JP2015152075A - Diaphragm valve structure and solenoid valve - Google Patents

Diaphragm valve structure and solenoid valve Download PDF

Info

Publication number
JP2015152075A
JP2015152075A JP2014025828A JP2014025828A JP2015152075A JP 2015152075 A JP2015152075 A JP 2015152075A JP 2014025828 A JP2014025828 A JP 2014025828A JP 2014025828 A JP2014025828 A JP 2014025828A JP 2015152075 A JP2015152075 A JP 2015152075A
Authority
JP
Japan
Prior art keywords
valve body
valve
diaphragm
membrane
shaft member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014025828A
Other languages
Japanese (ja)
Other versions
JP6074375B2 (en
Inventor
鉄也 谷藤
Tetsuya Tanifuji
鉄也 谷藤
末松 修
Osamu Suematsu
修 末松
聖士 井口
Seiji Iguchi
聖士 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2014025828A priority Critical patent/JP6074375B2/en
Publication of JP2015152075A publication Critical patent/JP2015152075A/en
Application granted granted Critical
Publication of JP6074375B2 publication Critical patent/JP6074375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diaphragm valve structure and a solenoid valve in which a stress generated at a diaphragm part can be reduced and durability of the diaphragm can be improved.SOLUTION: A diaphragm valve structure 30 comprises a column-shaped valve body part 4a abutted against or spaced apart from a valve seat 2c; a diaphragm part 4b extended outward from the valve body 4a and arranged; a diaphragm 4 including an outer edge part 4c arranged along an outer edge of the diaphragm part 4b to be thick and fixed between a valve body 2 and a stuffing 7; a shaft member 5 integrally arranged at the valve body part 4a to protrude from the center of a counter valve seat side end surface 4e of the valve body part 4a, having the extremity end arranged inside the valve body part 4a and adhered to the valve body part 4a so as to transmit driving force to the valve body part 4a. At least a portion of the counter valve seat side part from a position where the diaphragm part 4b is connected to the valve body 4a in the portions where the valve body part 4a and the shaft member 5 are contacted to each other is set to be non-adhered.

Description

本発明は、弁座に対してダイアフラムを当接又は離間させるダイアフラム弁構造及び電磁弁に関する。   The present invention relates to a diaphragm valve structure and an electromagnetic valve that make a diaphragm contact or separate from a valve seat.

従来より、例えば、医療装置では、殺菌や洗浄のために、次亜塩素酸や酢酸などの薬液の制御に電磁弁が使用される。電磁弁は、接液部をメタルフリーにするために、ダイアフラム弁構造を適用する。医療機器は、コンパクト化が進み、流体制御機器等の設置スペースが狭くなっている。よって、電磁弁は、ダイアフラム弁構造を小さくして、小型化することが求められている。   Conventionally, for example, in medical devices, electromagnetic valves have been used to control chemical solutions such as hypochlorous acid and acetic acid for sterilization and cleaning. The solenoid valve employs a diaphragm valve structure in order to make the wetted part metal-free. Medical devices are becoming more compact, and the installation space for fluid control devices and the like is becoming narrower. Therefore, the solenoid valve is required to be downsized by reducing the diaphragm valve structure.

図9は、従来のダイアフラム弁構造100を示す図である。ダイアフラム弁構造100は、弁室106に設けられた弁座101に対して当接又は離間するダイアフラム102を有する。ダイアフラム102は、耐腐食性があって弾性力のある材料(例えばフッ素ゴム、ETFE(パーフロロエラストマー)等のゴムや、PTFE(ポリテトラフルオロエチレン)等の樹脂など)で形成されている。ダイアフラム102は、弁座101に当接又は離間する円柱形状の弁体部102aと、弁体部102aの外周面102dから外向きに延設された薄い膜部102bと、膜部102bの外縁に沿って軸方向に肉厚に設けられた外縁部102cを備える。   FIG. 9 is a view showing a conventional diaphragm valve structure 100. The diaphragm valve structure 100 includes a diaphragm 102 that contacts or separates from a valve seat 101 provided in the valve chamber 106. Diaphragm 102 is formed of a corrosion-resistant and elastic material (for example, rubber such as fluoro rubber or ETFE (perfluoroelastomer), resin such as PTFE (polytetrafluoroethylene), or the like). The diaphragm 102 includes a cylindrical valve body portion 102a that contacts or separates from the valve seat 101, a thin film portion 102b that extends outward from the outer peripheral surface 102d of the valve body portion 102a, and an outer edge of the film portion 102b. An outer edge portion 102c is provided along the axial direction along the wall.

ダイアフラム102は、膜部102bの一部と外縁部102cがバルブボディ103とスタフィング104に狭持され、制御流体の外部漏れが防止されている。弁体部102aには、ダイアフラム102より剛性のある材料(例えば樹脂、金属等)で形成された軸部材105が接着されている。ダイアフラム弁構造100は、図示しないアクチュエータから軸部材105を介してダイアフラム102に駆動力を伝達されることにより、ダイアフラム102を弁座101に当接又は離間させ、流体を制御する(例えば特許文献1参照)。   In the diaphragm 102, a part of the membrane portion 102b and an outer edge portion 102c are sandwiched between the valve body 103 and the stuffing 104, thereby preventing the control fluid from leaking outside. A shaft member 105 made of a material (for example, resin, metal, etc.) that is more rigid than the diaphragm 102 is bonded to the valve body 102a. The diaphragm valve structure 100 controls the fluid by bringing the diaphragm 102 into contact with or separating from the valve seat 101 by transmitting driving force from an actuator (not shown) to the diaphragm 102 via the shaft member 105 (for example, Patent Document 1). reference).

特開2000−193105号公報JP 2000-193105 A

しかしながら、従来のダイアフラム弁構造100は、材質が異なる弁体部102aと軸部材105が弁開閉動作中に分離することを防ぐために、弁体部102aと軸部材105の接触部分が全て接着されていた。そのため、弁体部102aは、弁開閉動作時に変形せずに、膜部102bを引っ張っていた。膜部102bに生じる引張応力は、ストロークが大きくなるにつれて、強くなっていた。よって、従来のダイアフラム弁構造100では、弁開閉動作時に膜部102bに発生する応力の変動が大きい上に、ストロークが大きくなると、膜部102bが弁体部102aに接続する部分P11に応力が集中するので、膜部102bが劣化しやすかった。   However, in the conventional diaphragm valve structure 100, the contact portions of the valve body portion 102a and the shaft member 105 are all bonded to prevent the valve body portion 102a and the shaft member 105 made of different materials from being separated during the valve opening / closing operation. It was. Therefore, the valve body portion 102a is not deformed during the valve opening / closing operation and pulls the membrane portion 102b. The tensile stress generated in the film part 102b increased as the stroke increased. Therefore, in the conventional diaphragm valve structure 100, the stress generated in the membrane portion 102b during the valve opening / closing operation is large, and when the stroke increases, the stress concentrates on the portion P11 where the membrane portion 102b connects to the valve body portion 102a. Therefore, the film part 102b was easy to deteriorate.

特に、医療用装置に適用される電磁弁は、上述したように小型化が進んでいる。この種の電磁弁にダイアフラム弁構造100を適用した場合、最大外径寸法の小さい(例えば5mm程度)ダイアフラム102が使用される。そして、小型の電磁弁では、弁室106が小さく、弁室106の内周面106aと弁体部102aの外周面102dとの間隔が狭いため、膜部102bがフラットな形状のダイアフラム102が使用される。そのため、膜部102bは、径方向の膜長L202(弁体部102aに接続する部分から外縁部102cに接続する部分までの距離)が短い(例えば3mm程度)。膜長L202の短い膜部102bにより使用ストローク(例えば−1.10mm以上0.30mm以下)を確保しようとすると、弁体部102aが膜部102bを引っ張る力が強くならざるを得ない。よって、小型の電磁弁では、膜部102bの劣化が顕著になる。   In particular, as described above, miniaturization of an electromagnetic valve applied to a medical device is progressing. When the diaphragm valve structure 100 is applied to this type of electromagnetic valve, a diaphragm 102 having a small maximum outer diameter (for example, about 5 mm) is used. In the small solenoid valve, since the valve chamber 106 is small and the distance between the inner peripheral surface 106a of the valve chamber 106 and the outer peripheral surface 102d of the valve body portion 102a is narrow, a diaphragm 102 having a flat membrane portion 102b is used. Is done. Therefore, the membrane portion 102b has a short membrane length L202 in the radial direction (distance from the portion connected to the valve body portion 102a to the portion connected to the outer edge portion 102c) (for example, about 3 mm). In order to secure a use stroke (for example, −1.10 mm or more and 0.30 mm or less) by the membrane portion 102b having the membrane length L202, the force with which the valve body portion 102a pulls the membrane portion 102b is inevitably increased. Therefore, in a small solenoid valve, the deterioration of the film part 102b becomes remarkable.

本発明は、上記問題点を解決するためになされたものであり、膜部に発生する応力を軽減し、ダイアフラムの耐久性を向上させることができるダイアフラム弁構造及び電磁弁を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a diaphragm valve structure and an electromagnetic valve that can reduce the stress generated in the film portion and improve the durability of the diaphragm. And

本発明の一態様は、次のような構成を有している。
(1)弁座を備えるバルブボディと、前記弁座に対して当接又は離間するダイアフラムと、前記バルブボディとの間で前記ダイアフラムを固定するスタフィングとを備えるダイアフラム弁構造において、前記ダイアフラムが、前記弁座に当接又は離間する円柱形状の弁体部と、前記弁体部から外向きに延設された膜部と、前記膜部の外縁に沿って肉厚に設けられて前記バルブボディと前記スタフィングとの間で固定される外縁部を備えること、前記弁体部の反弁座側端面の中心から突出するように前記弁体部に一体的に設けられ、前記弁体部の内部に配置される先端部が前記弁体部に接着されるものであって、前記弁体部に駆動力を伝達する軸部材を有すること、前記弁体部と前記軸部材が接触する部分のうち、少なくとも前記膜部が前記弁体部に接続する位置より反弁座側の部分が、非接着であることを特徴とする。
One embodiment of the present invention has the following configuration.
(1) A diaphragm valve structure including a valve body including a valve seat, a diaphragm that contacts or separates from the valve seat, and a stuffing that fixes the diaphragm between the valve body, and the diaphragm includes: A cylindrical valve body portion that comes into contact with or separates from the valve seat, a membrane portion extending outward from the valve body portion, and a thickness provided along the outer edge of the membrane portion, the valve body An outer edge portion fixed between the valve body portion and the stuffing, and is provided integrally with the valve body portion so as to protrude from the center of the valve seat side end surface of the valve body portion. A tip portion disposed on the valve body portion, and having a shaft member that transmits a driving force to the valve body portion, and a portion of the valve body portion and the shaft member that are in contact with each other , At least the membrane part is the valve Hanben seat-side portion than a position connecting to the section, characterized in that a non-adhesive.

(2)(1)に記載の構成において、好ましくは、前記弁体部が、前記膜部の受圧面が接続する位置にくびれ部を有する。 (2) In the configuration described in (1), preferably, the valve body portion has a constricted portion at a position where the pressure receiving surface of the membrane portion is connected.

(3)(1)又は(2)に記載の構成において、好ましくは、前記バルブボディは、前記弁体部を収納する弁体収納室と、前記弁体収納室より外側に設けられて前記外縁部を収納する環状溝と、前記弁体収納室と前記環状溝との間に配置される環状凸部を有し、前記スタフィングと前記環状凸部との間隔が前記膜部の膜厚より大きい。 (3) In the configuration described in (1) or (2), preferably, the valve body is provided outside the valve body storage chamber and a valve body storage chamber that stores the valve body portion, and the outer edge. An annular groove that accommodates the portion, and an annular convex portion that is disposed between the valve body housing chamber and the annular groove, and the gap between the stuffing and the annular convex portion is greater than the film thickness of the film portion. .

(4)第1ポートと第2ポートが弁座を介して連通するバルブボディと、前記弁座に対して当接又は離間するダイアフラムと、前記バルブボディとの間で前記ダイアフラムを固定するスタフィングと、コイルへの通電量に応じて駆動力を発生し、前記ダイアフラムに伝達するソレノイドを備える電磁弁において、前記ダイアフラムが、前記弁座に当接又は離間する円柱形状の弁体部と、前記弁体部から外向きに延設された膜部と、前記膜部の外縁に沿って肉厚に設けられて前記バルブボディと前記スタフィングとの間で固定される外縁部を備えること、前記弁体部の反弁座側端面の中心から突出するように前記弁体部に一体的に設けられ、前記弁体部の内部に配置される先端部が前記弁体部に接着されるものであって、前記ソレノイドが発生した駆動力を前記弁体部に伝達する軸部材を有すること、前記弁体部と前記軸部材が接触する部分のうち、少なくとも前記膜部が前記弁体部に接続する位置より反弁座側の部分が、非接着であることを特徴とする。 (4) a valve body in which the first port and the second port communicate with each other via a valve seat, a diaphragm that contacts or separates from the valve seat, and a stuffing that fixes the diaphragm between the valve body and An electromagnetic valve including a solenoid that generates a driving force according to the amount of current supplied to the coil and transmits the driving force to the diaphragm, wherein the diaphragm is in contact with or separated from the valve seat; and the valve A membrane portion extending outward from the body portion; and an outer edge portion that is thickly provided along an outer edge of the membrane portion and is fixed between the valve body and the stuffing, the valve body The valve body part is integrally provided so as to protrude from the center of the counter valve seat side end surface of the part, and a tip part disposed inside the valve body part is bonded to the valve body part, The solenoid is generated A shaft member for transmitting the driving force to the valve body portion, and at least a portion of the portion where the valve body portion and the shaft member are in contact with each other at a position opposite to the valve seat side from a position where the film portion is connected to the valve body portion This part is non-adhesive.

上記構成のダイアフラム弁構造は、ダイアフラムが、バルブボディとスタフィングとの間で外縁部を固定される一方、駆動力を付与される軸部材の先端部に弁体部を接着されることにより、バルブボディとスタフィングとの間を膜部で気密に仕切っている。ダイアフラム弁構造は、膜部を変形させながら弁体部を弁座に当接又は離間させることにより、流体制御を行う。   The diaphragm valve structure configured as described above is configured such that the diaphragm is fixed at the outer edge portion between the valve body and the stuffing, and the valve body portion is bonded to the distal end portion of the shaft member to which the driving force is applied. The body and stuffing are hermetically separated by a membrane. The diaphragm valve structure performs fluid control by contacting or separating the valve body portion from the valve seat while deforming the membrane portion.

ここで、ダイアフラム弁構造は、弁体部と軸部材が接触する部分のうち、少なくとも膜部が弁体部に接続する位置より反弁座側の部分が、非接着にされている。そのため、ダイアフラムは、弁体部が、反弁座側へ移動するに従って軸部材に対して非接着の部分を軸部材から離れる方向に広げるように変形する。換言すると、弁体部の反弁座側端面近傍があたかも膜部の一部であるかのように変形する。そのため、膜部の引張応力が緩和される。従って、上記構成のダイアフラム弁構造によれば、ダイアフラムの膜部に発生する応力を軽減し、ダイアフラムの耐久性を向上させることができる。   Here, in the diaphragm valve structure, at least the portion on the side opposite to the valve seat from the position where the membrane portion is connected to the valve body portion is non-adhered among the portions where the valve body portion and the shaft member are in contact with each other. Therefore, the diaphragm is deformed so that the non-adhered portion with respect to the shaft member is expanded in the direction away from the shaft member as the valve body portion moves toward the valve seat side. In other words, the vicinity of the end face on the side opposite to the valve seat of the valve body part is deformed as if it is a part of the film part. Therefore, the tensile stress of the film part is relaxed. Therefore, according to the diaphragm valve structure having the above-described configuration, the stress generated in the membrane portion of the diaphragm can be reduced and the durability of the diaphragm can be improved.

ところで、ダイアフラムの受圧径が大きくなると、ダイアフラムに駆動力を付与するアクチュエータが大型化する。ダイアフラムの受圧径を小さくするには、弁体部を収納する弁室を小さくすることが考えられる。弁室を小さくしすぎると、膜部の膜長(膜部の弁体部に接続する内径位置から外縁部に接続する外縁部接続位置までの長さ)が短くなり、膜部に発生する応力が過大になる。   By the way, when the pressure receiving diameter of the diaphragm increases, the actuator for applying a driving force to the diaphragm increases in size. In order to reduce the pressure receiving diameter of the diaphragm, it is conceivable to reduce the valve chamber that houses the valve body. If the valve chamber is made too small, the film length of the membrane part (the length from the inner diameter position connecting to the valve body part of the membrane part to the outer edge connection position connecting to the outer edge part) becomes shorter, and the stress generated in the film part Becomes excessive.

膜部の膜長を確保しつつ、弁室を小さくした場合、膜部の一部がバルブボディとスタフィングの間に配置され、弁開時における膜部の変形がスタフィングにより制限される。この場合、膜部は、可動膜長(内径位置からスタフィングに接触して変形を制限される制限位置までの長さ)が短くなり、ストロークを確保し難くなる。よって、弁室を小さくすることでダイアフラムの受圧径を小さくすることには、限界がある。   When the valve chamber is made small while ensuring the film length of the film part, a part of the film part is disposed between the valve body and the stuffing, and the deformation of the film part when the valve is opened is limited by the stuffing. In this case, the film portion has a short movable film length (a length from the inner diameter position to a restriction position where deformation is restricted by contacting the stuffing), and it is difficult to secure a stroke. Therefore, there is a limit to reducing the pressure receiving diameter of the diaphragm by reducing the valve chamber.

これに対して、上記構成のダイアフラム弁構造によれば、弁体部が膜部に接続する部分にくびれ部を有し、膜部の弁体部に接続する内径位置が軸線方向にずらされているので、弁室の大きさを変えなくても、膜部の膜長及び可動膜長が長くなる。また、周知のように、ダイアフラムは、弁体部が中央に配置されているため、可動膜長の内径寸法(内径位置の直径)と外径寸法(制限位置の直径)を加算して2で割ることにより受圧径を算出できる。上記構成のダイアフラム弁構造は、くびれ部により、膜部の内径位置が軸線方向にずらされているので、膜部の内径位置の直径が小さくなり、上記ダイアフラムの受圧径の算出方法により算出される受圧径が小さくなる。   On the other hand, according to the diaphragm valve structure having the above-described configuration, the valve body portion has a constricted portion in the portion connected to the membrane portion, and the inner diameter position of the membrane portion connected to the valve body portion is shifted in the axial direction. Therefore, the film length of the film part and the movable film length become long without changing the size of the valve chamber. In addition, as is well known, since the valve body portion is arranged in the center of the diaphragm, the inner diameter dimension (diameter of the inner diameter position) and the outer diameter dimension (diameter of the restriction position) of the movable membrane length are added by 2. The pressure receiving diameter can be calculated by dividing. In the diaphragm valve structure having the above-described configuration, the inner diameter position of the membrane portion is shifted in the axial direction by the constricted portion, so that the diameter of the inner diameter position of the membrane portion is reduced, and is calculated by the calculation method of the pressure receiving diameter of the diaphragm. The pressure receiving diameter is reduced.

従って、上記構成のダイアフラム弁構造によれば、弁体部にくびれ部を設けることにより、膜長及び可動膜長を長くして膜部に発生する応力を軽減し、ダイアフラムの受圧径を小さくできる。   Therefore, according to the diaphragm valve structure having the above-described configuration, by providing the constricted portion in the valve body portion, it is possible to lengthen the membrane length and the movable membrane length to reduce the stress generated in the membrane portion, and to reduce the pressure receiving diameter of the diaphragm. .

上記構成のダイアフラム弁構造によれば、バルブボディが、ダイアフラムの弁体部を収納する弁体収納室と、弁体収納室より外側に設けられてダイアフラムの外縁部を収納する環状溝と、弁室と環状溝との間に配置される環状凸部を有し、スタフィングと環状凸部との間隔が膜部の膜厚より大きいので、バルブボディとスタフィングとの間でダイアフラムを固定した場合に、膜部がバルブボディとスタフィングとの間で押し潰されない。そのため、膜部は、弁開閉動作時に、外縁部に接続する外縁部接続位置から内径位置までを全体的に変形させる。従って、上記構成のダイアフラム弁構造によれば、弁開閉動作時に膜部全体に応力を分散させ、ダイアフラムの耐久性を向上させることができる。   According to the diaphragm valve structure having the above configuration, the valve body includes a valve body storage chamber that stores the valve body portion of the diaphragm, an annular groove that is provided outside the valve body storage chamber and stores the outer edge portion of the diaphragm, When the diaphragm is fixed between the valve body and the stuffing, it has an annular projection arranged between the chamber and the annular groove, and the gap between the stuffing and the annular projection is larger than the film thickness of the membrane portion. The membrane part is not crushed between the valve body and the stuffing. For this reason, the membrane part entirely deforms from the outer edge connecting position connected to the outer edge to the inner diameter position during the valve opening / closing operation. Therefore, according to the diaphragm valve structure having the above-described configuration, it is possible to disperse stress over the entire membrane portion during the valve opening / closing operation, and to improve the durability of the diaphragm.

上記構成の電磁弁は、上述したダイアフラム弁構造と同様に構成されているので、上記ダイアフラム弁構造と同様に膜部に作用する応力を軽減させてダイアフラムの耐久性を向上させることができる。特に、例えば医療装置に用いられる小型の電磁弁では、ダイアフラムの最大外径寸法が小さいが、上記のように、弁体部を変形させて膜部に生じる引張応力を軽減させたり、可動膜長を長くして使用ストロークを確保したり、膜部を押し潰さないことで膜部全体に応力を分散させるようにできれば、小さいダイアフラムでも膜部に生じる応力を軽減させつつ使用ストロークを確保できる。また、受圧径が小さくなることで、ダイアフラムに作用する流体圧が小さくなるので、ソレノイドを小さくして電磁弁のコンパクト化を推進できる。   Since the solenoid valve having the above-described configuration is configured in the same manner as the above-described diaphragm valve structure, it is possible to reduce the stress acting on the film portion and improve the durability of the diaphragm as in the above-described diaphragm valve structure. In particular, in a small solenoid valve used in a medical device, for example, the maximum outer diameter of the diaphragm is small. As described above, the tensile stress generated in the membrane portion can be reduced by deforming the valve body portion, or the movable membrane length can be reduced. If it is possible to secure a use stroke by extending the length of the film and to disperse the stress throughout the film part by not crushing the film part, a use stroke can be ensured while reducing the stress generated in the film part even with a small diaphragm. Moreover, since the fluid pressure acting on the diaphragm is reduced by reducing the pressure receiving diameter, the solenoid can be made smaller and the solenoid valve can be made more compact.

本発明の実施形態に係る電磁弁の断面図である。It is sectional drawing of the solenoid valve which concerns on embodiment of this invention. 図1に示すダイアフラム弁構造の主要部を示す図であって、弁閉状態を示す。It is a figure which shows the principal part of the diaphragm valve structure shown in FIG. 1, Comprising: A valve closed state is shown. 図2の全開状態を示す。The fully open state of FIG. 2 is shown. コンボリューション付きダイアフラムの一般的な受圧径算出方法を説明する図である。It is a figure explaining the general pressure receiving diameter calculation method of a diaphragm with a convolution. コンボリューション付きダイアフラムの受圧径とストロークとの関係を示す概念図である。It is a conceptual diagram which shows the relationship between the pressure receiving diameter and stroke of a diaphragm with a convolution. 弁閉する瞬間における膜部形状のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the film part shape in the moment of valve closing. 応力解析結果を示す図であって、縦軸に応力値の大小を示し、横軸にストロークの大小を示す。図中◆は、実施例の膜部に発生する最大応力値とストロークとの関係を示し、図中■は、比較例の膜部に発生する最大応力値とストロークとの関係を示す。It is a figure which shows a stress analysis result, Comprising: The magnitude of a stress value is shown on a vertical axis | shaft, and the magnitude of a stroke is shown on a horizontal axis. In the figure, ♦ indicates the relationship between the maximum stress value generated in the film part of the example and the stroke, and in the figure indicates the relationship between the maximum stress value generated in the film part of the comparative example and the stroke. 応力解析結果を示す図であって、縦軸に張力の大小を示し、横軸にストロークの大小を示す。図中◆は、実施例の膜部に発生する最大張力とストロークとの関係を示し、図中■は、比較例の膜部に発生する最大張力とストロークとの関係を示す。It is a figure which shows a stress analysis result, Comprising: The magnitude | size of a tension | tensile_strength is shown on a vertical axis | shaft, and the magnitude of a stroke is shown on a horizontal axis | shaft. In the figure, ♦ indicates the relationship between the maximum tension generated in the film part of the example and the stroke, and in the figure indicates the relationship between the maximum tension generated in the film part of the comparative example and the stroke. 従来のダイアフラム弁の弁構造を示す図である。It is a figure which shows the valve structure of the conventional diaphragm valve.

以下に、本発明に係るダイアフラム弁構造の実施形態について図面に基づいて説明する。図1は、本発明の実施形態に係る電磁弁1の断面図である。図2は、図1に示すダイアフラム弁構造30の主要部を示す図であって、弁閉状態を示す。図3は、図2の全開状態を示す。図4は、コンボリューション付きダイアフラムの一般的な受圧径算出方法を説明する図である。図5は、コンボリューション付きダイアフラムの受圧径とストロークとの関係を示す概念図である。図6は、弁閉する瞬間における膜部形状のシミュレーション結果を示す図である。図7は、応力解析結果を示す図であって、縦軸に応力値の大小を示し、横軸にストロークの大小を示す。図中◆は、実施例の膜部4bに発生する最大応力値とストロークとの関係を示し、図中■は、比較例の膜部102bに発生する最大応力値とストロークとの関係を示す。図8は、応力解析結果を示す図であって、縦軸に張力の大小を示し、横軸にストロークの大小を示す。図中◆は、実施例の膜部4bに発生する最大張力とストロークとの関係を示し、図中■は、比較例の膜部102bに発生する最大張力とストロークとの関係を示す。   Hereinafter, an embodiment of a diaphragm valve structure according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a solenoid valve 1 according to an embodiment of the present invention. FIG. 2 is a view showing a main part of the diaphragm valve structure 30 shown in FIG. 1 and showing a valve closed state. FIG. 3 shows the fully opened state of FIG. FIG. 4 is a diagram for explaining a general pressure receiving diameter calculation method for a convolution diaphragm. FIG. 5 is a conceptual diagram showing the relationship between the pressure receiving diameter and the stroke of the diaphragm with convolution. FIG. 6 is a diagram showing a simulation result of the shape of the membrane part at the moment when the valve is closed. FIG. 7 is a diagram showing a stress analysis result, in which the vertical axis indicates the magnitude of the stress value and the horizontal axis indicates the magnitude of the stroke. In the figure, ♦ indicates the relationship between the maximum stress value generated in the film part 4b of the example and the stroke, and in the figure indicates the relationship between the maximum stress value generated in the film part 102b of the comparative example and the stroke. FIG. 8 is a diagram showing the results of stress analysis, in which the vertical axis indicates the magnitude of the tension and the horizontal axis indicates the magnitude of the stroke. In the figure, ♦ indicates the relationship between the maximum tension generated in the film part 4b of the example and the stroke, and in the figure indicates the relationship between the maximum tension generated in the film part 102b of the comparative example and the stroke.

以下の説明では、先ず、図1を参照して本実施形態のダイアフラム弁構造30を適用した電磁弁1の概略構成を説明した後、図2及び図3を用いてダイアフラム弁構造30の主要部の構成を説明し、その後、図1〜図3を用いて電磁弁1とダイアフラム弁構造30の作用効果を説明する。それから、図4〜図6を用いて受圧径の考え方を説明した後、図7及び図8を用いて実施例と比較例の応力比較結果を説明する。   In the following description, first, a schematic configuration of the electromagnetic valve 1 to which the diaphragm valve structure 30 of the present embodiment is applied will be described with reference to FIG. 1, and then the main part of the diaphragm valve structure 30 will be described with reference to FIGS. 2 and 3. After that, the operation and effect of the electromagnetic valve 1 and the diaphragm valve structure 30 will be described with reference to FIGS. Then, after explaining the concept of the pressure receiving diameter with reference to FIGS. 4 to 6, stress comparison results between the example and the comparative example will be described with reference to FIGS. 7 and 8.

電磁弁1は、例えば、医療機器に用いられ、次亜塩素酸や酢酸等の薬液を制御する。電磁弁1は、バルブボディ2にスタフィング7を介してソレノイド10が取り付けられている。カバー20は、非磁性材で形成され、ソレノイド10とスタフィング7を覆うように取り付けられている。電磁弁1は、ソレノイド10から軸部材5に付与した駆動力によりダイアフラム4を弁座2cに当接又は離間させることで、流体を制御する。電磁弁1は、ダイアフラム4の応力を軽減させるためのダイアフラム弁構造30を備えている。   The solenoid valve 1 is used, for example, in a medical device and controls a chemical solution such as hypochlorous acid or acetic acid. In the solenoid valve 1, a solenoid 10 is attached to a valve body 2 via a stuffing 7. The cover 20 is formed of a nonmagnetic material and is attached so as to cover the solenoid 10 and the stuffing 7. The electromagnetic valve 1 controls the fluid by bringing the diaphragm 4 into contact with or separating from the valve seat 2c by the driving force applied from the solenoid 10 to the shaft member 5. The electromagnetic valve 1 includes a diaphragm valve structure 30 for reducing the stress of the diaphragm 4.

バルブボディ2とスタフィング7は、フッ素樹脂等の耐腐食性のある材料で形成されている。バルブボディ2は、第1ポート2aと第2ポート2bが弁座2cを介して連通している。ダイアフラム4は、耐腐食性と弾性力のあるゴムや樹脂等を材質とし、バルブボディ2とスタフィング7との間で固定されている。   The valve body 2 and the stuffing 7 are made of a corrosion-resistant material such as a fluororesin. In the valve body 2, a first port 2a and a second port 2b communicate with each other via a valve seat 2c. The diaphragm 4 is made of rubber, resin, or the like having corrosion resistance and elasticity, and is fixed between the valve body 2 and the stuffing 7.

電磁弁1を小型にするため、ダイアフラム4には、最大外径寸法が小さいもの(例えば最大外径寸法5mm)が使用されている。そのため、ダイアフラム4をソレノイド10に直接連結できない。そこで、ダイアフラム4は、金属や硬い樹脂を材質とする軸部材5がインサート成形等で一体に設けられ、ダイアフラム組立3を構成している。   In order to make the solenoid valve 1 small, a diaphragm 4 having a small maximum outer diameter (for example, a maximum outer diameter of 5 mm) is used. Therefore, the diaphragm 4 cannot be directly connected to the solenoid 10. Therefore, the diaphragm 4 is integrally provided with a shaft member 5 made of metal or hard resin by insert molding or the like, and constitutes the diaphragm assembly 3.

ソレノイド10は、中空孔12aを備えるコイルボビン12にコイル11を巻回されている。ソレノイド10は、中空孔12aの上端開口部に固定鉄心13が固定され、中空孔12aの下端開口部から可動鉄心14が摺動可能に装填されている。コイル11は、磁性カバー15と磁性プレート16で周囲を覆われ、固定鉄心13が可動鉄心14を吸引するための磁路が形成されやすくなっている。   The solenoid 10 has a coil 11 wound around a coil bobbin 12 having a hollow hole 12a. The solenoid 10 has a fixed iron core 13 fixed to the upper end opening of the hollow hole 12a, and a movable iron core 14 is slidably loaded from the lower end opening of the hollow hole 12a. The coil 11 is covered with a magnetic cover 15 and a magnetic plate 16 so that a magnetic path for the fixed iron core 13 to attract the movable iron core 14 is easily formed.

可動鉄心14は、磁性プレート16に貫き通され、先端部がスタフィング7側に突出している。可動鉄心14と磁性プレート16との間には、磁性部材17が配設され、磁性プレート16から可動鉄心14の下端部に磁路が形成されるようになっている。可動鉄心14の下端には、フランジ部14cが設けられている。第1圧縮ばね(第1付勢部材)18は、フランジ部14cと磁性部材17との間に縮設され、可動鉄心14を弁座方向に常時付勢している。   The movable iron core 14 is penetrated by the magnetic plate 16, and the tip portion projects toward the stuffing 7 side. A magnetic member 17 is disposed between the movable iron core 14 and the magnetic plate 16, and a magnetic path is formed from the magnetic plate 16 to the lower end portion of the movable iron core 14. A flange portion 14 c is provided at the lower end of the movable iron core 14. The first compression spring (first urging member) 18 is contracted between the flange portion 14c and the magnetic member 17, and constantly urges the movable iron core 14 in the valve seat direction.

可動鉄心14の下端部と第1圧縮ばね18は、スタフィング7のソレノイド側端面7dに開設された開口部7aに変位可能に収められている。スタフィング7は、開口部7aと同軸上に設けられた挿通孔7cに軸部材5が貫き通されている。開口部7aの底壁は、挿通孔7cの開口部分にボス部7bが設けられ、軸部材5が軸線に沿って安定して往復直線運動できるようにボス部7bにガイドされている。   The lower end portion of the movable iron core 14 and the first compression spring 18 are accommodated in an opening 7a provided on the solenoid side end surface 7d of the stuffing 7 so as to be displaceable. In the stuffing 7, the shaft member 5 is passed through an insertion hole 7c provided coaxially with the opening 7a. The bottom wall of the opening 7a is provided with a boss 7b at the opening of the insertion hole 7c, and is guided by the boss 7b so that the shaft member 5 can stably reciprocate linearly along the axis.

軸部材5は、ダイアフラム4を弁座2cに当接させた状態で、上端部がスタフィング7のソレノイド側端面7dから上方に突出している。第2圧縮ばね(第2付勢部材)9は、ボス部7bの端面に設けられたばね受け段差部7e(図2参照)に突き当てるようにして軸部材5に挿通され、軸部材5に止め輪8を取り付けることにより、止め輪8とばね受け段差部7eとの間に縮設される。そのため、軸部材5は、第2圧縮ばね9により反弁座方向に常時付勢されている。ここで、軸部材5は、弁閉時にソレノイド側端面7dから突出する部分の外周面に止め輪8を取り付けられるため、バルブボディ2、ダイアフラム組立3、スタフィング7の順に組み上げる場合に、第2圧縮ばね9を軸部材5に装着しやすい。   The shaft member 5 protrudes upward from the solenoid-side end face 7d of the stuffing 7 with the diaphragm 4 in contact with the valve seat 2c. The second compression spring (second urging member) 9 is inserted into the shaft member 5 so as to abut against a spring receiving stepped portion 7e (see FIG. 2) provided on the end face of the boss portion 7b, and is fixed to the shaft member 5. By attaching the ring 8, the ring 8 is contracted between the retaining ring 8 and the spring receiving step part 7 e. Therefore, the shaft member 5 is always urged in the counter valve seat direction by the second compression spring 9. Here, since the retaining ring 8 is attached to the outer peripheral surface of the portion protruding from the solenoid side end surface 7d when the valve is closed, the shaft member 5 is subjected to the second compression when the valve body 2, the diaphragm assembly 3, and the stuffing 7 are assembled in this order. The spring 9 can be easily attached to the shaft member 5.

可動鉄心14は、弁座側端面に収納孔部14aが開設されている。軸部材5の先端部と第2圧縮ばね9は、収納孔部14aの内部に配設されている。第2圧縮ばね9のばね力は第1圧縮ばね18のばね力より小さい。そのため、コイル11に非通電の場合、第1圧縮ばね18が第2圧縮ばね9に抗して可動鉄心14を押し下げ、収納孔部14aの底面14bで軸部材5を弁座方向に押してダイアフラム4を弁座2cに当接させている。このように弁閉時に第2圧縮ばね9が圧縮されているので、コイル11に通電されると、第2圧縮ばね9が可動鉄心14の上昇に伴って伸張し、軸部材5を収納孔部14aの底面14bに押し当て続ける。つまり、電磁弁1は、軸部材5と可動鉄心14が常時隙間無く接触するように組み立てられている。   The movable iron core 14 has an opening 14a on the valve seat side end surface. The distal end portion of the shaft member 5 and the second compression spring 9 are disposed inside the storage hole portion 14a. The spring force of the second compression spring 9 is smaller than the spring force of the first compression spring 18. Therefore, when the coil 11 is not energized, the first compression spring 18 depresses the movable iron core 14 against the second compression spring 9, and pushes the shaft member 5 in the valve seat direction at the bottom surface 14b of the housing hole portion 14a, thereby the diaphragm 4 Is in contact with the valve seat 2c. As described above, since the second compression spring 9 is compressed when the valve is closed, when the coil 11 is energized, the second compression spring 9 expands as the movable core 14 rises, and the shaft member 5 is retracted into the housing hole. Continue to press against the bottom surface 14b of 14a. That is, the solenoid valve 1 is assembled so that the shaft member 5 and the movable iron core 14 are always in contact with no gap.

このため、電磁弁1は、可動鉄心14とスタフィング7と軸部材5とダイアフラム4が隙間無く組み立てられ、ソレノイド10の駆動力に応じてダイアフラム4が弁座2cに応答性良く当接又は離間する。よって、電磁弁1は、部品間に生じるがたつきをを考慮してソレノイド10を使用ストロークに必要なサイズより大きなものを選択する必要がなくなり、ソレノイド10をコンパクトにして全体サイズのコンパクト化を図ることが可能である。   For this reason, in the electromagnetic valve 1, the movable iron core 14, the stuffing 7, the shaft member 5, and the diaphragm 4 are assembled without a gap, and the diaphragm 4 contacts or separates from the valve seat 2c with good responsiveness according to the driving force of the solenoid 10. . Therefore, the solenoid valve 1 does not need to select a solenoid 10 having a size larger than that required for the use stroke in consideration of rattling that occurs between components, and the solenoid 10 is made compact to reduce the overall size. It is possible to plan.

尚、収納孔部14aは、内周面がボス部7bの外周面に摺接するように、ボス部7bに嵌め合わせられている。そのため、可動鉄心14は、第1及び第2圧縮ばね18,9のばね力が強く作用する下端部をボス部7bに支持され、磁性部材17に接触せずに軸方向へ安定して移動できる。   The storage hole portion 14a is fitted to the boss portion 7b so that the inner peripheral surface is in sliding contact with the outer peripheral surface of the boss portion 7b. Therefore, the movable iron core 14 is supported by the boss portion 7 b at the lower end where the spring force of the first and second compression springs 18 and 9 acts strongly, and can move stably in the axial direction without contacting the magnetic member 17. .

続いて、図2に示すダイアフラム弁構造30の主要部について説明する。   Next, the main part of the diaphragm valve structure 30 shown in FIG. 2 will be described.

ダイアフラム4は、耐腐食性と弾性力のあるゴムや樹脂等を材質とする。ダイアフラム4は、弁座2cに当接又は離間する弁体部4aと、弁体部4aから外向きに延設された薄い膜部4bと、膜部4bの外縁に沿って軸線方向に肉厚に設けられてバルブボディ2とスタフィング7との間で固定される外縁部4cを備える。弁体部4aは、略円柱形状をなす。膜部4bは、弁体部4aの外周に沿って径方向に同一の膜厚で設けられ、リング状に形成されている。膜部4bは、製造時には、軸線方向に対して直交するように弁体部4aから延設され、フラットな形状に形成されている。外縁部4cは、バルブボディ2とスタフィング7との間で押し潰されることにより流体漏れを防止する為に、膜部4bの膜厚より厚く設けられている。   The diaphragm 4 is made of a corrosion-resistant and elastic rubber or resin. The diaphragm 4 has a valve body part 4a that contacts or separates from the valve seat 2c, a thin film part 4b extending outward from the valve body part 4a, and a wall thickness in the axial direction along the outer edge of the film part 4b. Provided with an outer edge portion 4c fixed between the valve body 2 and the stuffing 7. The valve body portion 4a has a substantially cylindrical shape. The film part 4b is provided with the same film thickness in the radial direction along the outer periphery of the valve body part 4a, and is formed in a ring shape. The film part 4b is extended from the valve body part 4a so as to be orthogonal to the axial direction at the time of manufacture, and is formed in a flat shape. The outer edge portion 4c is provided thicker than the film portion 4b in order to prevent fluid leakage by being crushed between the valve body 2 and the stuffing 7.

バルブボディ2は、弁体部4aを収納する弁体収納室2dと、弁体収納室2dより外側に設けられて外縁部4cを収納する環状溝2eと、弁体収納室2dと環状溝2eとの間に配置される環状凸部2fを有する。ダイアフラム弁構造30は、ダイアフラム4が外縁部4cを環状溝2eに装着するようにバルブボディ2に載置され、バルブボディ2の嵌合凹部2gにスタフィング7に突設した嵌合凸部7fをきっちり嵌め合わせてバルブボディ2とスタフィング7を固定することにより、嵌合凹部2gの底壁と嵌合凸部7fの下端面との間で外縁部4cを軸方向に押し潰して固定する。これにより、膜部4bは、バルブボディ2の弁体収納室2dとスタフィング7の背圧室形成凹部7gとの間を気密に仕切り、弁室21から背圧室22へ制御流体が漏れることを防ぐ。   The valve body 2 includes a valve body storage chamber 2d that stores the valve body portion 4a, an annular groove 2e that is provided outside the valve body storage chamber 2d and stores the outer edge portion 4c, a valve body storage chamber 2d, and an annular groove 2e. An annular convex portion 2f disposed between the two. The diaphragm valve structure 30 is configured such that the diaphragm 4 is mounted on the valve body 2 so that the outer edge portion 4c is mounted in the annular groove 2e, and the fitting convex portion 7f protruding from the stuffing 7 is provided in the fitting concave portion 2g of the valve body 2. By fitting together and fixing the valve body 2 and the stuffing 7, the outer edge portion 4c is crushed and fixed in the axial direction between the bottom wall of the fitting concave portion 2g and the lower end surface of the fitting convex portion 7f. As a result, the membrane portion 4b airtightly partitions between the valve body storage chamber 2d of the valve body 2 and the back pressure chamber forming recess 7g of the stuffing 7 so that the control fluid leaks from the valve chamber 21 to the back pressure chamber 22. prevent.

軸部材5は、弁体部4aの反弁座側端面4eの中心から突出するように弁体部4aに一体に設けられている。軸部材5は、第1及び第2圧縮ばね18,9周辺の連結構造をコンパクトにするために、弁体部4aと弁座2cとのシール径より細く形成されている。   The shaft member 5 is provided integrally with the valve body portion 4a so as to protrude from the center of the counter valve seat side end surface 4e of the valve body portion 4a. The shaft member 5 is formed narrower than the seal diameter between the valve body portion 4a and the valve seat 2c in order to make the connecting structure around the first and second compression springs 18 and 9 compact.

軸部材5は、弁体部4aとの接触面積を増やして弁体部4aの位置ズレを防ぐために、先端部外周面に沿って形成した凹溝5aに弁体部4aの肉が入り込んでいる。そして、軸部材5は、シール力が弁座2cの周方向に均一になるように、凹溝5aより先端の部分に大径部5bがシール面より大径に設けられている。   In order to increase the contact area with the valve body portion 4a and prevent the displacement of the valve body portion 4a, the shaft member 5 has the flesh of the valve body portion 4a in the concave groove 5a formed along the outer peripheral surface of the tip portion. . The shaft member 5 is provided with a large-diameter portion 5b larger in diameter than the seal surface at the tip of the groove 5a so that the sealing force is uniform in the circumferential direction of the valve seat 2c.

弁体部4aは、背圧室22の容積を小さくするために、膜部4bに接続する部分より反弁座側の部分が小径にされて、小径部4dが設けられている。小径部4dは、軸部材5とほぼ同径にされ、駆動力が軸部材5から弁体部4aに効率よく伝達されるようになっている。   In order to reduce the volume of the back pressure chamber 22, the valve body portion 4 a is provided with a small diameter portion 4 d in which the portion on the side opposite to the valve seat is smaller in diameter than the portion connected to the membrane portion 4 b. The small diameter portion 4d has substantially the same diameter as that of the shaft member 5, and the driving force is efficiently transmitted from the shaft member 5 to the valve body portion 4a.

弁体部4aには、軸部材5の先端部が接着されている。接着は、弁開閉動作時に軸部材5と弁体部4aを常時接触させ、弁体部4aを応答性良く動作させる目的でなされる。この目的が達成されるならば、軸部材5と弁体部4aが接触する部分を全て接着する必要はない。一方、ダイアフラム4は、弁開動作時に、弁体部4aが膜部4bに引っ張られて変形すれば、膜部4bに発生する引張応力を緩和できる。   The distal end portion of the shaft member 5 is bonded to the valve body portion 4a. Adhesion is performed for the purpose of always contacting the shaft member 5 and the valve body portion 4a during the valve opening / closing operation so that the valve body portion 4a operates with good responsiveness. If this purpose is achieved, it is not necessary to bond all the portions where the shaft member 5 and the valve body 4a are in contact. On the other hand, the diaphragm 4 can relieve the tensile stress generated in the membrane portion 4b if the valve body portion 4a is deformed by being pulled by the membrane portion 4b during the valve opening operation.

よって、ダイアフラム4は、弁体部4aと軸部材5が接触する部分のうち、少なくとも、膜部4bが弁体部4aに接続する位置より反弁座側の部分を非接着にすることが好ましく、更には、少なくとも、膜部4bの受圧面4fが弁体部4aに接続する位置より反弁座側の部分を非接着にすることが好ましい。換言すれば、ダイアフラム4は、弁体部4aと軸部材5が接触する部分のうち、膜部4bが弁体部4aに接続する部分より弁座側の部分の何れかを接着することが好ましく、更には、膜部4bの受圧面4fが弁体部4aに接続する位置より弁座側の部分の何れかを接着することが好ましい。   Therefore, in the diaphragm 4, it is preferable that at least the portion on the side opposite to the valve seat from the position where the membrane portion 4 b is connected to the valve body portion 4 a in the portion where the valve body portion 4 a and the shaft member 5 are in contact with each other. Furthermore, it is preferable that at least the portion on the side opposite to the valve seat from the position where the pressure receiving surface 4f of the membrane portion 4b is connected to the valve body portion 4a is not adhered. In other words, it is preferable that the diaphragm 4 adheres any one of the portions where the valve body portion 4a and the shaft member 5 are in contact with each other from the portion where the membrane portion 4b is connected to the valve body portion 4a. Furthermore, it is preferable to adhere any one of the parts on the valve seat side from the position where the pressure receiving surface 4f of the film part 4b is connected to the valve body part 4a.

本実施形態では、弁体部4aと軸部材5が接触する部分のうち、大径部5bの弁座側端面5cが弁体部4aに接触する部分のみを接着している。そのため、弁体部4aは、軸部材5の先端部外周面(凹溝5aの内壁と大径部5bの外周面)に接触する部分が非接着である。   In the present embodiment, among the portions where the valve body portion 4a and the shaft member 5 are in contact, only the portion where the valve seat side end surface 5c of the large diameter portion 5b is in contact with the valve body portion 4a is bonded. Therefore, the valve body portion 4a is non-adhered at the portion that contacts the outer peripheral surface of the tip end portion of the shaft member 5 (the inner wall of the concave groove 5a and the outer peripheral surface of the large diameter portion 5b).

弁体部4aは、膜部4bの受圧面4fが接続する位置にくびれ部4gを有する。弁体部4aは、くびれ部4gを形成された部分の肉厚が小径部4dの肉厚と同程度になるように、くびれ部4gが細くされている。これは、弁開閉動作時に、膜部4bの受圧面4fと背圧面4hが弁体部4aに接続する部分に発生する応力を分散させ、弁体部4aを滑らかに変形させるためである。   The valve body portion 4a has a constricted portion 4g at a position where the pressure receiving surface 4f of the membrane portion 4b is connected. The valve body portion 4a is narrowed at the constricted portion 4g so that the thickness of the portion where the constricted portion 4g is formed is approximately the same as the thickness of the small diameter portion 4d. This is because the pressure receiving surface 4f and the back pressure surface 4h of the membrane portion 4b during the valve opening / closing operation disperse the stress generated in the portion connected to the valve body portion 4a, thereby smoothly deforming the valve body portion 4a.

ダイアフラム弁構造30は、電磁弁1をサイズダウンするために、弁体収納室2dと背圧室形成凹部7gの内周面を膜部4b上に配置し、弁室21と背圧室22の容積を小さくしている。環状凸部2fは、径方向に同一幅を有するリング形状に設けられている。環状凸部2fは、嵌合凸部7fとの間に隙間S1を形成するように、環状溝2eの底壁よりも高く突設されている。   In order to reduce the size of the electromagnetic valve 1, the diaphragm valve structure 30 is configured such that the inner peripheral surfaces of the valve body storage chamber 2d and the back pressure chamber forming recess 7g are disposed on the membrane portion 4b, and the valve chamber 21 and the back pressure chamber 22 The volume is reduced. The annular convex portion 2f is provided in a ring shape having the same width in the radial direction. The annular convex portion 2f is projected higher than the bottom wall of the annular groove 2e so as to form a gap S1 between the annular convex portion 2f and the fitting convex portion 7f.

隙間S1の間隔が膜部4bの膜厚より小さいと、膜部4bが、環状凸部2fと嵌合凸部7fとの間で押し潰されてしまう。この場合、膜部4bは、弁開閉動作時に、押し潰された部分が変形できず、弁室21内に配置される部分のみを変形させるため、応力が大きくなって劣化しやすくなる。よって、環状凸部2fと嵌合凸部7fとの間の隙間S1の間隔は、膜部4bの膜厚より大きいことが好ましい。しかし、隙間S1が大きすぎると、弁開閉動作時に膜部4bが流体圧により変形し、受圧径が大きくなる。受圧径が大きいほど、ソレノイド10を大きくする必要があるため、電磁弁1をコンパクト化する上で問題である。そこで、環状凸部2fと嵌合凸部7fとの間の隙間S1の間隔は、膜部4bが反弁座側に凸状に湾曲することを防ぎつつ、膜部4bが弁体部4aと外縁部4cとの間で伸縮することを許容する程度にすることが好ましい。   When the gap S1 is smaller than the film thickness of the film part 4b, the film part 4b is crushed between the annular convex part 2f and the fitting convex part 7f. In this case, the squeezed portion cannot be deformed during the valve opening / closing operation, and only the portion disposed in the valve chamber 21 is deformed, so that the stress increases and the membrane portion 4b is likely to deteriorate. Therefore, it is preferable that the gap S1 between the annular convex portion 2f and the fitting convex portion 7f is larger than the film thickness of the film portion 4b. However, if the gap S1 is too large, the membrane portion 4b is deformed by the fluid pressure during the valve opening / closing operation, and the pressure receiving diameter is increased. The larger the pressure receiving diameter, the larger the solenoid 10 needs to be, which is a problem in making the solenoid valve 1 compact. Therefore, the gap S1 between the annular convex part 2f and the fitting convex part 7f prevents the film part 4b from curving convexly toward the valve seat side, while the film part 4b is connected to the valve body part 4a. It is preferable that the expansion and contraction with the outer edge portion 4c is allowed.

続いて、電磁弁1及びダイアフラム弁構造30の作用効果について説明する。   Then, the effect of the solenoid valve 1 and the diaphragm valve structure 30 is demonstrated.

図1に示すように、電磁弁1は、ソレノイド10に非通電のときは、第1及び第2圧縮ばね18,9の差圧により軸部材5を介して弁体部4aを弁座2cに当接させ、第1ポート2aから第2ポート2bへ流体を流さない。   As shown in FIG. 1, when the solenoid 10 is not energized, the solenoid valve 1 causes the valve body portion 4a to be moved to the valve seat 2c via the shaft member 5 by the differential pressure of the first and second compression springs 18 and 9. The fluid is not caused to flow from the first port 2a to the second port 2b.

この弁閉時において、ダイアフラム弁構造30は、図2に示すように、膜部4bが隙間S1内で環状凸部2fに面接触するように若干傾斜する。膜部4bは、くびれ部4gを弁体部4aに設けたことにより、内径位置が軸線方向にずらされ、くびれ部4gを設けない場合よりも変形可能な可動領域が広げられている。よって、ダイアフラム4は、膜部4bに皺を寄せることなく、弁体部4aを弁座2cに当接させることができる。   When the valve is closed, as shown in FIG. 2, the diaphragm valve structure 30 is slightly inclined so that the membrane portion 4b is in surface contact with the annular convex portion 2f within the gap S1. The membrane portion 4b is provided with the constricted portion 4g in the valve body portion 4a, so that the inner diameter position is shifted in the axial direction, and the movable region that can be deformed is wider than when the constricted portion 4g is not provided. Therefore, the diaphragm 4 can make the valve body part 4a contact | abut to the valve seat 2c, without bringing a wrinkle to the film | membrane part 4b.

電磁弁1は、ソレノイド10に通電されると、第1圧縮ばね18に抗して固定鉄心13が可動鉄心14を吸引する。このとき、第2圧縮ばね9が伸張して軸部材5を反弁座側へ押し上げる。これにより、軸部材5が弁体部4aを弁座2cから離間させ、第1ポート2aから第2ポート2bへ流体が流れる。   When the solenoid 10 is energized to the solenoid 10, the fixed iron core 13 attracts the movable iron core 14 against the first compression spring 18. At this time, the second compression spring 9 extends and pushes up the shaft member 5 toward the valve seat side. Thereby, the shaft member 5 separates the valve body portion 4a from the valve seat 2c, and the fluid flows from the first port 2a to the second port 2b.

この弁開動作では、ダイアフラム弁構造30は、ダイアフラム4の変形に特徴がある。すなわち、弁体部4aが弁閉状態から上昇し始めると、膜部4bは、弁体部4aに接続する内径位置から外縁部4cに接続する外縁部接続位置までの膜長L2の全域を伸縮させながら、環状凸部2fに面接触する姿勢から、嵌合凸部7fに面接触する姿勢になる。   In this valve opening operation, the diaphragm valve structure 30 is characterized by the deformation of the diaphragm 4. That is, when the valve body portion 4a starts to rise from the valve closed state, the membrane portion 4b expands and contracts across the entire membrane length L2 from the inner diameter position connected to the valve body portion 4a to the outer edge portion connection position connected to the outer edge portion 4c. In this manner, the posture comes into surface contact with the fitting convex portion 7f from the posture in surface contact with the annular convex portion 2f.

その後、更に弁体部4aが上昇すると、膜部4bは、図3に示すように、背圧室形成凹部7gの内壁と嵌合凸部7fの弁座側端面との間の角部7hで折り曲げられるようにして変形する。つまり、膜部4bは、角部7hに接触する部分より外側の部分が嵌合凸部7fの下端面に押し当てられて変形できなくなり、角部7hに接触する部分より内側の部分のみが反弁座側に変形させる(以下、膜部4bが角部7hに接触する位置を制限位置という。)。   Thereafter, when the valve body portion 4a is further raised, the membrane portion 4b is formed at the corner portion 7h between the inner wall of the back pressure chamber forming concave portion 7g and the valve seat side end surface of the fitting convex portion 7f as shown in FIG. Deforms so that it can be bent. That is, in the film part 4b, the part outside the part in contact with the corner part 7h is pressed against the lower end surface of the fitting convex part 7f and cannot be deformed, and only the part inside the part in contact with the corner part 7h is warped. The valve seat is deformed (hereinafter, the position at which the film portion 4b contacts the corner portion 7h is referred to as a restriction position).

このように、膜部4bは、角部7hに接触する前までは、内径位置から外縁部接続位置までを反弁座方向に変形させることができるが、角部7hに接触した後は、内径位置から制限位置までしか反弁座方向に変形させることができなくなる。つまり、膜部4bは、角部7hに接触した後の可動領域が角部7hに接触する前の可動領域より狭くなる。可動領域が狭くなると、弁体部4aが膜部4bを強く引っ張ろうとする。   As described above, the membrane portion 4b can be deformed in the counter valve seat direction from the inner diameter position to the outer edge connection position before contacting the corner portion 7h. Only the position to the limit position can be deformed in the counter valve seat direction. That is, in the film portion 4b, the movable region after contacting the corner portion 7h is narrower than the movable region before contacting the corner portion 7h. When the movable region is narrowed, the valve body portion 4a tries to pull the membrane portion 4b strongly.

しかし、ダイアフラム4は、軸部材5と弁体部4aとの接触部分のうち、軸部材5の弁座側端面5cが弁体部4aに接触する部分のみが接着され、その他の部分を接着されていない。そのため、弁体部4aは、膜部4bが角部7hに接触した後、図中二点鎖線に示すように、軸部材5から離れる方向に広がって変形し始める。よって、ダイアフラム4は、弁体部4aが、あたかも膜部4bの一部であるかのように変形し、膜部4bに発生する引張応力が緩和される。   However, in the diaphragm 4, only the portion where the valve seat side end surface 5 c of the shaft member 5 contacts the valve body portion 4 a among the contact portions between the shaft member 5 and the valve body portion 4 a is bonded, and the other portions are bonded. Not. Therefore, after the membrane portion 4b contacts the corner portion 7h, the valve body portion 4a starts to deform in a direction away from the shaft member 5, as indicated by a two-dot chain line in the figure. Therefore, the diaphragm 4 is deformed as if the valve body portion 4a is a part of the membrane portion 4b, and the tensile stress generated in the membrane portion 4b is relaxed.

このとき、弁体部4aは、膜部4bに接続する部分の弁座側と反弁座側がほぼ同じ肉厚を有するように、小径部4dとくびれ部4gが設けられている。そのため、膜部4bに引っ張られた場合に、弁体部4aの上端部が滑らかに変形する。よって、ダイアフラム4は、弁開閉動作時に弁体部4aを変形させても、弁開閉動作を阻害しない。   At this time, the valve body portion 4a is provided with a small diameter portion 4d and a constricted portion 4g so that the valve seat side and the counter valve seat side of the portion connected to the membrane portion 4b have substantially the same thickness. Therefore, when pulled by the membrane portion 4b, the upper end portion of the valve body portion 4a is smoothly deformed. Therefore, the diaphragm 4 does not hinder the valve opening / closing operation even if the valve body 4a is deformed during the valve opening / closing operation.

ところで、ダイアフラムの受圧径が大きくなると、ダイアフラムに駆動力を付与するアクチュエータが大型化する。ダイアフラムの受圧径を小さくするには、例えば図9に示すように、弁体部102aを収納する弁室106を小さくすることが考えられる。弁室106を小さくしすぎると、膜部102bの膜長L202(膜部の弁体部に接続する内径位置から外縁部に接続する外縁部接続位置までの長さ)が短くなり、膜部102bに発生する応力が過大になる。   By the way, when the pressure receiving diameter of the diaphragm increases, the actuator for applying a driving force to the diaphragm increases in size. In order to reduce the pressure receiving diameter of the diaphragm, for example, as shown in FIG. 9, it is conceivable to reduce the valve chamber 106 that houses the valve body portion 102a. If the valve chamber 106 is made too small, the membrane length L202 of the membrane portion 102b (the length from the inner diameter position connecting to the valve body portion to the outer edge portion connecting position connecting to the outer edge portion) of the membrane portion 102b is shortened. Excessive stress is generated.

膜部102bの膜長を確保しつつ、弁室106を小さくした場合、膜部102bの一部がバルブボディ103とスタフィング104の間に配置され、弁開時における膜部102bの変形がスタフィング104により制限される。この場合、膜部102bは、可動膜長L201(内径位置からスタフィングに接触して変形を制限される制限位置までの長さ)が短くなり、ストロークを確保し難くなる。よって、弁室106を小さくすることでダイアフラム102の受圧径を小さくすることには、限界がある。   When the valve chamber 106 is made small while securing the film length of the film part 102b, a part of the film part 102b is disposed between the valve body 103 and the stuffing 104, and the deformation of the film part 102b when the valve is opened is the stuffing 104. Limited by. In this case, the film part 102b has a short movable film length L201 (a length from the inner diameter position to a restriction position where deformation is restricted by contacting the stuffing), and it is difficult to secure a stroke. Therefore, there is a limit to reducing the pressure receiving diameter of the diaphragm 102 by reducing the valve chamber 106.

これに対して、図2に示すように、ダイアフラム弁構造30では、弁体部4aにくびれ部4gが設けられ、膜部4bが弁体部4aに接続する位置が、くびれ部4gを設けない場合より、軸線方向にずらされている。そのため、膜部4bは、くびれ部4gを設けない場合と比べ、内径位置から制限位置までの長さ(可動膜長)L1が長くなっている。可動膜長L1が長いほど、長いストロークを確保できる。つまり、同一の使用ストロークであれば、可動膜長L1が長いほど、膜部4bに生じる引張応力を軽減させることが可能になる。よって、ダイアフラム4は、くびれ部4gを有しないものと比べ、膜部4bの引張応力を軽減させることができる。   On the other hand, as shown in FIG. 2, in the diaphragm valve structure 30, the constricted portion 4g is provided in the valve body portion 4a, and the position where the membrane portion 4b is connected to the valve body portion 4a does not provide the constricted portion 4g. In some cases, it is shifted in the axial direction. Therefore, the film portion 4b has a longer length (movable film length) L1 from the inner diameter position to the restriction position than when the constricted portion 4g is not provided. The longer the movable film length L1, the longer the stroke can be secured. That is, with the same use stroke, the longer the movable film length L1, the more the tensile stress generated in the film part 4b can be reduced. Therefore, the diaphragm 4 can reduce the tensile stress of the film part 4b compared with the thing which does not have the constriction part 4g.

可動膜長L1が長くなると、受圧径が大きくなると考えられる。しかし、後述するように、本実施形態のダイアフラム弁構造30は、可動膜長L1を長くつつ、受圧径が小さくできるので、可動膜長L1を長くしても、ソレノイド10を大型化する必要がない。   It is considered that the pressure receiving diameter increases as the movable film length L1 increases. However, as will be described later, since the diaphragm valve structure 30 of the present embodiment can reduce the pressure receiving diameter while increasing the movable film length L1, it is necessary to enlarge the solenoid 10 even if the movable film length L1 is increased. Absent.

ところで、図9に示すダイアフラム弁構造100のように、膜部102bの一部をバルブボディ103とスタフィング104の間で押し潰した場合、膜部102bは、その押し潰された部分を伸縮させることができない。そのため、膜部102bは、可動膜長L201に対応する領域のみを変形させて弁開閉動作を行うので、ストロークが大きいほど、弁体部102aに接続する部分やスタフィング104に変形を制限される部分に応力が集中しやすい。   By the way, like the diaphragm valve structure 100 shown in FIG. 9, when a part of the film part 102b is crushed between the valve body 103 and the stuffing 104, the film part 102b expands and contracts the crushed part. I can't. Therefore, the membrane portion 102b performs the valve opening / closing operation by deforming only the region corresponding to the movable membrane length L201. Therefore, as the stroke increases, the portion connected to the valve body portion 102a or the portion where deformation is restricted Stress tends to concentrate on

これに対して、図2及び図3に示すダイアフラム弁構造30では、膜部4bは、角部7hに接触して変形を制限される制限位置より外側の部分が、環状凸部2fと嵌合凸部7fとの間で押し潰されず、伸縮を許容されている。そのため、膜部4bは、ストロークが大きくなるにつれて、制限位置より外側の部分が引き伸ばされる。よって、ダイアフラム弁構造30は、ストロークが大きくなっても、膜部4b全体に応力が分散され、ダイアフラム4の耐久性を向上させることができる。   On the other hand, in the diaphragm valve structure 30 shown in FIG. 2 and FIG. 3, the membrane portion 4b is fitted to the annular convex portion 2f at a portion outside the restriction position where deformation is restricted by contacting the corner portion 7h. Expansion and contraction are allowed without being crushed between the convex portions 7f. Therefore, the film portion 4b is stretched at a portion outside the limit position as the stroke increases. Therefore, the diaphragm valve structure 30 can improve the durability of the diaphragm 4 because the stress is dispersed throughout the film portion 4b even if the stroke becomes large.

ソレノイド10への通電が停止すると、第1及び第2圧縮ばね18,9の差圧により可動鉄心14が下降する。可動鉄心14は、軸部材5を押し下げ、弁体部4aを弁座2cに当接させる。これにより、第1ポート2aから第2ポート2bへ流体が流れなくなる。   When the energization of the solenoid 10 is stopped, the movable iron core 14 is lowered by the differential pressure between the first and second compression springs 18 and 9. The movable iron core 14 pushes down the shaft member 5 to bring the valve body portion 4a into contact with the valve seat 2c. Thereby, the fluid does not flow from the first port 2a to the second port 2b.

弁閉動作開始時には、ダイアフラム弁構造30は、図3の実線に示すように、弁体部4aが弾性力により軸部材5側へ向かって変形する。また、膜部4bは、制限位置より内側の部分を弁座側へ変形させながら、制限位置より外側の部分を縮める。膜部4bは、角部7hから離れると、膜長L2の全域を変形させる。そして、膜部4bは、図2に示すように、環状凸部2fに面接触して斜めに傾斜した姿勢となり、ダイアフラム4が弁閉状態になる。   At the start of the valve closing operation, the diaphragm valve structure 30 is deformed toward the shaft member 5 side by the elastic force of the valve body portion 4a as shown by the solid line in FIG. Further, the membrane portion 4b shrinks the portion outside the limit position while deforming the portion inside the limit position to the valve seat side. When the film part 4b is separated from the corner part 7h, the entire film length L2 is deformed. Then, as shown in FIG. 2, the membrane part 4b comes into surface contact with the annular convex part 2f and is inclined obliquely, and the diaphragm 4 is in a valve-closed state.

ここで、弁開動作時、弁閉動作時、弁閉する瞬間には、流体圧が膜部4bに作用する。膜部4bは、バルブボディ2とスタフィング7に押し潰されず、制限位置より外側の部分を常時伸縮させることができる状態になっている。また、膜部4bは、弁体部4aにくびれ部4gを設けたことにより、内径位置から制限位置までの可動膜長L1が長くされている。よって、ダイアフラム弁構造30は、流体圧が膜部4bに作用する間、膜部4bの内径位置から制限位置までの可動領域を反弁座側に向かって凸状に湾曲させ、膜部4bがコンボリューションを付けたような形状になる。この点からも、膜部4bは、可動膜長L1が長くなり、弁開閉動作時に発生する応力が軽減する。   Here, the fluid pressure acts on the membrane part 4b at the moment of valve opening operation, valve closing operation, and valve closing. The film part 4b is not squeezed by the valve body 2 and the stuffing 7, and is in a state where the part outside the restricting position can always be expanded and contracted. Further, in the membrane portion 4b, the constricted portion 4g is provided in the valve body portion 4a, so that the movable membrane length L1 from the inner diameter position to the restriction position is increased. Therefore, the diaphragm valve structure 30 bends the movable region from the inner diameter position of the membrane portion 4b to the restriction position in a convex shape toward the counter valve seat while the fluid pressure acts on the membrane portion 4b. It looks like a convolution. Also from this point, the film portion 4b has a long movable film length L1, and the stress generated during the valve opening / closing operation is reduced.

次に、ダイアフラム4の受圧径について考察する。結論から言うと、ダイアフラム4は、図4に示すコンボリューション付きダイアフラム51の有効径Dfと同様に受圧径と機能を考えることができる。   Next, the pressure receiving diameter of the diaphragm 4 will be considered. If it says from a conclusion, the diaphragm 4 can consider a pressure receiving diameter and a function similarly to the effective diameter Df of the diaphragm 51 with a convolution shown in FIG.

図4に示すコンボリューション付きダイアフラム51では、コンボリューション53の外側の直径Dcと、コンボリューションの内側の直径Dpを加算し、その加算した値を2で割ることにより、有効径Dfが算出される[Df=(Dc+Df)/2]。   In the convolution diaphragm 51 shown in FIG. 4, the effective diameter Df is calculated by adding the outer diameter Dc of the convolution 53 and the inner diameter Dp of the convolution, and dividing the added value by two. [Df = (Dc + Df) / 2].

図5に示すように、コンボリューション付きダイアフラム51は、全閉位置SAの有効径DfA、中間位置SCの有効径DfC、全開位置SBの有効径DfBに示すように、ストロークが大きくなるほど、有効径が小さくなるという特徴がある。   As shown in FIG. 5, the convolution diaphragm 51 has an effective diameter as the stroke increases as shown in an effective diameter DfA of the fully closed position SA, an effective diameter DfC of the intermediate position SC, and an effective diameter DfB of the fully opened position SB. There is a feature that becomes smaller.

発明者らは、本実施形態のダイアフラム4について、ストロークと受圧径との関係を調べる解析を行った。   The inventors analyzed the diaphragm 4 of the present embodiment to examine the relationship between the stroke and the pressure receiving diameter.

この解析の結果、ダイアフラム4は、ストロークが大きくなるほど、受圧径Df1が小さくなることが分かった。これは、図5に示すコンボリューション付きダイアフラム51の有効径Dfと同じ特徴である。   As a result of this analysis, it was found that the diaphragm 4 has a smaller pressure receiving diameter Df1 as the stroke becomes larger. This is the same characteristic as the effective diameter Df of the convolution diaphragm 51 shown in FIG.

発明者らは、流体圧が作用した場合の膜部4bの形状を解析した。その結果、膜部4bは、弁閉する瞬間、流体圧が作用すると、図6に示すように、弁体部4aに接続する内径位置から角部7hに接触する制限位置までの可動領域が、反弁座側に向かって凸状に湾曲し、変形することが分かった。この他、弁開動作時に流体圧が作用する膜部4bの形状についても、弁閉する瞬間の膜部4bと同様に変形する解析結果が得られた。   Inventors analyzed the shape of the film | membrane part 4b when a fluid pressure acted. As a result, when the fluid pressure is applied at the moment of closing the valve, the membrane portion 4b has a movable region from the inner diameter position connected to the valve body portion 4a to the restricted position contacting the corner portion 7h, as shown in FIG. It turned out to bend and deform in a convex shape toward the counter valve seat side. In addition, an analysis result was obtained that deformed the shape of the membrane portion 4b on which the fluid pressure acts during the valve opening operation in the same manner as the membrane portion 4b at the moment of closing the valve.

よって、ダイアフラム4は、流体圧が作用する間、膜部4bが、内径位置と制限位置との間が反弁座側に凸状に湾曲し、コンボリューションを設けた形状となっている。この場合、図2に示す内径位置の直径Dp1が、図4に示すコンボリューション付きダイアフラム51のコンボリューション52の内径寸法Dpに該当し、図2に示す制限位置の直径Dc1が、図4に示すコンボリューション付きダイアフラム51のコンボリューション52の外径寸法Dcに該当すると考えられる。   Therefore, the diaphragm 4 has a shape in which the membrane portion 4b is convexly curved toward the counter valve seat between the inner diameter position and the restriction position while the fluid pressure is applied, and a convolution is provided. In this case, the diameter Dp1 of the inner diameter position shown in FIG. 2 corresponds to the inner diameter dimension Dp of the convolution 52 of the convolution diaphragm 51 shown in FIG. 4, and the diameter Dc1 of the restriction position shown in FIG. 2 is shown in FIG. This is considered to correspond to the outer diameter Dc of the convolution 52 of the diaphragm 51 with convolution.

そこで、ストロークと受圧径との関係を調べる解析で仮定したダイアフラムの条件をコンボリューション付きダイアフラムの有効径算出式に適用すると、算出された受圧径Dp1がストローク0mmのとき(弁閉状態)の解析結果で得られた受圧径と同程度であった。よって、ダイアフラム4の受圧径は、コンボリューション付きダイアフラム51と同様に考えられ、コンボリューション付きダイアフラム51の有効径算出式により求めることができる。   Therefore, when the diaphragm condition assumed in the analysis for examining the relationship between the stroke and the pressure receiving diameter is applied to the effective diameter calculation formula of the convolution diaphragm, the analysis is performed when the calculated pressure receiving diameter Dp1 is 0 mm stroke (valve closed state). It was comparable to the pressure receiving diameter obtained as a result. Therefore, the pressure receiving diameter of the diaphragm 4 can be considered in the same manner as the diaphragm 51 with convolution, and can be obtained by an effective diameter calculation formula of the diaphragm 51 with convolution.

以上の通り、ダイアフラム4は、くびれ部4gを弁体部4aに設けて、膜部4bの可動膜長L1を長くしても、コンボリューション付きダイアフラム51の有効径算出式によれば、内径寸法Dp(内径位置の直径Dp1)が小さくなるので、受圧径を小さくできる。   As described above, the diaphragm 4 has an inner diameter dimension according to the effective diameter calculation formula of the convolution diaphragm 51 even if the constricted portion 4g is provided in the valve body portion 4a and the movable membrane length L1 of the membrane portion 4b is increased. Since Dp (the diameter Dp1 at the inner diameter position) is reduced, the pressure receiving diameter can be reduced.

続いて、図2に示すダイアフラム弁構造30と、図9に示すダイアフラム弁構造100に発生する応力について説明する。   Next, the stress generated in the diaphragm valve structure 30 shown in FIG. 2 and the diaphragm valve structure 100 shown in FIG. 9 will be described.

ここでは、ダイアフラム弁構造30と同様の構成を有する実施例と、ダイアフラム弁構造100と同様の構成を有する比較例について、応力を解析した。実施例と比較例は、下記第1〜第3相違点を除いて、同一形状にされている。   Here, the stress was analyzed about the Example which has the structure similar to the diaphragm valve structure 30, and the comparative example which has the structure similar to the diaphragm valve structure 100. FIG. The example and the comparative example have the same shape except for the following first to third differences.

第一相違点は、実施例が軸部材5と弁体部4aの接触部分を部分的に接着するのに対して、比較例が軸部材105と弁体部102aの接触部分全体を接着する点である。第二相違点は、実施例がくびれ部4gを有するのに対して、比較例はくびれ部を有しない点である。第三相違点は、実施例が膜部4bを押し潰さない状態でダイアフラム4を固定するのに対して、比較例が膜部102bを押し潰した状態でダイアフラム102を固定する点である。   The first difference is that the embodiment partially bonds the contact portion between the shaft member 5 and the valve body portion 4a, whereas the comparative example bonds the entire contact portion between the shaft member 105 and the valve body portion 102a. It is. The second difference is that the example has a constricted portion 4g, whereas the comparative example does not have a constricted portion. The third difference is that the diaphragm 4 is fixed in a state in which the embodiment does not crush the membrane portion 4b, whereas the diaphragm 102 is fixed in a state in which the membrane portion 102b is crushed in the comparative example.

応力解析は、流体圧を加えた状態で、実施例と比較例をそれぞれ最小ストローク位置から最高ストローク位置まで動作させた場合に、膜部4b、102bに加わる最大応力値と最大引張応力値を調べた。   In the stress analysis, the maximum stress value and the maximum tensile stress value applied to the film portions 4b and 102b are investigated when the fluid pressure is applied and the example and the comparative example are operated from the minimum stroke position to the maximum stroke position, respectively. It was.

図7に示すように、実施例の膜部4bに加わる最大応力値は、使用ストローク範囲を含め、比較例の膜部102bに加わる最大応力値より小さくなることが分かった。   As shown in FIG. 7, it was found that the maximum stress value applied to the film part 4b of the example was smaller than the maximum stress value applied to the film part 102b of the comparative example including the use stroke range.

また、図8に示すように、実施例の膜部4bに加わる最大引張応力値は、使用ストローク範囲のほぼ全領域で比較例より小さくなる。特に、実施例と比較例の最大引張応力値の差は、ストロークが大きくなるほど顕著になる。   Further, as shown in FIG. 8, the maximum tensile stress value applied to the film part 4b of the example is smaller than that of the comparative example in almost the entire region of the use stroke range. In particular, the difference between the maximum tensile stress values of the example and the comparative example becomes more prominent as the stroke increases.

そして、使用ストローク範囲では、実施例は、最大引張応力値の変化率が緩やかであり、しかも、膜部4bに皺を寄せることなく使用できる。これに対して、比較例は、使用ストローク範囲において、最大引張応力値の変化率が大きく、使用ストロークの最小ストローク付近で膜部102bに皺が寄ってしまった。   In the use stroke range, the change rate of the maximum tensile stress value is moderate in the example, and the film portion 4b can be used without wrinkling. On the other hand, in the comparative example, the rate of change of the maximum tensile stress value was large in the use stroke range, and the film portion 102b was wrinkled near the minimum stroke of the use stroke.

以上より、実施例は、膜部4bに発生する最大応力と引張応力が比較例の膜部102bより軽減することが分かった。よって、実施例は、膜部4bに発生する応力を軽減し、ダイアフラム4の耐久性を向上させることができる。   From the above, it was found that in the example, the maximum stress and tensile stress generated in the film part 4b are reduced compared to the film part 102b of the comparative example. Therefore, the embodiment can reduce the stress generated in the film part 4 b and improve the durability of the diaphragm 4.

膜部4bの張力が大きくなると、ダイアフラム4を可動させる力が大きくなるので、コイル11(ソレノイド10)をサイズアップする必要がある。しかし、実施例のように膜部4bの張力が軽減すれば、ダイアフラム4を可動させる力が比較例より小さくなり、比較例よりコイル11(ソレノイド10)のサイズをダウンさせることができる。   When the tension of the film part 4b is increased, the force for moving the diaphragm 4 is increased. Therefore, it is necessary to increase the size of the coil 11 (solenoid 10). However, if the tension of the film part 4b is reduced as in the embodiment, the force for moving the diaphragm 4 becomes smaller than that in the comparative example, and the size of the coil 11 (solenoid 10) can be reduced as compared with the comparative example.

尚、本発明は、上記実施形態に限定されることなく、色々な応用が可能である。
例えば、操作圧とばね圧とのバランスに応じて流体制御を行うエアオペレイトバルブに上記実施形態のダイアフラム弁構造を適用しても良い。この場合でも、ダイアフラムの弁体部にくびれを設けることでダイアフラムの受圧径を小さくできるので、アクチュエータ部を小さくしてエアオペレイトバルブのコンパクト化を推進できる。
In addition, this invention is not limited to the said embodiment, Various application is possible.
For example, the diaphragm valve structure of the above embodiment may be applied to an air operated valve that performs fluid control according to the balance between the operating pressure and the spring pressure. Even in this case, the pressure receiving diameter of the diaphragm can be reduced by providing a constriction in the valve body portion of the diaphragm, so that the actuator portion can be made smaller and the air operated valve can be made more compact.

1 電磁弁
2 バルブボディ
2a 第1ポート
2b 第2ポート
2c 弁座
2d 弁体収納室
2e 環状溝
2f 環状凸部
4 ダイアフラム
4a 弁体部
4b 膜部
4c 外縁部
4e 反弁座側端面
4f 受圧面
4g くびれ部
5 軸部材
7 スタフィング
10 ソレノイド
11 コイル
30 ダイアフラム弁構造
DESCRIPTION OF SYMBOLS 1 Solenoid valve 2 Valve body 2a 1st port 2b 2nd port 2c Valve seat 2d Valve body storage chamber 2e Annular groove 2f Annular convex part 4 Diaphragm 4a Valve body part 4b Film part 4c Outer edge part 4e Counter valve seat side end face 4f Pressure receiving surface 4g Constriction 5 Shaft member 7 Staffing 10 Solenoid 11 Coil 30 Diaphragm valve structure

Claims (4)

弁座を備えるバルブボディと、前記弁座に対して当接又は離間するダイアフラムと、前記バルブボディとの間で前記ダイアフラムを固定するスタフィングとを備えるダイアフラム弁構造において、
前記ダイアフラムが、前記弁座に当接又は離間する円柱形状の弁体部と、前記弁体部から外向きに延設された膜部と、前記膜部の外縁に沿って肉厚に設けられて前記バルブボディと前記スタフィングとの間で固定される外縁部を備えること、
前記弁体部の反弁座側端面の中心から突出するように前記弁体部に一体的に設けられ、前記弁体部の内部に配置される先端部が前記弁体部に接着されるものであって、前記弁体部に駆動力を伝達する軸部材を有すること、
前記弁体部と前記軸部材が接触する部分のうち、少なくとも前記膜部が前記弁体部に接続する位置より反弁座側の部分が、非接着であること
を特徴とするダイアフラム弁構造。
In a diaphragm valve structure including a valve body including a valve seat, a diaphragm that contacts or separates from the valve seat, and a stuffing that fixes the diaphragm between the valve body,
The diaphragm is provided with a thickness along the outer edge of the membrane portion, a cylindrical valve body portion that contacts or separates from the valve seat, a membrane portion that extends outward from the valve body portion, and the membrane portion. An outer edge portion fixed between the valve body and the stuffing,
The valve body part is provided integrally with the valve body part so as to protrude from the center of the counter valve seat side end surface of the valve body part, and a tip part disposed inside the valve body part is bonded to the valve body part And having a shaft member for transmitting a driving force to the valve body part,
A diaphragm valve structure characterized in that at least a portion on the side opposite to the valve seat from a position where the membrane portion is connected to the valve body portion is non-adhered among the portions where the valve body portion and the shaft member are in contact with each other.
請求項1に記載するダイアフラム弁構造において、
前記弁体部が、前記膜部の受圧面が接続する位置にくびれ部を有する
ことを特徴とするダイアフラム弁構造。
In the diaphragm valve structure according to claim 1,
A diaphragm valve structure, wherein the valve body portion has a constricted portion at a position where the pressure receiving surface of the membrane portion is connected.
請求項1又は請求項2に記載するダイアフラム弁構造において、
前記バルブボディは、前記弁体部を収納する弁体収納室と、前記弁体収納室より外側に設けられて前記外縁部を収納する環状溝と、前記弁体収納室と前記環状溝との間に配置される環状凸部を有し、
前記スタフィングと前記環状凸部との間隔が前記膜部の膜厚より大きいことを特徴とするダイアフラム弁構造。
In the diaphragm valve structure according to claim 1 or 2,
The valve body includes a valve body storage chamber that stores the valve body portion, an annular groove that is provided outside the valve body storage chamber and stores the outer edge portion, and the valve body storage chamber and the annular groove. Having an annular protrusion disposed between,
A diaphragm valve structure characterized in that a distance between the stuffing and the annular convex part is larger than a film thickness of the film part.
第1ポートと第2ポートが弁座を介して連通するバルブボディと、前記弁座に対して当接又は離間するダイアフラムと、前記バルブボディとの間で前記ダイアフラムを固定するスタフィングと、コイルへの通電量に応じて駆動力を発生し、前記ダイアフラムに伝達するソレノイドを備える電磁弁において、
前記ダイアフラムが、前記弁座に当接又は離間する円柱形状の弁体部と、前記弁体部から外向きに延設された膜部と、前記膜部の外縁に沿って肉厚に設けられて前記バルブボディと前記スタフィングとの間で固定される外縁部を備えること、
前記弁体部の反弁座側端面の中心から突出するように前記弁体部に一体的に設けられ、前記弁体部の内部に配置される先端部が前記弁体部に接着されるものであって、前記ソレノイドが発生した駆動力を前記弁体部に伝達する軸部材を有すること、
前記弁体部と前記軸部材が接触する部分のうち、少なくとも前記膜部が前記弁体部に接続する位置より反弁座側の部分が、非接着であること
を特徴とする電磁弁。
A valve body in which a first port and a second port communicate with each other via a valve seat; a diaphragm that contacts or separates from the valve seat; a stuffing that fixes the diaphragm between the valve body; and a coil In a solenoid valve having a solenoid that generates a driving force according to the amount of energization and transmits the driving force to the diaphragm,
The diaphragm is provided with a thickness along the outer edge of the membrane portion, a cylindrical valve body portion that contacts or separates from the valve seat, a membrane portion that extends outward from the valve body portion, and the membrane portion. An outer edge portion fixed between the valve body and the stuffing,
The valve body part is provided integrally with the valve body part so as to protrude from the center of the counter valve seat side end surface of the valve body part, and a tip part disposed inside the valve body part is bonded to the valve body part And having a shaft member for transmitting the driving force generated by the solenoid to the valve body part,
Among the portions where the valve body portion and the shaft member are in contact, at least the portion on the side opposite to the valve seat from the position where the membrane portion is connected to the valve body portion is non-adhered.
JP2014025828A 2014-02-13 2014-02-13 Diaphragm valve structure and solenoid valve Active JP6074375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014025828A JP6074375B2 (en) 2014-02-13 2014-02-13 Diaphragm valve structure and solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014025828A JP6074375B2 (en) 2014-02-13 2014-02-13 Diaphragm valve structure and solenoid valve

Publications (2)

Publication Number Publication Date
JP2015152075A true JP2015152075A (en) 2015-08-24
JP6074375B2 JP6074375B2 (en) 2017-02-01

Family

ID=53894577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014025828A Active JP6074375B2 (en) 2014-02-13 2014-02-13 Diaphragm valve structure and solenoid valve

Country Status (1)

Country Link
JP (1) JP6074375B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658436A (en) * 1992-08-07 1994-03-01 Kiyohara Masako Controller
JP2000193105A (en) * 1998-12-25 2000-07-14 Ckd Corp Elastic member fixing structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658436A (en) * 1992-08-07 1994-03-01 Kiyohara Masako Controller
JP2000193105A (en) * 1998-12-25 2000-07-14 Ckd Corp Elastic member fixing structure

Also Published As

Publication number Publication date
JP6074375B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP4805320B2 (en) Solenoid open / close valve
KR101723128B1 (en) Pressure balanced valve with diaphragm for sealing valve member end
JP6320628B2 (en) solenoid valve
TW201812197A (en) Fluid control valve and fluid control valve manufacturing method
JP2016080115A (en) Fluid control valve
JP5952150B2 (en) Solenoid valve for fuel cell
US20160009266A1 (en) Braking fluid control apparatus
US8632051B2 (en) Solenoid
JP6074375B2 (en) Diaphragm valve structure and solenoid valve
JP5566407B2 (en) Solenoid valve and pilot solenoid valve
US20100051844A1 (en) Electromagnetic valve
JP2019039508A (en) Pilot type solenoid valve
JP6068249B2 (en) solenoid valve
JP5248660B2 (en) Diaphragm valve
JP6654060B2 (en) Diaphragm valve
JP4597027B2 (en) solenoid valve
JP2023083160A (en) diaphragm valve
JP2023037929A (en) diaphragm valve
AU2017210484B2 (en) Valve
JP6009186B2 (en) solenoid valve
JP2016217513A (en) Control valve
JP2015218745A (en) solenoid valve
JP2020204335A (en) solenoid valve
JP5952179B2 (en) Valve structure
WO2022137693A1 (en) Differential pressure valve and valve device having same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170106

R150 Certificate of patent or registration of utility model

Ref document number: 6074375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150