JP2015156398A - Static eliminator - Google Patents

Static eliminator Download PDF

Info

Publication number
JP2015156398A
JP2015156398A JP2015102342A JP2015102342A JP2015156398A JP 2015156398 A JP2015156398 A JP 2015156398A JP 2015102342 A JP2015102342 A JP 2015102342A JP 2015102342 A JP2015102342 A JP 2015102342A JP 2015156398 A JP2015156398 A JP 2015156398A
Authority
JP
Japan
Prior art keywords
container
electron beam
electrode
voltage
static eliminator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015102342A
Other languages
Japanese (ja)
Other versions
JP6009038B2 (en
Inventor
後藤 征司
Seiji Goto
征司 後藤
青井 辰史
Tatsufumi Aoi
辰史 青井
浅原 裕司
Yuji Asahara
裕司 浅原
上田 泰稔
Yasutoshi Ueda
泰稔 上田
健康 垂水
Takeyasu Tarumi
健康 垂水
篤志 津尾
Atsushi Tsuo
篤志 津尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Heavy Industries Food and Packaging Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Heavy Industries Food and Packaging Machinery Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015102342A priority Critical patent/JP6009038B2/en
Publication of JP2015156398A publication Critical patent/JP2015156398A/en
Application granted granted Critical
Publication of JP6009038B2 publication Critical patent/JP6009038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a static eliminator capable of reliably eliminating electro static charge from a container due to electron beam irradiation.
SOLUTION: The static eliminator includes: a gripper 12 for holding a container 100; a rod-like electrode 13 made of a conductive material, which is inserted and disposed in the container 100; an electron ray irradiation unit 20 that irradiates an electron beam to the container 100 held by the gripper 12 to sterilize the container 100; and an AC power source 15 for applying AC voltage to the electrode 13. When AC voltage from the AC power source 15 is applied to the electrode 13 which is inserted and disposed in the container 100, the electric charge accumulated on the container 100 due to the irradiation with electron beam is agitated to flow out to the outside. With this, the charge is eliminated efficiently.
COPYRIGHT: (C)2015,JPO&INPIT

Description

本発明は、食品・飲料・医薬品等を充填する容器を電子線により殺菌した場合に用いられる容器の除電装置に関する。   The present invention relates to a static eliminator for a container used when a container filled with food, beverage, medicine, etc. is sterilized with an electron beam.

食品・飲料・医薬品等の充填物を容器に充填する充填工程においては、容器に充填物を充填するのに先立ち、容器の殺菌が行われる。
容器の殺菌には、過酢酸・過酸化水素といった薬液や紫外線照射が多く用いられているが、近年、紫外線よりも殺菌力に勝る電子線照射による殺菌技術が注目され、鋭意開発が行われている。
In the filling step of filling a container with a filling such as food, beverage or pharmaceutical, the container is sterilized prior to filling the container with the filling.
In order to sterilize containers, chemicals such as peracetic acid and hydrogen peroxide and ultraviolet irradiation are often used. However, in recent years, sterilization technology using electron beam irradiation, which has superior sterilizing power than ultraviolet rays, has attracted attention and has been developed intensively. Yes.

電子線の照射により樹脂製の容器の殺菌を行った場合、容器を形成する樹脂の内部に電荷が残るケースがある。また、容器の内部空間にも、電荷が滞留する。その結果、容器が帯電し、静電気により周囲の埃等を引き寄せたりするなどの問題が発生する。   When a resin container is sterilized by irradiation with an electron beam, there are cases in which electric charges remain inside the resin forming the container. In addition, electric charges stay in the internal space of the container. As a result, the container is charged, and problems such as attracting surrounding dust due to static electricity occur.

そこで、電子線照射中に、棒状の金属製の接地電極を容器内に挿入し、容器内から電子やイオンを容器外に流す技術が提案されている(例えば、特許文献1参照。)。   Therefore, a technique has been proposed in which a rod-shaped metal ground electrode is inserted into a container during electron beam irradiation, and electrons and ions are allowed to flow out of the container (for example, see Patent Document 1).

特開2011−26000号公報JP2011-26000A

しかしながら、電子線照射により容器が帯電するという問題を、より確実に、かつより低コストで解消することが常に望まれている。
そこで、本発明は、電子線照射による容器の帯電を、より確実に解消することのできる除電装置を提供することを目的とする。
However, it is always desired to solve the problem that the container is charged by electron beam irradiation more reliably and at a lower cost.
Therefore, an object of the present invention is to provide a static eliminator that can more reliably eliminate the charging of a container due to electron beam irradiation.

本発明の除電装置は、容器を保持する容器保持具と、容器の内部に挿入配置され、導電性材料からなる棒状の電極と、容器保持具に保持された容器に電子線を照射して容器を殺菌する電子線殺菌部と、電極に交流電圧を印加する交流電圧印加源と、を備えることを特徴とする。   The static eliminator of the present invention includes a container holder that holds a container, a rod-shaped electrode that is inserted and disposed inside the container, and an electron beam that irradiates the container held by the container holder. An electron beam sterilizing unit for sterilizing the liquid crystal and an AC voltage application source for applying an AC voltage to the electrode.

本発明の除電装置によれば、電子線殺菌部による容器の殺菌を行いながら、電極に交流電圧印加源から交流電圧を印加することができる。   According to the static eliminator of the present invention, an AC voltage can be applied to the electrode from an AC voltage application source while the container is sterilized by the electron beam sterilization unit.

本発明によれば、容器の内部に挿入配置した電極に交流電圧印加源から交流電圧を印加すると、詳しくは後述するように、電子線の照射により容器に充電された電荷が外部に流出し易くなるので、効率よく除電を図ることができる。   According to the present invention, when an AC voltage is applied from an AC voltage application source to an electrode inserted and arranged inside the container, the charge charged in the container by electron beam irradiation is likely to flow out to the outside as will be described in detail later. As a result, it is possible to eliminate static electricity efficiently.

本実施の形態における飲料充填設備の概要を示すレイアウト図である。It is a layout figure which shows the outline | summary of the drink filling equipment in this Embodiment. 本実施形態における殺菌装置の概略構成を示す図である。It is a figure which shows schematic structure of the sterilizer in this embodiment. 容器を形成するPET樹脂の温度−電気抵抗特性を示す図である。It is a figure which shows the temperature-electrical resistance characteristic of PET resin which forms a container. (a)は反射板、および他の形態の電極を備えた例を示す図であり、(b)は反射板の他の例を示す図である。(A) is a figure which shows the example provided with the reflecting plate and the electrode of another form, (b) is a figure which shows the other example of a reflecting plate. 棒状の電極の複数の例を示す図である。It is a figure which shows the some example of a rod-shaped electrode.

以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
図1は、本実施の形態における飲料充填設備の概要を示す図である。
図1に示すように、飲料充填設備においては、供給されたPET樹脂からなる容器に対し、殺菌装置(除電装置)10において電子線照射により殺菌する殺菌工程、充填装置30において容器に液体を充填する充填工程、液体が充填された容器にキャッパ40においてキャップを装着するキャッピング工程、を順次経ることで、容器への飲料の充填が行われる。互いに前後する装置間においては、スターホイール50や搬送コンベア60により容器が搬送される。
なお、図1の例においては、殺菌装置10を2台備え、容器を一方の側と他方の側とからそれぞれ殺菌する構成を有しているが、これに限るものではない。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
FIG. 1 is a diagram showing an outline of a beverage filling facility in the present embodiment.
As shown in FIG. 1, in a beverage filling facility, a sterilization process (sterilization device) 10 sterilizes a container made of supplied PET resin by electron beam irradiation, and the filling device 30 fills the container with liquid. The container is filled with the beverage by sequentially performing a filling process and a capping process in which a cap is attached to the container filled with the liquid in the capper 40. A container is conveyed by the star wheel 50 or the conveyance conveyor 60 between the apparatuses which are mutually back and front.
In the example of FIG. 1, two sterilization apparatuses 10 are provided and the container is sterilized from one side and the other side, but the present invention is not limited to this.

殺菌工程において用いられる殺菌装置10は、容器を搬送しながら容器に電子線を照射して殺菌を行う。
殺菌装置10は、円盤状の回転体11の外周部に、図2に示すように、供給された容器100を保持するグリッパ(容器保持具)12と、グリッパ12で保持した容器100内に挿入される棒状の電極13とが、周方向に間隔を隔てて複数組配置されている。
さらに、殺菌装置10には、グリッパ12で保持した容器100に対して電子線を照射する電子線照射装置(電子線殺菌部)20が、回転体11の外周側に設けられている。
The sterilizer 10 used in the sterilization process sterilizes the container by irradiating the container with an electron beam while conveying the container.
As shown in FIG. 2, the sterilizer 10 is inserted into the outer periphery of the disc-shaped rotating body 11 into the gripper (container holder) 12 that holds the supplied container 100 and the container 100 that is held by the gripper 12. A plurality of sets of rod-shaped electrodes 13 are arranged at intervals in the circumferential direction.
Further, the sterilization apparatus 10 is provided with an electron beam irradiation apparatus (electron beam sterilization unit) 20 that irradiates the container 100 held by the gripper 12 with an electron beam on the outer peripheral side of the rotating body 11.

電子線照射装置20は、電子線発生源21と、ホーン22と、コントローラ(図示無し)とを備える。
電子線発生源21としては、いわゆる電子銃を用いることができる。この電子線発生源21では、ビーム状の電子線を発生し、これを、容器100に照射する。このとき、電子線照射装置20には、図示しないスキャン用磁石が備えられている。スキャン用磁石は、それぞれ、印加される電流に応じて発生する磁界が変化するものであり、コントローラの制御により発生する磁界を変化させることで、電子線発生源21で発生した電子線を所定の方向にスキャンさせるようになっている。ここで、電子線は容器100の高さ方向にスキャンするのが望ましい。
ホーン22は、電子線発生源21から離れるに従い、その断面寸法が拡大する筒状で、スキャン用磁石によって電子線のスキャンを行っているときの、電子線の照射領域を取り囲むように設けられる。
The electron beam irradiation apparatus 20 includes an electron beam generation source 21, a horn 22, and a controller (not shown).
A so-called electron gun can be used as the electron beam generation source 21. The electron beam generation source 21 generates a beam-shaped electron beam and irradiates the container 100 with it. At this time, the electron beam irradiation apparatus 20 is provided with a scanning magnet (not shown). Each of the scanning magnets changes the magnetic field generated according to the applied current, and changes the magnetic field generated by the control of the controller, thereby changing the electron beam generated by the electron beam generation source 21 to a predetermined level. Scan in the direction. Here, it is desirable to scan the electron beam in the height direction of the container 100.
The horn 22 has a cylindrical shape whose cross-sectional dimension increases as the distance from the electron beam generation source 21 increases. The horn 22 is provided so as to surround an electron beam irradiation region when the electron beam is scanned by a scanning magnet.

グリッパ12は、回転体11と等速で回転するスターホイール50等の容器搬送手段から一本ずつ受け渡される空の容器100を、その首部100cを挟み込むことで保持する。   The gripper 12 holds empty containers 100 that are delivered one by one from a container conveying means such as a star wheel 50 that rotates at the same speed as the rotating body 11 by sandwiching the neck portion 100c thereof.

グリッパ12で保持された容器100に対し、電極13が、図示しないシリンダ機構等によって挿入されるようになっている。
電極13は、例えばステンレス、タングステン等からなる導電性材料からなり、棒状で、その長さは、容器100内に挿入されたときに、容器100の口部100aから底部100bの近傍まで位置するよう設定されている。
The electrode 13 is inserted into the container 100 held by the gripper 12 by a cylinder mechanism or the like (not shown).
The electrode 13 is made of a conductive material made of, for example, stainless steel, tungsten, or the like, and has a rod shape. The length of the electrode 13 is located from the mouth 100a to the vicinity of the bottom 100b of the container 100 when inserted into the container 100. Is set.

図2に示すように、電極13には、交流電源(交流電圧印加源)15を接続し、交流の電圧を印加する。
このとき、印加する交流電流は、誘電体である容器100に対して十分な損失作用及び電流通電作用をもたらす周波数が好適であり、100Hz以上は必要である。
As shown in FIG. 2, an AC power supply (AC voltage application source) 15 is connected to the electrode 13 to apply an AC voltage.
At this time, the alternating current to be applied preferably has a frequency that provides a sufficient loss action and current conduction action to the container 100 that is a dielectric, and 100 Hz or more is necessary.

このような殺菌装置10においては、グリッパ12で保持した容器100を後工程側のスターホイール50に受け渡すまでの間に、電子線照射装置20の電子線発生源21から電子線を容器100の外部から照射することで、容器100を殺菌する。
それと同時に、交流の電圧が印加された電極13が容器100内に挿入されることで、電子線照射を行うことで容器100を形成する材料であるPET膜内に蓄積した電荷を除去し、殺菌と除電を同時に行う。
In such a sterilization apparatus 10, an electron beam is emitted from the electron beam generation source 21 of the electron beam irradiation apparatus 20 until the container 100 held by the gripper 12 is delivered to the star wheel 50 on the subsequent process side. The container 100 is sterilized by irradiating from the outside.
At the same time, the electrode 13 to which an alternating voltage is applied is inserted into the container 100, so that charges accumulated in the PET film, which is a material forming the container 100, are removed by irradiating the electron beam, and sterilized. And neutralize at the same time.

このように、電極13に交流電圧を印加しながら電子線照射装置20から電子線を照射することにより、電子線の照射時に散逸電子などの影響により容器100の内部空間で発生する弱電離プラズマを介して、非処理体である容器100を形成する材料であるPET膜に、電極13の電位によって誘導される交流電界を作用させることができる。
容器100を形成するPET膜は、絶縁体であるとともに誘電体であるため、直流電流はほとんど流れないが、交流電界を作用させると、容器100の表面に時間的に変動する電荷を誘導することができる。その際、誘電体に交流電場を加えたときの電場のエネルギーの一部が誘電体中で熱となって散逸する誘電損失現象が発生する。そして、電子線の照射により容器100を形成するPET膜中に取り込まれた電荷は、前記の誘電損失現象を増加させる。その結果、電荷が取り込まれた領域近傍の誘電体(容器100を形成するPET膜)の温度が局所的にさらに上昇する。ここで、図3に示すように、誘電体であるPETの抵抗は、温度が高まるに従い低下することが知られている。容器100を形成するPET膜の抵抗値Rが低下すると、放電時定数τ=CR(C:静電容量、R:抵抗)が小さくなるので、容器100を形成するPET膜の内部に充電された電荷が、PET膜の外部に流出しやすくなる。
このような状態で、容器100の内部空間に配置した電極13に交流電圧を印加しながら電子線を照射することにより、容器100を形成するPET膜の内部に充電された電荷が外部(容器100の外部空間および内部空間)に流出しやすくなり、内部空間に流出した電荷は電極13を介して容器100の外部に導き出される。このようにして、容器100を形成するPET膜の内部充電を抑制し、除電をはかることができる。
In this way, by applying an electron beam from the electron beam irradiation apparatus 20 while applying an AC voltage to the electrode 13, weakly ionized plasma generated in the internal space of the container 100 due to the influence of dissipated electrons or the like at the time of electron beam irradiation is generated. Thus, an alternating electric field induced by the potential of the electrode 13 can be applied to the PET film that is a material forming the container 100 that is a non-processed body.
Since the PET film forming the container 100 is an insulator and a dielectric, almost no direct current flows, but when an alternating electric field is applied, it induces time-varying charges on the surface of the container 100. Can do. At that time, a dielectric loss phenomenon occurs in which part of the energy of the electric field when an AC electric field is applied to the dielectric is dissipated as heat in the dielectric. The charges taken into the PET film forming the container 100 by electron beam irradiation increase the dielectric loss phenomenon. As a result, the temperature of the dielectric (PET film forming the container 100) in the vicinity of the region where the charge has been taken up further increases locally. Here, as shown in FIG. 3, it is known that the resistance of PET, which is a dielectric, decreases as the temperature increases. When the resistance value R of the PET film forming the container 100 decreases, the discharge time constant τ = CR (C: capacitance, R: resistance) decreases, so that the inside of the PET film forming the container 100 is charged. Charges easily flow out of the PET film.
In such a state, by irradiating an electron beam while applying an AC voltage to the electrode 13 disposed in the internal space of the container 100, the charge charged inside the PET film forming the container 100 is externally (container 100). The electric charge that has flowed out into the internal space is led out of the container 100 through the electrode 13. In this way, internal charging of the PET film forming the container 100 can be suppressed, and static elimination can be achieved.

また、容器100のPET膜に電極13から高周波電界が印加されることにより、交流電流が流れるため、容器100のPET膜に内部充電された電荷が、電極13による電界により容器100のPET膜の外部(容器100の外部空間および内部空間)に流出することも期待できる。   Further, since an alternating current flows when a high-frequency electric field is applied to the PET film of the container 100 from the electrode 13, the charge internally charged in the PET film of the container 100 is caused by the electric field generated by the electrode 13 in the PET film of the container 100. It can also be expected to flow out to the outside (external space and internal space of the container 100).

このようにして、電極13により、交流の電圧を印加することで、容器100を形成するPET膜内に蓄積した電荷を流出しやすくさせることにより、電極を一定電圧とした場合よりも、効率よく除電をはかることができる。
さらに、交流電圧の印加により、容器100が加熱されることによっても、除電効率がさらに高まる。
In this way, by applying an alternating voltage with the electrode 13, the charge accumulated in the PET film forming the container 100 can be easily discharged, thereby more efficiently than when the electrode is set to a constant voltage. Static neutralization can be taken.
Furthermore, the neutralization efficiency is further increased by heating the container 100 by application of an AC voltage.

ここで、電極13の構成について、複数の応用例を示す。
容器100の口部100a近傍の部分は、キャップをねじ込むためのネジ溝が形成される等、形状が複雑で、肉厚も大きく、またグリッパ12によって容器100が保持される部分であるため、電子線照射による殺菌を行いにくい。棒状の電極13を容器100内部に挿入しているため、一層、容器100の口部100a近傍の殺菌が行いにくくなっている。
そこで、図4に示すように、容器100の口部100aの近傍に、電子線照射装置から照射される電子線を反射し、容器100の口部100aから内部に向けて照射させる反射板(反射部材)80が設けられるのが好ましい。
そして、電極13は、この反射板80に一体に設けられるのが好ましい。
Here, a plurality of application examples of the configuration of the electrode 13 are shown.
The portion near the mouth portion 100a of the container 100 is a portion having a complicated shape such as a screw groove for screwing the cap and having a large wall thickness, and the container 100 is held by the gripper 12. It is difficult to sterilize by radiation. Since the rod-shaped electrode 13 is inserted into the container 100, the sterilization in the vicinity of the mouth 100a of the container 100 is further difficult to perform.
Therefore, as shown in FIG. 4, a reflecting plate (reflective) that reflects an electron beam irradiated from the electron beam irradiation device in the vicinity of the mouth 100a of the container 100 and irradiates the mouth 100a toward the inside from the mouth 100a. Member) 80 is preferably provided.
The electrode 13 is preferably provided integrally with the reflecting plate 80.

電極13は、容器100の口部100aから、その外径が漸次拡大する肩部100dの手前までの首部100cの範囲において、その断面積を小さくする小断面積部90を有して形成されるのが好ましい。   The electrode 13 is formed with a small cross-sectional area 90 that reduces the cross-sectional area in the range of the neck 100c from the mouth 100a of the container 100 to the front of the shoulder 100d whose outer diameter gradually increases. Is preferred.

この小断面積部90は、例えば、図4(a)に示すように、電極13の一部を、その外径を他の部分よりも小さくした小径部91により形成することができる。この小径部91により、反射板80で反射した電子線を阻害することなく容器100の内部に導くことができる。   For example, as shown in FIG. 4A, the small cross-sectional area 90 can be formed by a small-diameter portion 91 having a part of the electrode 13 whose outer diameter is smaller than that of the other part. The small diameter portion 91 can guide the electron beam reflected by the reflecting plate 80 to the inside of the container 100 without obstructing.

これ以外にも、図5(a)に示すように、小断面積部90は、小径部91の周囲に、金属メッシュあるいはパンリングメタル等の多数の開口を有した材料からなる筒状部92を設けることもできる。この筒状部92により、電子線の透過の阻害を避けつつ、小径部91の補強を図ることができる。   In addition to this, as shown in FIG. 5A, the small cross-sectional area 90 is a cylindrical portion 92 made of a material having a large number of openings such as a metal mesh or a pan ring metal around the small diameter portion 91. Can also be provided. The cylindrical portion 92 can reinforce the small-diameter portion 91 while preventing the transmission of the electron beam.

また、図5(b)に示すように、小断面積部90は、小径部91の周囲に、小径部91とほぼ同径の複数本のシャフト(小径部)93を設けるようにしても良い。これによっても電子線の透過の阻害を避けつつ、小径部91の補強を図ることができる。   Further, as shown in FIG. 5B, the small cross-sectional area portion 90 may be provided with a plurality of shafts (small diameter portions) 93 having substantially the same diameter as the small diameter portion 91 around the small diameter portion 91. . This also makes it possible to reinforce the small diameter portion 91 while preventing the transmission of the electron beam.

さらには、図5(c)に示すように、図4(a)に示した構成から、中央部の小径部91を除外した構成、すなわち、円弧状に間隔を隔てて配置された複数本のシャフト93により小断面積部90を形成することもできる。   Further, as shown in FIG. 5 (c), a configuration in which the small-diameter portion 91 at the center portion is excluded from the configuration shown in FIG. 4 (a), that is, a plurality of arcs arranged at intervals. The small cross-sectional area 90 can also be formed by the shaft 93.

また、図5(d)に示すように、電極13の全体を、金属メッシュあるいはパンリングメタル等の多数の開口を有した材料からなる筒状部95により形成することもできる。このようにして、容器100の口部100aから首部100cの範囲だけでなく、その全長にわたって、電極13の軸線に直交する方向におけるその投影断面積よりも、実断面積を小さくする。
これによっても、容器100の口部100aから首部100cの範囲において電子線の通過の阻害を避けて100cの殺菌を確実に行いつつ、電極13としての機能を十分に発揮できる。また、図4(a)、図5(a)〜(c)の構成に比較し、電極13を軽量、単純な構成とすることができる。
Further, as shown in FIG. 5D, the entire electrode 13 can be formed by a cylindrical portion 95 made of a material having a large number of openings such as a metal mesh or a pan ring metal. In this way, the actual cross-sectional area is made smaller than the projected cross-sectional area in the direction orthogonal to the axis of the electrode 13 not only in the range from the mouth part 100a to the neck part 100c of the container 100 but also in the entire length thereof.
Also by this, the function as the electrode 13 can be sufficiently exhibited while the sterilization of the 100c is reliably performed while preventing the passage of the electron beam in the range from the mouth part 100a to the neck part 100c of the container 100. Also, the electrode 13 can be made lighter and simpler than the configurations of FIGS. 4A and 5A to 5C.

ところで、反射板80は、例えば図4(b)に示すように、その反射面に、凹凸81を形成しても良い。これにより、反射板80において反射した電子線を散乱させて容器100の口部100aに照射することができ、口部100a近傍の殺菌を確実に行うことができる。ここで、凹凸81の形状や数については何ら限定する意図はない。   By the way, as shown in FIG.4 (b), the reflecting plate 80 may form the unevenness | corrugation 81 in the reflective surface, for example. Thereby, the electron beam reflected in the reflecting plate 80 can be scattered and irradiated to the mouth part 100a of the container 100, and the vicinity of the mouth part 100a can be sterilized reliably. Here, there is no intention to limit the shape and number of the irregularities 81 at all.

なお、上記実施の形態では、飲料充填設備、殺菌装置10の各部の構成を示したが、本発明の主旨の範囲内であればいかなる構成のものとしても良い。
また、電極13、反射板80の構成も、上記に挙げた構成に限らず、本発明の主旨の範囲内であればいかなる構成のものとしても良い。
例えば、図2では容器100を正立状態とし、図3の例では容器100を倒立状態としているが、そのいずれとしてもよい。
これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
In addition, in the said embodiment, although the structure of each part of the drink filling equipment and the sterilizer 10 was shown, as long as it is in the scope of the gist of the present invention, it may have any structure.
Further, the configurations of the electrode 13 and the reflecting plate 80 are not limited to the configurations described above, and may be any configurations within the scope of the gist of the present invention.
For example, in FIG. 2, the container 100 is in an upright state, and in the example of FIG. 3, the container 100 is in an inverted state.
In addition to this, as long as it does not depart from the gist of the present invention, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.

10 殺菌装置(除電装置)
11 回転体
12 グリッパ(容器支持具)
13 電極
15 交流電源(交流電圧印加源)
20 電子線照射装置(電子線殺菌部)
21 電子線発生源
22 ホーン
30 充填装置
40 キャッパ
50 スターホイール
60 搬送コンベア
80 反射板
81 凹凸
90 小断面積部
91 小径部
92 筒状部
93 シャフト
95 筒状部
100 容器
100a 口部
100b 底部
100c 首部
100d 肩部
10 Sterilization device (static elimination device)
11 Rotating body 12 Gripper (container support)
13 Electrode 15 AC power supply (AC voltage application source)
20 Electron beam irradiation device (Electron beam sterilization unit)
21 Electron beam generation source 22 Horn 30 Filling device 40 Capper 50 Star wheel 60 Conveyor 80 Reflector plate 81 Unevenness 90 Small cross-sectional area 91 Small diameter 92 Cylindrical part 93 Shaft 95 Cylindrical part 100 Container 100a Mouth part 100b Bottom part 100c Neck part 100d shoulder

Claims (2)

容器を保持する容器保持具と、
前記容器の内部に挿入配置され、導電性材料からなる棒状の電極と、
前記容器保持具に保持された前記容器に電子線を照射して前記容器を殺菌する電子線殺菌部と、
前記電極に交流電圧を印加する交流電圧印加源と、を備えることを特徴とする除電装置。
A container holder for holding the container;
A rod-like electrode inserted and arranged inside the container and made of a conductive material;
An electron beam sterilization unit that sterilizes the container by irradiating the container held by the container holder with an electron beam;
And an AC voltage application source for applying an AC voltage to the electrode.
前記電子線殺菌部による前記容器の殺菌を行いながら、前記電極に前記交流電圧印加源から交流電圧を印加することを特徴とする請求項1に記載の除電装置。   The static eliminator according to claim 1, wherein an AC voltage is applied to the electrode from the AC voltage application source while the container is sterilized by the electron beam sterilization unit.
JP2015102342A 2015-05-20 2015-05-20 Static eliminator Active JP6009038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015102342A JP6009038B2 (en) 2015-05-20 2015-05-20 Static eliminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015102342A JP6009038B2 (en) 2015-05-20 2015-05-20 Static eliminator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011094106A Division JP5752476B2 (en) 2011-04-20 2011-04-20 Static eliminator, static elimination electrode

Publications (2)

Publication Number Publication Date
JP2015156398A true JP2015156398A (en) 2015-08-27
JP6009038B2 JP6009038B2 (en) 2016-10-19

Family

ID=54775566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015102342A Active JP6009038B2 (en) 2015-05-20 2015-05-20 Static eliminator

Country Status (1)

Country Link
JP (1) JP6009038B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216453A (en) * 2005-02-04 2006-08-17 Techno Ryowa Ltd Static eliminator of charged object and its method
JP2011026000A (en) * 2009-01-22 2011-02-10 Suntory Holdings Ltd Apparatus and method for sterilizing vessel with electron beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216453A (en) * 2005-02-04 2006-08-17 Techno Ryowa Ltd Static eliminator of charged object and its method
JP2011026000A (en) * 2009-01-22 2011-02-10 Suntory Holdings Ltd Apparatus and method for sterilizing vessel with electron beam

Also Published As

Publication number Publication date
JP6009038B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
US7759661B2 (en) Electron beam emitter for sterilizing containers
JP5091264B2 (en) Electron beam container sterilization apparatus and electron beam container sterilization method
JP6554192B2 (en) Apparatus and method for sterilizing a packaging container with an electron beam
KR101630650B1 (en) Method of eliminating static charge from resin vessel, method of sterilizing and filling resin vessel, method of filling and capping resin vessel, apparatus for eliminating static charge from resin vessel, and resin vessel sterilizing and filling system
JP2008145291A (en) Electron beam irradiation device
JP6009038B2 (en) Static eliminator
JP5752476B2 (en) Static eliminator, static elimination electrode
JP2012227092A (en) Electricity removal apparatus
JP5603201B2 (en) Resin container surface modification method and resin container surface modification apparatus
JP5818501B2 (en) Static eliminator
JP2018503565A (en) Electron beam sterilization system having an external sterilization emitter that moves relative to the object to be sterilized
JP2017518935A (en) Method and system for decontamination of container cap or neck by pulsed electron impact
JP5755133B2 (en) Electron beam sterilizer
JP2002255125A (en) Container sterilizing method and container sterilizing apparatus
JP2016534783A (en) Plasma processing system for rigid containers
JP6449076B2 (en) Sterilizer, sterilization method
JP5848037B2 (en) Electron beam sterilizer
SE530018C2 (en) Sterilization method for a formed food package in packaging machine involves sterilizing two areas of inside surface of package via electron beam sterilizing devices, transporting package to filling station, and sealing package once filled

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6009038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350