JP2015158002A - Sintered machine part and production method thereof - Google Patents

Sintered machine part and production method thereof Download PDF

Info

Publication number
JP2015158002A
JP2015158002A JP2014053654A JP2014053654A JP2015158002A JP 2015158002 A JP2015158002 A JP 2015158002A JP 2014053654 A JP2014053654 A JP 2014053654A JP 2014053654 A JP2014053654 A JP 2014053654A JP 2015158002 A JP2015158002 A JP 2015158002A
Authority
JP
Japan
Prior art keywords
machine part
powder
sintered
less
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014053654A
Other languages
Japanese (ja)
Other versions
JP6391954B2 (en
Inventor
孝洋 奥野
Takahiro Okuno
孝洋 奥野
尚樹 八代
Naoki Yashiro
尚樹 八代
大平 晃也
Akinari Ohira
晃也 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2014053654A priority Critical patent/JP6391954B2/en
Priority to US15/108,660 priority patent/US20160327144A1/en
Priority to EP14880315.8A priority patent/EP3097999A4/en
Priority to CN201480072428.5A priority patent/CN105899315A/en
Priority to PCT/JP2014/083822 priority patent/WO2015111338A1/en
Publication of JP2015158002A publication Critical patent/JP2015158002A/en
Application granted granted Critical
Publication of JP6391954B2 publication Critical patent/JP6391954B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a machine part which has excellent fatigue strength and is composed of an iron-based sintered metal.SOLUTION: A sintered machine part is formed by mixing a diffusion alloy steel powder containing 1.5-2.2 wt.% of Ni and 0.5-1.1 wt.% of Mo and an addition graphite powder and molding and sintering and has a ratio of carbon of 0.35 wt.% or lower and a density of 7.55 g/cmor greater. The square root √αof the estimated maximum cavity envelope area in the estimated target region set within the surface layer with a specified depth from the surface is 200 μm or smaller.

Description

本発明は、焼結機械部品及びその製造方法に関する。   The present invention relates to a sintered machine component and a manufacturing method thereof.

焼結体は、金属粉末や黒鉛粉末を含む混合粉末を圧縮成形した後、所定の温度で焼結することにより得られる。焼結体は、ネットシェイプ製品もしくはニアネットシェイプ製品を作製することができ、歩留まりや加工工数の削減による低コスト化が可能になることから、機械部品などに採用されている。中でも、鉄系焼結体は機械的性質が優れていることから、自動車部品や電気製品などに幅広く採用されている。   The sintered body is obtained by compressing and molding a mixed powder containing metal powder and graphite powder and then sintering at a predetermined temperature. The sintered body is used for machine parts and the like because a net shape product or a near net shape product can be produced, and the cost can be reduced by reducing the yield and the number of processing steps. Among these, iron-based sintered bodies are widely used in automobile parts and electrical products because of their excellent mechanical properties.

しかし、焼結体は内部に多くの空孔が残存しており、これらの空孔が応力集中源となって溶製材におけるき裂のような振る舞いをするため、引張・圧縮・曲げ強さや衝撃強さ、疲労強さ等の各種強度が低下する原因となる。   However, many pores remain inside the sintered body, and these pores act as a stress concentration source and behave like cracks in the molten metal, so tensile, compression, bending strength and impact Various strengths such as strength and fatigue strength are reduced.

例えば、混合粉末に対して、圧縮成形工程と焼結工程とを交互に二回ずつ施すことで、焼結体の高密度化を図る技術が知られている(例えば特許文献1)。しかし、この場合、製造コストが高騰するという問題がある。   For example, a technique for increasing the density of a sintered body by alternately performing a compression molding process and a sintering process twice on a mixed powder is known (for example, Patent Document 1). However, in this case, there is a problem that the manufacturing cost increases.

例えば特許文献2では、粗い粒度分布を有する金属粉末を用いることで、二段成形・二段焼結などのコストのかかる処理を用いないで、焼結体の高密度化を図っている。   For example, Patent Document 2 uses a metal powder having a coarse particle size distribution to increase the density of the sintered body without using costly processes such as two-stage molding and two-stage sintering.

さらに、特許文献3には、焼結体の空孔の分散及び大きさを制御することで、疲労強度の向上を図ることが示されている。具体的には、焼結体の断面空孔数率を2000個/mm以上、最大空孔径を60μm以下とすることで、疲労強度の向上を図っている。 Furthermore, Patent Document 3 shows that fatigue strength is improved by controlling the dispersion and size of the pores of the sintered body. Specifically, the fatigue strength is improved by setting the cross-sectional void number ratio of the sintered body to 2000 pieces / mm 2 or more and the maximum pore diameter to 60 μm or less.

特開平4−337001号公報JP-A-4-337001 特表2007−537359号公報Special table 2007-537359 gazette 特開平10−317090号公報Japanese Patent Laid-Open No. 10-317090

しかし、上記特許文献3のように、焼結体の断面に現れる空孔の大きさを制御しても、断面に現れない内部に粗大な空孔が存在する恐れがある。このような焼結体は、疲労強度が十分でない恐れがある。   However, even if the size of the vacancies appearing in the cross section of the sintered body is controlled as in Patent Document 3, coarse vacancies may exist in the interior that does not appear in the cross section. Such a sintered body may not have sufficient fatigue strength.

本発明は、鉄系焼結金属からなる超高密度の機械部品において、優れた疲労強度を保証することにある。   An object of the present invention is to guarantee excellent fatigue strength in an ultra-high-density machine part made of an iron-based sintered metal.

上記の目的を達成するために、本発明は、拡散合金鋼粉を含む混合粉末を用いて形成され、炭素の割合が0.35wt%以下であり、密度が7.55g/cm以上である焼結機械部品であって、表面から所定深さの表層内に設定された推定対象領域における推定最大空孔包絡面積の平方根√αmaxが200μm以下である焼結機械部品を提供する。 In order to achieve the above object, the present invention is formed using a mixed powder containing a diffusion alloy steel powder, the proportion of carbon is 0.35 wt% or less, and the density is 7.55 g / cm 3 or more. There is provided a sintered machine part, wherein a square root √α max of an estimated maximum pore envelope area in an estimation target region set in a surface layer having a predetermined depth from the surface is 200 μm or less.

上記のような焼結機械部品は、例えば、拡散合金鋼粉と0.35wt%以下の黒鉛粉末とを含む混合粉末を得る混合工程と、前記混合粉末を圧縮成形して圧粉体を得る圧粉工程と、前記圧粉体を所定の焼結温度で焼結して、密度が7.55g/cm以上である焼結体を得る焼結工程とを含み、前記黒鉛粉末の粒径D90(質量基準における粒度分布の小径側からの累積質量が90%になるときの粒径)が8μm以下である焼結機械部品の製造方法により製造することができる。 The sintered machine part as described above includes, for example, a mixing step for obtaining a mixed powder containing diffusion alloy steel powder and 0.35 wt% or less of graphite powder, and a pressure for obtaining a green compact by compression molding the mixed powder. A sintering step of sintering the green compact at a predetermined sintering temperature to obtain a sintered body having a density of 7.55 g / cm 3 or more, and a particle size D90 of the graphite powder. It can be manufactured by a method for manufacturing a sintered machine part having a particle size distribution when the cumulative mass from the small diameter side of the particle size distribution on the mass basis is 90% is 8 μm or less.

上記のように、本発明では、合金鋼粉として、鋼粉に合金成分を拡散接合させた拡散合金鋼粉を用いている。合金鋼粉は、鉄粉と合金成分とを完全に合金化させた完全合金鋼粉と比べて硬さが低いため、拡散合金鋼粉を用いることで成形性が向上し、密度を高めることができる。   As described above, in the present invention, the diffusion alloy steel powder obtained by diffusion bonding the alloy components to the steel powder is used as the alloy steel powder. Alloy steel powder has low hardness compared to fully alloyed steel powder that is completely alloyed with iron powder and alloy components, so the use of diffusion alloy steel powder can improve formability and increase density. it can.

ところで、混合粉末の圧縮成形体(圧粉体)を焼結すると、混合粉末に配合される黒鉛粉末は合金鋼粉内に固溶するため、黒鉛粉末があった場所が空孔となる。通常、黒鉛粉末は、合金鋼粉と比べて粒子が微細であるため、上記のような黒鉛粉末の固溶に伴う空孔は微細なものである。従って、密度がそれほど高くない鉄系焼結体では、上記のような黒鉛粉末の固溶に伴う空孔の影響は小さく、その影響は考慮されていなかった。しかし、本発明者らの検証によると、焼結体を高密度化すると内部空孔が非常に少なくなるため、黒鉛の固溶に伴って生じる空孔を無視できなくなり、黒鉛粉末の配合割合が焼結体の密度に大きく影響することが明らかとなった。そこで、本発明では、拡散合金鋼粉を用いて焼結体の高密度化を図ると共に、混合粉末中の黒鉛粉末の配合割合を低く抑えることで、さらなる高密度を可能とした。具体的には、焼結機械部品に含まれる炭素の割合(混合粉末中の黒鉛粉末の配合量とほぼ同等)を0.35wt%以下とした。これにより、高コストな方法を用いることなく、焼結体の密度を7.55g/cm以上の超高密度まで高めることができる。 By the way, when the compression-molded body (compact compact) of the mixed powder is sintered, the graphite powder blended in the mixed powder is dissolved in the alloy steel powder, so that the place where the graphite powder is present becomes a void. Usually, the graphite powder has finer particles than the alloy steel powder, and therefore the pores associated with the solid solution of the graphite powder as described above are fine. Therefore, in an iron-based sintered body having a density that is not so high, the influence of vacancies due to the solid solution of the graphite powder as described above is small, and the influence is not considered. However, according to the verification by the present inventors, since the number of internal vacancies becomes very small when the sintered body is densified, the vacancies caused by the solid solution of graphite cannot be ignored, and the blending ratio of the graphite powder is It was revealed that the density of the sintered body was greatly affected. Therefore, in the present invention, the density of the sintered body is increased by using the diffusion alloy steel powder, and the density of the graphite powder in the mixed powder is suppressed to a low level, thereby further increasing the density. Specifically, the proportion of carbon contained in the sintered machine component (substantially equivalent to the amount of graphite powder in the mixed powder) was set to 0.35 wt% or less. Thereby, the density of a sintered compact can be raised to the ultra high density of 7.55 g / cm < 3 > or more, without using an expensive method.

さらに、本発明では、上記のように、焼結機械部品の表面から所定深さの表層内に設定された推定対象領域において、断面に現れた空孔の大きさから内部の空孔の大きさを推定する推定最大包絡面積の平方根√αmaxを200μm以下とした。これにより、焼結体の表層の内部に、応力集中源となる粗大な空孔がほとんど形成されていないことが保証され、焼結機械部品の優れた疲労強度が保証される。 Furthermore, in the present invention, as described above, in the estimation target region set in the surface layer of a predetermined depth from the surface of the sintered machine part, the size of the internal void from the size of the void that appeared in the cross section. The square root √α max of the estimated maximum envelope area for estimating is set to 200 μm or less. As a result, it is assured that almost no coarse pores serving as a stress concentration source are formed inside the surface layer of the sintered body, and excellent fatigue strength of the sintered machine component is assured.

上記の焼結機械部品は、Niを1.5〜2.2wt%、Moを0.5〜1.1wt%含み、残部がFe、前記炭素、及び不可避不純物からなる組成とすることが好ましい。例えば、Fe-Mo合金の周囲にNiを拡散付着させ、Niを1.5〜2.2wt%、Moを0.5〜1.1wt%含み、残部がFe及び不可避不純物からなる拡散合金鋼粉を用いることで、上記のような組成の焼結機械部品を得ることができる。   The sintered machine part preferably includes 1.5 to 2.2 wt% of Ni and 0.5 to 1.1 wt% of Mo, with the balance being composed of Fe, carbon, and inevitable impurities. For example, diffusion alloy steel powder in which Ni is diffused and deposited around the Fe—Mo alloy, Ni is 1.5 to 2.2 wt%, Mo is 0.5 to 1.1 wt%, and the balance is Fe and inevitable impurities. Can be used to obtain a sintered machine component having the above composition.

黒鉛粉末の固溶に伴う空孔の影響を抑えるためには、黒鉛粉末の配合割合を抑えるだけでなく、粒径を小さくすることが有効である。具体的には、黒鉛粉末の粒径D90を8μm以下とすることが好ましい。尚、粉末の粒径は、レーザ回折・散乱法を用いて測定される。この測定方法は、粒子に光を照射したときに、散乱される散乱光量およびパターンが粒径によって異なることを利用したものである。   In order to suppress the influence of pores accompanying solid solution of graphite powder, it is effective not only to reduce the blending ratio of graphite powder but also to reduce the particle size. Specifically, the particle diameter D90 of the graphite powder is preferably 8 μm or less. The particle size of the powder is measured using a laser diffraction / scattering method. This measurement method utilizes the fact that when the particles are irradiated with light, the amount of scattered light and the pattern to be scattered differ depending on the particle diameter.

上記の焼結機械部品によれば、焼結工程後の再圧縮工程(例えばサイジング工程)を施すことなく、密度を7.55g/cm以上まで高めることが可能となる。 According to the sintered machine part described above, it is possible to increase the density to 7.55 g / cm 3 or more without performing a recompression process (for example, a sizing process) after the sintering process.

上記の焼結機械部品を製造する際、焼結工程の後に浸炭窒化処理を施せば、疲労強度をさらに高めることができる。   When manufacturing the above sintered machine parts, if the carbonitriding process is performed after the sintering process, the fatigue strength can be further increased.

以上のように、本発明によれば、鉄系焼結金属からなる超高密度の機械部品において、優れた疲労強度を保証することができる。   As described above, according to the present invention, excellent fatigue strength can be ensured in an ultra-high-density machine part made of iron-based sintered metal.

リング圧縮疲労強さ試験に用いる試験片の側面図及び断面図である。It is the side view and sectional drawing of a test piece used for a ring compression fatigue strength test. 推定最大空孔包絡面積の算出にあたり、試験片を切断した状態を示す斜視図である。It is a perspective view which shows the state which cut | disconnected the test piece in calculation of an estimated largest void | hole envelope area.

本発明の一実施形態に係る焼結機械部品は、以下に示す混合工程、圧縮成形工程、焼結工程、及び熱処理工程を経て製造される。   A sintered machine part according to an embodiment of the present invention is manufactured through the following mixing process, compression molding process, sintering process, and heat treatment process.

混合工程では、合金鋼粉、黒鉛粉末、及び潤滑剤を所定の割合で混合して混合粉末が作製される。   In the mixing step, a mixed powder is produced by mixing alloy steel powder, graphite powder, and lubricant at a predetermined ratio.

合金鋼粉は、各粒子がFeと他の金属(合金成分)とを含むものである。合金成分としては、例えばNi,Mo,Mn,Crのうちの一種あるいは複数種の金属が使用できる。本実施形態では、合金成分としてNi及びMoを含み、残部をFe及び不可避不純物とした合金鋼粉が使用される。Niは焼結体の機械的性質を強化し、熱処理後の焼結体の靭性を向上させる効果がある。また、Moは焼結体の機械的性質を強化し、熱処理時の焼入れ性を向上させる効果がある。合金鋼粉は、予め目開き250μmの篩通しを行い、分級しておくことが望ましい。   The alloy steel powder is such that each particle contains Fe and another metal (alloy component). As the alloy component, for example, one or more of Ni, Mo, Mn, and Cr can be used. In the present embodiment, alloy steel powder containing Ni and Mo as alloy components and the balance being Fe and inevitable impurities is used. Ni has the effect of strengthening the mechanical properties of the sintered body and improving the toughness of the sintered body after heat treatment. Mo has the effect of enhancing the mechanical properties of the sintered body and improving the hardenability during heat treatment. It is desirable to classify the alloy steel powder by passing through a sieve having an opening of 250 μm in advance.

合金鋼粉としては、鋼粉の周囲に合金成分を拡散付着させた拡散合金鋼粉が使用される。本実施形態では、Fe-Mo合金の周囲にNiを拡散付着させた拡散合金鋼粉が使用される。このように、Fe合金にNi等の金属を拡散付着させることで、FeとNiとを完全に合金化した鋼粉と比べて、焼結前の合金鋼粉の硬さが抑えられるため、圧縮成形時の成形性が確保される。その結果、比較的多量のNiを配合することが可能となる。具体的に、本実施形態の拡散合金鋼粉におけるNiの配合割合は、1.5〜2.2wt%、好ましくは1.7〜2.2wt%とされる。一方、Moは、多量に添加してもその効果は飽和して、かえって成形性を悪化させる原因となる。このため、拡散合金鋼粉におけるMoの配合割合は、0.5〜1.1wt%、好ましくは0.8〜1.1wt%、より好ましくは0.9〜1.1wt%とされる。   As the alloy steel powder, diffusion alloy steel powder in which an alloy component is diffused and adhered around the steel powder is used. In this embodiment, a diffusion alloy steel powder in which Ni is diffused and adhered around the Fe—Mo alloy is used. In this way, the hardness of the alloy steel powder before sintering can be suppressed compared to the steel powder in which Fe and Ni are completely alloyed by diffusing and attaching a metal such as Ni to the Fe alloy. Formability during molding is ensured. As a result, a relatively large amount of Ni can be blended. Specifically, the mixing ratio of Ni in the diffusion alloy steel powder of the present embodiment is 1.5 to 2.2 wt%, preferably 1.7 to 2.2 wt%. On the other hand, even if Mo is added in a large amount, the effect is saturated, and on the contrary, it causes the formability to deteriorate. For this reason, the mixture ratio of Mo in the diffusion alloy steel powder is 0.5 to 1.1 wt%, preferably 0.8 to 1.1 wt%, and more preferably 0.9 to 1.1 wt%.

黒鉛粉末は、例えば人造黒鉛が使用される。黒鉛粉末は、粒径D90が8μm以下のものが使用され、好ましくは6μm以下、より好ましくは4μm以下のものが使用される。また、黒鉛粉末の粒径D90は、2μm以上、好ましくは3μm以上のものが使用される。黒鉛粉末の配合割合は、混合粉末全体に対して0.35wt%以下、好ましくは0.3wt%以下、より好ましくは0.25wt%以下とされる。また、黒鉛粉末の配合割合は、混合粉末全体に対して0.05wt%以上、好ましくは0.1wt%以上、より好ましくは0.15wt%以上とされる。   For example, artificial graphite is used as the graphite powder. The graphite powder having a particle size D90 of 8 μm or less is used, preferably 6 μm or less, more preferably 4 μm or less. The graphite powder having a particle diameter D90 of 2 μm or more, preferably 3 μm or more is used. The blending ratio of the graphite powder is 0.35 wt% or less, preferably 0.3 wt% or less, more preferably 0.25 wt% or less with respect to the entire mixed powder. Further, the blending ratio of the graphite powder is 0.05 wt% or more, preferably 0.1 wt% or more, more preferably 0.15 wt% or more with respect to the whole mixed powder.

潤滑剤は、混合粉末を圧縮成形する際の金型と粉末間または粉末同士の摩擦を低減させる目的で添加される。潤滑剤としては、金属せっけんやアミドワックス等が使用され、例えばエチレンビスステアリルアミド(EBS)が使用される。   The lubricant is added for the purpose of reducing the friction between the mold and the powder or between the powders when the mixed powder is compression-molded. As the lubricant, metal soap, amide wax or the like is used, for example, ethylene bisstearylamide (EBS).

圧縮成形工程では、上記の混合粉末を金型のキャビティに投入して圧縮成形することにより、所定形状の圧粉体が形成される。このとき、成形時の温度は室温以上、潤滑剤の融点以下であることが好ましい。特に、潤滑剤の融点よりも10〜20℃低い温度で成形すると、粉末の降伏強度を低下させ、圧縮性が高められるため、成形密度を高めることができる。また、必要であれば、金型表面に、摩擦低減のための被膜(DLC被膜など)をコーティングしてもよい。   In the compression molding step, the above-mentioned mixed powder is put into a mold cavity and compression molded to form a green compact having a predetermined shape. At this time, it is preferable that the molding temperature is not less than room temperature and not more than the melting point of the lubricant. In particular, when the molding is performed at a temperature lower by 10 to 20 ° C. than the melting point of the lubricant, the yield strength of the powder is reduced and the compressibility is enhanced, so that the molding density can be increased. If necessary, the surface of the mold may be coated with a film for reducing friction (such as a DLC film).

成形圧力を高くすると、圧粉体の密度を高くすることができる。一方、成形圧力が高すぎると、圧粉体の内部に密度ムラによるラミネーション(層状剥離)や金型の破損などが生じる。本実施形態では、1150〜1350MPa程度の成形圧力で圧縮成形工程が行われ、圧粉体の密度が7.4g/cm以上とされる。 When the molding pressure is increased, the density of the green compact can be increased. On the other hand, when the molding pressure is too high, lamination (laminar peeling) due to density unevenness or damage to the mold occurs in the green compact. In the present embodiment, the compression molding process is performed at a molding pressure of about 1150 to 1350 MPa, and the density of the green compact is set to 7.4 g / cm 3 or more.

次に、焼結工程では、圧粉体を所定の焼結温度で焼結する。焼結温度は、例えば1100〜1350℃の範囲内で設定される。焼結工程は、不活性雰囲気化で行われ、例えば窒素と水素の混合ガスやアルゴンガスなどの雰囲気下で行われる。圧粉体を焼結することにより、圧粉体中の黒鉛粉末が合金鋼粉内に固溶し、黒鉛粉末があった部分が空孔となる。これと共に、合金鋼粉が焼結結合することにより圧粉体全体が収縮する。その結果、黒鉛粉末の固溶による密度低下より、圧粉体の収縮による密度上昇の効果が上回り、焼結体の密度が圧粉体の密度よりも高くなる。焼結体の密度は、7.55g/cm以上、好ましくは7.6g/cm以上とされる。 Next, in the sintering step, the green compact is sintered at a predetermined sintering temperature. The sintering temperature is set, for example, within a range of 1100 to 1350 ° C. The sintering process is performed in an inert atmosphere, for example, in an atmosphere of a mixed gas of nitrogen and hydrogen, argon gas, or the like. By sintering the green compact, the graphite powder in the green compact dissolves in the alloy steel powder, and the portion where the graphite powder is present becomes a void. At the same time, the whole green compact shrinks due to the sintered bonding of the alloy steel powder. As a result, the density increase effect due to the shrinkage of the green compact exceeds the density decrease due to the solid solution of the graphite powder, and the density of the sintered body becomes higher than the density of the green compact. Density of the sintered body, 7.55 g / cm 3 or more, and preferably from 7.6 g / cm 3 or more.

上記の焼結工程の後、再圧縮工程を施すことなく、焼結体に表面処理が施される。本実施形態では、焼結体に、浸炭焼入れ焼き戻し処理が施される。これにより、表面の硬度が高められると共に、内部の靭性が確保されるため、き裂の進展が抑制される。表面処理としては、上記の浸炭焼き入れ焼き戻しに限らず、ズブ焼き入れ焼き戻し、高周波焼き入れ焼き戻し、浸炭窒化、真空浸炭などの各種熱処理や、窒化、軟窒化、浸硫、ダイヤモンドライクカーボン(DLC)をはじめとする硬質皮膜や樹脂皮膜の形成、各種メッキ、黒染めやスチーム処理をはじめとする防錆処理などの各種表面改質が適用可能であり、これらのうち複数種を組み合わせることも可能である。浸炭窒化処理を施す場合、窒化層深さは、後述する表面から所定深さの表層の5%以上、好ましくは20%以上とされる。以上により、本発明の実施形態に係る焼結機械部品が完成する。   After the sintering step, the sintered body is subjected to surface treatment without performing a recompression step. In the present embodiment, the sintered body is subjected to a carburizing quenching and tempering process. As a result, the hardness of the surface is increased and the internal toughness is secured, so that the propagation of cracks is suppressed. The surface treatment is not limited to the above carburizing quenching and tempering, but various heat treatments such as submerged quenching and tempering, induction quenching and tempering, carbonitriding, vacuum carburizing, nitriding, soft nitriding, sulfurizing, diamond-like carbon Various surface modifications such as formation of hard coatings such as (DLC) and resin coatings, various plating, rust prevention treatment including blackening and steam treatment, etc. are applicable. Is also possible. When carbonitriding is performed, the nitrided layer depth is 5% or more, preferably 20% or more of the surface layer having a predetermined depth from the surface described later. Thus, the sintered machine part according to the embodiment of the present invention is completed.

上記の焼結機械部品は、例えばギヤやカムとして使用できる。この焼結機械部品は、Niを1.5〜2.2wt%、Moを0.5〜1.1wt%、炭素を0.05〜0.35wt%含み、残部がFe及び不可避不純物からなる。この焼結機械部品は、内部硬さが300〜500HV(好ましくは400〜500HV)、圧環強さが1600MPa以上(好ましくは1750MPa以上、より好ましくは1900MPa以上)、リング圧縮疲労強さ290MPa以上(好ましくは315MPa以上、より好ましくは340MPa以上)とされる。   The above sintered machine parts can be used as gears or cams, for example. This sintered machine part contains 1.5 to 2.2 wt% of Ni, 0.5 to 1.1 wt% of Mo, 0.05 to 0.35 wt% of carbon, and the balance is composed of Fe and inevitable impurities. This sintered machine part has an internal hardness of 300 to 500 HV (preferably 400 to 500 HV), a crushing strength of 1600 MPa or more (preferably 1750 MPa or more, more preferably 1900 MPa or more), and a ring compression fatigue strength of 290 MPa or more (preferably). 315 MPa or more, more preferably 340 MPa or more).

上記の焼結機械部品は、表面から所定深さの表層内に設定された推定対象領域における推定最大空孔包絡面積の平方根√αmaxが、200μm以下、好ましくは150μm以下、より好ましくは100μm以下とされる(√αmaxの算出方法は後述する)。表層は、例えば、焼結機械部品の表面に荷重を加えたときに引張応力が及ぶ領域の表面からの深さを100%としたとき、前記表面から深さ30%の範囲とされる。例えば、焼結機械部品がギヤの場合は歯面から、また、焼結機械部品がカムの場合はカム面(カムフォロアとの接触面)から深さ方向で引張応力が及ぶ領域の歯面あるいはカム面からの深さを計算し、当該深さを100%としたときの歯面あるいはカム面から深さ30%の領域を表層とする。ギヤの場合の具体例として、例えば、歯面から、ピッチ円半径の10%の値の深さまでの領域を表層とする。また、カムの場合の具体例として、例えば、カム面から、カム有効半径の10%の値の深さまでの領域を表層とする。この表層内に設定された推定対象領域における推定最大空孔包絡面積の平方根√αmaxが上記範囲とされる。 In the above sintered machine part, the square root √α max of the estimated maximum pore envelope area in the estimation target region set in the surface layer at a predetermined depth from the surface is 200 μm or less, preferably 150 μm or less, more preferably 100 μm or less. (A method for calculating √α max will be described later). For example, when the depth from the surface of the region where the tensile stress is applied when a load is applied to the surface of the sintered machine part is defined as 100%, the surface layer has a depth of 30% from the surface. For example, if the sintered machine part is a gear, or if the sintered machine part is a cam, or if the sintered machine part is a cam, the tooth surface or cam in the region where the tensile stress extends from the cam surface (contact surface with the cam follower) in the depth direction. The depth from the surface is calculated, and a region having a depth of 30% from the tooth surface or cam surface when the depth is defined as 100% is defined as the surface layer. As a specific example in the case of a gear, for example, a region from a tooth surface to a depth having a value of 10% of the pitch circle radius is defined as a surface layer. Further, as a specific example in the case of a cam, for example, a region from the cam surface to a depth having a value of 10% of the cam effective radius is defined as a surface layer. The square root √α max of the estimated maximum hole envelope area in the estimation target region set in the surface layer is set as the above range.

本発明は、上記の実施形態に限らず、例えば、焼結工程の後に再圧縮工程(例えばサイジング工程)を施してもよい。   The present invention is not limited to the above embodiment, and for example, a recompression process (for example, a sizing process) may be performed after the sintering process.

本発明の効果を確認するために、以下に示す評価試験を行った。尚、以下の試験では、拡散合金鋼粉として、JFEスチール株式会社製のシグマロイ2010を用いた。潤滑剤としては、ロンザジャパン株式会社製のACRAWAX Cを0.5wt%添加した。黒鉛粉末としては、人造黒鉛を用いた。これらを混合した混合粉末を用いて、圧縮成形工程、焼結工程、および熱処理工程を経て、試験片を作製した。試験片は、外径φ23.2mm、内径φ16.4mm、軸方向寸法7mmの円筒形状とした。圧縮成形工程は室温で行った。焼結工程は、窒素及び水素雰囲気のトレイプッシャ炉で、1250℃×150min行った。熱処理工程は、880℃×40minの条件で浸炭処理を施した後、840℃で焼き入れし、180℃×60minの条件で焼き戻しを行った。尚、以下の説明では、熱処理前の焼結体を「as−sinter品」、熱処理後の焼結体を「浸炭品」と言う。   In order to confirm the effect of the present invention, the following evaluation test was performed. In the following tests, Sigmaloy 2010 manufactured by JFE Steel Co., Ltd. was used as the diffusion alloy steel powder. As a lubricant, 0.5 wt% of ACRAWAX C manufactured by Lonza Japan Co., Ltd. was added. Artificial graphite was used as the graphite powder. A test piece was produced through a compression molding process, a sintering process, and a heat treatment process using the mixed powder obtained by mixing these. The test piece had a cylindrical shape with an outer diameter of 23.2 mm, an inner diameter of 16.4 mm, and an axial dimension of 7 mm. The compression molding process was performed at room temperature. The sintering process was performed at 1250 ° C. for 150 minutes in a tray pusher furnace in a nitrogen and hydrogen atmosphere. In the heat treatment step, carburizing treatment was performed under the condition of 880 ° C. × 40 min, followed by quenching at 840 ° C. and tempering under the condition of 180 ° C. × 60 min. In the following description, the sintered body before heat treatment is referred to as “as-sinter product”, and the sintered body after heat treatment is referred to as “carburized product”.

以下の各試験において、焼結密度の測定方法はJIS Z2501、圧環強さの測定方法はJIS Z2507にそれぞれ則った。圧環強さの試験条件は、0.5mm/minのストローク制御で行った。   In each of the following tests, the method for measuring the sintered density was in accordance with JIS Z2501, and the method for measuring the crushing strength was in accordance with JIS Z2507. The crushing strength test conditions were 0.5 mm / min stroke control.

リング圧縮疲労強さは、以下の方法で測定した。図1に示すように、円筒状の試験片の半径(厚さ中心までの半径)をR、厚さをh、軸方向寸法をdとし、試験片に対して、直径方向の繰り返し荷重Wを試験片が破損するまで加える。繰り返し荷重Wの極大値と極小値との比は0.1とされる。繰り返し荷重Wを1×10回加え続けても破損が生じなかったときの最大引張応力σmaxが、当該試験片のリング圧縮疲労強さとなる。尚、最大引張応力σmaxは、下記の数1で定義される。数1のうち、Aは試験片の断面積で、A=d・hで表される。最大曲げモーメントMは、M=0.318WRで表される。断面係数κは、下記の数2で表される。

Figure 2015158002
Figure 2015158002
The ring compression fatigue strength was measured by the following method. As shown in FIG. 1, the radius (radius to the center of thickness) of the cylindrical test piece is R, the thickness is h, the axial dimension is d, and the diametrical repeated load W is applied to the test piece. Add until the specimen breaks. The ratio between the maximum value and the minimum value of the repeated load W is set to 0.1. The maximum tensile stress σ max when no damage occurs even when the repeated load W is continuously applied 1 × 10 7 times is the ring compression fatigue strength of the test piece. The maximum tensile stress σ max is defined by the following formula 1. In Equation 1, A is the cross-sectional area of the test piece and is represented by A = d · h. The maximum bending moment M is represented by M = 0.318WR. The section modulus κ is expressed by the following formula 2.
Figure 2015158002
Figure 2015158002

推定最大空孔包絡面積は、以下の方法で算出される。まず、焼結体の空孔の極値分布が二重指数分布に従うとする。これにより、極値統計を用いた空孔包絡面積の最大値の推定を行う。具体的には、以下の手順を経て、推定最大空孔包絡面積の平方根√αmaxが算出される。 The estimated maximum hole envelope area is calculated by the following method. First, it is assumed that the extreme value distribution of pores in the sintered body follows a double exponential distribution. Thereby, the maximum value of the hole envelope area is estimated using extreme value statistics. Specifically, the square root √α max of the estimated maximum hole envelope area is calculated through the following procedure.

まず、図2に示すように、円筒状の試験片1を軸を含む平面で切断し、この切断面2に鏡面研磨を施す。そして、鏡面研磨を施した試験片の切断面2について顕微鏡観察を行い、表層3内の推定対象領域内に定めた基準面積S(mm)の領域の画像を取得する。得られた画像について画像解析ソフトを用いて二値化し、空孔の包絡面積を解析する。得られた包絡面積のうち最も大きなものを基準面積S中で最大の空孔包絡面積とし、その平方根を√αとする。以上の測定を、推定対象領域内で検査領域を変えてn回繰り返す。 First, as shown in FIG. 2, the cylindrical test piece 1 is cut along a plane including an axis, and the cut surface 2 is subjected to mirror polishing. Then, the cut surface 2 of the test piece subjected to mirror polishing is observed with a microscope, and an image of a region of the reference area S 0 (mm 2 ) determined in the estimation target region in the surface layer 3 is acquired. The obtained image is binarized using image analysis software, and the envelope area of the holes is analyzed. Obtained is the largest pore envelope area most large in reference area S 0 of the of the envelope area, to the square root and √Arufa. The above measurement is repeated n times while changing the inspection region within the estimation target region.

そして、測定したn個の√αを小さいものから順に並べ、それぞれ√α(j=1〜n)とする(以下の数3参照)。それぞれのj(=1〜n)について、下記の数4で表される累積分布関数F(%)、および下記の数5で表される基準化変数yを計算する。

Figure 2015158002
Figure 2015158002
Figure 2015158002
Then, the measured n √αs are arranged in order from the smallest, and are set as √α j (j = 1 to n), respectively (see Equation 3 below). For each j (= 1 to n), a cumulative distribution function F j (%) expressed by the following formula 4 and a standardized variable y j expressed by the following formula 5 are calculated.
Figure 2015158002
Figure 2015158002
Figure 2015158002

極値確率用紙の座標横軸に√αを取り、上記結果をプロットして極値分布を得る(極値確率用紙の縦軸はFもしくはyを取っている)。最小二乗法による近似直線を極値分布に対して外挿し、下記の数6で表されるa及びbを得る。ただし、yは下記の数7で表される基準化変数、Tは下記の数8で表される再帰期間、Vは推定対象領域3の体積(mm)、Vは下記の数9で表される基準体積(mm)、hは下記の数10で表される測定した√αmaxの平均値(mm)である。極値確率用紙の縦軸であるF目盛の10〜85%におけるプロット点が近似直線上に乗ることを確認する。これにより、得られた極値分布が二重指数分布に従うことを確認できる。

Figure 2015158002
Figure 2015158002
Figure 2015158002
Figure 2015158002
Figure 2015158002
√α is taken on the horizontal axis of the extreme probability paper, and the above result is plotted to obtain an extreme value distribution (the vertical axis of the extreme probability paper takes F or y). An approximate straight line obtained by the least square method is extrapolated to the extreme value distribution to obtain a and b represented by the following formula (6). However, y is the normalization variable represented by the following equation 7, T is the recursion period represented by the following equation 8, V is the volume (mm 3 ) of the estimation target region 3, and V 0 is the following equation 9. The reference volume (mm 3 ) and h are the average value (mm) of the measured √α max expressed by the following formula 10. Confirm that the plot points at 10 to 85% of the F scale, which is the vertical axis of the extreme value probability sheet, are on the approximate line. Thereby, it can be confirmed that the obtained extreme value distribution follows a double exponential distribution.
Figure 2015158002
Figure 2015158002
Figure 2015158002
Figure 2015158002
Figure 2015158002

上記数8に推定対象領域の体積Vを代入し、再帰期間Tと得られた極値分布が交わる点が推定最大空孔包絡面積の平方根√αmaxである。 Substituting the volume V of the estimation target region into the above equation 8 and the point where the recurring period T and the obtained extreme value distribution intersect is the square root √α max of the estimated maximum hole envelope area.

本実施形態では、基準面積Sを0.39mm、検査回数nを32回、推定対象領域の体積Vを200mmとした。表層3は、試験片1の内周面から深さ0.54mmの領域とした。基準面積は、半径方向寸法を試験片1の内周面から0.54mm、軸方向寸法を0.74mmとした。推定対象領域は、試験片1の内周面から0.54mmの円筒領域であり、軸方向寸法を7mmとした。 In this embodiment, the reference area S 0 is 0.39 mm 2 , the number of inspections n is 32, and the volume V of the estimation target region is 200 mm 3 . The surface layer 3 was a region having a depth of 0.54 mm from the inner peripheral surface of the test piece 1. As for the reference area, the radial dimension was 0.54 mm from the inner peripheral surface of the test piece 1, and the axial dimension was 0.74 mm. The estimation target area is a cylindrical area of 0.54 mm from the inner peripheral surface of the test piece 1, and the axial dimension is 7 mm.

焼結密度の評価基準は、7.55g/cm未満のときは×、7.55〜7.60g/cmのときは○、7.60g/cm以上のときは◎とした。圧環強さの評価基準は、1600MPa未満のときは×、1600〜1750MPaのときは△、1750〜1900MPaのときは○、1900MPa以上の時は◎とした。リング圧縮疲労強さの評価基準は、290MPa未満の時は×、290〜315MPaの時は△、315〜340MPaの時は○、340MPaの時は◎とした。推定最大空孔包絡面積の平方根√αmaxの評価基準は、100μm未満の時は◎、100〜150μmの時は○、150〜200μmの時は△、200μmを超えた時は×とした。 Evaluation criteria of the sintered density, × when less than 7.55 g / cm 3, when the 7.55~7.60g / cm 3 ○, 7.60g / cm 3 or more when was ◎. The evaluation standard of the crushing strength was × when it was less than 1600 MPa, Δ when it was 1600 to 1750 MPa, ◯ when it was 1750 to 1900 MPa, and ◎ when it was 1900 MPa or more. The evaluation criteria for the ring compression fatigue strength were x when less than 290 MPa, Δ when 290 to 315 MPa, ◯ when 315 to 340 MPa, and 時 when 340 MPa. The evaluation standard of the square root √α max of the estimated maximum pore envelope area was ◎ when less than 100 μm, ◯ when 100 to 150 μm, Δ when 150 to 200 μm, and × when exceeding 200 μm.

(1)炭素の添加量について
炭素の添加量について調査した。具体的には、Niを2.0wt%、Moを1.0wt%含む拡散合金鋼粉と、粒径D90が6.0μmの黒鉛粉末とを混合し、黒鉛粉末の添加量を0〜0.4wt%の範囲で異ならせた複数種の混合粉末を用意した。各混合粉末を、1200MPaで成形した後、焼結し、さらに浸炭熱処理を施すことで、複数種の試験片を作製した。こうして得られた各試験片の焼結密度(as−sinter品)、圧環強さ(浸炭品)、及びリング圧縮疲労強さ(浸炭品)を測定した。その結果を以下の表1に示す。
(1) About the amount of carbon added The amount of carbon added was investigated. Specifically, a diffusion alloy steel powder containing 2.0 wt% Ni and 1.0 wt% Mo and graphite powder having a particle size D90 of 6.0 μm are mixed, and the addition amount of the graphite powder is set to 0 to 0.00. Plural kinds of mixed powders having different amounts in the range of 4 wt% were prepared. Each mixed powder was molded at 1200 MPa, sintered, and then subjected to carburizing heat treatment to produce a plurality of types of test pieces. The sintered density (as-sinter product), crushing strength (carburized product), and ring compression fatigue strength (carburized product) of each test piece thus obtained were measured. The results are shown in Table 1 below.

Figure 2015158002
Figure 2015158002

表1に示すように、実施例1〜3は、7.55g/cmの密度を有し、且つ、優れた圧環強さ及び疲労強さを示した。このことから、黒鉛粉末の添加量は0.05〜0.35wt%、好ましくは0.1〜0.3wt%、より好ましくは0.15〜0.25wt%とすることが望ましいことが明らかになった。 As shown in Table 1, Examples 1 to 3 had a density of 7.55 g / cm 3 and exhibited excellent crushing strength and fatigue strength. From this, it is clear that the addition amount of graphite powder is desirably 0.05 to 0.35 wt%, preferably 0.1 to 0.3 wt%, more preferably 0.15 to 0.25 wt%. became.

(2)黒鉛粉末の粒径について
混合粉末に添加する黒鉛粉末の粒径について調査した。具体的には、Niを2.0wt%、Moを1.0wt%含む拡散合金鋼粉と、0.2wt%の黒鉛粉末とを混合し、黒鉛粉末の粒径D90を4.0〜25.0μmの範囲で異ならせた複数種の混合粉末を用意した。各混合粉末を、1200MPaで成形した後、焼結し、さらに浸炭熱処理を施すことで複数種の試験片を作製した。こうして得られた各試験片の焼結密度(as−sinter品)、圧環強さ(浸炭品)、及びリング圧縮疲労強さ(浸炭品)を測定した。その結果を以下の表2に示す。
(2) About the particle size of graphite powder The particle size of the graphite powder added to mixed powder was investigated. Specifically, a diffusion alloy steel powder containing 2.0 wt% Ni and 1.0 wt% Mo is mixed with 0.2 wt% graphite powder, and the particle size D90 of the graphite powder is set to 4.0 to 25. A plurality of types of mixed powders having different sizes in the range of 0 μm were prepared. Each mixed powder was molded at 1200 MPa, sintered, and then subjected to a carburizing heat treatment to prepare a plurality of types of test pieces. The sintered density (as-sinter product), crushing strength (carburized product), and ring compression fatigue strength (carburized product) of each test piece thus obtained were measured. The results are shown in Table 2 below.

Figure 2015158002
Figure 2015158002

表2に示すように、実施例4及び5は、7.55g/cmの密度を有している。このことから、黒鉛粉末の粒径D90は、8μm以下、好ましくは6μm以下、より好ましくは4μm以下とすることが望ましいことが明らかになった。 As shown in Table 2, Examples 4 and 5 have a density of 7.55 g / cm 3 . From this, it became clear that the particle size D90 of the graphite powder is desirably 8 μm or less, preferably 6 μm or less, more preferably 4 μm or less.

(3)圧縮成形時の成形圧力について
圧縮成形工程における成形圧力について調査した。具体的には、Niを2.0wt%、Moを1.0wt%含む拡散合金鋼粉に、粒径D90が6.0μmの黒鉛粉末を0.2wt%配合した混合粉末を、成形圧力を1000〜1400MPaの範囲で変化させて圧縮成形して複数種の圧粉体を成形し、各圧粉体に焼結、浸炭熱処理を施すことで、複数種の試験片を作製した。こうして得られた各試験片の焼結密度(as−sinter品)、推定最大空孔包絡面積の平方根√αmax(as−sinter品)、圧環強さ(浸炭品)、及びリング圧縮疲労強さ(浸炭品)を測定した。その結果を表3に示す。
(3) Molding pressure during compression molding The molding pressure in the compression molding process was investigated. Specifically, a mixed powder obtained by blending 0.2 wt% of graphite powder having a particle diameter D90 of 6.0 μm with a diffusion alloy steel powder containing 2.0 wt% Ni and 1.0 wt% Mo is formed at a molding pressure of 1000. A plurality of types of green compacts were formed by compression molding in a range of ˜1400 MPa, and a plurality of types of test pieces were produced by subjecting each green compact to sintering and carburizing heat treatment. The sintered density of each specimen thus obtained (as-sinter product), the square root of the estimated maximum pore envelope area √α max (as-sinter product), crushing strength (carburized product), and ring compression fatigue strength (Carburized product) was measured. The results are shown in Table 3.

Figure 2015158002
Figure 2015158002

表3に示すように、実施例6及び7は、7.55g/cmの密度を有し、且つ、優れた機械的性質(圧環強さ及び疲労強さ)を示した。このことから、成形圧力は、1150〜1350MPaの範囲とすることが好ましいことが明らかになった。尚、比較例7は、圧縮成形時に試験片にクラックが生じたため測定ができなかった。 As shown in Table 3, Examples 6 and 7 had a density of 7.55 g / cm 3 and exhibited excellent mechanical properties (compression strength and fatigue strength). From this, it became clear that the molding pressure is preferably in the range of 1150 to 1350 MPa. Note that Comparative Example 7 could not be measured because a crack occurred in the test piece during compression molding.

(4)拡散合金鋼粉の分級について
拡散合金鋼粉中の粗大粒子を除去することによる効果について調査した。具体的には、Niを2.0wt%、Moを1.0wt%含む拡散合金鋼粉を、目開きが106、180、250μmの篩に通し、分級度の異なる複数種の拡散合金粉を得た。各拡散合金鋼粉に、粒径D90が6.0μmの黒鉛粉末を0.2wt%配合した混合粉末を、1200MPaで圧縮成形した後、焼結、浸炭熱処理を施すことで、複数種の試験片を作製した。こうして得られた各試験片の焼結密度(as−sinter品)、推定最大空孔包絡面積の平方根√αmax(as−sinter品)、圧環強さ(浸炭品)、及びリング圧縮疲労強さ(浸炭品)を測定した。その結果を表4に示す。
(4) Classification of diffusion alloy steel powder The effect of removing coarse particles in the diffusion alloy steel powder was investigated. Specifically, a diffusion alloy steel powder containing 2.0 wt% Ni and 1.0 wt% Mo is passed through a sieve having openings of 106, 180, and 250 μm to obtain a plurality of types of diffusion alloy powder having different classification degrees. It was. A plurality of types of test pieces are obtained by compressing and molding a mixed powder in which 0.2 wt% of graphite powder having a particle diameter D90 of 6.0 μm is blended with each diffusion alloy steel powder at 1200 MPa, followed by sintering and carburizing heat treatment. Was made. The sintered density of each specimen thus obtained (as-sinter product), the square root of the estimated maximum pore envelope area √α max (as-sinter product), crushing strength (carburized product), and ring compression fatigue strength (Carburized product) was measured. The results are shown in Table 4.

Figure 2015158002
Figure 2015158002

表4に示すように、実施例8〜10は、7.55g/cmの密度を有し、且つ、比較例よりも優れた機械的性質(圧環強さ及び疲労強さ)を示した。このことから、拡散合金鋼粉は、目開き250μm以下、好ましくは目開き180μm以下、より好ましくは目開き106μm以下の篩を通すことが望ましいことが明らかになった。 As shown in Table 4, Examples 8 to 10 had a density of 7.55 g / cm 3 and exhibited mechanical properties (compression strength and fatigue strength) superior to those of the comparative example. From this, it became clear that it is desirable to pass the diffusion alloy steel powder through a sieve having an opening of 250 μm or less, preferably an opening of 180 μm or less, more preferably an opening of 106 μm or less.

また、表3及び表4に示すように、機械的性質に優れた実施例6〜10は、何れも推定最大空孔包絡面積の平方根√αmaxが200μm以下となっている。このことから、推定最大空孔包絡面積の平方根√αmaxは、200μm以下、好ましくは150μ以下、より好ましくは100μm以下とすることが望ましいことが明らかになった。 As shown in Tables 3 and 4, in Examples 6 to 10 having excellent mechanical properties, the square root √α max of the estimated maximum pore envelope area is 200 μm or less. From this, it has become clear that the square root √α max of the estimated maximum pore envelope area is desirably 200 μm or less, preferably 150 μm or less, more preferably 100 μm or less.

(5)Niの添加量について
合金鋼粉中のNiの添加量について調査した。具体的には、Mo添加量を1.0wt%とし、Ni添加量を変化させた複数種の拡散合金鋼粉を用意し、各拡散合金鋼粉に、粒径D90が6.0μmの人造黒鉛を0.2wt%配合した混合粉末を、1200MPaで圧縮成形し、焼結、浸炭熱処理を施して、複数種の試験片を作製した。こうして得られた各試験片の焼結密度(as−sinter品)及び圧環強さ(浸炭品)を測定した。その結果を以下の表5に示す。
(5) Addition amount of Ni The addition amount of Ni in the alloy steel powder was investigated. Specifically, a plurality of types of diffusion alloy steel powders having Mo addition amount of 1.0 wt% and varying Ni addition amount are prepared, and artificial graphite having a particle diameter D90 of 6.0 μm is prepared for each diffusion alloy steel powder. A mixed powder containing 0.2 wt% was compression molded at 1200 MPa, subjected to sintering and carburizing heat treatment to produce a plurality of types of test pieces. The sintered density (as-sinter product) and crushing strength (carburized product) of each test piece thus obtained were measured. The results are shown in Table 5 below.

Figure 2015158002
Figure 2015158002

表5に示すように、実施例11〜13は、7.55g/cmの密度を有し、且つ、優れた圧環強さを示した。このことから、Niの添加量は1.5〜2.2wt%程度とすることが望ましいことが明らかになった。 As shown in Table 5, Examples 11 to 13 had a density of 7.55 g / cm 3 and exhibited excellent crushing strength. From this, it became clear that the addition amount of Ni is desirably about 1.5 to 2.2 wt%.

(6)Moの添加量について
合金鋼粉中のMoの添加量について調査した。具体的に、Ni添加量を2.0wt%とし、Mo添加量を変化させた複数種の拡散合金鋼粉を用意し、各拡散合金鋼粉に、粒径D90が6.0μmの黒鉛粉末を0.2wt%配合した混合粉末を、1200MPaで圧縮成形し、焼結、浸炭熱処理を施して、複数種の試験片を作製した。こうして得られた各試験片の焼結密度(as−sinter品)及び圧環強さ(浸炭品)を測定した。その結果を以下の表6に示す。
(6) Addition amount of Mo The addition amount of Mo in the alloy steel powder was investigated. Specifically, a plurality of types of diffusion alloy steel powders with Ni addition amount of 2.0 wt% and Mo addition amount changed are prepared, and graphite powder having a particle diameter D90 of 6.0 μm is prepared for each diffusion alloy steel powder. The mixed powder containing 0.2 wt% was compression-molded at 1200 MPa, subjected to sintering and carburizing heat treatment, and a plurality of types of test pieces were produced. The sintered density (as-sinter product) and crushing strength (carburized product) of each test piece thus obtained were measured. The results are shown in Table 6 below.

Figure 2015158002
Figure 2015158002

表6に示すように、実施例14〜16は、7.55g/cmの密度を有し、且つ、優れた圧環強さを示した。このことから、Moの添加量は0.5〜1.1wt%、好ましくは0.8〜1.1wt%程度とすることが望ましいことが明らかになった。 As shown in Table 6, Examples 14 to 16 had a density of 7.55 g / cm 3 and exhibited excellent crushing strength. From this, it became clear that the addition amount of Mo is desirably 0.5 to 1.1 wt%, preferably about 0.8 to 1.1 wt%.

(7)浸炭窒化処理について
浸炭窒化処理の効果について調査した。具体的には、Niを2.0wt%、Moを1.0wt%含む拡散合金鋼粉と、粒径D90が6.8μmの黒鉛粉末とを混合し、各混合粉末を1176MPaで成形した後、焼結し、さらに浸炭窒化処理を施して窒化層の深さを0〜0.5mmの範囲で異ならせた複数種の試験片を作製した。こうして得られた試験片のリング圧縮疲労強さを測定した。その結果を以下の表7に示す。尚、浸炭窒化処理におけるリング圧縮疲労強さの評価基準は、340〜400MPaの時は◎、400〜500MPaの時は◎◎、500MPa以上の時は◎◎◎とした。
(7) About carbonitriding The effect of carbonitriding was investigated. Specifically, after mixing a diffusion alloy steel powder containing 2.0 wt% Ni and 1.0 wt% Mo and a graphite powder having a particle size D90 of 6.8 μm, each mixed powder was molded at 1176 MPa, Sintering was performed, and carbonitriding was further performed to prepare a plurality of types of test pieces in which the depth of the nitrided layer was varied in the range of 0 to 0.5 mm. The ring compression fatigue strength of the test piece thus obtained was measured. The results are shown in Table 7 below. The evaluation criteria for the ring compression fatigue strength in the carbonitriding treatment were ◎ for 340 to 400 MPa, ◎ for 400 to 500 MPa, and ◎ for a pressure of 500 MPa or more.

Figure 2015158002
Figure 2015158002

表7に示すように、実施例17、18は優れたリング圧縮疲労強さを示した。このことから、窒素が0.05wt%以上存在する窒化層の深さは、試験片に荷重を加えたときに引張応力が及ぶ領域の表面からの深さを100%としたとき、表面から深さ5%以上とすることが好ましく、20%以上とすることがより好ましいことが明らかになった。   As shown in Table 7, Examples 17 and 18 exhibited excellent ring compression fatigue strength. From this, the depth of the nitrided layer containing 0.05 wt% or more of nitrogen is the depth from the surface when the depth from the surface of the region where the tensile stress is applied when a load is applied to the test piece is 100%. It has become clear that it is preferably 5% or more, more preferably 20% or more.

Claims (10)

拡散合金鋼粉を含む混合粉末を用いて形成され、炭素の割合が0.35wt%以下であり、密度が7.55g/cm以上である焼結機械部品であって、
表面から所定深さの表層内に設定された推定対象領域における推定最大空孔包絡面積の平方根√αmaxが200μm以下である焼結機械部品。
A sintered machine part formed using a mixed powder containing diffusion alloy steel powder, having a carbon ratio of 0.35 wt% or less and a density of 7.55 g / cm 3 or more,
A sintered machine part having a square root √α max of an estimated maximum pore envelope area in an estimation target region set in a surface layer of a predetermined depth from the surface of 200 μm or less.
Niを1.5〜2.2wt%、Moを0.5〜1.1wt%含み、残部がFe、前記炭素、及び不可避不純物からなる請求項1記載の焼結機械部品。   The sintered machine part according to claim 1, comprising 1.5 to 2.2 wt% of Ni, 0.5 to 1.1 wt% of Mo, and the balance consisting of Fe, the carbon, and inevitable impurities. 前記混合粉末が黒鉛粉末を含み、該黒鉛粉末の質量基準における粒度分布の小径側からの累積質量が90%になるときの粒径D90が8μm以下である請求項1又は2に記載の焼結機械部品。   3. The sintering according to claim 1, wherein the mixed powder contains graphite powder, and the particle diameter D90 when the cumulative mass from the small diameter side of the particle size distribution on the mass basis of the graphite powder becomes 90% is 8 μm or less. Machine parts. 焼結工程後に、再圧縮工程が施されていない請求項1〜3の何れかに記載の焼結機械部品。   The sintered machine part according to any one of claims 1 to 3, wherein a recompression process is not performed after the sintering process. 拡散合金鋼粉と0.35wt%以下の黒鉛粉末とを含む混合粉末を得る混合工程と、前記混合粉末を圧縮成形して圧粉体を得る圧粉工程と、前記圧粉体を所定の焼結温度で焼結して、密度が7.55g/cm以上である焼結体を得る焼結工程とを含み、前記黒鉛粉末の質量基準における粒度分布の小径側からの累積質量が90%になるときの粒径D90が8μm以下である焼結機械部品の製造方法。 A mixing step for obtaining a mixed powder containing diffusion alloy steel powder and 0.35 wt% or less graphite powder; a green compacting step for compressing the mixed powder to obtain a green compact; and Sintering at a sintering temperature to obtain a sintered body having a density of 7.55 g / cm 3 or more, and a cumulative mass from the small diameter side of the particle size distribution on the mass basis of the graphite powder is 90% A method for manufacturing a sintered machine part having a particle diameter D90 of 8 μm or less. 前記拡散合金鋼粉が、Fe-Mo合金の周囲にNiを拡散付着させたものであり、Niを1.5〜2.2wt%、Moを0.5〜1.1wt%含み、残部がFe及び不可避不純物からなる請求項5記載の焼結機械部品の製造方法。   The diffusion alloy steel powder is obtained by diffusion-adhering Ni around the Fe—Mo alloy, containing 1.5 to 2.2 wt% of Ni, 0.5 to 1.1 wt% of Mo, and the balance being Fe The method for manufacturing a sintered machine part according to claim 5, comprising: and inevitable impurities. 前記焼結工程の後、再圧縮工程を施さない請求項5又は6に記載の焼結機械部品の製造方法。   The method for manufacturing a sintered machine part according to claim 5 or 6, wherein a recompression step is not performed after the sintering step. 前記圧縮成形工程における成形圧力が1150〜1350MPaである請求項5〜7の何れかに記載の焼結機械部品の製造方法。   The method for producing a sintered machine part according to any one of claims 5 to 7, wherein a molding pressure in the compression molding step is 1150 to 1350 MPa. 前記拡散合金鋼粉が、目開き250μm以下の篩を通過させたものである請求項5〜8の何れかに記載の焼結機械部品の製造方法。   The method for producing a sintered machine part according to any one of claims 5 to 8, wherein the diffusion alloy steel powder is passed through a sieve having an opening of 250 µm or less. 前記焼結工程の後、浸炭窒化処理を施す請求項5〜9の何れかに記載の焼結機械部品の製造方法。   The method for manufacturing a sintered machine part according to any one of claims 5 to 9, wherein carbonitriding is performed after the sintering step.
JP2014053654A 2014-01-22 2014-03-17 Sintered machine parts and manufacturing method thereof Expired - Fee Related JP6391954B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014053654A JP6391954B2 (en) 2014-01-22 2014-03-17 Sintered machine parts and manufacturing method thereof
US15/108,660 US20160327144A1 (en) 2014-01-22 2014-12-22 Sintered machine part and manufacturing method thereof
EP14880315.8A EP3097999A4 (en) 2014-01-22 2014-12-22 Sintered machine part and manufacturing method thereof
CN201480072428.5A CN105899315A (en) 2014-01-22 2014-12-22 Sintered machine part and manufacturing method thereof
PCT/JP2014/083822 WO2015111338A1 (en) 2014-01-22 2014-12-22 Sintered machine part and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014009420 2014-01-22
JP2014009420 2014-01-22
JP2014053654A JP6391954B2 (en) 2014-01-22 2014-03-17 Sintered machine parts and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015158002A true JP2015158002A (en) 2015-09-03
JP6391954B2 JP6391954B2 (en) 2018-09-19

Family

ID=54182206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014053654A Expired - Fee Related JP6391954B2 (en) 2014-01-22 2014-03-17 Sintered machine parts and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6391954B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916325B1 (en) * 1968-08-22 1974-04-22
JPH0379744A (en) * 1989-08-21 1991-04-04 Kawasaki Steel Corp Sintered alloy steel having high strength, high ductility, and high toughness
JPH05263181A (en) * 1992-03-19 1993-10-12 Mitsubishi Materials Corp Manufacture of fe base sintered alloy member having high strength and high toughness
JP2000355726A (en) * 1999-04-16 2000-12-26 Unisia Jecs Corp Alloy steel powder compacting stock and alloy steel powder worked body
JP2004232079A (en) * 2002-05-21 2004-08-19 Jfe Steel Kk Auxiliary material powder for powder metallurgy, iron based powdery mixture for powder metallurgy, and production method therefor
JP2007138273A (en) * 2004-11-25 2007-06-07 Jfe Steel Kk Method for producing high density iron-based compacted body and high strength and high density iron-based sintered body
JP2007197814A (en) * 2005-08-12 2007-08-09 Jfe Steel Kk Method for producing high-density iron-based compact and high-strength high-density iron-based sintered body
JP2008169460A (en) * 2006-02-15 2008-07-24 Jfe Steel Kk Iron-based powder mixture, and methods for producing compact of iron-based powder and sintered compact of iron-based powder
JP2013053358A (en) * 2011-09-06 2013-03-21 Sumitomo Electric Sintered Alloy Ltd Method of producing sintered component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916325B1 (en) * 1968-08-22 1974-04-22
JPH0379744A (en) * 1989-08-21 1991-04-04 Kawasaki Steel Corp Sintered alloy steel having high strength, high ductility, and high toughness
JPH05263181A (en) * 1992-03-19 1993-10-12 Mitsubishi Materials Corp Manufacture of fe base sintered alloy member having high strength and high toughness
JP2000355726A (en) * 1999-04-16 2000-12-26 Unisia Jecs Corp Alloy steel powder compacting stock and alloy steel powder worked body
JP2004232079A (en) * 2002-05-21 2004-08-19 Jfe Steel Kk Auxiliary material powder for powder metallurgy, iron based powdery mixture for powder metallurgy, and production method therefor
JP2007138273A (en) * 2004-11-25 2007-06-07 Jfe Steel Kk Method for producing high density iron-based compacted body and high strength and high density iron-based sintered body
JP2007197814A (en) * 2005-08-12 2007-08-09 Jfe Steel Kk Method for producing high-density iron-based compact and high-strength high-density iron-based sintered body
JP2008169460A (en) * 2006-02-15 2008-07-24 Jfe Steel Kk Iron-based powder mixture, and methods for producing compact of iron-based powder and sintered compact of iron-based powder
JP2013053358A (en) * 2011-09-06 2013-03-21 Sumitomo Electric Sintered Alloy Ltd Method of producing sintered component

Also Published As

Publication number Publication date
JP6391954B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
US7384446B2 (en) Mixed powder for powder metallurgy
JP6309215B2 (en) Sintered machine part manufacturing method and mixed powder used therefor
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
KR20170080668A (en) Alloy steel powder for powder metallurgy, and sintered body
US20160327144A1 (en) Sintered machine part and manufacturing method thereof
KR20180031750A (en) Mixed powder for powder metallurgy, sintered compact, and method for producing sintered compact
JP2018003135A (en) Sintered tungsten-based alloy and manufacturing method therefor
JP2022174140A (en) Sinter member
JP6819624B2 (en) Iron-based mixed powder for powder metallurgy, its manufacturing method, and sintered body with excellent tensile strength and impact resistance
JP6444621B2 (en) Sintered machine parts
JP6391954B2 (en) Sintered machine parts and manufacturing method thereof
JP7036216B2 (en) Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy
JP7114817B2 (en) Sintered material and method for producing sintered material
JP2016056445A (en) Mixed powder for powder metallurgy, sintered metal component using the same, and method for producing the mixed powder for powder metallurgy
JP7114623B2 (en) Sintered material and method for producing sintered material
WO2015111338A1 (en) Sintered machine part and manufacturing method thereof
JP6743720B2 (en) Iron-based mixed powder for powder metallurgy, method for producing the same, and sintered body excellent in tensile strength and impact resistance
CN114286872B (en) Sintered component and method for producing sintered component
JP2019026880A (en) Method for producing forging material
JPWO2020202805A1 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JP2019019383A (en) Sintered component and method for manufacturing sintered component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180822

R150 Certificate of patent or registration of utility model

Ref document number: 6391954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees