JP2015160469A - pneumatic tire - Google Patents

pneumatic tire Download PDF

Info

Publication number
JP2015160469A
JP2015160469A JP2014035642A JP2014035642A JP2015160469A JP 2015160469 A JP2015160469 A JP 2015160469A JP 2014035642 A JP2014035642 A JP 2014035642A JP 2014035642 A JP2014035642 A JP 2014035642A JP 2015160469 A JP2015160469 A JP 2015160469A
Authority
JP
Japan
Prior art keywords
groove
lug
tire
rib
lug groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014035642A
Other languages
Japanese (ja)
Other versions
JP6044561B2 (en
Inventor
正和 丹羽
Masakazu Niwa
正和 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2014035642A priority Critical patent/JP6044561B2/en
Publication of JP2015160469A publication Critical patent/JP2015160469A/en
Application granted granted Critical
Publication of JP6044561B2 publication Critical patent/JP6044561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pneumatic tire that can improve wet performance, dry performance and uneven wear resistance with good balance.SOLUTION: In a pneumatic tire in which a mounting direction of the front and back sides of the tire is designated, where a distance GL1 of a first main groove 11 is set to be 6% or less of an earth-contact half width TL/2, a distance GL2 of a second main groove 12 is set to be 40%-65% of the earth-contact half width TL/2 and a distance GL3 of a sub groove is set to be 40%-65% of the earth-contact half width TL/2, are provided: a first lug groove 31, one end of which reaches a grounding end inside a vehicle and the other end of which is closed so as not to communicate with the second main groove 12; a second lug groove 32, one end of which communicates with the second main groove 12 and the other end of which is closed; a third lug groove 31, one end of which communicates with the first main groove 11 and the other end of which is closed; a plurality of fourth lug grooves 34, one ends of which communicate with the sub groove 13 and the other ends of which are closed; a fifth groove 35, one end of which communicates with the sub groove 13 and the other end of which is closed; and a sixth groove 36, one end of which reaches the grounding end outside the vehicle and the other end of which is closed so as not to communicate with the sub groove 13.

Description

本発明は、車両に対する装着方向が指定された空気入りタイヤに関し、更に詳しくは、ウエット性能とドライ性能と耐偏摩耗性をバランス良く改善することを可能にした空気入りタイヤに関する。   The present invention relates to a pneumatic tire in which a mounting direction with respect to a vehicle is designated, and more particularly to a pneumatic tire that can improve wet performance, dry performance, and uneven wear resistance in a well-balanced manner.

近年、車両の高性能化に伴い、空気入りタイヤにおいて、ドライ路面での操縦安定性に代表されるドライ性能と、ウエット路面での操縦安定性に代表されるウエット性能とを高次元でバランス良く改善することが強く求められている。   In recent years, as the performance of vehicles has improved, dry performance represented by steering stability on dry roads and wet performance represented by steering stability on wet roads are well balanced in a high level in pneumatic tires. There is a strong demand for improvement.

従来、空気入りタイヤにおいては、トレッド部にタイヤ周方向に延びる複数本の主溝を設け、これら主溝によりタイヤ周方向に延在する複数列の陸部を区画し、その陸部に対してタイヤ幅方向に延びるラグ溝を設けるようにしている。例えば、トレッド部のセンター領域にタイヤ周方向に延びる複数本の主溝を設ける一方で、トレッド部のショルダー領域にタイヤ幅方向に延びる複数本のラグ溝を設け、これらラグ溝の端部を陸部内で閉止することで該陸部を複数のブロックに細分化しない構造が提案されている(例えば、特許文献1参照)。この場合、トレッド部の剛性が維持されるため、ドライ性能を維持しつつウエット性能の改善を図ることができる。   Conventionally, in a pneumatic tire, a plurality of main grooves extending in the tire circumferential direction are provided in the tread portion, and a plurality of rows of land portions extending in the tire circumferential direction are defined by the main grooves, and the land portions are A lug groove extending in the tire width direction is provided. For example, while providing a plurality of main grooves extending in the tire circumferential direction in the center region of the tread portion, a plurality of lug grooves extending in the tire width direction are provided in the shoulder region of the tread portion, and the end portions of these lug grooves are landed. A structure has been proposed in which the land portion is not subdivided into a plurality of blocks by closing within the portion (see, for example, Patent Document 1). In this case, since the rigidity of the tread portion is maintained, the wet performance can be improved while maintaining the dry performance.

しかしながら、優れたウエット性能を獲得するにはラグ溝成分を十分に確保する必要があり、その結果として、ドライ性能が低下するばかりでなく、耐偏摩耗性が低下するという問題がある。特に、サーキット走行のような過酷な走行環境では、ウエット性能及びドライ性能を改善することに加えて、良好な耐偏摩耗性を維持することが求められるので、従来のトレッドパターンでは必ずしも十分ではない。   However, in order to obtain excellent wet performance, it is necessary to sufficiently secure the lug groove component. As a result, there is a problem that not only dry performance but also uneven wear resistance is lowered. In particular, in a severe driving environment such as circuit driving, it is required to maintain good uneven wear resistance in addition to improving wet performance and dry performance, so the conventional tread pattern is not always sufficient. .

特開2009−113652号公報JP 2009-113652 A

本発明の目的は、ウエット性能とドライ性能と耐偏摩耗性をバランス良く改善することを可能にした空気入りタイヤを提供することにある。   An object of the present invention is to provide a pneumatic tire that can improve wet performance, dry performance, and uneven wear resistance in a well-balanced manner.

上記目的を達成するための本発明の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、車両に対する装着方向が指定された空気入りタイヤにおいて、
前記トレッド部のセンター領域にタイヤ周方向に延びる第1主溝を設け、前記トレッド部のタイヤ赤道位置よりも車両内側の領域にタイヤ周方向に延びる第2主溝を設け、前記トレッド部のタイヤ赤道位置よりも車両外側の領域にタイヤ周方向に延びて溝幅及び溝深さの少なくとも一方が前記第1主溝及び前記第2主溝よりも小さいサブ溝を設け、
前記第1主溝の中心位置からタイヤ赤道位置までの距離GL1をタイヤ接地幅TLの半幅TL/2の6%以下とし、前記第2主溝の中心位置からタイヤ赤道位置までの距離GL2をタイヤ接地幅TLの半幅TL/2の40%〜65%とし、前記サブ溝の中心位置からタイヤ赤道位置までの距離GL3をタイヤ接地幅TLの半幅TL/2の40%〜65%とし、
前記第2主溝よりも車両内側に第1リブを区画し、前記第2主溝と前記第1主溝との間に第2リブを区画し、前記第1主溝と前記サブ溝との間に第3リブを区画し、前記サブ溝よりも車両外側に第4リブを区画すると共に、
前記トレッド部に、一端が車両内側の接地端に到達し他端が前記第2主溝に対して非連通となるように第1リブ内で閉止した複数本の第1ラグ溝と、一端が前記第2主溝に連通し他端が第1リブ内又は第2リブ内で閉止した複数本の第2ラグ溝と、一端が前記第1主溝に連通し他端が第2リブ内又は第3リブ内で閉止した複数本の第3ラグ溝と、一端が前記サブ溝に連通し他端が第3リブ内で閉止した複数本の第4ラグ溝と、一端が前記サブ溝に連通し他端が第4リブ内で閉止した複数本の第5ラグ溝と、一端が車両外側の接地端に到達し他端が前記サブ溝に対して非連通となるように第4リブ内で閉止した複数本の第6ラグ溝を設けたことを特徴とするものである。
In order to achieve the above object, a pneumatic tire according to the present invention includes a tread portion that extends in the tire circumferential direction to form an annular shape, a pair of sidewall portions disposed on both sides of the tread portion, and the sidewall portions. In a pneumatic tire comprising a pair of bead portions arranged on the inner side in the tire radial direction, the mounting direction for the vehicle is designated,
A first main groove extending in the tire circumferential direction is provided in a center region of the tread portion, and a second main groove extending in the tire circumferential direction is provided in a region inside the vehicle from the tire equator position of the tread portion, and the tire of the tread portion. A sub-groove extending in the tire circumferential direction in a region outside the vehicle from the equator position and having at least one of a groove width and a groove depth smaller than the first main groove and the second main groove;
The distance GL1 from the center position of the first main groove to the tire equator position is 6% or less of the half width TL / 2 of the tire ground contact width TL, and the distance GL2 from the center position of the second main groove to the tire equator position is the tire. 40% to 65% of the half width TL / 2 of the ground contact width TL, and the distance GL3 from the center position of the sub-groove to the tire equator position is 40% to 65% of the half width TL / 2 of the tire ground contact width TL,
A first rib is defined inside the vehicle from the second main groove, a second rib is defined between the second main groove and the first main groove, and the first main groove and the sub-groove A third rib is defined in between, and a fourth rib is defined on the vehicle outer side than the sub-groove,
The tread portion has a plurality of first lug grooves closed in the first rib so that one end reaches a ground contact end inside the vehicle and the other end is not in communication with the second main groove, and one end is A plurality of second lug grooves that communicate with the second main groove and the other end is closed in the first rib or the second rib, and one end communicates with the first main groove and the other end is within the second rib or A plurality of third lug grooves closed in the third rib, one end communicating with the sub-groove, and the other end communicating with the fourth lug groove closed in the third rib, and one end communicating with the sub-groove A plurality of fifth lug grooves whose other ends are closed in the fourth rib, and one end that reaches the grounding end outside the vehicle and the other end that is not in communication with the sub-groove. A plurality of closed sixth lug grooves are provided.

本発明では、車両に対する装着方向が指定された空気入りタイヤにおいて、トレッド部のセンター領域に第1主溝を配置し、トレッド部のタイヤ赤道位置よりも車両内側の領域に第2主溝を配置し、トレッド部のタイヤ赤道位置よりも車両外側の領域にサブ溝を配置すると共に、トレッド部に第1ラグ溝乃至第6ラグ溝を分散させて配置することにより、良好なウエット性能を維持しながら、トレッド部の剛性バランスを最適化してドライ性能を改善することができる。しかも、第1ラグ溝乃至第6ラグ溝の端部を閉止し、第1リブ乃至第4リブを細分化しない構造とするので、これが各リブの剛性を維持することと偏摩耗の抑制に大きく寄与する。そのため、上記構成によれば、ウエット路面での操縦安定性に代表されるウエット性能とドライ路面での操縦安定性に代表されるドライ性能と耐偏摩耗性をバランス良く改善することが可能になる。   In the present invention, in the pneumatic tire in which the mounting direction with respect to the vehicle is specified, the first main groove is disposed in the center region of the tread portion, and the second main groove is disposed in the vehicle inner region from the tire equator position of the tread portion. In addition, the sub-groove is arranged in the region outside the vehicle from the tire equator position of the tread portion, and the first lug groove to the sixth lug groove are dispersed and arranged in the tread portion, thereby maintaining good wet performance. However, the dry balance can be improved by optimizing the rigidity balance of the tread portion. In addition, since the end portions of the first lug groove to the sixth lug groove are closed and the first rib to the fourth rib are not subdivided, this greatly maintains the rigidity of each rib and suppresses uneven wear. Contribute. Therefore, according to the above configuration, it is possible to improve the wet performance represented by the steering stability on the wet road surface and the dry performance represented by the steering stability on the dry road surface and the uneven wear resistance in a balanced manner. .

本発明において、第2ラグ溝及び第3ラグ溝が車両内側に向かって開口することが好ましい。これにより、車両外側からの入力に対する第2リブ及び第3リブの剛性を維持し、ドライ路面での操縦安定性を向上することができる。   In this invention, it is preferable that a 2nd lug groove and a 3rd lug groove open toward a vehicle inner side. Thereby, the rigidity of the 2nd rib and the 3rd rib with respect to the input from the vehicle outside can be maintained, and steering stability on a dry road surface can be improved.

第1ラグ溝は車両内側の接地端を横切って第1リブの車両内側の端部まで延在し、第6ラグ溝は車両外側の接地端を横切り、該第6ラグ溝の車両外側の端部が第4リブ内で閉止することが好ましい。これにより、ドライ性能とウエット性能をバランス良く改善することができる。   The first lug groove extends across the ground contact end on the vehicle inner side to the vehicle inner end of the first rib, the sixth lug groove crosses the ground contact end on the vehicle outer side, and the vehicle outer end of the sixth lug groove. It is preferable that the part is closed in the fourth rib. Thereby, dry performance and wet performance can be improved with good balance.

第2主溝から第1ラグ溝のタイヤ赤道側の閉止端までの距離RG1は第1リブの接地領域内での幅RL1の15%〜35%とし、第2主溝から第2ラグ溝の閉止端までの距離RG2は第2リブの幅RL2の30%〜65%とし、第1主溝から第3ラグ溝の閉止端までの距離RG3は第3リブの幅RL3の25%〜60%とし、サブ溝から第4ラグ溝の閉止端までの距離RG4は第3リブの幅RL3の15%〜40%とし、サブ溝から第5ラグ溝の閉止端までの距離RG5は第4リブの幅RL4の15%〜40%とし、サブ溝から第6ラグ溝の両側の閉止端までの距離RG6,RG7はそれぞれ第4リブのタイヤ接地領域内での幅RL4の25%〜45%とすることが好ましい。これにより、ウエット性能とドライ性能と耐偏摩耗性をバランス良く改善することができる。   The distance RG1 from the second main groove to the closed end of the first lug groove on the tire equator side is 15% to 35% of the width RL1 in the ground contact region of the first rib, and the distance from the second main groove to the second lug groove The distance RG2 to the closed end is 30% to 65% of the width RL2 of the second rib, and the distance RG3 from the first main groove to the closed end of the third lug groove is 25% to 60% of the width RL3 of the third rib. The distance RG4 from the sub groove to the closed end of the fourth lug groove is 15% to 40% of the width RL3 of the third rib, and the distance RG5 from the sub groove to the closed end of the fifth lug groove is The distances RG6 and RG7 from the sub-groove to the closed ends on both sides of the sixth lug groove are 25% to 45% of the width RL4 in the tire contact area of the fourth rib, respectively. It is preferable. Thereby, wet performance, dry performance, and uneven wear resistance can be improved in a well-balanced manner.

第1ラグ溝及び第6ラグ溝のタイヤ周方向に対する傾斜角度α1,α6はそれぞれ70°〜90°とし、第2ラグ溝、第3ラグ溝、第4ラグ溝及び第5ラグ溝のタイヤ周方向に対する傾斜角度α2,α3,α4,α5はそれぞれ45°〜80°とすることが好ましい。これにより、ウエット性能とドライ性能と耐偏摩耗性をバランス良く改善することができる。   The inclination angles α1 and α6 of the first lug groove and the sixth lug groove with respect to the tire circumferential direction are 70 ° to 90 °, respectively, and the tire circumference of the second lug groove, the third lug groove, the fourth lug groove, and the fifth lug groove The inclination angles α2, α3, α4, and α5 with respect to the direction are preferably 45 ° to 80 °, respectively. Thereby, wet performance, dry performance, and uneven wear resistance can be improved in a well-balanced manner.

第1主溝及び第2主溝の溝幅GW1,GW2はそれぞれ8mm〜16mmとし、サブ溝の溝幅GW3は1mm〜2.5mmとすることが好ましい。これにより、ドライ性能とウエット性能をバランス良く改善することができる。   The groove widths GW1 and GW2 of the first main groove and the second main groove are preferably 8 mm to 16 mm, respectively, and the groove width GW3 of the sub groove is preferably 1 mm to 2.5 mm. Thereby, dry performance and wet performance can be improved with good balance.

第2ラグ溝と第3ラグ溝とはタイヤ周方向に沿って交互に配置し、第3ラグ溝と第4ラグ溝及び第5ラグ溝とはタイヤ周方向に沿って交互に配置し、第4ラグ溝及び第5ラグ溝と第6ラグ溝とはタイヤ周方向に沿って交互に配置することが好ましい。このように隣り合うラグ溝同士を千鳥状に配置することにより、トレッド部の剛性バランスを均一化し、ドライ性能と耐偏摩耗性をバランス良く改善することができる。   The second lug groove and the third lug groove are alternately arranged along the tire circumferential direction, the third lug groove, the fourth lug groove and the fifth lug groove are alternately arranged along the tire circumferential direction, The 4 lug grooves, the fifth lug grooves, and the sixth lug grooves are preferably arranged alternately along the tire circumferential direction. By arranging the adjacent lug grooves in a staggered manner in this manner, the rigidity balance of the tread portion can be made uniform, and the dry performance and uneven wear resistance can be improved in a well-balanced manner.

第1ラグ溝、第2ラグ溝、第3ラグ溝及び第5ラグ溝が車両内側に向かって開口する場合、第3ラグ溝は第1ラグ溝、第2ラグ溝及び第5ラグ溝とは逆方向に傾斜することが好ましい。このように第3ラグ溝を第1ラグ溝、第2ラグ溝及び第5ラグ溝とは逆方向に傾斜させることにより、トレッド部の剛性バランスを均一化し、ドライ性能と耐偏摩耗性をバランス良く改善することができる。   When the first lug groove, the second lug groove, the third lug groove, and the fifth lug groove open toward the vehicle inner side, the third lug groove is the first lug groove, the second lug groove, and the fifth lug groove. It is preferable to incline in the reverse direction. By inclining the third lug groove in the opposite direction to the first lug groove, the second lug groove and the fifth lug groove in this way, the rigidity balance of the tread portion is made uniform, and the dry performance and the uneven wear resistance are balanced. It can improve well.

トレッド部のタイヤ赤道位置よりも車両外側の領域での溝面積比率は8%〜22%の範囲にあり、トレッド部のタイヤ赤道位置よりも車両内側の領域での溝面積比率は22%〜40%の範囲にあることが好ましい。このように車両外側の領域での溝面積比率を相対的に小さくすることにより、コーナリング時の負荷をしっかりと受け止めることができるためドライ路面での操縦安定性が向上し、更にはトレッド部の摩耗を抑制することができる。また、車両内側の領域での溝面積比率を相対的に大きくすることにより、排水性を十分に確保することができる。   The groove area ratio in the region outside the vehicle from the tire equator position in the tread portion is in the range of 8% to 22%, and the groove area ratio in the region inside the vehicle from the tire equator position in the tread portion is from 22% to 40%. % Is preferable. By relatively reducing the groove area ratio in the area outside the vehicle in this way, the load during cornering can be firmly received, so the handling stability on the dry road surface is improved and the wear of the tread part is further improved. Can be suppressed. Moreover, drainage can be sufficiently ensured by relatively increasing the groove area ratio in the vehicle inner region.

第1ラグ溝乃至第6ラグ溝のタイヤ周方向のピッチ長Lはタイヤ外周長の1.5%〜3.5%の範囲にあることが好ましい。これにより、ドライ性能とウエット性能をバランス良く改善することができる。   The pitch length L in the tire circumferential direction of the first lug groove to the sixth lug groove is preferably in the range of 1.5% to 3.5% of the tire outer circumferential length. Thereby, dry performance and wet performance can be improved with good balance.

サブ溝は第4ラグ溝及び第5ラグ溝よりも浅いことが好ましい。車両外側の領域に位置するサブ溝を浅くすることにより、ドライ路面での操縦安定性を向上し、かつ耐偏摩耗性を向上することができる。   The sub-groove is preferably shallower than the fourth lug groove and the fifth lug groove. By making the sub-groove located in the region outside the vehicle shallow, it is possible to improve the steering stability on the dry road surface and to improve the uneven wear resistance.

第1ラグ溝乃至第6ラグ溝はいずれも湾曲し、第1ラグ溝、第2ラグ溝、第3ラグ溝及び第6ラグ溝の曲率半径はそれぞれ80mm〜360mmとし、第4ラグ溝及び第5ラグ溝の曲率半径はそれぞれ8mm〜40mmとすることが好ましい。このように各ラグ溝を湾曲させることにより、制駆動時や旋回時に損傷を受け易いラグ溝に掛かる力を分散し、偏摩耗を回避することができる。   The first to sixth lug grooves are all curved, and the radius of curvature of the first lug groove, the second lug groove, the third lug groove, and the sixth lug groove is set to 80 mm to 360 mm, respectively. Each of the 5 lug grooves preferably has a radius of curvature of 8 mm to 40 mm. By curving each lug groove in this way, it is possible to disperse the force applied to the lug groove that is easily damaged during braking and turning, and avoid uneven wear.

本発明において、各寸法はタイヤを正規リムにリム組みして正規内圧を充填した状態で測定されるものである。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE ROAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”であるが、タイヤが乗用車である場合には180kPaとする。   In the present invention, each dimension is measured in a state in which a tire is assembled on a regular rim and filled with a regular internal pressure. The “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO. Then, “Measuring Rim” is set. “Regular internal pressure” is the air pressure that each standard defines for each tire in the standard system including the standard on which the tire is based. The maximum air pressure is JATMA, and the table “TIRE ROAD LIMITS AT VARIOUS” is TRA. The maximum value described in “COLD INFRATION PRESURES”, “INFLATION PRESURE” for ETRTO, but 180 kPa when the tire is a passenger car.

本発明において、タイヤ接地幅TLは上述した測定条件にて測定されるタイヤ断面幅Tの85%と定義される。溝面積比率とは、タイヤ接地幅TLにて規定される接地領域内での溝面積比率である。この溝面積比率は各領域の総面積(陸部及び溝部を含む)に対する各領域内の溝部の総面積の比率(%)である。   In the present invention, the tire ground contact width TL is defined as 85% of the tire cross-sectional width T measured under the measurement conditions described above. The groove area ratio is a groove area ratio in the contact area defined by the tire contact width TL. The groove area ratio is a ratio (%) of the total area of the groove portions in each region to the total area (including the land portion and the groove portion) of each region.

本発明の実施形態からなる空気入りタイヤを示す斜視図である。1 is a perspective view showing a pneumatic tire according to an embodiment of the present invention. 図1の空気入りタイヤを示す正面図である。It is a front view which shows the pneumatic tire of FIG. 図1の空気入りタイヤを示す子午線断面図である。It is meridian sectional drawing which shows the pneumatic tire of FIG. 図1の空気入りタイヤのトレッドパターンを示す展開図である。FIG. 2 is a development view showing a tread pattern of the pneumatic tire of FIG. 1. 従来例の空気入りタイヤのトレッドパターンを示す展開図である。It is an expanded view which shows the tread pattern of the pneumatic tire of a prior art example. 比較例の空気入りタイヤのトレッドパターンを示す展開図である。It is an expanded view which shows the tread pattern of the pneumatic tire of a comparative example.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1〜図4は本発明の実施形態からなる空気入りタイヤを示すものである。この空気入りタイヤは、車両装着時におけるタイヤ表裏の装着方向が指定されたタイヤである。図1〜図4において、INは車両装着時の車両内側であり、OUTは車両装着時の車両外側である。このような装着方向はタイヤ外表面の任意の部位に表示される。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. 1 to 4 show a pneumatic tire according to an embodiment of the present invention. This pneumatic tire is a tire in which the mounting direction of the tire front and back when the vehicle is mounted is designated. 1 to 4, IN is the inside of the vehicle when the vehicle is mounted, and OUT is the outside of the vehicle when the vehicle is mounted. Such a mounting direction is displayed on any part of the outer surface of the tire.

図1〜図3に示すように、本実施形態の空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部1と、該トレッド部1の両側に配置された一対のサイドウォール部2,2と、これらサイドウォール部2のタイヤ径方向内側に配置された一対のビード部3,3とを備えている。   As shown in FIGS. 1 to 3, the pneumatic tire of the present embodiment includes a tread portion 1 that extends in the tire circumferential direction and has an annular shape, and a pair of sidewall portions that are disposed on both sides of the tread portion 1. 2 and 2 and a pair of bead portions 3 and 3 disposed on the inner side in the tire radial direction of the sidewall portions 2.

一対のビード部3,3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りにタイヤ内側から外側へ折り返されている。ビードコア5の外周上には断面三角形状のゴム組成物からなるビードフィラー6が配置されている。   A carcass layer 4 is mounted between the pair of bead portions 3 and 3. The carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded from the inside of the tire to the outside around the bead core 5 disposed in each bead portion 3. A bead filler 6 made of a rubber composition having a triangular cross-section is disposed on the outer periphery of the bead core 5.

一方、トレッド部1におけるカーカス層4の外周側には複数層のベルト層7が埋設されている。これらベルト層7はタイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。ベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°〜40°の範囲に設定されている。ベルト層7の補強コードとしては、スチールコードが好ましく使用される。ベルト層7の外周側には、高速耐久性の向上を目的として、補強コードをタイヤ周方向に対して例えば5°以下の角度で配列してなる少なくとも1層のベルトカバー層8が配置されている。ベルトカバー層8の補強コードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。   On the other hand, a plurality of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1. These belt layers 7 include a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and are arranged so that the reinforcing cords cross each other between the layers. In the belt layer 7, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in a range of, for example, 10 ° to 40 °. A steel cord is preferably used as the reinforcing cord of the belt layer 7. For the purpose of improving high-speed durability, at least one belt cover layer 8 in which reinforcing cords are arranged at an angle of, for example, 5 ° or less with respect to the tire circumferential direction is disposed on the outer peripheral side of the belt layer 7. Yes. As the reinforcing cord of the belt cover layer 8, an organic fiber cord such as nylon or aramid is preferably used.

なお、上述したタイヤ内部構造は空気入りタイヤにおける代表的な例を示すものであるが、これに限定されるものではない。   In addition, although the tire internal structure mentioned above shows the typical example in a pneumatic tire, it is not limited to this.

図4に示すように、トレッド部1のセンター領域にはタイヤ周方向に延びる第1主溝11が形成され、トレッド部1のタイヤ赤道位置CLよりも車両内側の領域にはタイヤ周方向に延びる第2主溝12が形成され、トレッド部1のタイヤ赤道位置CLよりも車両外側の領域にはタイヤ周方向に延びるサブ溝13が形成されている。第1主溝11及び第2主溝は新品時の最大溝幅が2.5mm以上であり、かつ溝深さが3.5mm以上のものである。一方、サブ溝13は溝幅及び溝深さの少なくとも一方が第1主溝11及び第2主溝12に関する上記規定よりも小さいものである。   As shown in FIG. 4, a first main groove 11 extending in the tire circumferential direction is formed in the center region of the tread portion 1, and extends in the tire circumferential direction in a region on the vehicle inner side than the tire equator position CL of the tread portion 1. A second main groove 12 is formed, and a sub-groove 13 extending in the tire circumferential direction is formed in a region outside the vehicle from the tire equator position CL of the tread portion 1. The first main groove 11 and the second main groove have a maximum groove width of 2.5 mm or more when new and a groove depth of 3.5 mm or more. On the other hand, at least one of the groove width and the groove depth of the sub-groove 13 is smaller than the above definition regarding the first main groove 11 and the second main groove 12.

タイヤ断面幅T(図2参照)の85%をタイヤ接地幅TLとしたとき、第1主溝11の中心位置からタイヤ赤道位置CLまでの距離GL1はタイヤ接地幅TLの半幅TL/2の6%以下に設定され、第2主溝12の中心位置からタイヤ赤道位置CLまでの距離GL2はタイヤ接地幅TLの半幅TL/2の40%〜65%に設定され、サブ溝13の中心位置からタイヤ赤道位置CLまでの距離GL3はタイヤ接地幅TLの半幅TL/2の40%〜65%に設定されている。これにより、第2主溝12よりも車両内側に第1リブ21が区画され、第2主溝12と第1主溝11との間に第2リブ22が区画され、第1主溝11とサブ溝13との間に第3リブ23が区画され、サブ溝13よりも車両外側に第4リブ24が区画されている。   When 85% of the tire cross-sectional width T (see FIG. 2) is the tire ground contact width TL, the distance GL1 from the center position of the first main groove 11 to the tire equator position CL is 6 which is a half width TL / 2 of the tire ground contact width TL. %, And the distance GL2 from the center position of the second main groove 12 to the tire equator position CL is set to 40% to 65% of the half width TL / 2 of the tire ground contact width TL, and from the center position of the sub-groove 13 The distance GL3 to the tire equator position CL is set to 40% to 65% of the half width TL / 2 of the tire ground contact width TL. Thus, the first rib 21 is defined on the vehicle inner side than the second main groove 12, and the second rib 22 is defined between the second main groove 12 and the first main groove 11. A third rib 23 is defined between the sub-groove 13 and a fourth rib 24 is defined on the vehicle outer side than the sub-groove 13.

更に、トレッド部1には、複数本の第1ラグ溝31、複数本の第2ラグ溝32、複数本の第3ラグ溝33、複数本の第4ラグ溝34、複数本の第5ラグ溝35、複数本の第6ラグ溝36がそれぞれタイヤ周方向に沿って間隔をおいて形成されている。第1ラグ溝31の各々は、一端が車両内側の接地端Einに到達し他端が第2主溝12に対して非連通となるように第1リブ21内で閉止した構造を有している。第2ラグ溝32の各々は、一端が第2主溝12に連通し他端が第2リブ22内で閉止した構造を有している。第3ラグ溝の各々は、一端が第1主溝11に連通し他端が第3リブ23内で閉止した構造を有している。第4ラグ溝の各々は、一端がサブ溝13に連通し他端が第3リブ23内で閉止した構造を有している。第5ラグ溝35の各々は、一端がサブ溝13に連通し他端が第4リブ24内で閉止した構造を有している。第6ラグ溝36の各々は、一端が車両外側の接地端Eoutに到達し他端がサブ溝13に対して非連通となるように第4リブ24内で閉止した構造を有している。ラグ溝31〜36の溝幅及び溝深さは特に限定されるものではなく、例えば、溝幅を3.5mm〜8.0mm(好ましくは4.5mm〜7.5mm)とし、溝深さを3.0mm〜7.0mm(好ましくは4.0mm〜7.0mm)とすれば良い。   Further, the tread portion 1 includes a plurality of first lug grooves 31, a plurality of second lug grooves 32, a plurality of third lug grooves 33, a plurality of fourth lug grooves 34, and a plurality of fifth lugs. A groove 35 and a plurality of sixth lug grooves 36 are formed at intervals along the tire circumferential direction. Each of the first lug grooves 31 has a structure in which one end reaches the grounding end Ein inside the vehicle and the other end is closed in the first rib 21 so as not to communicate with the second main groove 12. Yes. Each of the second lug grooves 32 has a structure in which one end communicates with the second main groove 12 and the other end is closed in the second rib 22. Each of the third lug grooves has a structure in which one end communicates with the first main groove 11 and the other end is closed in the third rib 23. Each of the fourth lug grooves has a structure in which one end communicates with the sub-groove 13 and the other end is closed in the third rib 23. Each of the fifth lug grooves 35 has a structure in which one end communicates with the sub-groove 13 and the other end is closed in the fourth rib 24. Each of the sixth lug grooves 36 has a structure closed in the fourth rib 24 so that one end reaches the grounding end Eout on the vehicle outer side and the other end is not in communication with the sub-groove 13. The groove width and groove depth of the lug grooves 31 to 36 are not particularly limited. For example, the groove width is set to 3.5 mm to 8.0 mm (preferably 4.5 mm to 7.5 mm), and the groove depth is set. What is necessary is just to be 3.0 mm-7.0 mm (preferably 4.0 mm-7.0 mm).

上述した空気入りタイヤでは、トレッド部1のセンター領域に第1主溝11を配置し、トレッド部1のタイヤ赤道位置CLよりも車両内側の領域に第2主溝12を配置し、トレッド部1のタイヤ赤道位置CLよりも車両外側の領域にサブ溝13を配置すると共に、トレッド部1にラグ溝31〜36を分散させて配置することにより、良好なウエット性能を維持しながら、トレッド部1の剛性バランスを最適化してドライ性能を改善することができる。しかも、ラグ溝31〜36の端部を閉止し、リブ21〜24を細分化しない構造とするので、これが各リブ21〜24の剛性を維持することと偏摩耗の抑制に大きく寄与する。そのため、上記トレッドパターンを有する空気入りタイヤによれば、ウエット性能とドライ性能と耐偏摩耗性をバランス良く改善することができる。   In the pneumatic tire described above, the first main groove 11 is disposed in the center region of the tread portion 1, the second main groove 12 is disposed in the region inside the vehicle from the tire equator position CL of the tread portion 1, and the tread portion 1. The sub-groove 13 is disposed in the region outside the vehicle from the tire equator position CL, and the lug grooves 31 to 36 are dispersed and disposed in the tread portion 1, thereby maintaining good wet performance and the tread portion 1. It is possible to improve the dry performance by optimizing the rigidity balance. In addition, since the end portions of the lug grooves 31 to 36 are closed and the ribs 21 to 24 are structured so as not to be subdivided, this greatly contributes to maintaining the rigidity of the ribs 21 to 24 and suppressing uneven wear. Therefore, according to the pneumatic tire having the tread pattern, wet performance, dry performance, and uneven wear resistance can be improved in a well-balanced manner.

ここで、第1主溝11の中心位置からタイヤ赤道位置CLまでの距離GL1がタイヤ接地幅TLの半幅TL/2の6%より大きいとウエット性能が低下する。第1主溝11の距離GL1は半幅TL/2の3%以下であると良い。特に、良好なウエット性能を発揮するために、第1主溝11はタイヤ赤道位置CLと重なる位置に配置されることが望ましい。接地面圧が高いトレッドセンター付近に第1主溝11を配置することで、効率良く排水することができる。なお、第1主溝11はタイヤ赤道位置CLに対して車両内側及び車両外側のいずれの側にずれていても良い。   Here, when the distance GL1 from the center position of the first main groove 11 to the tire equator position CL is larger than 6% of the half width TL / 2 of the tire ground contact width TL, the wet performance is deteriorated. The distance GL1 of the first main groove 11 is preferably 3% or less of the half width TL / 2. In particular, in order to exhibit good wet performance, the first main groove 11 is desirably disposed at a position overlapping the tire equator position CL. By disposing the first main groove 11 near the tread center where the contact surface pressure is high, drainage can be efficiently performed. The first main groove 11 may be shifted to either the vehicle inner side or the vehicle outer side with respect to the tire equator position CL.

また、第2主溝12の中心位置からタイヤ赤道位置CLまでの距離GL2がタイヤ接地幅TLの半幅TL/2の40%より小さいと第2リブ22の剛性が低下して操縦安定性や耐偏摩耗性が悪化し、逆に65%よりも大きいと第1リブ21の剛性が低下して操縦安定性や耐偏摩耗性が悪化する。   Further, if the distance GL2 from the center position of the second main groove 12 to the tire equator position CL is smaller than 40% of the half width TL / 2 of the tire contact width TL, the rigidity of the second rib 22 is lowered, and steering stability and resistance On the contrary, if it is larger than 65%, the rigidity of the first rib 21 is lowered, and the steering stability and uneven wear resistance are deteriorated.

更に、サブ溝13の中心位置からタイヤ赤道位置CLまでの距離GL3がタイヤ接地幅TLの半幅TL/2の40%より小さいと第3リブ23の剛性が低下して操縦安定性や耐偏摩耗性が悪化し、逆に65%よりも大きいと第4リブ24の剛性が低下して操縦安定性や耐偏摩耗性が悪化する。第2主溝12の距離GL2とサブ溝13の距離GL3は実質的に等しくするのが良い。   Further, if the distance GL3 from the center position of the sub-groove 13 to the tire equator position CL is smaller than 40% of the half width TL / 2 of the tire ground contact width TL, the rigidity of the third rib 23 is lowered, and steering stability and uneven wear resistance are reduced. On the other hand, if it is larger than 65%, the rigidity of the fourth rib 24 is lowered, and steering stability and uneven wear resistance are deteriorated. It is preferable that the distance GL2 of the second main groove 12 and the distance GL3 of the sub-groove 13 are substantially equal.

上記空気入りタイヤにおいて、第2ラグ溝32は一端が第2主溝12に連通するものであれば良く、その他端は第1リブ21内又は第2リブ22内で閉止することが可能である。同様に、第3ラグ溝33は一端が第1主溝11に連通するものであれば良く、その他端は第2リブ22内又は第3リブ23内で閉止することが可能である。しかしながら、第2ラグ溝32及び第3ラグ溝33は図示のように車両内側に向かって開口することが好ましい。これにより、車両外側からの入力に対する第2リブ22及び第3リブ23の剛性を維持し、ドライ路面での操縦安定性を向上することができる。   In the pneumatic tire, the second lug groove 32 only needs to have one end communicating with the second main groove 12, and the other end can be closed in the first rib 21 or the second rib 22. . Similarly, the third lug groove 33 only needs to have one end communicating with the first main groove 11, and the other end can be closed in the second rib 22 or the third rib 23. However, it is preferable that the second lug groove 32 and the third lug groove 33 open toward the inside of the vehicle as shown in the figure. Thereby, the rigidity of the 2nd rib 22 and the 3rd rib 23 with respect to the input from the vehicle outer side is maintained, and the steering stability on a dry road surface can be improved.

また、第1ラグ溝31は車両内側の接地端Einを横切って第1リブ21の車両内側の端部まで延在し、第6ラグ溝36は車両外側の接地端Eoutを横切り、該第6ラグ溝36の車両外側の端部が第4リブ24内で閉止することが好ましい。これにより、ドライ性能とウエット性能をバランス良く改善することができる。つまり、デザインエンドまで延長された車両内側の第1ラグ溝31はウエット性能の向上に寄与し、両端が閉止された車両外側の第6ラグ溝36はドライ性能の向上に寄与する。   The first lug groove 31 extends across the grounding end Ein on the vehicle inner side to the vehicle inner end of the first rib 21, and the sixth lug groove 36 crosses the grounding end Eout on the vehicle outer side, The end of the lug groove 36 on the vehicle outer side is preferably closed within the fourth rib 24. Thereby, dry performance and wet performance can be improved with good balance. That is, the first lug groove 31 on the vehicle inner side extended to the design end contributes to the improvement of the wet performance, and the sixth lug groove 36 on the outer side of the vehicle with both ends closed contributes to the improvement of the dry performance.

図4において、第2主溝12から第1ラグ溝31のタイヤ赤道側の閉止端までの距離RG1は第1リブ21の接地領域内での幅RL1の15%〜35%の範囲に設定され、第2主溝12から第2ラグ溝32の閉止端までの距離RG2は第2リブ22の幅RL2の30%〜65%の範囲に設定され、第1主溝11から第3ラグ溝33の閉止端までの距離RG3は第3リブ23の幅RL3の25%〜60%の範囲に設定され、サブ溝13から第4ラグ溝34の閉止端までの距離RG4は第3リブ23の幅RL3の15%〜40%の範囲に設定され、サブ溝13から第5ラグ溝35の閉止端までの距離RG5は第4リブ24の幅RL4の15%〜40%の範囲に設定され、サブ溝13から第6ラグ溝36の両側の閉止端までの距離RG6,RG7はそれぞれ第4リブ24のタイヤ接地領域内での幅RL4の25%〜45%の範囲に設定されている。これにより、ウエット性能とドライ性能と耐偏摩耗性をバランス良く改善することができる。   In FIG. 4, the distance RG1 from the second main groove 12 to the closed end of the first lug groove 31 on the tire equator side is set to a range of 15% to 35% of the width RL1 in the ground contact region of the first rib 21. The distance RG2 from the second main groove 12 to the closed end of the second lug groove 32 is set in a range of 30% to 65% of the width RL2 of the second rib 22, and the first main groove 11 to the third lug groove 33 are set. The distance RG3 to the closed end is set in the range of 25% to 60% of the width RL3 of the third rib 23, and the distance RG4 from the sub groove 13 to the closed end of the fourth lug groove 34 is the width of the third rib 23. The distance RG5 from the sub-groove 13 to the closed end of the fifth lug groove 35 is set to a range of 15% to 40% of the width RL4 of the fourth rib 24. The distances RG6 and RG7 from the groove 13 to the closed ends on both sides of the sixth lug groove 36 are Respectively it is set in a range of 25% to 45% of the width RL4 in the fourth rib 24 of the tire contact area. Thereby, wet performance, dry performance, and uneven wear resistance can be improved in a well-balanced manner.

ここで、第2主溝12から第1ラグ溝31の閉止端までの距離RG1が第1リブ21の幅RL1の15%よりも小さいと第1ラグ溝31が第2主溝12に近接するため剛性が低下して偏摩耗が発生し易くなり、逆に35%よりも大きいと排水性が低下する。特に、距離RG1は第1リブ21の幅RL1の20%〜30%であることが好ましい。   Here, when the distance RG1 from the second main groove 12 to the closed end of the first lug groove 31 is smaller than 15% of the width RL1 of the first rib 21, the first lug groove 31 comes close to the second main groove 12. For this reason, rigidity is lowered and uneven wear tends to occur. On the contrary, if it is larger than 35%, drainage performance is lowered. In particular, the distance RG1 is preferably 20% to 30% of the width RL1 of the first rib 21.

第2主溝12から第2ラグ溝32の閉止端までの距離RG2が第2リブ22の幅RL2の30%よりも小さいと第2リブ22の剛性が上がり過ぎて横力を適度に逃がすことができなくなるため偏摩耗が発生し易くなり、逆に65%よりも大きいと第2リブ22の剛性が下がり過ぎてドライ路面での操縦安定性が低下する。特に、距離RG2は第2リブ22の幅RL2の40%〜55%であることが好ましい。   If the distance RG2 from the second main groove 12 to the closed end of the second lug groove 32 is smaller than 30% of the width RL2 of the second rib 22, the rigidity of the second rib 22 is excessively increased and the lateral force is released appropriately. Therefore, uneven wear is likely to occur. On the other hand, if it exceeds 65%, the rigidity of the second rib 22 is too low, and the steering stability on the dry road surface is lowered. In particular, the distance RG2 is preferably 40% to 55% of the width RL2 of the second rib 22.

第1主溝11から第3ラグ溝33の閉止端までの距離RG3が第3リブ23の幅RL3の25%よりも小さいと第3リブ23の剛性が上がり過ぎて横力を適度に逃がすことができなくなるため偏摩耗が発生し易くなり、逆に60%よりも大きいと第3リブ23の剛性が下がり過ぎてドライ路面での操縦安定性が低下する。特に、距離RG3は第3リブ23の幅RL3の35%〜50%であることが好ましい。   If the distance RG3 from the first main groove 11 to the closed end of the third lug groove 33 is smaller than 25% of the width RL3 of the third rib 23, the rigidity of the third rib 23 is excessively increased and the lateral force is appropriately released. However, if it exceeds 60%, the rigidity of the third rib 23 decreases too much, and the steering stability on the dry road surface decreases. In particular, the distance RG3 is preferably 35% to 50% of the width RL3 of the third rib 23.

サブ溝13から第4ラグ溝34の閉止端までの距離RG4が第3リブ23の幅RL3の15%よりも小さいと第3リブ23の剛性が上がり過ぎて横力を適度に逃がすことができなくなるため偏摩耗が発生し易くなり、逆に40%よりも大きいと第3リブ23の剛性が下がり過ぎてドライ路面での操縦安定性が低下する。特に、距離RG4は第3リブ23の幅RL3の20%〜30%であることが好ましい。   If the distance RG4 from the sub-groove 13 to the closed end of the fourth lug groove 34 is smaller than 15% of the width RL3 of the third rib 23, the rigidity of the third rib 23 is excessively increased and the lateral force can be released appropriately. Therefore, uneven wear is likely to occur. Conversely, if it exceeds 40%, the rigidity of the third rib 23 is excessively lowered, and the driving stability on the dry road surface is lowered. In particular, the distance RG4 is preferably 20% to 30% of the width RL3 of the third rib 23.

サブ溝13から第5ラグ溝35の閉止端までの距離RG5が第4リブ24の幅RL4の15%よりも小さいと第4リブ24の剛性が上がり過ぎて横力を適度に逃がすことができなくなるため偏摩耗が発生し易くなり、逆に40%よりも大きいと第4リブ24の剛性が下がり過ぎてドライ路面での操縦安定性が低下する。特に、距離RG4は第4リブ24の幅RL4の20%〜30%であることが好ましい。   If the distance RG5 from the sub-groove 13 to the closed end of the fifth lug groove 35 is smaller than 15% of the width RL4 of the fourth rib 24, the rigidity of the fourth rib 24 is excessively increased and the lateral force can be released appropriately. Therefore, uneven wear is likely to occur, and conversely, if it exceeds 40%, the rigidity of the fourth rib 24 is too low and the steering stability on the dry road surface is lowered. In particular, the distance RG4 is preferably 20% to 30% of the width RL4 of the fourth rib 24.

サブ溝13から第6ラグ溝36の両側の閉止端までの距離RG6,RG7が第4リブ24の幅RL4の25%よりも小さいとコーナリング時のウエット性能が低下し、逆に45%よりも大きいとドライ路面での操縦安定性が低下する。特に、距離RG6,RG7は第4リブ24の幅RL4の30%〜40%であることが好ましい。   If the distances RG6, RG7 from the sub-groove 13 to the closed ends on both sides of the sixth lug groove 36 are smaller than 25% of the width RL4 of the fourth rib 24, the wet performance during cornering is degraded, and conversely than 45%. If it is large, the handling stability on the dry road surface is lowered. In particular, the distances RG6 and RG7 are preferably 30% to 40% of the width RL4 of the fourth rib 24.

図4において、第1ラグ溝31及び第6ラグ溝36のタイヤ周方向に対する傾斜角度α1,α6はそれぞれ70°〜90°の範囲に設定され、第2ラグ溝32、第3ラグ溝33、第4ラグ溝34及び第5ラグ溝35のタイヤ周方向に対する傾斜角度α2,α3,α4,α5はそれぞれ45°〜80°の範囲に設定されている。これにより、ウエット性能とドライ性能と耐偏摩耗性をバランス良く改善することができる。なお、傾斜角度α1〜α6は第1ラグ溝31乃至第6ラグ溝36の各々において両端の溝幅中心位置同士を結ぶ直線のタイヤ周方向に対する傾斜角度である。   In FIG. 4, the inclination angles α1 and α6 of the first lug groove 31 and the sixth lug groove 36 with respect to the tire circumferential direction are set in a range of 70 ° to 90 °, respectively, and the second lug groove 32, the third lug groove 33, The inclination angles α2, α3, α4, and α5 of the fourth lug groove 34 and the fifth lug groove 35 with respect to the tire circumferential direction are set in the range of 45 ° to 80 °, respectively. Thereby, wet performance, dry performance, and uneven wear resistance can be improved in a well-balanced manner. The inclination angles α1 to α6 are inclination angles with respect to the tire circumferential direction of a straight line connecting the groove width center positions at both ends in each of the first lug groove 31 to the sixth lug groove 36.

ここで、第1ラグ溝31及び第6ラグ溝36のタイヤ周方向に対する傾斜角度α1,α6が70°より小さいと回転時の方向性が強くなり、一方向への回転時に比べて他方向への回転時の排水性が低下することになる。上記トレッドパターンは車両に対する装着方向が指定されるものの、回転方向が指定されるものではない。特に、傾斜角度α1,α6は75°〜85°であることが好ましい。   Here, if the inclination angles α1 and α6 of the first lug groove 31 and the sixth lug groove 36 with respect to the tire circumferential direction are smaller than 70 °, the directionality at the time of rotation becomes strong, and the direction to the other direction is greater than at the time of rotation in one direction. The drainage at the time of rotation will decrease. The tread pattern specifies the mounting direction with respect to the vehicle, but does not specify the rotation direction. In particular, the inclination angles α1, α6 are preferably 75 ° to 85 °.

第2ラグ溝32、第3ラグ溝33、第4ラグ溝34及び第5ラグ溝35のタイヤ周方向に対する傾斜角度α2,α3,α4,α5が45°よりも小さいと対応するリブ22,23,24の剛性が低下するため特にドライ路面でのコーナリング時における操縦安定性が低下し、逆に80°よりも大きいと制駆動時に偏摩耗が発生し易くなる。特に、傾斜角度α2〜α5は50°〜70°であることが好ましい。   If the inclination angles α2, α3, α4, α5 with respect to the tire circumferential direction of the second lug groove 32, the third lug groove 33, the fourth lug groove 34, and the fifth lug groove 35 are smaller than 45 °, the corresponding ribs 22, 23 24, the steering stability is lowered particularly when cornering on a dry road surface. Conversely, if the angle is greater than 80 °, uneven wear tends to occur during braking / driving. In particular, the inclination angles α2 to α5 are preferably 50 ° to 70 °.

上記空気入りタイヤにおいて、第1主溝11及び第2主溝12の溝幅GW1,GW2はそれぞれ8mm〜16mmとし、サブ溝13の溝幅GW3は1mm〜2.5mmであることが好ましい。これにより、ドライ性能とウエット性能をバランス良く改善することができる。   In the pneumatic tire, it is preferable that the groove widths GW1 and GW2 of the first main groove 11 and the second main groove 12 are 8 mm to 16 mm, respectively, and the groove width GW3 of the sub groove 13 is 1 mm to 2.5 mm. Thereby, dry performance and wet performance can be improved with good balance.

ここで、第1主溝11及び第2主溝12の溝幅GW1,GW2が8mmよりも小さいと排水性が低下し、逆に16mmよりも大きいとコーナリング時に発生する横力により第1主溝11及び第2主溝12の位置でトレッド部1にバックリングが発生し易くなる。特に、溝幅GW1,GW2は10mm〜14mmであることが好ましい。また、第1主溝11及び第2主溝12の溝深さは5mm〜7mmとするのが良い。その溝深さが5mmよりも小さいとウエット性能が低下し、逆に7mmよりも大きいと操縦安定性が低下する。特に、第1主溝11及び第2主溝12の溝深さは5.5mm〜6.5mmであることが好ましい。   Here, if the groove widths GW1 and GW2 of the first main groove 11 and the second main groove 12 are smaller than 8 mm, the drainage performance is deteriorated. Conversely, if the groove width GW1 and GW2 is larger than 16 mm, the first main groove is caused by a lateral force generated during cornering. Buckling is likely to occur in the tread portion 1 at the positions of 11 and the second main groove 12. In particular, the groove widths GW1 and GW2 are preferably 10 mm to 14 mm. The groove depths of the first main groove 11 and the second main groove 12 are preferably 5 mm to 7 mm. If the groove depth is smaller than 5 mm, the wet performance is lowered, and conversely if it is larger than 7 mm, the steering stability is lowered. In particular, the groove depths of the first main groove 11 and the second main groove 12 are preferably 5.5 mm to 6.5 mm.

一方、サブ溝13の溝幅GW3が1mmよりも小さいとウエット性能が低下し、逆に2.5mmよりも大きいと操縦安定性が低下する。特に、サブ溝13の溝幅GW3は第1主溝11及び第2主溝12の溝深さの20%〜90%であることが好ましい。   On the other hand, when the groove width GW3 of the sub-groove 13 is smaller than 1 mm, the wet performance is deteriorated. Conversely, when the groove width GW3 is larger than 2.5 mm, the steering stability is deteriorated. In particular, the groove width GW3 of the sub-groove 13 is preferably 20% to 90% of the groove depth of the first main groove 11 and the second main groove 12.

上記空気入りタイヤにおいて、第2ラグ溝32と第3ラグ溝33とはタイヤ周方向に沿って交互に配置され、第3ラグ溝33と第4ラグ溝34及び第5ラグ溝35とはタイヤ周方向に沿って交互に配置され、第4ラグ溝及び第5ラグ溝と第6ラグ溝とはタイヤ周方向に沿って交互に配置されている。このように隣り合うラグ溝同士を千鳥状に配置することにより、トレッド部1の剛性バランスを均一化し、その結果、ドライ路面での操縦安定性を向上し、かつ偏摩耗を回避することができる。   In the pneumatic tire, the second lug grooves 32 and the third lug grooves 33 are alternately arranged along the tire circumferential direction, and the third lug grooves 33, the fourth lug grooves 34, and the fifth lug grooves 35 are tires. The fourth lug grooves, the fifth lug grooves, and the sixth lug grooves are alternately arranged along the tire circumferential direction. By arranging the adjacent lug grooves in a staggered manner in this way, the rigidity balance of the tread portion 1 can be made uniform, and as a result, the steering stability on the dry road surface can be improved and uneven wear can be avoided. .

また、第1ラグ溝31、第2ラグ溝32、第3ラグ溝33及び第5ラグ溝35が図示のように車両内側に向かって開口する場合、第3ラグ溝33のタイヤ幅方向に対する傾斜方向は第1ラグ溝31、第2ラグ溝32及び第5ラグ溝35のタイヤ幅方向に対する傾斜方向とは逆であることが好ましい。このようにトレッド部1のセンター領域に配置された第1主溝11に開口する第3ラグ溝33を第1ラグ溝31、第2ラグ溝32及び第5ラグ溝35とは逆方向に傾斜させることにより、トレッド部1の剛性バランスを均一化し、その結果、ドライ路面での操縦安定性を向上し、かつ偏摩耗を回避することができる。   In addition, when the first lug groove 31, the second lug groove 32, the third lug groove 33, and the fifth lug groove 35 open toward the inside of the vehicle as illustrated, the inclination of the third lug groove 33 with respect to the tire width direction. The direction is preferably opposite to the inclination direction of the first lug groove 31, the second lug groove 32, and the fifth lug groove 35 with respect to the tire width direction. In this way, the third lug groove 33 opening in the first main groove 11 disposed in the center region of the tread portion 1 is inclined in the opposite direction to the first lug groove 31, the second lug groove 32, and the fifth lug groove 35. By doing so, the rigidity balance of the tread portion 1 can be made uniform, and as a result, steering stability on a dry road surface can be improved and uneven wear can be avoided.

上記空気入りタイヤにおいて、トレッド部1のタイヤ赤道位置CLよりも車両外側の領域での溝面積比率は8%〜22%の範囲にあり、トレッド部1のタイヤ赤道位置CLよりも車両内側の領域での溝面積比率は22%〜40%の範囲にあると良い。このように車両外側の領域での溝面積比率を相対的に小さくすることにより、コーナリング時の負荷をしっかりと受け止めることができるためドライ路面での操縦安定性が向上し、更にはトレッド部1の摩耗を抑制することができる。特に、車両外側領域での溝面積比率は12%〜20%の範囲にあることが好ましい。また、車両内側の領域での溝面積比率を相対的に大きくすることにより、排水性を十分に確保することができる。特に、車両内側領域での溝面積比率は25%〜35%の範囲にあることが好ましい。   In the pneumatic tire, the groove area ratio in the region outside the vehicle from the tire equator position CL of the tread portion 1 is in the range of 8% to 22%, and the region inside the vehicle from the tire equator position CL of the tread portion 1 The groove area ratio is preferably in the range of 22% to 40%. Thus, by relatively reducing the groove area ratio in the region outside the vehicle, it is possible to firmly receive the load during cornering, so that the handling stability on the dry road surface is improved, and further, the tread portion 1 Wear can be suppressed. In particular, the groove area ratio in the vehicle outer region is preferably in the range of 12% to 20%. Moreover, drainage can be sufficiently ensured by relatively increasing the groove area ratio in the vehicle inner region. In particular, the groove area ratio in the vehicle inner region is preferably in the range of 25% to 35%.

第1ラグ溝31乃至第6ラグ溝36のタイヤ周方向のピッチ長Lはタイヤ外周長の1.5%〜3.5%の範囲にあると良い。これにより、ドライ性能とウエット性能をバランス良く改善することができる。第1ラグ溝31乃至第6ラグ溝36のピッチ長Lがタイヤ外周長の1.5%よりも小さいと操縦安定性が低下し、逆に3.5%よりも大きいとウエット性能が低下する。特に、ピッチ長Lはタイヤ外周長の2%〜3%の範囲にあることが好ましい。   The pitch length L in the tire circumferential direction of the first lug groove 31 to the sixth lug groove 36 is preferably in the range of 1.5% to 3.5% of the tire outer circumferential length. Thereby, dry performance and wet performance can be improved with good balance. When the pitch length L of the first lug groove 31 to the sixth lug groove 36 is smaller than 1.5% of the tire outer peripheral length, the steering stability is lowered, and conversely, when the pitch length L is larger than 3.5%, the wet performance is lowered. . In particular, the pitch length L is preferably in the range of 2% to 3% of the tire outer peripheral length.

サブ溝13はそれに連通する第4ラグ溝34及び第5ラグ溝35よりも浅いものとするのが良い。車両外側の領域に位置するサブ溝13を浅くすることにより、ドライ路面での操縦安定性を向上し、かつ偏摩耗や損傷を低減することができる。   The sub groove 13 is preferably shallower than the fourth lug groove 34 and the fifth lug groove 35 communicating with the sub groove 13. By making the sub-groove 13 located in the region outside the vehicle shallower, it is possible to improve steering stability on the dry road surface and reduce uneven wear and damage.

更に、第1ラグ溝31乃至第6ラグ溝36はいずれも湾曲したものであると良い。そして、タイヤ周方向に延びる第1主溝11又はサブ溝13に連通しない第1ラグ溝31及び第6ラグ溝36の曲率半径RR1,RR6、並びに、第1主溝11又は第2主溝12に連通する第2ラグ溝32及び第3ラグ溝33の曲率半径RR2,RR3はそれぞれ80mm〜360mmとし、サブ溝13に連通する第4ラグ溝34及び第5ラグ溝35の曲率半径RR4,RR5はそれぞれ8mm〜40mmとすると良い。このように各ラグ溝31〜36を湾曲させることにより、制駆動時や旋回時に損傷を受け易いラグ溝31〜36に掛かる力を分散し、偏摩耗を回避することができる。特に、曲率半径RR1,RR2,RR3,RR6は120mm〜240mmとし、曲率半径RR4,RR5は10mm〜25mmとすることが好ましい。ラグ溝31〜36の各々において、単一の曲率半径を適用しても良く、或いは、複数の曲率半径を組み合わせるようにしても良い。なお、曲率半径RR1〜RR6はラグ溝31〜36の中心線上に含まれる湾曲開始点と湾曲終了点とその中間点を通る円弧の曲率半径である。ラグ溝31〜36が屈曲部を有する場合、その屈曲部を除いた部分の平均曲率半径とする。   Furthermore, the first lug groove 31 to the sixth lug groove 36 are all preferably curved. And the curvature radius RR1, RR6 of the 1st lug groove 31 and the 6th lug groove 36 which are not connected to the 1st main groove 11 or subgroove 13 extended in the tire peripheral direction, and the 1st main groove 11 or the 2nd main groove 12 The radius of curvature RR2 and RR3 of the second lug groove 32 and the third lug groove 33 that communicate with each other is 80 mm to 360 mm, respectively, and the radius of curvature RR4 and RR5 of the fourth lug groove 34 and the fifth lug groove 35 that communicate with the sub-groove 13 Is preferably 8 mm to 40 mm. By curving the lug grooves 31 to 36 in this way, it is possible to disperse the force applied to the lug grooves 31 to 36 that are easily damaged during braking and turning, and to avoid uneven wear. In particular, the curvature radii RR1, RR2, RR3, RR6 are preferably 120 mm to 240 mm, and the curvature radii RR4, RR5 are preferably 10 mm to 25 mm. In each of the lug grooves 31 to 36, a single curvature radius may be applied, or a plurality of curvature radii may be combined. In addition, curvature radius RR1-RR6 is a curvature radius of the circular arc which passes along the curve start point and curve end point which are included on the centerline of the lug grooves 31-36, and its intermediate point. When the lug grooves 31 to 36 have a bent portion, the average curvature radius of the portion excluding the bent portion is used.

タイヤサイズ205/55R16 91Vで、車両に対する装着方向が指定された空気入りタイヤにおいて、図1〜図4に示すように、トレッド部のセンター領域にタイヤ周方向に延びる第1主溝を設け、トレッド部のタイヤ赤道位置よりも車両内側の領域にタイヤ周方向に延びる第2主溝を設け、トレッド部のタイヤ赤道位置よりも車両外側の領域にタイヤ周方向に延びるサブ溝を設け、トレッド部に第1リブ乃至第4リブを区画し、トレッド部に第1ラグ溝乃至第6ラグ溝を設けると共に、第1主溝の位置〔GL1/(TL/2)×100%〕と溝幅GW1、第2主溝の位置〔GL2/(TL/2)×100%〕と溝幅GW2、サブ溝の位置〔GL3/(TL/2)×100%〕と溝幅GW3、第1ラグ溝の閉止位置〔RG1/RL1×100%〕と傾斜角度α1、第2ラグ溝の閉止位置〔RG2/RL2×100%〕と傾斜角度α2、第3ラグ溝の閉止位置〔RG3/RL3×100%〕と傾斜角度α3、第4ラグ溝の閉止位置〔RG4/RL3×100%〕と傾斜角度α4、第5ラグ溝の閉止位置〔RG5/RL4×100%〕と傾斜角度α5、第6ラグ溝の閉止位置〔RG6/RL4×100%,RG7/RL4×100%〕と傾斜角度α6を表1及び表2のように設定した実施例1〜5及び比較例1〜4のタイヤをそれぞれ製作した。   In a pneumatic tire having a tire size of 205 / 55R16 91V and designated in a vehicle mounting direction, as shown in FIGS. 1 to 4, a tread is provided with a first main groove extending in the tire circumferential direction in the center region of the tread portion. A second main groove extending in the tire circumferential direction is provided in a region inside the vehicle from the tire equator position of the tire, and a sub groove extending in the tire circumferential direction is provided in a region outside the vehicle from the tire equator position of the tread portion. The first rib to the fourth rib are divided, the first lug groove to the sixth lug groove are provided in the tread portion, the position of the first main groove [GL1 / (TL / 2) × 100%] and the groove width GW1, Position of second main groove [GL2 / (TL / 2) × 100%] and groove width GW2, position of sub-groove [GL3 / (TL / 2) × 100%] and groove width GW3, closing of first lug groove Position [RG1 / RL1 × 10 0%] and inclination angle α1, second lug groove closing position [RG2 / RL2 × 100%] and inclination angle α2, third lug groove closing position [RG3 / RL3 × 100%] and inclination angle α3, fourth Lug groove closing position [RG4 / RL3 × 100%] and inclination angle α4, fifth lug groove closing position [RG5 / RL4 × 100%] and inclination angle α5, sixth lug groove closing position [RG6 / RL4 × 100%, RG7 / RL4 × 100%] and tires of Examples 1 to 5 and Comparative Examples 1 to 4 in which the inclination angle α6 is set as shown in Tables 1 and 2, respectively.

比較のため、図5に示すように、トレッド部(41)のセンター領域においてタイヤ周方向に延びる複数本の主溝(42)とトレッド部のショルダー領域においてタイヤ幅方向に延びる複数本のラグ溝(43,44)を備えた従来例1のタイヤを用意した。更に、図6に示すように、サブ溝を排除し、ラグ溝を主溝に対して非連通としたこと以外は実施例1と同様の構造を有する比較例5のタイヤを用意した。   For comparison, as shown in FIG. 5, a plurality of main grooves (42) extending in the tire circumferential direction in the center region of the tread portion (41) and a plurality of lug grooves extending in the tire width direction in the shoulder region of the tread portion. A tire of Conventional Example 1 having (43, 44) was prepared. Further, as shown in FIG. 6, a tire of Comparative Example 5 having the same structure as Example 1 was prepared except that the sub-groove was excluded and the lug groove was not communicated with the main groove.

なお、第1主溝の位置として正値と負値を記載しているが、正値は第1主溝がタイヤ赤道位置よりも車両内側にシフトしている場合を意味し、負値は第1主溝がタイヤ赤道位置よりも車両外側にシフトしている場合を意味する。   In addition, although the positive value and the negative value are described as the position of the first main groove, the positive value means that the first main groove is shifted to the vehicle inner side than the tire equator position, and the negative value is the first value. This means that one main groove is shifted to the vehicle outer side than the tire equator position.

これら試験タイヤについて、下記試験方法により、ドライ性能(操縦安定性、走行タイム)、耐偏摩耗性、ウエット性能(操縦安定性、ハイドロプレーニング発生速度)を評価し、その結果を表1及び表2に併せて示した。各評価は、試験タイヤをリムサイズ16×7JJのホイールに組み付けて排気量2000ccの後輪駆動車に装着し、ウォームアップ後の空気圧を220kPaとした条件にて行った。   For these test tires, dry performance (steering stability, running time), uneven wear resistance, wet performance (steering stability, hydroplaning generation speed) were evaluated by the following test methods, and the results are shown in Tables 1 and 2. It was shown together. Each evaluation was performed under the condition that the test tire was mounted on a wheel having a rim size of 16 × 7 JJ and mounted on a rear-wheel drive vehicle having a displacement of 2000 cc, and the air pressure after warm-up was 220 kPa.

ドライ性能:
ドライ路面のサーキットにおいてテストドライバーによる走行試験を実施し、サーキットを7周走行したときの走行タイムを計測すると同時に、その際の操縦安定性を官能評価した。ドライ路面での操縦安定性は従来例1を5点とする10点満点で評価した。この評価点が大きいほどドライ路面での操縦安定性が優れていることを意味する。走行タイムについては、ベストタイムと、ベストタイム及びワーストタイムを除いた5周の平均タイムとを求めた。走行タイムの評価結果は、測定値の逆数を用い、従来例1を100とする指数にて示した。この指数値が大きいほど走行タイムが短いことを意味する。
Dry performance:
A driving test was conducted by a test driver on a circuit on a dry road surface, and the driving time when the circuit drove for seven laps was measured, and at the same time, the steering stability at that time was sensory evaluated. Steering stability on a dry road surface was evaluated on a 10-point scale with Conventional Example 1 being 5 points. The larger this evaluation point, the better the steering stability on the dry road surface. Regarding the running time, the best time and the average time of five laps excluding the best time and the worst time were obtained. The evaluation result of the running time is indicated by an index with the conventional example 1 as 100, using the reciprocal of the measured value. A larger index value means a shorter travel time.

耐偏摩耗性:
ドライ路面のサーキットにおいてテストドライバーによる走行試験を実施し、50kmの連続走行後、トレッド部に生じた偏摩耗の度合いを調べた。耐偏摩耗性については、偏摩耗の度合いを10点満点(10:優、9又は8:良、7又は6:可、5以下:不良)で評価した。この評価点が大きいほど耐偏摩耗性が優れていることを意味する。
Uneven wear resistance:
A running test with a test driver was performed on a circuit on a dry road surface, and after 50 km of continuous running, the degree of uneven wear occurring in the tread portion was examined. For uneven wear resistance, the degree of uneven wear was evaluated on a 10-point scale (10: excellent, 9 or 8: good, 7 or 6: acceptable, 5 or less: poor). The larger this evaluation point, the better the uneven wear resistance.

ウエット性能:
ウエット路面のサーキットにおいてテストドライバーによる走行試験を実施し、その際の操縦安定性を官能評価した。ウエット路面での操縦安定性は従来例1を5点とする10点満点で評価した。この評価点が大きいほどウエット路面での操縦安定性が優れていることを意味する。また、一定の水深条件においてハイドロプレーニングの発生速度を計測した。ハイドロプレーニング発生速度の評価結果は、従来例1を100とする指数にて示した。この指数値が大きいほどハイドロプレーニング発生速度が高いことを意味する。
Wet performance:
A driving test was conducted by a test driver on a wet road circuit, and the steering stability at that time was sensory evaluated. Steering stability on a wet road surface was evaluated on a 10-point scale with Conventional Example 1 being 5 points. The larger this evaluation point, the better the steering stability on the wet road surface. In addition, the hydroplaning rate was measured under constant water depth conditions. The evaluation result of the hydroplaning generation speed is indicated by an index with the conventional example 1 as 100. A larger index value means higher hydroplaning generation speed.

Figure 2015160469
Figure 2015160469

Figure 2015160469
Figure 2015160469

この表1及び表2から判るように、実施例1〜5のタイヤは、従来例1との対比において、ウエット性能とドライ性能と耐偏摩耗性をバランス良く改善することができた。一方、比較例1,3,5のタイヤは、ドライ性能と耐偏摩耗性が良好であるものの、ウエット性能が劣っていた。また、比較例2,4のタイヤは、ウエット性能が良好であるものの、ドライ性能と耐偏摩耗性が劣っていた。   As can be seen from Table 1 and Table 2, the tires of Examples 1 to 5 were able to improve the wet performance, the dry performance, and the uneven wear resistance in a well-balanced manner in comparison with Conventional Example 1. On the other hand, the tires of Comparative Examples 1, 3, and 5 had poor dry performance and uneven wear resistance, but poor wet performance. In addition, the tires of Comparative Examples 2 and 4 had good wet performance but were inferior in dry performance and uneven wear resistance.

1 トレッド部
2 サイドウォール部
3 ビード部
11 第1主溝
12 第2主溝
13 サブ溝
21,22,23,24 リブ
31,32,33,34,35,36 ラグ溝
DESCRIPTION OF SYMBOLS 1 Tread part 2 Side wall part 3 Bead part 11 1st main groove 12 2nd main groove 13 Sub groove 21, 22, 23, 24 Rib 31, 32, 33, 34, 35, 36 Lug groove

Claims (12)

タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、車両に対する装着方向が指定された空気入りタイヤにおいて、
前記トレッド部のセンター領域にタイヤ周方向に延びる第1主溝を設け、前記トレッド部のタイヤ赤道位置よりも車両内側の領域にタイヤ周方向に延びる第2主溝を設け、前記トレッド部のタイヤ赤道位置よりも車両外側の領域にタイヤ周方向に延びて溝幅及び溝深さの少なくとも一方が前記第1主溝及び前記第2主溝よりも小さいサブ溝を設け、
前記第1主溝の中心位置からタイヤ赤道位置までの距離GL1をタイヤ接地幅TLの半幅TL/2の6%以下とし、前記第2主溝の中心位置からタイヤ赤道位置までの距離GL2をタイヤ接地幅TLの半幅TL/2の40%〜65%とし、前記サブ溝の中心位置からタイヤ赤道位置までの距離GL3をタイヤ接地幅TLの半幅TL/2の40%〜65%とし、
前記第2主溝よりも車両内側に第1リブを区画し、前記第2主溝と前記第1主溝との間に第2リブを区画し、前記第1主溝と前記サブ溝との間に第3リブを区画し、前記サブ溝よりも車両外側に第4リブを区画すると共に、
前記トレッド部に、一端が車両内側の接地端に到達し他端が前記第2主溝に対して非連通となるように第1リブ内で閉止した複数本の第1ラグ溝と、一端が前記第2主溝に連通し他端が第1リブ内又は第2リブ内で閉止した複数本の第2ラグ溝と、一端が前記第1主溝に連通し他端が第2リブ内又は第3リブ内で閉止した複数本の第3ラグ溝と、一端が前記サブ溝に連通し他端が第3リブ内で閉止した複数本の第4ラグ溝と、一端が前記サブ溝に連通し他端が第4リブ内で閉止した複数本の第5ラグ溝と、一端が車両外側の接地端に到達し他端が前記サブ溝に対して非連通となるように第4リブ内で閉止した複数本の第6ラグ溝を設けたことを特徴とする空気入りタイヤ。
An annular tread portion extending in the tire circumferential direction, a pair of sidewall portions disposed on both sides of the tread portion, and a pair of bead portions disposed on the inner side in the tire radial direction of the sidewall portions. In a pneumatic tire with a specified mounting direction for the vehicle,
A first main groove extending in the tire circumferential direction is provided in a center region of the tread portion, and a second main groove extending in the tire circumferential direction is provided in a region inside the vehicle from the tire equator position of the tread portion, and the tire of the tread portion. A sub-groove extending in the tire circumferential direction in a region outside the vehicle from the equator position and having at least one of a groove width and a groove depth smaller than the first main groove and the second main groove;
The distance GL1 from the center position of the first main groove to the tire equator position is 6% or less of the half width TL / 2 of the tire ground contact width TL, and the distance GL2 from the center position of the second main groove to the tire equator position is the tire. 40% to 65% of the half width TL / 2 of the ground contact width TL, and the distance GL3 from the center position of the sub-groove to the tire equator position is 40% to 65% of the half width TL / 2 of the tire ground contact width TL,
A first rib is defined inside the vehicle from the second main groove, a second rib is defined between the second main groove and the first main groove, and the first main groove and the sub-groove A third rib is defined in between, and a fourth rib is defined on the vehicle outer side than the sub-groove,
The tread portion has a plurality of first lug grooves closed in the first rib so that one end reaches a ground contact end inside the vehicle and the other end is not in communication with the second main groove, and one end is A plurality of second lug grooves that communicate with the second main groove and the other end is closed in the first rib or the second rib, and one end communicates with the first main groove and the other end is within the second rib or A plurality of third lug grooves closed in the third rib, one end communicating with the sub-groove, and the other end communicating with the fourth lug groove closed in the third rib, and one end communicating with the sub-groove A plurality of fifth lug grooves whose other ends are closed in the fourth rib, and one end that reaches the grounding end outside the vehicle and the other end that is not in communication with the sub-groove. A pneumatic tire comprising a plurality of closed sixth lug grooves.
前記第2ラグ溝及び前記第3ラグ溝が車両内側に向かって開口することを特徴とする請求項1に記載の空気入りタイヤ。   2. The pneumatic tire according to claim 1, wherein the second lug groove and the third lug groove are opened toward an inner side of the vehicle. 前記第1ラグ溝が車両内側の接地端を横切って前記第1リブの車両内側の端部まで延在し、前記第6ラグ溝が車両外側の接地端を横切り、該第6ラグ溝の車両外側の端部が第4リブ内で閉止することを特徴とする請求項2に記載の空気入りタイヤ。   The first lug groove extends across the ground contact end on the vehicle inner side to the vehicle inner end of the first rib, the sixth lug groove crosses the ground contact end on the vehicle outer side, and the sixth lug groove vehicle The pneumatic tire according to claim 2, wherein an outer end portion is closed in the fourth rib. 前記第2主溝から前記第1ラグ溝のタイヤ赤道側の閉止端までの距離RG1を前記第1リブの接地領域内での幅RL1の15%〜35%とし、前記第2主溝から前記第2ラグ溝の閉止端までの距離RG2を前記第2リブの幅RL2の30%〜65%とし、前記第1主溝から前記第3ラグ溝の閉止端までの距離RG3を前記第3リブの幅RL3の25%〜60%とし、前記サブ溝から前記第4ラグ溝の閉止端までの距離RG4を前記第3リブの幅RL3の15%〜40%とし、前記サブ溝から前記第5ラグ溝の閉止端までの距離RG5を前記第4リブの幅RL4の15%〜40%とし、前記サブ溝から前記第6ラグ溝の両側の閉止端までの距離RG6,RG7をそれぞれ前記第4リブのタイヤ接地領域内での幅RL4の25%〜45%としたことを特徴とする請求項3に記載の空気入りタイヤ。   The distance RG1 from the second main groove to the closed end on the tire equator side of the first lug groove is set to 15% to 35% of the width RL1 in the ground contact region of the first rib, and the distance from the second main groove to the above-mentioned The distance RG2 to the closed end of the second lug groove is 30% to 65% of the width RL2 of the second rib, and the distance RG3 from the first main groove to the closed end of the third lug groove is the third rib. The distance RG4 from the sub groove to the closed end of the fourth lug groove is 15% to 40% of the width RL3 of the third rib, and the fifth from the sub groove to the fifth RL3. The distance RG5 to the closed end of the lug groove is set to 15% to 40% of the width RL4 of the fourth rib, and the distances RG6 and RG7 from the sub groove to the closed ends on both sides of the sixth lug groove are set to the fourth. 25% to 45% of the width RL4 in the tire ground contact area of the rib The pneumatic tire according to claim 3, characterized in. 前記第1ラグ溝及び前記第6ラグ溝のタイヤ周方向に対する傾斜角度α1,α6をそれぞれ70°〜90°とし、前記第2ラグ溝、前記第3ラグ溝、前記第4ラグ溝及び前記第5ラグ溝のタイヤ周方向に対する傾斜角度α2,α3,α4,α5をそれぞれ45°〜80°としたことを特徴とする請求項4に記載の空気入りタイヤ。   The inclination angles α1 and α6 of the first lug groove and the sixth lug groove with respect to the tire circumferential direction are 70 ° to 90 °, respectively, and the second lug groove, the third lug groove, the fourth lug groove, and the 5. The pneumatic tire according to claim 4, wherein the inclination angles α <b> 2, α <b> 3, α <b> 4, and α <b> 5 with respect to the tire circumferential direction of the 5 lug grooves are 45 ° to 80 °, respectively. 前記第1主溝及び前記第2主溝の溝幅GW1,GW2をそれぞれ8mm〜16mmとし、前記サブ溝の溝幅GW3を1mm〜2.5mmとしたことを特徴とする請求項1〜5のいずれかに記載の空気入りタイヤ。   The groove widths GW1 and GW2 of the first main groove and the second main groove are 8 mm to 16 mm, respectively, and the groove width GW3 of the sub groove is 1 mm to 2.5 mm. The pneumatic tire according to any one of the above. 前記第2ラグ溝と前記第3ラグ溝とをタイヤ周方向に沿って交互に配置し、前記第3ラグ溝と前記第4ラグ溝及び前記第5ラグ溝とをタイヤ周方向に沿って交互に配置し、前記第4ラグ溝及び前記第5ラグ溝と前記第6ラグ溝とをタイヤ周方向に沿って交互に配置したことを特徴とする請求項1〜6のいずれかに記載の空気入りタイヤ。   The second lug grooves and the third lug grooves are alternately arranged along the tire circumferential direction, and the third lug grooves, the fourth lug grooves, and the fifth lug grooves are alternately arranged along the tire circumferential direction. The air according to claim 1, wherein the fourth lug groove, the fifth lug groove, and the sixth lug groove are alternately arranged along a tire circumferential direction. Enter tire. 前記第1ラグ溝、前記第2ラグ溝、前記第3ラグ溝及び前記第5ラグ溝が車両内側に向かって開口し、前記第3ラグ溝が前記第1ラグ溝、前記第2ラグ溝及び前記第5ラグ溝とは逆方向に傾斜することを特徴とする請求項1〜7のいずれかに記載の空気入りタイヤ。   The first lug groove, the second lug groove, the third lug groove, and the fifth lug groove are opened toward the vehicle inner side, and the third lug groove is the first lug groove, the second lug groove, and The pneumatic tire according to claim 1, wherein the pneumatic tire is inclined in a direction opposite to the fifth lug groove. 前記トレッド部のタイヤ赤道位置よりも車両外側の領域での溝面積比率が8%〜22%の範囲にあり、前記トレッド部のタイヤ赤道位置よりも車両内側の領域での溝面積比率が22%〜40%の範囲にあることを特徴とする請求項1〜8のいずれかに記載の空気入りタイヤ。   The groove area ratio in the region outside the vehicle from the tire equator position of the tread portion is in the range of 8% to 22%, and the groove area ratio in the region inside the vehicle from the tire equator position of the tread portion is 22%. The pneumatic tire according to claim 1, wherein the pneumatic tire is in a range of ˜40%. 前記第1ラグ溝乃至前記第6ラグ溝のタイヤ周方向のピッチ長Lがタイヤ外周長の1.5%〜3.5%の範囲にあることを特徴とする請求項1〜9のいずれかに記載の空気入りタイヤ。   The pitch length L in the tire circumferential direction of the first lug groove to the sixth lug groove is in a range of 1.5% to 3.5% of the tire outer circumferential length. Pneumatic tire described in 2. 前記サブ溝が前記第4ラグ溝及び前記第5ラグ溝よりも浅いことを特徴とする請求項1〜10のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein the sub-groove is shallower than the fourth lug groove and the fifth lug groove. 前記第1ラグ溝乃至前記第6ラグ溝がいずれも湾曲し、前記第1ラグ溝、前記第2ラグ溝、前記第3ラグ溝及び前記第6ラグ溝の曲率半径をそれぞれ80mm〜360mmとし、前記第4ラグ溝及び前記第5ラグ溝の曲率半径をそれぞれ8mm〜40mmとしたことを特徴とする請求項1〜11のいずれかに記載の空気入りタイヤ。   The first lug groove to the sixth lug groove are all curved, and the curvature radii of the first lug groove, the second lug groove, the third lug groove, and the sixth lug groove are 80 mm to 360 mm, respectively. The pneumatic tire according to any one of claims 1 to 11, wherein radii of curvature of the fourth lug groove and the fifth lug groove are 8 mm to 40 mm, respectively.
JP2014035642A 2014-02-26 2014-02-26 Pneumatic tire Active JP6044561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014035642A JP6044561B2 (en) 2014-02-26 2014-02-26 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014035642A JP6044561B2 (en) 2014-02-26 2014-02-26 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2015160469A true JP2015160469A (en) 2015-09-07
JP6044561B2 JP6044561B2 (en) 2016-12-14

Family

ID=54183876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014035642A Active JP6044561B2 (en) 2014-02-26 2014-02-26 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP6044561B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106515316A (en) * 2015-09-15 2017-03-22 住友橡胶工业株式会社 Pneumatic tire
KR20180089294A (en) * 2017-01-31 2018-08-08 스미토모 고무 고교 가부시키가이샤 Tire
CN108705901A (en) * 2017-03-30 2018-10-26 住友橡胶工业株式会社 Tire
JP2019206263A (en) * 2018-05-29 2019-12-05 住友ゴム工業株式会社 tire
JP2019214317A (en) * 2018-06-13 2019-12-19 住友ゴム工業株式会社 tire
JP2020059459A (en) * 2018-10-12 2020-04-16 住友ゴム工業株式会社 tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138678A (en) * 2003-11-05 2005-06-02 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2010132181A (en) * 2008-12-05 2010-06-17 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2011057141A (en) * 2009-09-11 2011-03-24 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2011207283A (en) * 2010-03-29 2011-10-20 Bridgestone Corp Tire
JP2013180637A (en) * 2012-03-01 2013-09-12 Yokohama Rubber Co Ltd:The Pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138678A (en) * 2003-11-05 2005-06-02 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2010132181A (en) * 2008-12-05 2010-06-17 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2011057141A (en) * 2009-09-11 2011-03-24 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2011207283A (en) * 2010-03-29 2011-10-20 Bridgestone Corp Tire
JP2013180637A (en) * 2012-03-01 2013-09-12 Yokohama Rubber Co Ltd:The Pneumatic tire

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106515316A (en) * 2015-09-15 2017-03-22 住友橡胶工业株式会社 Pneumatic tire
KR102344134B1 (en) * 2017-01-31 2021-12-29 스미토모 고무 코교 카부시키카이샤 Tire
KR20180089294A (en) * 2017-01-31 2018-08-08 스미토모 고무 고교 가부시키가이샤 Tire
JP2018122707A (en) * 2017-01-31 2018-08-09 住友ゴム工業株式会社 tire
CN108705901A (en) * 2017-03-30 2018-10-26 住友橡胶工业株式会社 Tire
JP2018167717A (en) * 2017-03-30 2018-11-01 住友ゴム工業株式会社 tire
JP2019206263A (en) * 2018-05-29 2019-12-05 住友ゴム工業株式会社 tire
JP7102945B2 (en) 2018-05-29 2022-07-20 住友ゴム工業株式会社 tire
JP2019214317A (en) * 2018-06-13 2019-12-19 住友ゴム工業株式会社 tire
JP7056392B2 (en) 2018-06-13 2022-04-19 住友ゴム工業株式会社 tire
JP2020059459A (en) * 2018-10-12 2020-04-16 住友ゴム工業株式会社 tire
CN111038180A (en) * 2018-10-12 2020-04-21 住友橡胶工业株式会社 Tyre for vehicle wheels
JP7155847B2 (en) 2018-10-12 2022-10-19 住友ゴム工業株式会社 tire
CN111038180B (en) * 2018-10-12 2023-03-28 住友橡胶工业株式会社 Tyre for vehicle wheels

Also Published As

Publication number Publication date
JP6044561B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6436080B2 (en) Pneumatic tire
JP5727965B2 (en) Pneumatic tire
JP5238050B2 (en) Pneumatic tire
JP5768909B1 (en) Pneumatic tire
JP5123980B2 (en) Pneumatic tire
JP6375851B2 (en) Pneumatic tire
JP6358030B2 (en) Pneumatic tire
JP6327100B2 (en) Pneumatic tire
JP6375850B2 (en) Pneumatic tire
JP6044561B2 (en) Pneumatic tire
JP6446979B2 (en) Pneumatic tire
KR20170074999A (en) Pneumatic tire
JP2012228993A (en) Pneumatic tire
JP2013189131A (en) Pneumatic tire
JP2017159752A (en) Pneumatic tire
JP2019199136A (en) Pneumatic tire
JP6597013B2 (en) Pneumatic tire
JP2017065625A (en) Pneumatic tire
JP6421652B2 (en) Pneumatic tire
JP2016055722A (en) Pneumatic tire
JP6446980B2 (en) Pneumatic tire
WO2019159544A1 (en) Pneumatic tire
JP5521730B2 (en) Pneumatic tire
JP2016196218A (en) Pneumatic tire
JP2016055725A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160706

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160706

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R150 Certificate of patent or registration of utility model

Ref document number: 6044561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250