JP2015159029A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015159029A
JP2015159029A JP2014032975A JP2014032975A JP2015159029A JP 2015159029 A JP2015159029 A JP 2015159029A JP 2014032975 A JP2014032975 A JP 2014032975A JP 2014032975 A JP2014032975 A JP 2014032975A JP 2015159029 A JP2015159029 A JP 2015159029A
Authority
JP
Japan
Prior art keywords
electrode
positive electrode
negative electrode
bag
electrode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014032975A
Other languages
Japanese (ja)
Inventor
三橋 利彦
Toshihiko Mihashi
利彦 三橋
章浩 落合
Akihiro Ochiai
章浩 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014032975A priority Critical patent/JP2015159029A/en
Publication of JP2015159029A publication Critical patent/JP2015159029A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which enables both of the improvement of high-rate charge and discharge characteristics, and the prevention of the increase in I-V resistance.SOLUTION: A nonaqueous electrolyte secondary battery comprises: an electrode body having a positive electrode, a negative electrode, a separator provided between the positive and negative electrodes, and an uncoated part of a collector, which is provided at one end of an electrode plate of at least one of the positive and negative electrodes in a widthwise direction thereof, and on which a mixture layer is not provided; an electrolyte at least held by the separator; a bag-shaped member in which the electrode body is provided, and which is put in contact with at least part of the external surface of the electrode body as a result of its heat shrinkage; and a collector lead connected with the uncoated part. The collector lead is provided on the uncoated part, and extends in a direction perpendicular to a widthwise direction of the electrode plate. In the direction perpendicular to the widthwise direction of the electrode plate, the collector lead located on the uncoated part is identical to the uncoated part in length.

Description

本発明は、電極体が内部に設けられ、熱収縮によって電極体の外面の少なくとも一部に接する袋状部材を備えた非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery including a bag-like member that has an electrode body provided therein and contacts at least a part of the outer surface of the electrode body by thermal contraction.

特許文献1(特開2013−251119号公報)には、電極体を内包する絶縁袋を熱収縮させることにより絶縁袋が電極体に密着固定されることが開示されている。   Patent Document 1 (Japanese Patent Laid-Open No. 2013-251119) discloses that an insulating bag is tightly fixed to an electrode body by thermally shrinking the insulating bag containing the electrode body.

特開2013−251119号公報JP2013-251119A

ハイレート充放電を行うと、電極体の温度が上昇し、その結果、電解質が膨張して電極体から流出することがある。電極体からの電解質の流出後に電極体の温度が下がり電解質の体積が膨張前の状態に戻っても、電解質は電極体へ戻らない。そのため、電極体では電解質が不足し、よって、ハイレート充放電特性が低下する。   When high rate charge / discharge is performed, the temperature of the electrode body rises, and as a result, the electrolyte may expand and flow out of the electrode body. Even if the temperature of the electrode body decreases after the electrolyte flows out of the electrode body and the volume of the electrolyte returns to the state before expansion, the electrolyte does not return to the electrode body. Therefore, the electrode body lacks an electrolyte, and thus the high rate charge / discharge characteristics are deteriorated.

本発明者らは、特許文献1に記載の絶縁袋を用いれば電解質がハイレート充放電時に電極体から流出することを防止できると考えた。しかし、特許文献1に記載の方法では、絶縁袋の熱収縮時に箔等からなる集電体が未塗工部において変形又は破損する場合があることが分かった。集電体が変形又は破損すると、I−V抵抗の増加を招く。本発明の目的は、ハイレート充放電特性の向上とI−V抵抗の増加防止とを両立可能な非水電解質二次電池を提供することである。   The present inventors considered that if the insulating bag described in Patent Document 1 is used, the electrolyte can be prevented from flowing out of the electrode body during high-rate charge / discharge. However, according to the method described in Patent Document 1, it has been found that a current collector made of foil or the like may be deformed or damaged in an uncoated portion when the insulating bag is thermally contracted. When the current collector is deformed or broken, the IV resistance is increased. An object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of achieving both improvement in high rate charge / discharge characteristics and prevention of increase in IV resistance.

本発明の非水電解質二次電池は、正極と、負極と、正極と負極との間に設けられたセパレータと、正極及び負極の少なくとも一方の極板の幅方向の一端に設けられ、集電体のうち合剤層が設けられていない未塗工部とを有する電極体と、少なくともセパレータに保持された電解質と、電極体が内部に設けられ、熱収縮によって電極体の外面の少なくとも一部に接する袋状部材と、未塗工部に接続された集電リードとを備える。集電リードは、未塗工部上に設けられ、極板の幅方向に対して垂直な方向に延びる。極板の幅方向に対して垂直な方向において、未塗工部上に位置する集電リードの長さが、未塗工部の長さと同じである。   The non-aqueous electrolyte secondary battery of the present invention is provided at one end in the width direction of a positive electrode, a negative electrode, a separator provided between the positive electrode and the negative electrode, and at least one electrode plate of the positive electrode and the negative electrode. An electrode body having an uncoated portion on which no mixture layer is provided, at least an electrolyte held by a separator, and at least a part of an outer surface of the electrode body by heat shrinkage And a current collecting lead connected to the uncoated portion. The current collecting lead is provided on the uncoated portion and extends in a direction perpendicular to the width direction of the electrode plate. In the direction perpendicular to the width direction of the electrode plate, the length of the current collecting lead located on the uncoated portion is the same as the length of the uncoated portion.

袋状部材が電極体の外面の少なくとも一部に接しているので、ハイレート充放電時に電解質が電極体から流出することを防止できる。また、未塗工部では、集電体が集電リードによって補強されているので、熱収縮による集電体の変形又は破損等を防止できる。   Since the bag-shaped member is in contact with at least a part of the outer surface of the electrode body, it is possible to prevent the electrolyte from flowing out of the electrode body during high-rate charge / discharge. Moreover, in the uncoated part, since the current collector is reinforced by the current collector lead, deformation or breakage of the current collector due to heat shrinkage can be prevented.

「極板の幅方向」は、電極体を形成していない状態の極板の長手方向に対して垂直な方向であって極板の厚さ方向とは異なる方向を意味する。「極板の幅方向に対して垂直な方向」は、未塗工部上での集電リードの長手方向に対して平行であり、例えば扁平な電極体(正極と負極とがセパレータを挟んで巻回され扁平状に形成された電極体)では電極体の横断面における長軸方向に相当する。   “The width direction of the electrode plate” means a direction perpendicular to the longitudinal direction of the electrode plate in a state where no electrode body is formed and is different from the thickness direction of the electrode plate. “A direction perpendicular to the width direction of the electrode plate” is parallel to the longitudinal direction of the current collecting lead on the uncoated portion. For example, a flat electrode body (a positive electrode and a negative electrode sandwich a separator). In the case of an electrode body that is wound and formed flat, this corresponds to the major axis direction in the cross section of the electrode body.

「電極体の外面」は、極板の幅方向端部における電極体の端面を含み、例えば扁平な電極体では、電極体の外周面と、電極体の軸方向端部における電極体の端面(未塗工部の先端面)とを含む。   The “outer surface of the electrode body” includes the end surface of the electrode body at the end in the width direction of the electrode plate. For example, in a flat electrode body, the outer peripheral surface of the electrode body and the end surface of the electrode body at the end in the axial direction of the electrode body ( The tip surface of the uncoated part).

「極板の幅方向に対して垂直な方向において、未塗工部上に位置する集電リードの長さが、未塗工部の長さと同じである」は、上記「極板の幅方向に対して垂直な方向」において、未塗工部上に位置する集電リードの長さが、未塗工部の長さの0.8倍以上1.2倍以下であることを意味する。   “In the direction perpendicular to the width direction of the electrode plate, the length of the current collecting lead located on the uncoated part is the same as the length of the uncoated part” means “the width direction of the electrode plate”. In the “perpendicular to” direction, it means that the length of the current collecting lead located on the uncoated part is 0.8 to 1.2 times the length of the uncoated part.

本発明では、ハイレート充放電時に電解質が電極体から流出することを防止でき、また、未塗工部では熱収縮による集電体の変形又は破損を防止できるので、ハイレート充放電特性の向上とI−V抵抗の増加防止とを両立できる。   In the present invention, it is possible to prevent the electrolyte from flowing out of the electrode body during high-rate charge / discharge, and it is possible to prevent deformation or breakage of the current collector due to thermal shrinkage in the uncoated part, thereby improving the high-rate charge / discharge characteristics. -V resistance can be prevented from increasing.

本発明の一実施形態の非水電解質二次電池の内部構造を示す平面図である。It is a top view which shows the internal structure of the nonaqueous electrolyte secondary battery of one Embodiment of this invention. (a)、(b)は、本発明の一実施形態の非水電解質二次電池の製造方法の一部を工程順に示す平面図である。(A), (b) is a top view which shows a part of manufacturing method of the nonaqueous electrolyte secondary battery of one Embodiment of this invention in order of a process. 実施例で使用した袋状部材の熱収縮率の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the thermal contraction rate of the bag-shaped member used in the Example. 反応抵抗の増加率の測定結果を示すグラフである。It is a graph which shows the measurement result of the increase rate of reaction resistance.

以下、本発明について図面を用いて説明する。なお、本発明の図面において、同一の参照符号は、同一部分又は相当部分を表すものである。また、長さ、幅、厚さ、深さ等の寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。   The present invention will be described below with reference to the drawings. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts. In addition, dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.

以下では、熱収縮後の袋状部材を「第1袋状部材」と記し、熱収縮前の袋状部材を「第2袋状部材」と記す。つまり、第2袋状部材が熱収縮されて第1袋状部材となる。   Hereinafter, the bag-like member after heat shrink is referred to as “first bag-like member”, and the bag-like member before heat shrink is referred to as “second bag-like member”. That is, the second bag-like member is thermally contracted to become the first bag-like member.

[非水電解質二次電池の構成]
図1は、本発明の実施形態の非水電解質二次電池の内部構造を示す平面図である。電池ケース1のケース本体1Aには電極体11と第1袋状部材31と電解質(不図示)とが設けられ、電池ケース1の蓋体1Bには正極端子3と負極端子7とが設けられている。
[Configuration of non-aqueous electrolyte secondary battery]
FIG. 1 is a plan view showing an internal structure of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. The case body 1A of the battery case 1 is provided with an electrode body 11, a first bag-like member 31, and an electrolyte (not shown), and the lid body 1B of the battery case 1 is provided with a positive electrode terminal 3 and a negative electrode terminal 7. ing.

電極体11は、正極13と負極17とがセパレータ15を挟んで巻回され扁平状に形成されたものである。正極13は、正極集電体13Aと、正極集電体13Aに設けられた正極合剤層13Bとを有する。正極13の幅方向一端には、正極集電体13Aのうち正極合剤層13Bが設けられていない正極未塗工部13Dが設けられている。負極17は、負極集電体17Aと、負極集電体17Aに設けられた負極合剤層17Bとを有する。負極17の幅方向一端には、負極集電体17Aのうち負極合剤層17Bが設けられていない負極未塗工部13Dが設けられている。正極13の正極未塗工部13Dと負極17の負極未塗工部17Dとは電極体11の軸方向においてセパレータ15から互いに逆向きに突出し、正極未塗工部13Dは正極リード23(集電リード)を介して正極端子3に接続され、負極未塗工部17Dは負極リード27(集電リード)を介して負極端子7に接続されている。電解質は、少なくともセパレータ15に保持されている。   The electrode body 11 is formed in a flat shape by winding a positive electrode 13 and a negative electrode 17 with a separator 15 interposed therebetween. The positive electrode 13 includes a positive electrode current collector 13A and a positive electrode mixture layer 13B provided on the positive electrode current collector 13A. One end in the width direction of the positive electrode 13 is provided with a positive electrode uncoated portion 13D in which the positive electrode mixture layer 13B is not provided in the positive electrode current collector 13A. The negative electrode 17 includes a negative electrode current collector 17A and a negative electrode mixture layer 17B provided on the negative electrode current collector 17A. One end in the width direction of the negative electrode 17 is provided with a negative electrode uncoated portion 13D in which the negative electrode mixture layer 17B is not provided in the negative electrode current collector 17A. The positive electrode uncoated portion 13D of the positive electrode 13 and the negative electrode uncoated portion 17D of the negative electrode 17 protrude in opposite directions from the separator 15 in the axial direction of the electrode body 11, and the positive electrode uncoated portion 13D The negative electrode uncoated portion 17D is connected to the negative electrode terminal 7 via a negative electrode lead 27 (current collecting lead). The electrolyte is held at least in the separator 15.

本実施形態では、電極体11が第1袋状部材31の内部に設けられ、第1袋状部材31が熱収縮により電極体11の外面の少なくとも一部に接している。これにより、ハイレート充放電時に、第1袋状部材31と電極体11の外面との接触箇所において電解質が電極体11から流出することを防止できるので、電極体11における電解質の枯れを防止できる。よって、ハイレート充放電特性が向上する。   In the present embodiment, the electrode body 11 is provided inside the first bag-shaped member 31, and the first bag-shaped member 31 is in contact with at least a part of the outer surface of the electrode body 11 due to thermal contraction. Thereby, it is possible to prevent the electrolyte from flowing out from the electrode body 11 at the contact portion between the first bag-shaped member 31 and the outer surface of the electrode body 11 during high-rate charging / discharging, so that the electrolyte in the electrode body 11 can be prevented from withstanding. Therefore, the high rate charge / discharge characteristics are improved.

また、電極体11における電解質の枯れを防止できるので、電極体11において抵抗のムラが生じることを防止できる。これにより、リチウム金属の析出を防止できるので、リチウム金属の析出に起因する内部短絡の発生を防止できる。よって、熱的安定性の低下を防止できる。   In addition, since the electrolyte in the electrode body 11 can be prevented from dying, it is possible to prevent unevenness in resistance in the electrode body 11. Thereby, since precipitation of lithium metal can be prevented, generation | occurrence | production of the internal short circuit resulting from precipitation of lithium metal can be prevented. Therefore, it is possible to prevent a decrease in thermal stability.

更に、本実施形態では、正極13の幅方向に対して垂直な方向において、正極未塗工部13D上に位置する正極リード23(図1の斜線領域)の長さが正極未塗工部13Dの長さと同じである。正極リード23の厚さは、正極集電体13Aの厚さよりも大きい。例えば、正極集電体13Aの厚さは10μm以上500μm以下であるのに対し、正極リード23の厚さは1mm以上20mm以下である。そのため、正極未塗工部13Dでは、正極集電体13Aが正極リード23によって補強される。よって、例えば第2袋状部材131(図2(b)参照)の熱収縮等によって外力が正極未塗工部13Dに付加されても、正極未塗工部13Dにおける正極集電体13Aの変形又は破損等を防止できる。したがって、正極未塗工部13Dと正極リード23との導通状態を確保できるので、I−V抵抗を低く維持できる。   Furthermore, in this embodiment, in the direction perpendicular to the width direction of the positive electrode 13, the length of the positive electrode lead 23 (shaded area in FIG. 1) located on the positive electrode uncoated portion 13D is the positive electrode uncoated portion 13D. Is the same length. The thickness of the positive electrode lead 23 is larger than the thickness of the positive electrode current collector 13A. For example, the thickness of the positive electrode current collector 13A is 10 μm or more and 500 μm or less, while the thickness of the positive electrode lead 23 is 1 mm or more and 20 mm or less. Therefore, the positive electrode current collector 13 </ b> A is reinforced by the positive electrode lead 23 in the positive electrode uncoated portion 13 </ b> D. Therefore, even if an external force is applied to the positive electrode uncoated portion 13D due to, for example, heat shrinkage of the second bag-like member 131 (see FIG. 2B), the positive electrode current collector 13A in the positive electrode uncoated portion 13D is deformed. Or damage etc. can be prevented. Therefore, since the conductive state between the positive electrode uncoated portion 13D and the positive electrode lead 23 can be secured, the IV resistance can be kept low.

同様に、負極17の幅方向に対して垂直な方向において、負極未塗工部17D上に位置する負極リード27(図1の斜線領域)の長さが負極未塗工部17Dの長さと同じである。負極リード27の厚さは、負極集電体17Aの厚さよりも大きい。例えば、負極集電体17Aの厚さは10μm以上500μm以下であるのに対し、負極リード27の厚さは1mm以上20mm以下である。そのため、負極未塗工部17Dでは、負極集電体17Aが負極リード27によって補強される。よって、例えば第2袋状部材131(図2(b)参照)の熱収縮等によって外力が負極未塗工部17Dに付加されても、負極未塗工部17Dにおける負極集電体17Aの変形又は破損等を防止できる。したがって、負極未塗工部17Dと負極リード27との導通状態を確保できるので、I−V抵抗を低く維持できる。なお、正極リード23及び負極27の少なくとも一方が上記構成を有していれば良い。   Similarly, in the direction perpendicular to the width direction of the negative electrode 17, the length of the negative electrode lead 27 (shaded area in FIG. 1) located on the negative electrode uncoated portion 17D is the same as the length of the negative electrode uncoated portion 17D. It is. The thickness of the negative electrode lead 27 is larger than the thickness of the negative electrode current collector 17A. For example, the thickness of the negative electrode current collector 17A is 10 μm or more and 500 μm or less, while the thickness of the negative electrode lead 27 is 1 mm or more and 20 mm or less. Therefore, the negative electrode current collector 17 </ b> A is reinforced by the negative electrode lead 27 in the negative electrode uncoated portion 17 </ b> D. Therefore, for example, even if an external force is applied to the negative electrode uncoated portion 17D due to heat shrinkage or the like of the second bag-like member 131 (see FIG. 2B), the deformation of the negative electrode current collector 17A in the negative electrode uncoated portion 17D. Or damage etc. can be prevented. Therefore, since the conductive state between the negative electrode uncoated portion 17D and the negative electrode lead 27 can be ensured, the IV resistance can be kept low. Note that it is sufficient that at least one of the positive electrode lead 23 and the negative electrode 27 has the above-described configuration.

このように、本実施形態では、熱収縮による新たな不具合の発生(未塗工部での集電体の変形又は破損等)を防止できるので、ハイレート充放電特性の向上とI−V抵抗の増加防止とを両立できる。また、熱的安定性を高く維持できる。よって、本実施形態の非水電解質二次電池は、ハイブリッド自動車若しくは電気自動車などの自動車用電源、工場用電源又は家庭用電源等に使用される大型電池として好適である。以下、正極リード23、負極リード27及び第1袋状部材31を順に示す。   As described above, in this embodiment, it is possible to prevent the occurrence of a new problem due to heat shrinkage (such as deformation or breakage of the current collector in an uncoated part), so that the high-rate charge / discharge characteristics are improved and the IV resistance is improved. Both increase prevention can be achieved. In addition, the thermal stability can be maintained high. Therefore, the non-aqueous electrolyte secondary battery of this embodiment is suitable as a large battery used for a power source for automobiles such as a hybrid vehicle or an electric vehicle, a factory power source, a household power source, or the like. Hereinafter, the positive electrode lead 23, the negative electrode lead 27, and the first bag-like member 31 are sequentially shown.

(正極リード、負極リード)
正極リード23は、正極未塗工部13Dのうち電極体11の最外周に位置する部分に設けられていることが好ましい。正極リード23は、正極13の幅方向に対して垂直な方向における長さを除いては、非水電解質二次電池の正極リードとして従来公知の構成を有することが好ましい。
(Positive lead, negative lead)
The positive electrode lead 23 is preferably provided in a portion of the positive electrode uncoated portion 13D located on the outermost periphery of the electrode body 11. The positive electrode lead 23 preferably has a conventionally known configuration as the positive electrode lead of the nonaqueous electrolyte secondary battery except for the length in the direction perpendicular to the width direction of the positive electrode 13.

同様に、負極リード27は、負極未塗工部17Dのうち電極体11の最外周に位置する部分に設けられていることが好ましい。負極リード27は、負極17の幅方向に対して垂直な方向における長さを除いては、非水電解質二次電池の負極リードとして従来公知の構成を有することが好ましい。   Similarly, the negative electrode lead 27 is preferably provided in a portion of the negative electrode uncoated portion 17D located on the outermost periphery of the electrode body 11. The negative electrode lead 27 preferably has a conventionally known configuration as the negative electrode lead of the nonaqueous electrolyte secondary battery, except for the length in the direction perpendicular to the width direction of the negative electrode 17.

(第1袋状部材)
第1袋状部材31は、ケース本体1Aの開口側において開口していることが好ましい。第1袋状部材31の側部は、ケース本体1Aの側面に対向していることが好ましく、電極体11の端面(電極体11の軸方向端部における電極体11の端面)に対向又は接していることが好ましい。
(First bag-shaped member)
The first bag-like member 31 is preferably open on the opening side of the case body 1A. The side portion of the first bag-shaped member 31 is preferably opposed to the side surface of the case body 1A, and is opposed to or in contact with the end surface of the electrode body 11 (the end surface of the electrode body 11 at the axial end portion of the electrode body 11). It is preferable.

第1袋状部材31は、第1袋状部材31の開口から電極体11が突出しないように設けられていることが好ましい。これにより、第1袋状部材31は、充放電反応に必要な量の電解質を保持できる。よって、ハイレート充放電特性が更に向上する。   The first bag-shaped member 31 is preferably provided so that the electrode body 11 does not protrude from the opening of the first bag-shaped member 31. Thereby, the 1st bag-shaped member 31 can hold | maintain the quantity of electrolyte required for charging / discharging reaction. Therefore, the high rate charge / discharge characteristics are further improved.

第1袋状部材31は、電極体11の端面の少なくとも一部に接することが好ましい。これにより、ハイレート充放電時には、正極13と負極17との間に保持された電解質が電極体11から流出することを防止できるので、充放電反応に必要な量の電解質が正極13と負極17との間に保持されることとなる。よって、ハイレート充放電特性がより一層、向上する。第1袋状部材31は、より好ましくは電極体11の端面全体に接することであり、電極体11の端面だけでなく電極体11の外周面にも接していても良い。   The first bag-shaped member 31 is preferably in contact with at least a part of the end surface of the electrode body 11. This prevents the electrolyte held between the positive electrode 13 and the negative electrode 17 from flowing out of the electrode body 11 at the time of high-rate charge / discharge, so that the amount of electrolyte necessary for the charge / discharge reaction is reduced between the positive electrode 13 and the negative electrode 17. It will be held between. Therefore, the high rate charge / discharge characteristics are further improved. More preferably, the first bag-shaped member 31 is in contact with the entire end surface of the electrode body 11, and may be in contact with not only the end surface of the electrode body 11 but also the outer peripheral surface of the electrode body 11.

第1袋状部材31は、予め設定された収縮率で熱収縮する材料からなることが好ましく、これにより、熱収縮によって電極体11の外面の少なくとも一部に接する。より好ましくは、第1袋状部材31を構成する材料の熱収縮率が5%以上60%以下である。   The first bag-shaped member 31 is preferably made of a material that thermally contracts at a preset contraction rate, and thereby contacts at least a part of the outer surface of the electrode body 11 by thermal contraction. More preferably, the thermal contraction rate of the material constituting the first bag-shaped member 31 is 5% or more and 60% or less.

より好ましくは、第1袋状部材31では、底部の延びる方向(正極13又は負極17の幅方向に相当する)における熱収縮率が、側部の延びる方向(正極13又は負極17の幅方向に対して垂直な方向に相当する)における熱収縮率よりも高い。これにより、第1袋状部材31は、熱収縮によって、電極体11の端面の少なくとも一部に接し易くなる。さらに好ましくは、第1袋状部材31では、底部の延びる方向における熱収縮率が10%以上60%以下であり、側部の延びる方向における熱収縮率が5%以上20%以下である。   More preferably, in the first bag-shaped member 31, the thermal contraction rate in the direction in which the bottom extends (corresponding to the width direction of the positive electrode 13 or the negative electrode 17) is the direction in which the side extends (in the width direction of the positive electrode 13 or the negative electrode 17). Higher than the heat shrinkage rate in the direction perpendicular to the vertical direction). Thereby, the 1st bag-shaped member 31 becomes easy to contact at least one part of the end surface of the electrode body 11 by heat contraction. More preferably, in the first bag-shaped member 31, the heat shrinkage rate in the direction in which the bottom portion extends is 10% or more and 60% or less, and the heat shrinkage rate in the direction in which the side portion extends is 5% or more and 20% or less.

第1袋状部材31は、セパレータ15がシャットダウンする温度未満で熱収縮する材料からなることが好ましい。これにより、熱収縮に起因する内部短絡の発生を防止できる。また、第1袋状部材31は、電解質と反応しない材料からなることが好ましく、電解質が透過しないように構成されていることが好ましい。以上のことから、第1袋状部材31は、PET(polyethylene terephthalate)とPP(polypropylene)との共重合樹脂からなることが好ましい。   The first bag-shaped member 31 is preferably made of a material that thermally contracts below the temperature at which the separator 15 shuts down. Thereby, generation | occurrence | production of the internal short circuit resulting from heat contraction can be prevented. Moreover, it is preferable that the 1st bag-shaped member 31 consists of a material which does not react with electrolyte, and it is preferable that it is comprised so that electrolyte may not permeate | transmit. From the above, the first bag-like member 31 is preferably made of a copolymer resin of PET (polyethylene terephthalate) and PP (polypropylene).

第1袋状部材31が上記材料からなれば、非水電解質二次電池の使用中等にガスが発生しても第1袋状部材31と電極体11の外面との間に隙間が発生することを防止できる。これにより、ハイレート充放電を繰り返し行っても、非水電解質二次電池の性能を高く維持できる。よって、第1袋状部材31を用いずにラミネートフィルムからなる電池ケースを用いたラミネート電池に比べても、ハイレート充放電特性が向上する。   If the first bag-shaped member 31 is made of the above material, a gap is generated between the first bag-shaped member 31 and the outer surface of the electrode body 11 even if gas is generated during use of the nonaqueous electrolyte secondary battery. Can be prevented. Thereby, the performance of the non-aqueous electrolyte secondary battery can be maintained high even if the high rate charge / discharge is repeated. Therefore, even when compared with a laminated battery using a battery case made of a laminated film without using the first bag-shaped member 31, the high rate charge / discharge characteristics are improved.

[非水電解質二次電池の製造]
図2(a)、(b)は、本実施形態の非水電解質二次電池の製造方法の一部を工程順に示す平面図である。まず、従来公知の方法にしたがって電極体11を製造する。
[Manufacture of non-aqueous electrolyte secondary batteries]
2A and 2B are plan views showing a part of the manufacturing method of the nonaqueous electrolyte secondary battery of this embodiment in the order of steps. First, the electrode body 11 is manufactured according to a conventionally known method.

次に、正極未塗工部13Dに正極リード23を接続する。具体的には、正極リード23が正極13の幅方向に対して垂直な方向において正極未塗工部13Dの一端(下端)から正極未塗工部13Dの他端(上端)まで延び、その他端から電極体11の外側へ延びるように、正極リード23を正極未塗工部13D上に設ける(図2(a))。これにより、正極未塗工部13Dでは、正極集電体13Aが正極リード23によって補強される。その後、正極リード23を正極未塗工部13Dに溶接する。   Next, the positive electrode lead 23 is connected to the positive electrode uncoated portion 13D. Specifically, the positive electrode lead 23 extends from one end (lower end) of the positive electrode uncoated portion 13D to the other end (upper end) of the positive electrode uncoated portion 13D in the direction perpendicular to the width direction of the positive electrode 13, and the other end. The positive electrode lead 23 is provided on the positive electrode uncoated portion 13D so as to extend from the electrode body 11 to the outside of the electrode body 11 (FIG. 2A). Thereby, the positive electrode current collector 13 </ b> A is reinforced by the positive electrode lead 23 in the positive electrode uncoated portion 13 </ b> D. Thereafter, the positive electrode lead 23 is welded to the positive electrode uncoated portion 13D.

同様に、負極未塗工部17Dに負極リード27を接続する。具体的には、負極リード27が負極17の幅方向に対して垂直な方向において負極未塗工部17Dの一端(下端)から負極未塗工部17Dの他端(上端)まで延び、その他端から電極体11の外側へ延びるように、負極リード27を負極未塗工部17D上に設ける(図2(a))。これにより、負極未塗工部17Dでは、負極集電体17Aが負極リード27によって補強される。その後、負極リード27を負極未塗工部17Dに溶接する。   Similarly, the negative electrode lead 27 is connected to the negative electrode uncoated portion 17D. Specifically, the negative electrode lead 27 extends from one end (lower end) of the negative electrode uncoated portion 17D to the other end (upper end) of the negative electrode uncoated portion 17D in the direction perpendicular to the width direction of the negative electrode 17, and the other end. The negative electrode lead 27 is provided on the negative electrode uncoated portion 17D so as to extend from the electrode body 11 to the outside of the electrode body 11 (FIG. 2A). Thereby, the negative electrode current collector 17 </ b> A is reinforced by the negative electrode lead 27 in the negative electrode uncoated portion 17 </ b> D. Thereafter, the negative electrode lead 27 is welded to the negative electrode uncoated portion 17D.

続いて、熱収縮材料からなる第2袋状部材131の内部に電極体11を設ける。好ましくは、電極体11の端面を第2袋状部材131の側部に対向させる。その後、第2袋状部材131の内部に設けられた電極体11をケース本体1Aに入れる。好ましくは、第2袋状部材131をケース本体1Aの開口側において開口させ、第2袋状部材131の側部をケース本体1Aの側面に対向させる。   Subsequently, the electrode body 11 is provided inside the second bag-like member 131 made of a heat shrinkable material. Preferably, the end surface of the electrode body 11 is opposed to the side portion of the second bag-like member 131. Thereafter, the electrode body 11 provided inside the second bag-like member 131 is placed in the case main body 1A. Preferably, the second bag-shaped member 131 is opened on the opening side of the case main body 1A, and the side portion of the second bag-shaped member 131 is opposed to the side surface of the case main body 1A.

第2袋状部材131は、電極体11の体積よりも大きな内部容積を有することが好ましく、第2袋状部材131の開口から電極体11が突出しないように電極体11を設けることが好ましい。第2袋状部材131では、底部の延びる方向(正極13又は負極17の幅方向に相当する)における熱収縮率が、側部の延びる方向(正極13又は負極17の幅方向に対して垂直な方向に相当する)における熱収縮率よりも高いことが好ましい。   The second bag-shaped member 131 preferably has an internal volume larger than the volume of the electrode body 11, and the electrode body 11 is preferably provided so that the electrode body 11 does not protrude from the opening of the second bag-shaped member 131. In the second bag-like member 131, the thermal contraction rate in the direction in which the bottom extends (corresponding to the width direction of the positive electrode 13 or the negative electrode 17) is perpendicular to the direction in which the side extends (the width direction of the positive electrode 13 or the negative electrode 17). It is preferably higher than the heat shrinkage rate in the direction).

続いて、正極端子3と正極リード23とを接続し、負極端子7と負極リード27とを接続してから、蓋体1Bでケース本体1Aの開口を蓋する(図2(b))。第2袋状部材131がケース本体1Aの開口側において開口していれば、正極端子3と正極リード23とを容易に接続でき、負極端子7と負極リード27とを容易に接続できる。なお、正極端子3と正極リード23とを接続し、負極端子7と負極リード27とを接続してから、熱収縮材料からなる第2袋状部材131の内部に電極体11を設けても良い。   Subsequently, the positive electrode terminal 3 and the positive electrode lead 23 are connected, the negative electrode terminal 7 and the negative electrode lead 27 are connected, and then the opening of the case main body 1A is covered with the lid body 1B (FIG. 2B). If the second bag-like member 131 is opened on the opening side of the case main body 1A, the positive electrode terminal 3 and the positive electrode lead 23 can be easily connected, and the negative electrode terminal 7 and the negative electrode lead 27 can be easily connected. In addition, after connecting the positive electrode terminal 3 and the positive electrode lead 23 and connecting the negative electrode terminal 7 and the negative electrode lead 27, the electrode body 11 may be provided inside the second bag-shaped member 131 made of a heat-shrinkable material. .

続いて、蓋体1Bに形成された注液用孔9から電解質を注入する。第2袋状部材131がケース本体1Aの開口側において開口していれば、電解質を第2袋状部材131に容易に注入できる。電極体11が第2袋状部材131の開口から突出しないように第2袋状部材131の内部に設けられていれば、充放電反応に必要な量の電解質を第2袋状部材131に注入できる。よって、電解質が第2袋状部材131から溢れることを防止できる。   Subsequently, an electrolyte is injected from the injection hole 9 formed in the lid 1B. If the second bag-like member 131 is open on the opening side of the case main body 1A, the electrolyte can be easily injected into the second bag-like member 131. If the electrode body 11 is provided inside the second bag-like member 131 so as not to protrude from the opening of the second bag-like member 131, an amount of electrolyte necessary for the charge / discharge reaction is injected into the second bag-like member 131. it can. Therefore, it is possible to prevent the electrolyte from overflowing from the second bag-like member 131.

電解質が少なくともセパレータ15に保持されたら、ケース本体1Aをその外側から加熱する(図2(b))。これにより、第2袋状部材131は熱収縮され、第1袋状部材31が電極体11の外面の少なくとも一部に接する。このように、電解質が少なくともセパレータ15に保持されてから、第2袋状部材131が熱収縮される。よって、電解質の注液性の低下を招くことなくハイレート充放電特性が向上する。   When the electrolyte is held at least by the separator 15, the case body 1A is heated from the outside (FIG. 2B). As a result, the second bag-shaped member 131 is thermally contracted, and the first bag-shaped member 31 is in contact with at least a part of the outer surface of the electrode body 11. Thus, after the electrolyte is held at least by the separator 15, the second bag-like member 131 is thermally contracted. Therefore, the high rate charge / discharge characteristics are improved without degrading the electrolyte injection property.

また、正極未塗工部13Dでは、正極集電体13Aが正極リード23によって補強されているので、熱収縮による正極集電体13Aの変形又は破損等を防止できる。同様に、負極未塗工部17Dでは、負極集電体17Aが負極リード27によって補強されているので、熱収縮による負極集電体17Aの変形又は破損等を防止できる。   Further, in the positive electrode uncoated portion 13D, since the positive electrode current collector 13A is reinforced by the positive electrode lead 23, deformation or breakage of the positive electrode current collector 13A due to thermal contraction can be prevented. Similarly, in the negative electrode uncoated portion 17D, since the negative electrode current collector 17A is reinforced by the negative electrode lead 27, deformation or breakage of the negative electrode current collector 17A due to thermal contraction can be prevented.

第2袋状部材131では、底部の延びる方向における熱収縮率が側部の延びる方向における熱収縮率よりも高ければ、底部の延びる方向における熱収縮量は側部の延びる方向における熱収縮量よりも大きくなる。よって、第1袋状部材31が電極体11の端面の少なくとも一部に接し易くなる。また、電極体11が第1袋状部材31の開口から突出することを防止できる。   In the second bag-like member 131, if the thermal contraction rate in the direction in which the bottom portion extends is higher than the thermal contraction rate in the direction in which the side portion extends, the thermal contraction amount in the direction in which the bottom portion extends is greater than the thermal contraction amount in the direction in which the side portion extends. Also grows. Therefore, the first bag-shaped member 31 can easily come into contact with at least a part of the end surface of the electrode body 11. In addition, the electrode body 11 can be prevented from protruding from the opening of the first bag-shaped member 31.

加熱条件は特に限定されない。例えば、加熱温度は、第2袋状部材131の収縮温度以上であることが好ましく、セパレータ15がシャットダウンする温度未満であることがより好ましい。これにより、セパレータ15の熱収縮を伴うことなく第2袋状部材131が熱収縮するので、第2袋状部材131の熱収縮による内部短絡の発生を防止できる。   The heating conditions are not particularly limited. For example, the heating temperature is preferably equal to or higher than the contraction temperature of the second bag-like member 131, and more preferably less than the temperature at which the separator 15 shuts down. Thereby, since the 2nd bag-shaped member 131 heat-shrinks without being accompanied by the heat shrink of the separator 15, generation | occurrence | production of the internal short circuit by the heat shrink of the 2nd bag-shaped member 131 can be prevented.

その後、注液用孔9を蓋する。これにより、本実施形態の非水電解質二次電池を得ることができる。   Thereafter, the injection hole 9 is covered. Thereby, the nonaqueous electrolyte secondary battery of this embodiment can be obtained.

以下、本発明を具体的に示すが、本発明は以下に示す構成に限定されない。
[実施例]
(正極の作製)
正極活物質として、Liと3種の遷移金属元素(Co、Ni及びMn)とを含むリチウム含有遷移金属複合酸化物からなる粉末を準備した。質量比で90:8:2となるように正極活物質とアセチレンブラック(導電剤)とポリフッ化ビニリデン(結着剤)とを混ぜ、NMP(N-methylpyrrolidone)で希釈して、正極合剤ペーストを得た。
Hereinafter, the present invention will be specifically described, but the present invention is not limited to the following configurations.
[Example]
(Preparation of positive electrode)
As a positive electrode active material, a powder made of a lithium-containing transition metal composite oxide containing Li and three transition metal elements (Co, Ni, and Mn) was prepared. Mix the positive electrode active material, acetylene black (conductive agent) and polyvinylidene fluoride (binder) so that the mass ratio is 90: 8: 2, dilute with NMP (N-methylpyrrolidone), and mix the positive electrode mixture paste Got.

Al箔(正極集電体、厚さが15μm)の幅方向一端が露出するように、正極合剤ペーストをAl箔の両面に塗布してから乾燥させた。これにより、正極合剤層がAl箔の両面に形成された。その後、ロール圧延機を用いて、正極合剤層およびAl箔を圧延した。このようにして正極未塗工部(正極集電体のうち正極合剤層が設けられていない部分)を有する正極を得た。   The positive electrode mixture paste was applied to both sides of the Al foil and dried so that one end in the width direction of the Al foil (positive electrode current collector, thickness: 15 μm) was exposed. Thereby, the positive mix layer was formed on both surfaces of the Al foil. Then, the positive mix layer and Al foil were rolled using the roll mill. In this way, a positive electrode having a positive electrode uncoated portion (a portion of the positive electrode current collector where the positive electrode mixture layer was not provided) was obtained.

(負極の作製)
負極活物質として、天然黒鉛を核材とする炭素材料を準備した。質量比で98:1:1となるように負極活物質とCMC(carboxymethylcellulose)(増粘剤)とSBR(スチレンブタジエンゴム(Styrene-butadiene rubber))(結着剤)とを混ぜ、水で希釈して、負極合剤ペーストを得た。
(Preparation of negative electrode)
A carbon material having natural graphite as a core material was prepared as a negative electrode active material. Mix the negative electrode active material, CMC (carboxymethylcellulose) (thickener) and SBR (Styrene-butadiene rubber) (binder) so that the mass ratio is 98: 1: 1 and dilute with water. Thus, a negative electrode mixture paste was obtained.

Cu箔(負極集電体、厚さが10μm)の幅方向一端が露出するように、負極合剤ペーストをCu箔の両面に塗布してから乾燥させた。これにより、負極合剤層がCu箔の両面に形成された。その後、ロール圧延機を用いて、負極合剤層およびCu箔を圧延した。このようにして負極未塗工部(負極集電体のうち負極合剤層が設けられていない部分)を有する負極を得た。   The negative electrode mixture paste was applied to both sides of the Cu foil and dried so that one end in the width direction of the Cu foil (negative electrode current collector, thickness 10 μm) was exposed. Thereby, the negative mix layer was formed in both surfaces of Cu foil. Then, the negative mix layer and Cu foil were rolled using the roll mill. In this way, a negative electrode having a negative electrode uncoated portion (a portion where the negative electrode mixture layer was not provided in the negative electrode current collector) was obtained.

(巻回電極体の作製、挿入)
PE(polyethylene)からなるセパレータを準備した。正極合剤層と負極合剤層との間にセパレータを設け、正極未塗工部と負極未塗工部とがAl箔の幅方向においてセパレータから逆向きに突出するように正極と負極とセパレータとを設けた。次に、Al箔の幅方向に対して平行となるように巻回軸(不図示)を配置し、その巻回軸を用いて正極、セパレータ及び負極を巻回させた。得られた円筒型の電極体に対して4kN/cm2の圧力を常温で2分間与え、扁平状の電極体を得た。
(Production and insertion of wound electrode body)
A separator made of PE (polyethylene) was prepared. A separator is provided between the positive electrode mixture layer and the negative electrode mixture layer, and the positive electrode, the negative electrode, and the separator so that the positive electrode uncoated portion and the negative electrode uncoated portion protrude in the opposite direction from the separator in the width direction of the Al foil. And provided. Next, a winding shaft (not shown) was arranged so as to be parallel to the width direction of the Al foil, and the positive electrode, the separator, and the negative electrode were wound using the winding shaft. A pressure of 4 kN / cm 2 was applied to the obtained cylindrical electrode body at room temperature for 2 minutes to obtain a flat electrode body.

次に、正極リード(厚さが1mm)が正極の幅方向に対して垂直な方向において正極未塗工部の一端(下端)から正極未塗工部の他端(上端)まで延び、その他端から電極体の外側へ延びるように、正極リードを正極未塗工部のうち電極体の最外周に位置する部分に設けた。その後、正極リードを正極未塗工部に溶接した。同様の方法にしたがって、負極リード(厚さが1mm)を負極未塗工部に溶接した。   Next, the positive electrode lead (thickness: 1 mm) extends from one end (lower end) of the positive electrode uncoated portion to the other end (upper end) of the positive electrode uncoated portion in a direction perpendicular to the width direction of the positive electrode, and the other end The positive electrode lead was provided on the portion of the positive electrode uncoated portion located on the outermost periphery of the electrode body so as to extend from the electrode body to the outside of the electrode body. Thereafter, the positive electrode lead was welded to the positive electrode uncoated portion. According to the same method, a negative electrode lead (thickness: 1 mm) was welded to the negative electrode uncoated portion.

次に、PETとPPとの共重合樹脂からなる第2袋状部材を準備した。この第2袋状部材を加熱して熱収縮率を調べたところ、熱収縮率は、横方向(底部の延びる方向)の方が、縦方向(側部の延びる方向)よりも、大きいことが分かった(図3)。   Next, a second bag-like member made of a copolymer resin of PET and PP was prepared. When this second bag-shaped member was heated and the heat shrinkage rate was examined, the heat shrinkage rate was found to be greater in the horizontal direction (the direction in which the bottom portion extends) than in the vertical direction (the direction in which the side portion extends). Okay (Figure 3).

続いて、電極体の端面が袋状部材の側部に対向するように、電極体を袋状部材に入れた。袋状部材の開口がケース本体の開口側に位置するように、袋状部材に内包された電極体をケース本体に入れた。その後、正極リードと正極端子とを接続し、負極リードと負極端子とを接続してから、ケース本体の開口を蓋体で塞いだ。   Subsequently, the electrode body was put in the bag-like member so that the end face of the electrode body was opposed to the side portion of the bag-like member. The electrode body contained in the bag-like member was placed in the case body so that the opening of the bag-like member was positioned on the opening side of the case body. Thereafter, the positive electrode lead and the positive electrode terminal were connected, the negative electrode lead and the negative electrode terminal were connected, and then the opening of the case body was closed with a lid.

(電解液の調製、注入)
体積比で1:1:1となるようにEC(ethylene carbonate)とDMC(dimethyl carbonate)とEMC(ethyl methyl carbonate)とを混合して、混合溶媒を得た。濃度が1.0mol/LとなるようにLiPF6を上記混合溶媒に入れた。調製された電解液を蓋体の注液用孔から注入した。その後、電池ケース内を減圧した。これにより、電解液は少なくともセパレータに含浸された。
(Preparation and injection of electrolyte)
EC (ethylene carbonate), DMC (dimethyl carbonate), and EMC (ethyl methyl carbonate) were mixed so that the volume ratio was 1: 1: 1 to obtain a mixed solvent. LiPF 6 was put in the mixed solvent so that the concentration was 1.0 mol / L. The prepared electrolyte was injected from the injection hole of the lid. Thereafter, the inside of the battery case was depressurized. As a result, at least the separator was impregnated with the electrolytic solution.

(熱収縮)
横方向における袋状部材の熱収縮率が30%以上となるように、ケース本体の外面全体に熱風(80℃)を当てた。その後、注液用孔を封止した。このようにして本実施例のリチウムイオン二次電池を得た。
(Heat shrink)
Hot air (80 ° C.) was applied to the entire outer surface of the case body so that the heat shrinkage rate of the bag-shaped member in the lateral direction was 30% or more. Thereafter, the injection hole was sealed. Thus, the lithium ion secondary battery of the present Example was obtained.

(反応抵抗の増加率)
リチウムイオン二次電池のSOCを60%に調整した。−30℃に調整された恒温槽内で、リチウムイオン二次電池のインピーダンスを交流インピーダンス法により測定した。周波数応答アナライザー(株式会社東陽テクニカ製、型番「1255B」)とポテンショ/ガルバノスタット(solartron社製、型番「1287A」)とを用い、周波数を0.001〜100000Hzに変化させながら、リチウムイオン二次電池のインピーダンスを測定した。得られたナイキストプロットにおける半円の直径の大きさを反応抵抗(初期の反応抵抗)とした。
(Increase rate of reaction resistance)
The SOC of the lithium ion secondary battery was adjusted to 60%. In a thermostat adjusted to −30 ° C., the impedance of the lithium ion secondary battery was measured by the AC impedance method. Using a frequency response analyzer (manufactured by Toyo Corporation, model number “1255B”) and potentio / galvanostat (model number “1287A” manufactured by solartron), while changing the frequency from 0.001 to 100,000 Hz, the lithium ion secondary The impedance of the battery was measured. The size of the diameter of the semicircle in the obtained Nyquist plot was defined as the reaction resistance (initial reaction resistance).

次に、リチウムイオン二次電池に対してハイレートサイクル試験を行なった。この試験では、−15℃の環境下で、一定の電流値が2CであるCC(constant-current)充電と一定の電流値が2/5CであるCC放電とを1サイクルとした。そして、サイクル数のみを異にする5種類の試験を行った。   Next, a high rate cycle test was performed on the lithium ion secondary battery. In this test, a CC (constant-current) charge having a constant current value of 2C and a CC discharge having a constant current value of 2 / 5C were defined as one cycle in an environment of −15 ° C. And five kinds of tests which differ only in the number of cycles were done.

続いて、各ハイレートサイクル試験後の二次電池をSOC60%の状態に調整してから、初期の反応抵抗の測定方法にしたがって耐久時の反応抵抗を測定した。下記式(1)を用いて、反応抵抗の増加率を求めた。
(反応抵抗の増加率)=(サイクル試験前後の反応抵抗の変化量)÷(初期の反応抵抗) ・・・式(1)。
Subsequently, after the secondary battery after each high-rate cycle test was adjusted to a state of SOC 60%, the reaction resistance during durability was measured according to the initial reaction resistance measurement method. The increase rate of reaction resistance was calculated | required using following formula (1).
(Increase rate of reaction resistance) = (Change amount of reaction resistance before and after cycle test) ÷ (Initial reaction resistance) Formula (1).

[比較例]
比較例では、極板の幅方向に対して垂直な方向において、正極未塗工部上に位置する正極リードの長さは正極未塗工部の長さの0.2倍程度であり、負極未塗工部上に位置する負極リードの長さは負極未塗工部の長さの0.2倍程度であった。これ以外の点を除いては上記実施例に記載の方法にしたがって、リチウムイオン二次電池を製造し、反応抵抗の増加率を求めた。
[Comparative example]
In the comparative example, in the direction perpendicular to the width direction of the electrode plate, the length of the positive electrode lead located on the positive electrode uncoated part is about 0.2 times the length of the positive electrode uncoated part. The length of the negative electrode lead located on the uncoated part was about 0.2 times the length of the negative electrode uncoated part. Except for the points other than this, a lithium ion secondary battery was manufactured in accordance with the method described in the above example, and the rate of increase in reaction resistance was determined.

(考察)
結果を図4に示す。実施例の方が、比較例よりも、反応抵抗の増加率が低かった。この効果は、総通電量が大きくなるにつれて(ハイレートサイクル試験におけるサイクル数が多くなるにつれて)顕著となった。
(Discussion)
The results are shown in FIG. The rate of increase in reaction resistance was lower in the Examples than in the Comparative Examples. This effect became more prominent as the total energization amount increased (as the number of cycles in the high-rate cycle test increased).

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 電池ケース、1A ケース本体、1B 蓋体、3 正極端子、7 負極端子、9 注液用孔、11 電極体、13 正極、13A 正極集電体、13D 正極未塗工部、15 セパレータ、17 負極、17A 負極集電体、17D 負極未塗工部、23 正極リード、27 負極リード、31 第1袋状部材、131 第2袋状部材。   DESCRIPTION OF SYMBOLS 1 Battery case, 1A case main body, 1B cover body, 3 positive electrode terminal, 7 negative electrode terminal, 9 injection hole, 11 electrode body, 13 positive electrode, 13A positive electrode current collector, 13D positive electrode uncoated part, 15 separator, 17 Negative electrode, 17A Negative electrode current collector, 17D Negative electrode uncoated portion, 23 Positive electrode lead, 27 Negative electrode lead, 31 First bag-like member, 131 Second bag-like member.

Claims (1)

正極と、負極と、前記正極と前記負極との間に設けられたセパレータと、前記正極及び前記負極の少なくとも一方の極板の幅方向の一端に設けられ、集電体のうち合剤層が設けられていない未塗工部とを有する電極体と、
少なくとも前記セパレータに保持された電解質と、
前記電極体が内部に設けられ、熱収縮によって前記電極体の外面の少なくとも一部に接する袋状部材と、
前記未塗工部に接続された集電リードとを備え、
前記集電リードは、前記未塗工部上に設けられ、前記極板の幅方向に対して垂直な方向に延び、
前記極板の幅方向に対して垂直な方向において、前記未塗工部上に位置する集電リードの長さが、前記未塗工部の長さと同じである非水電解質二次電池。
A positive electrode, a negative electrode, a separator provided between the positive electrode and the negative electrode, and provided at one end in a width direction of at least one of the positive electrode and the negative electrode; An electrode body having an uncoated portion that is not provided;
At least an electrolyte held in the separator;
The electrode body is provided inside, and a bag-like member that contacts at least a part of the outer surface of the electrode body by heat shrinkage;
A current collecting lead connected to the uncoated part,
The current collecting lead is provided on the uncoated portion and extends in a direction perpendicular to the width direction of the electrode plate,
A non-aqueous electrolyte secondary battery in which a length of a current collecting lead located on the uncoated part is the same as a length of the uncoated part in a direction perpendicular to the width direction of the electrode plate.
JP2014032975A 2014-02-24 2014-02-24 Nonaqueous electrolyte secondary battery Pending JP2015159029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014032975A JP2015159029A (en) 2014-02-24 2014-02-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014032975A JP2015159029A (en) 2014-02-24 2014-02-24 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2015159029A true JP2015159029A (en) 2015-09-03

Family

ID=54182886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014032975A Pending JP2015159029A (en) 2014-02-24 2014-02-24 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2015159029A (en)

Similar Documents

Publication Publication Date Title
KR20170003393A (en) Lithium ion secondary battery
US10424816B2 (en) Lithium-ion secondary battery and manufacturing method thereof
WO2021004354A1 (en) Lithium-ion secondary battery and related preparation method therefor, battery module, battery pack, and device
JP2019016483A (en) Nonaqueous electrolyte secondary battery
JP2011096539A (en) Lithium secondary battery
US20140302366A1 (en) Nonaqueous electrolyte secondary cell
US10756342B2 (en) Lithium ion secondary battery
KR20170003392A (en) Lithium ion secondary battery
CN102427123A (en) Lithium ion secondary battery and anode sheet thereof
JP2015191768A (en) secondary battery
JP6250941B2 (en) Nonaqueous electrolyte secondary battery
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5987717B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP2002216843A (en) Manufacturing method of lithium polymer cell
JP2010153337A (en) Manufacturing method of lithium secondary battery
US11056723B2 (en) Nonaqueous electrolyte secondary battery
JP2013197052A (en) Lithium ion power storage device
JP2003243036A (en) Cylindrical lithium secondary battery
JP5708510B2 (en) Non-aqueous electrolyte secondary battery
JP2003243038A (en) Positive electrode plate and lithium secondary battery using it
CN105493319A (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery
JP6776988B2 (en) Non-aqueous electrolyte secondary battery
WO2015040685A1 (en) Lithium-ion secondary battery separator, lithium-ion secondary battery using lithium-ion secondary battery separator, and lithium-ion secondary battery module
JP2015159029A (en) Nonaqueous electrolyte secondary battery