (en) Electric compressor
US11674514B2 (en) Compressor with a fitted shaft portion having two sliding surfaces and an oil retainer
JP7186055B2 (en) scroll compressor
JP2012211569A (en) Rotary compressor
JP6471525B2 (en) Refrigerant compressor
JP4935511B2 (en) Scroll compressor
KR101692865B1 (en) Electromotive scroll compressor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150818

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427